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ABSTRACT

A careful and constant attention was paid for the development of this thesis.
Enough attempt has been taken to make this thesis comprehended easily. The
main novel feature of this thesis is its increased emphasis on special topics. For
completeness of this thesis, references of papers and books have been inserted

explicitly.

The table of content gives neat and clear information of the subject matter of
thesis. The thesis splits naturally into five chapters. Section 1 of Chapter I of
this thesis begins with introduction and subsequent development of Ramanujan’s
notebooks along with few customary definitions we make use in the sequel. In
Section 2, we present some Ramanujan’s terminology with some important results.
Section 3 contains some basic well known hypergeometric transformations. Section
4 deals with a remarkable result of Ramanujan- circular summation formula and in

final Section of this Chapter, we deals with Ramanujan’s continued fractions.

Chapter II contains three Sections. Section 2.1 begins with Ramanujan’s
reciprocity theorem and its generalization obtained by several mathematicians.
Section 2.2 contains our main result, a neat and different six variable
generalization of Ramanujan’s reciprocity theorem. We conclude this Chapter by
obtaining several beta, gamma identities and eta function identities for our main

identity.

In Chapter III, we begin with basic terminology and important results related
to basic hypergeometric series. In Section 3.2, we obtain our main result- 51,

transformation formula for 519 bilateral series. As applications to our main result,

viii



we obtain Fourier series related to theta functions.

Chapter IV begins with a short introduction on circular summation formula
and contributions on the same by many researchers in Section 4.1.. We discuss
new circular summation formula in Section 4.2. In Section 4.3, we also obtain new
circular summation formula by applying Jacobi imaginary transformation formula.
In Section 4.4, we obtain new circular summation formula by applying difference
of theta function on the formulae obtained in Section 4.2. In the final Section, as

application, we obtain some special cases as identity of theta functions.

In the concluding Chapter of this thesis, we study a nice continued fraction

analogous to Ramanujan’s continued fractions.
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CHAPTER I

INTRODUCTION
SECTION 1

Srinivasa Aiyangar Ramanujan (1887 — 1920), the mathematical legendary
genius ranks among the all time great Euler, Gauss and Jacobi. In his three
notebooks, perhaps influenced by the style of Carr’s Book, recorded thousands
of original results without proof, which has greatly influenced some of the best
research work in mathematics. In 1957, the Tata Institute of Fundamental
Research, Bombay brought out the facsimile edition of these notebooks in two

volumes.

In 1929, Watson and B. M. Wilson had undertaken the task of editing
Ramanujan’s notebooks, but were unable to complete their task partly due to
premature death of Wilson in 1935. Professor Bruce C. Berndt of University of
Mlinois, USA, deserves special credit for his major role in editing Ramanujan’s
notebooks. Today the wider circle of mathematicians the world over have five
edited volumes — Ramanujan Notebooks Parts I - V — which contain proofs
of the theorems stated by Ramanujan or the references to the proofs. The five

volumes contain 3254 results.

In addition to the three notebooks of Ramanujan, G. E. Andrews in 1976

while looking through a box of Watson’s material in the library of Trinity college,



Cambridge University, came across over 600 formulas in about 140 sheet of pages
handwritten by Ramanujan. Some of the sheets contained claims of Ramanujan
about mock theta functions. Sincere thanks to Prof. Bruce Carl Berndt and Prof.
George E. Andrews for giving mathematical fraternity so far four edited volumes

— Ramanujan Lost notebook Parts I - IV.

The research work presented in this thesis — for the most part is based on and

motivated by the works of Ramanujan.

Throughout the thesis we employ the following notations and definitions:

o0

(@)oo == (6:9)00 = (1 —ag™)

n=0

and

(@), == (a;q)n, = H(l—aqk): (0)oc ., n: any integer, (1.1.1)

where a and ¢ are complex number with |¢| < 1. In particular, if n is a positive

integer

(_1)71 qn(n+1)/2

(@)on =g (¢/a)n

) (1.1.2)

We shall define , F§, the generalized hypergeometric series by



& a(a ) (=1 an(ap 1) (@ —1)
_Zn!bl(b1+1)"'(b1+n—1)...bs(bs+1)...(bs+n_1)z' (1.1.3)

n=0

By the ratio test, the series on right hand side of (1.1.3) converges absolutely for

all zif r <s, and for |z] < 1ifr=s+ 1.

The generalized basic hypergeometric series ,,1¢, is defined by

oo

ai, Qg, -, Qry1 ;q ;% (a)n(az)n - (Grs1)n

r+1¢7‘ :Z Zn, (114)
bl’ b27 T b, n=0 (q>n<b1)n<b2)n (br)n

where ay, as, - -+, ay41, b1, be, - -+ , b, are arbitrary, except that of course, (b;), # 0,

1<j<r,0<n<ooand (a),isasin (1.1.1). For 0 < |g| < 1, the series on the

right hand side of (1.1.4) converges absolutely for |z| < 1.

The basic bilateral hypergeometric series .9, is defined by

ay, Q9, *++, Qr ;qQ ;Z 0 (al)n(a2)n... (ar>n
T = " 1.1.5
w Z_ (bl)n(bQ)n to (br)n ( )
b17 bQ; Tty bT’ n [e’e]

where (a), and (a)_, are as defined in (1.1.1) and (1.1.2) respectively and the

denominator factors are never zero. For 0 < |¢| < 1, the series converges absolutely

by---b,
al...ar

in the annulus < |zl < 1.




The eta-function, also known as the Dedekind eta function is defined by

n(r) = T —e),  Im7 >0,
n=1
= ¢""(¢;9)oo where €™ = ¢. (1.1.6)

The g¢-difference operator and the ¢- shifted operator ¢ are defined by [80]

Df(@) =~ (f(6) = flag)  and  C{f(@)} = f(aq)

respectively.

An operator 6 is defined by § = (~'D, and the operator F(bf) is defined as

o0 nm(n—1)/2
B =Y (b@)(qq—q)

n=0

Then the operator identities are [80, Theorem 1]:

E(b0){(at; ¢)oc} = (at, bl; )oc-

(as,at, bs, bt; q) oo
(abst/q; q)oc

abst

E(b0){(as, at; q)oc} = q

where as usual,

(a1, az,as - ag; qQ)n = (a1;@Q)nla2; @)n(as; Qn -+ - (ak; @Qn,

where n is an integer or infinity.



The ¢- gamma function I'j(x) is defined as

(45 4)os n
(x)=—""—(1—-¢q) 7 0<g< 1 1.1.7
(@) = (L= (1) (1L7)
¢- gamma function is a g¢-analogue of Euler’s gamma function which was
introduced by J. Thomae [109] and later by Jackson [71]. The definition of
g-gamma function can be extended to |g| < 1 by using the principal values of

q* and (1 — ¢)'=*, from (1.1.7)

(45 9)oo
(q“““; 7)o
H 1 _ q 1 _ qn—l—l)x

Py(z +1) = (1—q)"

Hence

q—1-

o 1 x
lim T’ (:E—I—l):Hnix (n;— )

n=1

o] _1 1 T
- -1 1 f) 14+ =
) (g
=I(x+1)

Thus I'y(z) — I'(x) as ¢ — 1, the ordinary gamma function.

Askey [21] defined the g-beta function as

’I’L

B,(z, (1—¢q qu (1.1.8)
n=0

5



He also proved that

Fq<x>rq (y)

PO =T )

(1.1.9)

The classical Jacobi’s theta functions 6;(z|7),7 = 1,2, 3,4 for ¢ = €™, are defined

as follows:

01(z]7) = —ig'/* i (—1)mgmmtD)GmtDiz (1.1.10)

Os(z|7) = ¢'/* i (—1)mgmimtD)mt1)iz (1.1.11)

O3(z|7) = i g e (1.1.12)

0i(z|7) = f: (—1)"q™ ™= | (1.1.13)
m=—oo

Employing (1.1.10)-(1.1.13), we get the following properties of 6;(z|7),

i=1,2,3,4
01(2 + 7|t) = —01(2|7), O1(z+77|T) = —q e P01 (2|7), (1.1.14)
Oz + 7|7) = —05(2|7), Oz +77|7) = ¢ re 2 05(2|7), (1.1.15)
03(z + 7|7) = O3(2|7), O3(z +77|7) = ¢ e O3(2|7), (1.1.16)
0u(2 + 7|7) = 04(2|7), O4(z +77|7) = —q L 20, (2|7) . (1.1.17)



Applying induction on (1.1.14)-(1.1.17), we obtain

Or(z +nrrlr) = (=1)"¢ e 20, (z|7), (1.1.18)
Oo(z + nrr|r) = ¢ e 2E0,(2|7), (1.1.19)
O3(z + nrr|r) = ¢ e 2E05(2|7), (1.1.20)
0s(z +nrr|r) = (=1)"q " e 2"0,(z|7). (1.1.21)

The well-known Jacobi transformation formulas for theta functions are given

by

>
=

= —ivV=ire? 0, (2|7, (1.1.22)

I
AR A =

N—— N N
I

= V=ire® ™0, (2|7), (1.1.23)

>
%)

V=it "0, (2|7), (1.1.24)

>
~

&

IS S B IR S N IR S SR T IR

= V=ire® ™0, (z|7) . (1.1.25)

We use the notation

ay a2 as
— —= — , 1.1.26
by + by + by +-- (1:1.26)

for the continued fraction

a1
a2

by + a3

bs +---

by +



We let A,, denote the n'* numerator and and B, denote the n'" denominator, for

(1.1.26). Thus, forn > 1

ai as as (079 An
b1+b2+b3 ++bn Bn’

where

An = bnAn—1+anAn—27
Bn = ann—1+aan—27

A*l = 1= BO and AO =0= B*l'

The set of natural numbers is denoted by N, the set of integers by Z, the set of
complex numbers by C and the set of real numbers by R. We set C = C U {oo}

and R = R U {0}

If an = 0, we say that the continued fraction (1.1.26) terminates, and we assign

to it the value

fm@ 6 an-1 _ ANy
" by + by + by +--- + bno1 Byt

ifa, #0, 1 <n <N. Ifa, #0, 1 <n < oo, then the continued fraction (1.1.26)



A, A
converges if lim (B—) exists in C. Its value is given by

n—oo n

and we write

a1 a2 as

f

n—o0 n

Cby o+ by + by e

(1.1.27)

A, .
If lim (B_> does not exist in C, (and a,, # 0, 1 <n < oo ), we say that (1.1.26)

diverges.



SECTION 2

In this Chapter 16 of his Second Notebook [3][26][91], Ramanujan develops
two closely related topics: g¢-series and theta-functions. The first 17 sections
are devoted to ¢-series, while the later 22 sections constitute a very thorough
development of the theory of theta functions. We emphasize that topic on ¢-series

ends with a most beautiful formula called Ramanujan’s 1¢; summation [91, Ch. 16,

Entry 17]

(1/c = (1
1+Z /ﬁqq - 03 /6aq)( 0"

n=1 q)

(0267 (=0/26) oo (0% 67 (054 7)o
= (—quz; qz)oo<—ﬁq/2; q2)oo(aq2; q2)oo(ﬁq2; q2)oo y (1.2.1)

where |g| <1, |Bq| < |z < 1/|ag].

Hardy [64, pp. 222-223] has described (1.2.1) as “a remarkable formula with
many parameters”. Hardy didn’t supply a proof but indicated that a proof could
be constructed from the g-binomial theorem. Among the mathematicians who
contributed to the proofs of (1.2.1) are W. Hahn [61], M. Jackson [73], Andrews
[8][13], Andrews and R. Askey [17], Askey [20], S. Corteel and J Lovejoy [49], N. J.
Fine [56, pp. 19-20], M. E. H. Ismail [70], K. Mimachi [83], K. Venkatachaliengar
[110], A. J. Yee [113]. Of these proofs, the proof given by Venkatachalienger is
elementary and self-contained.

10



Soon after the j¢); summation, Ramanujan [91, Ch. 16] defines the theta

function as

f( Z (lb n(n—1) /2 ny bn)

_ Z "D 2pn(n=1)/2. (1.2.2)

n=—0oo

where |ab] < 1. One of the most important identities in the classical theory of

theta functions is the Jacobi’s triple product identity

> ¢ = (05 ee(—0/2 )o@ P 2 #0, (1.2.3)

n=—oo

which is a special case (with & = 0 = ) of (1.2.1). The first published proof
of (1.2.3) was given by C. G. J. Jacobi [74]. However, C. F. Gauss [59, pp. 464]
proved it earlier, since the identity was recorded in his posthumous manuscript.
The proof using the theory of Jacobi’s theta functions can be found in [46, pp.
67-71]. Additional proofs of (1.2.3) have since been given by Andrews [14], J. A.
Ewell [55], D. Foata and G.-N. Han [57], R. P. Lewis [78|, Hardy and E. M. Wright

[65, pp. 282-283].

If we now set gz = a, ¢/z = b in (1.2.3), we obtain
fla,b) = (—a; ab) oo (—b; ab) o (ab; ab) . (1.2.4)

Identity (1.2.4) is the Jacobi’s triple product identity in Ramanujan’s notation
11



91, Ch. 16, Entry 19]. It follows from (1.2.2) and (1.2.4) that [91, Ch. 16, Entry

22]
_ _ _ ) (0% ¢%)
elq) == fle.g) = 1+2Zq = ) (1.2.5)
() = fla.¢)) = Z; gtz (qq% (1.2.6)
and
f(=q) = f=¢,=¢") = D (=1)"¢"®" D7 = (g;0)ec. (1.2.7)

The following results can be found in [26, Entry 21, pp. 36] and [26, Entry

26(ii), pp. 39| respectively:

> 1 n—1 a™
log(—a; q)es = Z(n Colgl<1, Jal<1l (128)
n=1
f3(_q) _ Z(_l)nfl(Qn_i_ 1)qn(n+1)/2' (1'2‘9)

3
Il
=)

In his lost notebook [93], Ramanujan gave a beautiful reciprocity theorem:

pla,b) — p(b,a) = (% - %) (aq(/fl";)(iq(/fng)” , (1.2.10)

where

12



n, n(n+1)/2 n p—r—1
q a —-n
( ) a, b 7é -q -

pla,b) =1+ Z (=)

_CLQ)n—i—l

The first proof of (1.2.10) was given by Andrews [15] who used considerably heavy
machinery. He then employed (1.2.10) in a later paper [10] to prove two beautiful
entries from Ramanujan’s lost notebook related to Euler’s famous theorem on
partitions. For other proofs one may see the works of Berndt, S. H. Chan, B. P.

Yeap and Yee [29].

In Chapter II of the present thesis, we give six variable generalization of

Ramanujan’s reciprocity theorem (1.2.10).

13



SECTION 3

The theory of basic hypergeometric series embodies many well-known
summation and transformation formulas. In fact these series arose initially in
combinatorics and classical analysis and interacts with number theory, physics
and representation theory of quantum lie algebras. For more details one may see

the book of Andrews [12].

Formulas for basic bilateral hypergeometric series were not discovered until
1907 when J. Dougall [54], using residue calculus, derived summations for the
bilateral o H, and very-well-poised 5Hj series. Ramanujan extended g-binomial
theorem by finding a summation formula for the bilateral 11, series (1.2.1) which
was brought before the mathematical world by Hardy [64]. Later, W. N. Bailey
[24][25] carried out systematic investigations on bilateral basic hypergeometric
series. Further significant contributions were made by L. J. Slater [104][105], a

student of Bailey.

Some of the interesting and explicitly used transformations of 2¢;(a, b;c; q, 2)

in literature are

— (@)a(D)n  (b)(a2)s = (e/D)n(2)n .,
Z (@)n(c) ° (€)oo(2) oo nZ:O (@)n(a2)n b, (1.3.1)

3

n=0

(¢/b)oo(b2) o0 - (abz/c)n(b)n [c\™
0o 2 @ 5 132)

(abz/c)oo = (C/a)n(c/b)n a_bz "
e 2= (@l ( : > ’ (133)

n=0

14



e @)y
= O 2 Waontas, P (1.34)

(a2)00(2) 0 - (2)n(abz/c)n o

(oo(2)oo =2 (@)n(@2)n(b2)n (1.3.5)

and

- C;)bzz//cc - Z 52 Cc/cf/bz) a (1.3.6)

Transformation (1.3.1) is due to E. Heine; (1.3.2) is the iterate of Heine’s
transformation and (1.3.3) is the g-analogue of Euler’s transformation. For these
equations one may see Andrews, Askey and R. Roy [18, pp. 521-524], G. Gasper
and M. Rahman [58, pp. 9-10]. Equation (1.3.4) is Jackson’s g-analogue of Pfaff-
Kummer transformation, which can also be found in Andrews, Askey and Roy [18,
Eq.(10.10.12)], Gasper and Rahman [58, Eq. (1.5.4)]. Equation (1.3.5) appears in
D. B. Sears [96] as the function Y'(1,6) in Table II.A. Equation (1.3.6) is due to F.

H. Jackson and can be found in Gasper and Rahman [58, pp. 241, (IIL.5)].

In Chapter III of the present thesis, we obtain transformation formulas for
21 basic bilateral series, and deduce therefrom some interesting eta-function

identities.
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SECTION 4

Several mathematicians such as L. Euler, C. F. Gauss, E. Heine, F. H. Jackson,
L. J. Rogers and S. Ramanujan played pivotal role in the establishment of g-series.
Among all, Ramanujan’s contribution is undoubtedly more to the development of
g-series either before or after his time. One of his most important theorem, stated
without proof in [93, pp. 54| (see also [9, pp. 337]) is the circular summation
formula:

Theorem 1.4.1. For any positive integer n > 2, if

Ur — ar(r+1)/2nbr(r—1)/2n and ‘/r — ar(r—l)/2nbr(r+1)/2n7

then

n—1
Un+r Vn—r
E urm = b)F,,(ab),
r=0 Tf ( UT ’ Ur ) f<a/’ ) (a)

where

Fo(q) =1+ 2n¢"™ V24 ... n>3

Ramanujan’s circular summation can be restated in terms of classical theta

function 65(z|7) defined by (1.1.12).

Theorem 1.4.2. For any positive integer n > 2,

i
L

¢ 08 (2 + kar|nT) = Fo(7)05(2|7),
0

i

where

Fo(r)=1+4+2ng"""+---
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The first proof of Theorem 1.4.1 was given by S. S. Rangachari in [94], by using
Mumford’s theory of theta functions [84] and few results on weight polynomials
in coding theory. Later, Son [107] gave much elementary proof of Theorem 1.4.1.
Recently, Xu [114] has given a very elementary and neat proof of the circular
summation formula. In Chapter IV of this thesis, we obtain new Ramanujan’s

summation summation for four theta functions employing elliptic functions.
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SECTION 5

Ramanujan, a pioneer in the theory of continued fractions has recorded scores of

results in his notebooks. In fact Chapter 12 of his second notebook [91] is devoted

to continued fractions. One may see traces of continued fractions in Chapter 16

and about 60 results on continued fractions in the unorganized pages of second

and third notebooks [91]. Ramanujan in his historic letter to Hardy [90, pp. xxvii,

xxviii], [28, pp. 21-30, 53-62] communicated the following celebrated continued

fraction, subsequently named Rogers-Ramanujan continued fraction,

¢ 7
1+ + 1

along with several of its evaluations. The continued fraction R(q) is best known

for its connection with the famous Rogers-Ramanujan identities

n2

1

3!

“— (q;q)

i

n (45 6°) oo (0% ¢°) o

0 qn2+n
HZ:O (¢;9)

given by

n (4% 6°) (4% 0°)

(1.5.1)



The Rogers-Ramanujan identities were first proved by L. J. Rogers [95] in his
1894 paper that was completely ignored, but became famous after these were
rediscovered and published by Ramanujan [92]. The function R(q) possesses a
very beautiful and extensive theory, almost all of which was found by Ramanujan.
For proofs of many of these theorems one may see papers by Berndt, S.-S.Huang,
J. Sohn and S. H. Son [27] and S. Y. Kang [76] [77]. In fact, the first five chapters
of the first volume by Andrews and Berndt [19] on Ramanujan’s lost notebook are

devoted to the Rogers-Ramanujan continued fraction.

Ramanujan [91, Ch. 16, Entries 15, 16] gave more general continued fractions

that contains (1.5.1) as particular case, namely

f: anqn +n
1 aq aq? aq” =0 (@)n gl <1
L+ 1 4+ 1 44+ 1 4+ ianqnz’ !
n=0 (q)n
(1.5.2)
and
i anqn2+n
1 aq aq? aq” =0 (@)n(=bg)n gl <1
1+ 14bg + 14bg% +--- + 1+bg" +--+ i": arg” 1
= (q)n(—bq)n
(1.5.3)

Identity (1.5.2) has been established earlier by Rogers [95] and then later by
Watson [112]. Proof of (1.5.3) can be found in the works of V. Ramamani [87]

and Andrews [16]. Ramanujan in his lost notebook [93], also recorded several
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continued fraction identities equivalent to and more general than (1.5.3). Some of

these are
f: )\nqn2+n
n—0 (@)n(=bq)n _ 1 M bg + \g? ¥t bg"tt + A2t
f:)\”q” 1+ 1 + 1 e 1 +
= (q)n(—bq)n
1 Ag Ag? Aq"
L+ 14bg + 14b¢% +--- + 1+bg" +---

1 b+Xg b+ AP b+ A"
1-b+ 1-b + 1—-b 4+ 1—b +---

Some more of the elegant and fascinating continued fraction identities

mentioned in his lost notebook [93] are

G(ag, Mg, b, q)

G(a, A\, b, q)

B 1 aq+)\q bq+/\q2 aqn+1 +)\q2n+1 bqn+1 +>\q2n+2

1+ 1+ 1 e+ 1 + 1 +--
1 aq + A\q aq + \q"

1+ 1—ag+bg +- + 1—ag+bg" +---~

1 \q — abg? AG" — abg®"
l4+aq + 1+ (ag+0b) +--- + 14+q¢*(ag+0b) +---’

1 ab ab
at+c —a+b+eq —- —a+btegr —---
20




1 bc bc
c—b+c+ c—b+(a/q) +-- + c—=b+(a/q?) +---

where

o (n%+4n)/2(__ n
34 (=A/a)na
G((I, >\7 b7 Q) = '
0 (@)n(—q)n

This part of Ramanujan’s work has been treated and developed consequently by
several authors including Andrews [16], Hirschhorn [69], L. Carlitz [40], B. Gordon
[60], W. A. Al-Salam and Ismail [7], K. G. Ramanathan [88] [89], R. Y. Denis [50]
[51] [52], Bhargava and Adiga [32] [33], Bhargava, Adiga and Somashekara [34]
[35], Adiga and Somashekara [6], A. Verma, Denis and K. Srinivasa Rao [111], S.

N. Singh [102] and N. A Bhagirathi [30].

Motivated by these works in Chapter V, we derive several identities involving

the Ramanujan continued Fraction A(q) given by,

1 F1+¢)? ¢ +¢")?  ¢¢(1+¢°)?

< 1.
1—(]2+ 1_q6 + 1_q10 + 1_q14 +,,,’ |q|

A(q)
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CHAPTER II

A SIX-VARIABLE GENERALIZATION OF

RECIPROCITY THEOREM

2.1 INTRODUCTION

In his lost notebook [93], Ramanujan stated several g-series identities and in
[15], Andrews explicated these Ramanujan’s discoveries in great detail. The same
paper [15] also includes the first proof for the two-variable reciprocity theorem of
Ramanujan [93, pp. 40].

Theorem 2.1.1. Ifa,b# —q¢ ",n € Z" and |q| < 1, then

p(a,b) — p(b, a) = (% - 1) (aq(/_bi;)(iq(/ﬁ;;?“. (2.1.1)

a

where

1 00 (_1>nqn(n+1)/2anbfn
a,b)=11+ -+ .
ot = (145) SR

n=0

In the recent past several mathematician to mention a few B. C. Berndt,
S. H. Chan, B. P. Yeap and A. J. Yee [29], Adiga and Anitha [2], Adiga and
Guruprasad [4], Somashekara and Mamta [106], Kang [75] have contributed to the
proofs of (2.1.1) and in the process interesting generalization of (2.1.1) have been

obtained.
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In [75], Kang proved the following three variable generalization of (2.1.1).

Theorem 2.1.2. If |c| < |a| <1 and |c| < |b] < 1, then

_ a.c) = 1_} (C)OO(CLQ/b)OO(bQ/a)OO(Q)oo
plab) =000 = (53 ) oo e o @12)

where

oo n(n+1)/2 ab" c

g
pla,b,c) = (1+ )Z q ED a3 # ="

n=

A six-variable generalization of Ramanujan’s reciprocity theorem (2.1.1) has
been recently given by Ma [81] using Shukla’s very well posed g summation
formula [101, (4.1)] and Watson’s transformation formula [58, 2.5.1, pp. 43]
Theorem 2.1.3. Let a, b, ¢/x, d/x, e/x(x = aq,bq) be any complex numbers
other than of the form —q~", n > 1 and w/y(y = a,b) be not of the form —q™,

m € Z, |cde| < |abg?|, there holds

pla,b,c,d e;w) — p(b,a,c,d,e,w) ==q(a,b,c,d,e)

y { (wq — ab)(w — 1)(cde — abg?) + abw(c — q)(d — q)(e — q) }
cde — abg?

, (2.1.3)

where

1 1
Zola,b,c,d,e) = (E — —)
a

(q,aq/b,bq/a,c,d, e, cd/(ab),ce/(ab),de/(ab); q)oo
(—aq, —bq, —c/a, —c/b,—d/a,—d/b,—e/a, —e /b, cde/(abq); q) oo
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and

%) 2k+1 :
aq (=1/b, —a/w, —wq/b; @)1
a,b,c,d,e,w IU}b 1_
p( ) kz_o ( b ) (—aq, —wq/b, —a/w; q)
 (zag/c.—aq/d, —ag/e;q) ( cde )
(—c/b,—d/b,—e/b;q)s1 \abg®)

In Section 2.2, we derive a six variable generalization of reciprocity theorem

which is a new and different from identity (2.1.3).

In Section 2.3, we deduce beta, gamma identities and eta function identities as

application of our main identity.
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2.2 MAIN RESULT

In this Section, we employ the technique of parametric augmentation [80] on
three variable reciprocity theorem (2.1.2) and derive the following six variable
generalization of reciprocity theorem:

Theorem 2.2.1. For ab # 0, we have

1 1
pla,b,c,d,e, f)—p(b,a,cde, f)= (E _ 5)

(abed, ef /(ab), cf,df, ce,de,aq/b,bq/a, ¢; q) s
(cdef/q,acq,beq, ad, bd, fq/a, fq/b,e/a,e/b;q)o’

(2.2.1)

where

p(a/7bJC7d7e7f>:

1 £\ o= (ef)a(=1)"g" V2 (abed),(ef /(ab))n (ay"
(5_0) (1_E>Z (acq%(zd)nﬂ(fq/b>n<e/b>n+1 <E>

n=0

ac, be, fla, f/b#q™", ad, bd, e/a, e/b # q~" and cdef # ¢ ", n e ZT.

Proof: Replacing a by —ad, b by —ae and ¢ by af in (2.1.2) and multiplying the

resulting identity by adef/(1 — ad)(1 — ae), we have

n n(n+1)/2 le n n(n+1)/2 e\n
dz ad Jn+1 f/e>n+1 (_) —ez (ae)ni f/d)n+1 <C_Z>
— d (le, dq/e, 6/d7 q; Q>oo

(f/e, f/d,ad; ae; q)o

(2.2.2)
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Now (2.2.2) can be written as

dz af n n(n+1 /2<CL€ adanrl ) (Z i n+l1. q) <C_l>n

€
nf%(af) (=1)"¢"" 72 (ad, aeq™t; ¢) o (]ec Z;q’““l,q>oo <§)n

Applying E(bf) to both sides of (2.2.3) with respect to the variable a, we obtain

dqn+1 be bdanrl'q) f f d\"
d n n (n+1)/2 (CL@, @ )y VG 1 Y)oo () n+1 a
Z @f)n (abdeq™; q) oo et o \e

d,aeq" bd, beq" Q) (f f e\”
_ a(—1 n_ n(n+1)/2 ((I ) ) U 1Y)oo () S nil, €

=d(af,bf,dq/e,e/d,q;q)so- (2.2.4)

Again applying E(cf) to both sides of (2.2.4) with respect to variable f, we obtain

dZ ) (1)t r2 (@0, ada™ ! e, g™ g)o (6 ca 5. 0" ) (C—l>n
(abdeq™; q) s (cf/(de)q™; q)wo e
- ez le n nn+1 )/2 (ad aeqn+l bd beq Q) (i gqn—i_l’ g’ ;qn+1 q)oo (E)n
(abdeq™; q)oo (cf/(de)q™; q)so d

(le, bf7 ac, bC, dq/e, €/d, q; Q>oo

=4 (abef /45 q) oo

(2.2.5)

Multiplying both sides of (2.2.5) by

(abde, cf/(de))oo
(ad,ae,bd,be, f/d, f/e,c/d,c/e)s’
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we obtain

(af)n(=1)"g""TV/2(abde),, (cf/(de)) "
dz ad bd, [ /e, clehnnr ()

= (af)u(—1)"q" "D (abde)(cf /(de))a (e
_enzo (ae,be, f/d,c/d)ni1 ( )
_ glabde,cf/(de), af,bf, ac, be, dgfe, ¢/d, 4 @)o
(abef/q,ad, ae,bd, be, f/d, f[e,c/d, c/e; q)o

(2.2.6)

(2.2.6) can be written as

B >0 —1)"q"" )2 (abde), (cf / (de))n (c_i)"
A= 53 m@(M»Huwa<d@H1 ¢
i = (af)u(~1)q" 0 2 abde) (e /(de)), (e
~ el ~ ad) 2 Cacar G o/ ()
(abde,cf/(de),af,bf, ac,bc,dq/e,e/d, q;q) oo
((lef/q, adQ7 aeq, bd7 bea fQ/d, fq/ea C/d7 C/e; q)oo

('h

(2.2.7)

Now by making substitutions a — ¢, b+ d, ¢ — e, d — a, e — b in (2.2.7), we

obtain (2.2.1). O

Corollary 2.2.2. (Two variable reciprocity theorem)

Substituting ¢ = —1, d=e = f =0 in (2.2.1), we easily obtain (2.1.1).

Corollary 2.2.3. (Jacobi triple product)

Substitutinga =1, b= —z, c=d=e= f =0 1in (2.2.1), we obtain (1.2.3).

The identity (2.2.1) is the generalization of Ramanujan’s reciprocity theorem.

Again it turn out to be a generalization of Jacobi triple product (1.2.3).
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2.3 CONNECTION WITH THE q-GAMMA AND g-BETA

FUNCTIONS

In this Section, we deduce g-gamma, ¢-beta and eta function identities from
(2.2.1).

1. For0<g<1land 0 <z <1, we have

By(x, x)B,(3x, 2x)
By(x,6x)B,(x, x + 1)

N () (1) (g, (),
=2 B Dl

Az n n(n+1)/2 x+1
0 )Y e e

3
I

Proof: Putting a = ¢**, b=¢%, c=¢*,d = ¢**, ¢

q:c+1 and f — qu in
(2.2.1), we obtain

(2% o0 (0" )0 (0% )0
(07) 00 (%) 00 (63 e

q$(q2$ o 1) i (q

= (@)@ )1 (@) n(@na

)n(=1)"¢" "2 (%) (@ ) n

(q
s — (") (=1)"g" "2 (), (¢ )0
D 2 G el e !

(2.3.2)

Employing (1.1.7), we obtain

Ly(72)Ly (22 + 1)y (32)
Lg(62)0g(x + 1)L (5x)

ey e @ (=D (6
= =D T @ g
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oo :v 1)nqn(n+1)/2<q ) (qa;—f—l) B
3z n_—xn
— (q )(¢" +1) E qg . 2.3.3
( — 230+1 n(q&r)n ( x+1)n(qlf:v)n+1 ( )

Again employing (1.1.9), we obtain (2.3.1). O

2. For0<g<1land 0 < x <1, we have

By(2x,2x +1)B,(3x + 1,32 + 1)
By(2x,4x 4+ 1)B,(5x, x + 2)
(=P (@P)a()" g (g,
T 1 = (@) (@ )a(d )

—In

1 _ q 2 i )n )nqn(n+1)/2(q4w+l)n qam (2 3 4)
T 2 (@ Da (@ @

Proof: Putting a = ¢*, b =¢**, c =¢*, d = q, e = ¢** and f = ¢* in

(2.2.1), we obtain

(0207
(@ Rl ()
(1 _q3z)2 > ( ) ( 1)» n(n+1)/2( 4x+1)n

)
1—q = () (@)1 (077 )@ ) nsn

—In

D T ACTY)
1—q = (@) (@)1 (@ )n (@)

Employing (1.1.7) in (2.3.5), we obtain

[,(3z +1)*T,(6x + 1)[,(2x + 1)
I'y(4z 4+ 1)2T,(52)T,(z + 2)
A=)~ (@)1
L= 2= (@ )¢ )y

n n(n+l)/2< 4x+1)n
w1 (47 ) (@ ) nga

—In

)2 f: . 1)n 21)n g (D) /;5_14:64-1)71 . (2.3.6)
1 ¢ n:O (@)1 (@ )n(@nt
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Again employing (1.1.9) and with some simplification, we obtain (2.3.4). O

3. ForO0<g<land 0 <z <y<1, wehave

By(2x + 1,4y)By(v +y,y — 2 + 1)
Be(2y + 1,22+ 2y)B,(3y — @, 2 —y + 1)
— (1 _ z+y)<1 + qy 1‘) i (qu)n(—1)nqn(n+1)/2<q2x+2y)n(q2y,21+l)
n=0 (q%—H) (q$+y)"+1 (qy_$+1)n(Q)n+1

i )nqn(n+1)/2(q2m+2y)n(q2y—2fc+1)n (v—2)n (2 5 7)
x+y+1 )n+1 (q2y72x+1)n(qy71‘+1)n+1 q ’ U

n=0

n =y

Proof: Puttinga =¢*, b=¢,c=¢*, d=¢¥, e = ¢! and f = ¢~

(2.2.1), we obtain

(q2x+2y>oo (q3y—a}>oo <q2y+1)oo (qx—y+1>oo

(@)oo (@)oo (@* 1) oo (¢ ) oo
(_ 1 nqn(n+1)/2(q2x+2y)n(q2y—2x+1)

— _ Tty Yy—x - (q2y)n )
=1-¢"")(1+¢q )nz; (%), () 1 (") (@) s

n_(z—y)n

i 1)nqn(n+1)/2( 2x+2y)n(q2y72x+l)n (y—2)n (2 3 8)
a:+y+1 )n+1<q2y 2$+1>n(qy—z+1>n+1q : U

n=0

Applying (1.1.7) in (2.3.8), we obtain

L,(4y)L 2z + D y(z + y)Ty(y —x + 1)
I'y(2x +2y)I'y,(2y + 1,3y — 2)T (ac —y+1)
0 2y n n(n+1)/2 2z+2y 2y—2z+1
_ (1 m—f—y 1 + qy z Z q ) - 1 (C] )1n(q )
- (@) (@ )01 (V") (@)

n o @=u)n

i _ nqn(n+1)/2(q2x+2y)n(q2y—2x+1)nq(y_x)n‘ (239)
o x+y+1 )n+1<q2y72m+1)n(qy7:ﬂ+1>n+1
Again applying (1.1.9) in (2.3.9), we easily obtain (2.3.7). O
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4. For 0 < ¢ < 1, we have

PO S g
TGEET R SR (2:8.10)

Proof: Puttinga=—-1,b=1,c=d=e= f = ¢ in (2.2.1), we obtain

(q2)2 i qn(n+l)/2
SIRCIPETNE N (2.3.11)
2
(@)oc(@®)oe = (¢*)n
Employing (1.1.6) in (2.3.11), we obtain (2.3.10). O
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CHAPTER III

A BILATERAL BASIC HYPERGEOMETRIC

TRANSFORMATION FORMULA

3.1 INTRODUCTION

The “basic hypergeometric series” or “Eulerian series”, founded by Euler and
studied by Heine [67] first systematically. Other mathematicians such as Gauss,
Jacobi, Bailey [23]| contributed in their own way to this field. Similarly, plentiful
references of basic hypergeometric series can be found in [22], Hardy and Wright
[66], MacMohan [82]. Later, Hahn [61] [62] [63] and Sears [96] [97] [98] developed
the theory systematically. For complete references and detail expositions of this
theory, one may refer [11] [12]. Heine [68], F. H. Jackson [72], R. Y. Denis [53],
S. P. Singh [103] have developed the theory of transformations of hypergeometric
series and basic hypergeometric series which are extremely useful in the theory of

partitions.

The most fundamental summation formula of basic hypergeometric series is

due to Cauchy [41, pp. 45], the ¢- binomial theorem:

3 Ea;:z’“ _ 8 g (3.1.1)

o \4 (Z>°°7
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The Heine’s transformation for ,¢; series as in Gasper and Rahman [58,; Eq.

1111, 1113, pp. 359]:

5
201 14, 2 :m2¢1 1 ¢, b (3.1.2)
c 9 ’q o az
abz/c;q)so c/a,c/b abz
( / ) 201 iq,— | . (3.1.3)
(Za q)oo c c

also play a prominent role in g-series.

S. Bhargava and C. Adiga [31] proved by method of Ismail [70] the following

219 summation formula:

IR LN R (/O ) N0
d, bq o (2/0)o0(d) oo (@) 0 ()0

la| < 1,|d] < 1. (3.1.4)

In Section 3.2 of this Chapter, we obtain transformation formula for 51, bilateral

series. In Section 3.3, we obtain Fourier series related to theta functions.
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3.2 NEW TRANSFORMATION FORMULA FOR 3,

abzq

Theorem 3.2.1. For g ‘ <1
c

a,b
212 14, 2
c,d

(q,¢/a,c/b,q/d,abz/d, dq/abz; q) s

= : Q(bl 14,
(c,q/a,q/b,c/d, z, cd/abz; q)o d/c cd
(q,d/a,d/b,q/c,abz/c,cq/abz;q)oo s c/a,c/b  abzgq
- 291 14,
(d,q/a,q/b,d/c, z cd/abz; 4o ca/d cd
(3.2.1)
Proof: As in [58, (II1.9), pp. 359] and [58, (I11.33), pp. 364], we have
a,b,c de e/a,de/bc; q)so a,d/b,d/c e
302 | = ((e/ de/a/bc q)) 302 1 (3.2.2)
d,e ’ 1 4)oo d, de /be

|de/abc| < 1, le/al < 1 and

a, b7 c d@

302 X S
d,e

_ (efbe/e.ca/a,q/dig)e | © d/a,cqfe  bq
"~ (e,cq/d qla,efbeiq) 4y
cq/a,beq/e
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(q/d,eq/d,b,c,d/a,de/bcq, beq?®/de; q) oo aq/d,bq/d,cq/d. de

_ - 3Q2 74, |
(d/q.e,bq/d,cq/d, q/a,e/bc,beg/e; ) ¢/d, eq/d abe

(3.2.3)

|de/abc| < 1, |bq/d| < 1, respectively.

Set b to d/b, ¢ to d/c and e to de/bc in (3.2.3) and then substituting the resulting

identity in the right hand side of (3.2.2), we obtain

a,b,c de
302 ML@
d,e
_ (e/a,e/be/c,q/d,, dq/ac; q)s d/a,d/c,bq/e » q
- } 3%2 y Uy T
(e;q/a,q/c,e/d,de/abe; q)o dgac, dg/e b
_(d/a,d/b,al/c,q/d,e/a,qe/bc,e/q,q2/e;q)OO Q/b,Q/QGQ/d' e
(e.d/q,a/a,q/b,q/c, e/d. dq]e,de/abe; ) * e

¢*/d,eq/bc

(3.2.4)

where |de/abc| < 1, |g/b] < 1 and |e/a| < 1.

Shifting the index of summation on the left hand side of (3.2.4) by m such that
the new sum runs from —m to infinity and then replacing a, ¢, d, e by ag™™, cq™™

)

dg=™, eq~™ respectively, we get
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k——m (d7 €, qm+1; Q)k (le
(e/a,e/b.e/c,q/d dg/ac; @)oo (q,bq/€;qQ)m d/a,d/c,bg™* /e )

- . R 3¥2 0 q, -
(e;q/a,q/c e/d,de/abc; q) (b, dg/ac; q)m dg™*! Jac,dq/e

(d/a,d/b,d/c,q/d, e/a,qe/be,e/q, ¢%)e;q) oo (0, ba/d, ¢/ €; @) m y
(e,d/q,q/a,q/b,q/c,e/d,dq/e,de/abc; q)s (D, q?/€,q/d; q)m

q"t/e,q/bag/d ¢
302 i d | (3-2'5)
g™t /d, eq/bc

where |de/abc| < 1, |q/b] < 1 and |e/a| < 1.

Letting m — oo and assuming |[b| < 1 in (3.2.5), Tannery’s theorem [36] enables

us to interchange the limits and the summation. Thus, we get

= (a,¢;q) [ de F ,bg/e,e/a,e/b,e/c,q/d;q)s dfa,d/c
Z(Q)()(QQ////CI/CI) q

(d,e;q)x \abc) — (be,q/a,q/c e/d, dejabe;q)n” " &

k=—oc0 dQ/e

(¢,bq/d,d/a,d/b,d/c,q/d,e/a, qe/bc, e/q,q*/€; q)x q/bag/d ¢
(b.c.d/g.a/a.a/b.a]e.e]d dafe.defabe. 2 /d )" | 0 Pl

where |de/abc| < 1, |g/b] < 1 and |e/a| < 1.

By the substitution b — de/abz, ¢ — b and e — ¢ in (3.2.6) and then applying
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Heine’s transformation (1.3.1)

i (a,b;Q)k . (q,¢/a,c/b,q/d,abz/d,dq/abz;q) d/a,d/b‘ abzq

. - : 201 14
W (e diq) (¢, 2,q/a,q/b,c/d, cd/abz; q)o dg/c cd
(q.d/a,d/b,q/d, c/q,abz/c,cq/abz, ¢*/c, cq/d; ) o c/a,c/b abzq
(c.7.afa.a/b.c/d, dfg,daje.cdfabz, #]di ) | T ed |
where |abzq/cd| < 1 and |z| < 1. Hence the proof of Theorem 3.2.1. O

As consequence of Theorem 3.2.1, we can derive the following results:

Corollary 3.2.2.
On setting d to q in Theorem 3.2.1, we obtain Heine’s transformation (1.3.3).

Corollary 3.2.3.

On setting b to d and ¢ to b in Theorem 3.2.1, we obtain Ramanujan’s summation

formula (1.2.1).

Corollary 3.2.4.

On setting a to q/a, ¢ to bq and z to a in Theorem 3.2.1 and using q-binomial

Theorem (3.1.1), we obtain 91y summation formula (3.1.4).
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3.3 FOURIER-SERIES DEVELOPMENT RELATED TO THE THETA

FUNCTIONS

In this Section, as an application of (3.2.1), we obtain some generalization of

Fourier series development related to theta functions given by Ramanujan

Theorem 3.3.1. For |q| <1, r > 0 and 0 real, the following identity hold

38

0 2
1+22q%cos(”§—9) ©(Lq)hlg -
1 b=l 2 ) 331
og f(_qr) Zl k 1_q'rk S( ) ) 7( )
2 (—1)kt rh(k=1)/2 in(2k—1)r0 i
S (ZDF g™ ~
- smr k sin? ?"k@
~log | = Z , (3.3.2)
SO (=1)F1(2k — 1)grh-1)/2 e
k=1 J
0 2
1+2 3 ¢ cos(&2
q cos(kr/2) 5 * k;q T cos(5)
1+ 42 14+ rk - ( qT) 0 ’
4 1423 (~1)%¢"F cos(™2)
k=1
; (3.3.3)
ea) 4§: ) gy
) o (—1)R=1g"5 75 cos(r(k—1))8 k(1+q% ’ o
1+4co 3;::1 —— 2 | =1 q?)
2( 5 0o r 1
log 90 (q2) Z sin’ 0k 2))9. (3.3.5)
144 q E3 cos(rkb) 2]€ — ]_ ]_ —q" r(2k— 1))
+ ZW k=1



ird

e 2 q
b

(S

Proof: On setting a to d, z to — , ¢ to ¢" in Theorem 3.2.1, we obtain

i (b, qr)k (_1 qur/2€irk:9/2 _ (qr’ C/b, _eir9/2qr/2’ _efir9/2qr/2; qr)oo
(C' q’r’) bk (C, qr/b7 _(91'7’9/2(]1"/2/67 _Ce—ir9/2q—7’/2; rr)oo ’
(3.3.6)

On letting b — oo and ¢ — 0 and using (1.2.7) in identity (3.3.6), we obtain

o 2
1+23 ¢ cos(&%)

k:}(—qr) = (=g ) oo (—q"Pe " ¢ ). (3.3.7)

Taking logarithms on both sides of (3.3.7) and employing identity (1.2.8), we

complete the proof of identity (3.3.1).

On setting a to d, z to ¢"e*"? /b and ¢ to ¢" in Theorem 3.2.1, we obtain

i (b’ qr)k qu€2irk6’ _ (qr7 C/b, qT€2iT9, 6722‘7’9; qr)oo (3 5 8)
= (C, qr)k bk’ (07 qr/b7 6217‘9qr/b7 Cq—re—eré; qr)oo
Now letting b — oo and ¢ — 0 in (3.3.8), we obtain
(qr; qr)oo<qr62z’r0; qr)oo(e—%re; qr)oo _ Z (_1)quk(k+1)/2€2z’rk9‘ (339)
k=—o00

Hence, we have

(—1)k=1grk=D/2gin(2k — 1)rf
sin ré '

o
(qr;qr)oo(qre%fre; qr)oo(qre—%re; qr)oo :Z
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Again employing (1.2.7) and (1.2.9), we obtain

(475075 = ) (=11 (2k = 1)1z, (3.3.10)

NE

>
Il

1

Employing (3.3.10), we deduce that

i (—1)k—1grk(k—1)/2 gin(2k—1)r6
— sin 60 B (Gereqr; qr)oo(eszqur; qr)oo

k
i(_l)k—l(zk — 1)grkh-1)/2 (" 9")%
k=1

(3.3.11)

Taking the logarithm of both sides of (3.3.11) and employing (1.2.8), we
complete the proof of identity (3.3.2).

On setting a and d to ¢"/2e="%2 b to —1, ¢ to —q¢", z to ¢"/?¢"%/? and ¢ to ¢" in

Theorem 3.2.1, we obtain

oo

3 LDk ek rvas _ (42 oo (=72 0P ) (03002
(_qr7 qr)k <qr/2ezr0/2; qr)oo(qr/Zefer/Q; qr)oo(_qT; qr)go
(3.3.12)

k=—o00

Employing (1.2.3) and (1.2.5) in (3.3.12), we get

. (3.3.13)

Lo o0 qu/2 (eirk0/2+€—irk0/2) _ ¢2(_q’“) f(qT/Qeire/Q’ qr/2€—ir9/2)
rk _qr/2p1r0/2 __ 4r/2,—ir0/2
Zk11+q f(=qr/2em®/2, —qri2e=ir0/2)

With some simplification, (3.3.13) reduces to identity (3.3.3).
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On setting a to d, b to ¢~"/2, ¢ to ¢*"/?, z to —¢"e"™ and ¢ to ¢" in Theorem 3.2.1,

we obtain

(qr’ q2r7 _qr/ZeMG’ _qr/267ri0; qr)oo B i (qi

- . == (&
<q3r/2’ q37"/2’ _qreme’ _qre—mO; qr)oo = (q37"/2; qr)k
— @)D e ke
=+ (@247 )i (€ 4.

(3.3.14)

Hence R.H.S of (3.3.14)

1— —r/2\ T ) ) e 1— —r/2 1— r/2 -1 k. rk ) )
1 — ( q )q (em@ _i_eme) + Z ( (1 q )( q )( ) q (emkG _i_efrsz)
k=2

1 — q37‘/2 _ qu—r/2)<1 _ qu+7‘/2)

B 1_q—r/2{ . o0 (_1)k_1qu—r/2(e(rw)(k—m) +e(ri9)(—k+1/2)>(eri0/2+€—Ti0/2)}

- /2 _ qrk—r/2
1+ g/ — 1 —qk—r/
(3.3.15)
With the use of (1.2.5) and (3.3.15), we may rewrite (3.3.14)
F(r,0) (=) tgrEr2 cos(rk — 1 /2)6
2(,1r/2 ) _
v (q )F(r’ o)~ 1Y deos(r/2) ) = . (3.3.16)

k=1

where

_eiréqr/Q; qr)oo(_q

T/Qe—iré; qr)
(_ezr9qr; qr)oo(_qre—zre; qr)oo

o0

F(r,0) = (

Taking logarithms on both sides of (3.3.16) and employing (1.2.8) with

simplification, we complete the proof of identity (3.3.4).
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On setting a to d, b to —1, ¢ to —¢", z to ¢"/?e" and ¢ to ¢" in Theorem 3.2.1,

we obtain

—1: ) _ r/26ri9; "o (— r/267m'9; Vo r; r\2
1+Z q k rk/2(rkz€+e—zrk6):( q Q) ( q Q) (q Q)oo

(qr/Zerié’; qr)oo<qr/2€—ri0; qr)oo(_qr’ qr)go

(3.3.17)
Employing (1.2.5),
Ly CeoskO) (e (e T ) (4 )
1 1+ qu (qr/2€m’9; q'r)oo(qr/Qe—friG; qr)oo(—q”"; qr>go
G(r,0)
2/ .r 5

- 3.3.18
v (q )G(r, 0’ ( )

where

(=24 (—a/ 2 0%
G 0) = P (@5 )

Taking logarithm on both sides of (3.3.18) and employing (1.2.8), we have the

proof of identity (3.3.5). O

Remark. For r = 2, (3.3.1), (3.3.3), (3.3.4) and (3.3.5) reduces to [26, Entry
33(i)], [26, Entry 33(iii)], [26, Entry 34(i)] and [26, Entry 34(ii)] respectively and

forr =1, (3.3.2) reduces to [26, Entry 33(ii)].
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CHAPTER IV

SOME NEW IDENTITIES ON CIRCULAR

SUMMATION FORMULA
4.1 INTRODUCTION

The lost notebook [93], contains mathematical works of Ramanujan’s most
profound discoveries, fall under the purview of g-series. These include mock theta
functions, ¢- series transformation, continued fractions, partial theta functions,
false theta functions, partition, combinatorics, congruences, integrals, theta type
series involving indefinite quadratic forms, modular equations, modular relations

and many more.

On page 54 of the same lost notebook, Ramanujan recorded a beautiful
formula of g-series, which is now well known as Ramanujan’s circular summation
formula:

Theorem 4.1.1. For any positive integer n > 2, if

U, = ar(r+1)/2nbr(r—1)/2n and V.= ar(r—l)/?nbr(r—i—l)/?n}

then

S Unir Vaer
ZUZ‘f”( T )zf(a,bm(ab), (4.1.1)
r=0 r T

where

Fo(q) =142ng™ V2 4... n>3
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Applying the theory of elliptic functions, H. H. Chan, Z. G. Liu and S. T. Ng
proved a dual form of Ramanujan’s circular summation in [45]. M. Boon, M. L.
Glasser, J. Zak and I. J. Zucker [37] have proved an additive decomposition of
05. A general result that unifies the results of [37] and [45] is proved by Zeng

[115]:

For a, b, n and k any positive integers with k = a + b,

#) = s <“ b, yb sz)eg( 7).

kn—1

2 (G

T zZ y

9*’(- Yy, s
k:n2) s\kn " b tr I
where

+o0
Cas(a, by, 7) = kn > g 2 tma)iy,

M, Ma, N, Np=—00
mi+-+maet+ni+--+np=0

For more recent works on Ramanujan’s circular summation one may refer [38],

139], [43], [47], [48], [79], [85], [86], [99], [116], [117] and [118].

In Section 4.2 of this Chapter, we obtain new Ramanujan’s summation for four
theta functions employing elliptic functions. In Section 4.3, we deduce results
applying Jacobi imaginary transformation formulas. Section 4.4 contains some
new results by employing difference of theta functions. In final Section, as an

application of our main result, we obtain some special cases.
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4.2 NEW CIRCULAR SUMMATION FORMULA

Theorem 4.2.1. Let a, b, ¢, [, m and n are positive integers with a + b+ c = m.

If a, b, ¢ are even, then we have

Imn—1
a 4 ) s T b z Yy s T
% (i + o T ) 5 )
32:; Nimn + a + Imnllmn2/) ?\lmn b Imnlimn?2
c Yy TS T ) e ( Ly . >
c T, =7 b sy T v 7 o (9 s
3<lmn ¢ Imnllmn? 123\ G0 6 T2 3(2|7)
(4.2.1)
where
b +o0
Fra3(a,b,c;y,7) = lmni®q + Z (= 1ymta

ULy Ua, V1, VW1, We=—00

2(u1++ua+vr - Fvptwi 4 twe) +a+b=0

uit-ul o+ v Fwi 4 wi4ur o ua o1+t

xq

% e2{bc(u1 +-+uq)tac(vi+--+uvp)+ab(wi 4+ +we ) +abetiy

(4.2.2)

Proof: Let f(z) be the left side of (4.2.1). Then

flz+m) =

Imn—1
Yy s

2 HT(Zan—I_E—i_ lmn‘lrgﬁ)eg(l;n +%+ %‘ﬁ)x

T ol Z y| T y( % y| T
% (s * i) % G+ 2
lmn2> 0 Imn + allmn2/) *\lmn + bllmn? x

9§<L + g + E
eg( G %’ln;ﬂ) (4.2.3)

Imn ¢ Ilmn
Imn
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fz+m) =

Imn—1

; Qil(ﬁ—i_gjLlmn’lmn2>eg<lrzn+%+lmn’lmn2>x
)+ e (o B

96( +y+ s

Imn ¢ Ilmnllmn? Imn
(2 Y o2 YT y
92<lmn+ b l?”rm2>93<lnmjL c lmn2>' (4.24)

Since a and b are even, we have from (4.2.3) and (4.2.4)

flz4+m) = f(2). (4.2.5)

Again from (4.2.3) and a, b, ¢ even, we have

f(z+77)
fmn 1 z y s T T
TS

; Nimn Tt Imn +mTlmn2 Imn? x

01)(_ y s T T ) QC(L y s T T )
Imn + b + Imn o lmn2 Imn? e Imn + c + Imn + mTlmn2 Imn?

Imn—1

1 ais 9“( z Yy s T )b< Yy s T )
7 ¢ ; ! lmn+ a + Imnlimn2) 2\lmn b Imn!lmn2

c Y TS T -1 _—2iz

0 ( LANIEE ) _ . 126
Imn + c + Imn | lmn? g e () ( )

By (4.2.5) and (4.2.6), we have constructed an elliptic function f(z)/03(z|7) with
double periods 7 and 77 and only have a simple pole at z = 7/2 + 77/2 in

the period parallelogram. Hence the function f(z)/05(z|7) is a constant, say
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F123(a7b7 CSZJ’T), Le

=F -

or, equivalently

f(2) = Fiaz(a, b, c;y, 7)05(z|7).

Hence
Imn—1 - y s . ) . 7_
(9“(— 4 > b( Yy )
; \imn + a + Imnllmn2/) 2\lmn b Imnlimn2 X
c < Yy TS T B '
f (lmn T imn lmn2> = Fias(a,b,c;y,7)03(2|7).  (4.2.7)

Employing (1.1.10), (1.1.11) and (1.1.13), we obtain

F123 a, b cyY, T Z q m? 2m'Lz = 1) 7 q4lanJ1rs

m=—00

lmn—1 0 u2+»-»+u2+’u2+~-+v2+w2+--»+'w2+ ceedq
1 atv] 1 atult--tuagtvi+---+uy

Z Z (_1)u1+--~+ucq e

s=0 U1, Ua,V1, Vp, W1, ,We=—00

2(ug o Fuatog b toptwy boofwe) fatd)
X e Imn

2wq 4t + 2(v] +--dvg )b 4t .
o 6{ (uq - ug) a.+ (v - va) +w1 . wgq }Zy

{2(ug+-Fuatvi++ovptwy +- +wc)+a+b}

X e Imn T (4.2.8)
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The constant term on both sides of (4.2.8), we have

.q  —atb_
F123<a7 b, ¢y, T) = Imni®qamn?

“+oo

u%+---+u§+v%+~-+vg+w%+---+wg+u1+---+ua+v1+---+vb
g (_1)’LL1+~-'+’LLC X q Inm?2

ULy U, V1, U, W, We=—00
2(u1 4 Fug+vi+-tup+
w14+ we)+a+b=0

2{bc(uy+---+ug)+ac(vy+---4vqg)tab(wy +---+wq)+abe} .
X e abc Zy'

It is clear that

Yy T
F (l,b,C; 5 =7 (G,b,C;_,—>,
tas{ ) 128 abc’ lmn?
where
b +oo
Fias(a, b, c;y, ) = Imni®q + Z (1) te

ULy Ua, V1, UV, W1, We=—00

2(u1+-+uatvi - Fvptwi - twe) +a+b=0

w4 w2 tof v twiwltur o ua v+ o

xq

% e2{bc(u1 +-tuq)tac(vi+--+uvp)+ab(wi 4+ +we ) +abetiy

This complete the proof of Theorem 4.2.1.
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The proof of following Theorems 4.2.2-4.2.5 can be proved in similar way:.

Theorem 4.2.2. Let a, b, ¢, [, m and n are positive integers with a +b+ ¢ =m.

If a, b, ¢ are even, then we have

Imn—1
- Yy TS T by % Yy TS T
i il 4 )
Z; ! lmn+a+lmn Imn2) "2 lmn+b+lmn Imn?

Ss=

< Y TS T Y T
0c< y ): 7 ( b, ;_,_>9 , 1.9,
Nimn + c + Imn | lmn? F12a( @, 0, ¢ abe’ Immn2 5(2]7) (4.2.9)

where

Fraa(a,b, ¢y, 7) = lmni®q" " x

+oo
Z (_1)u1+~--+ua+w1+-~+wc

ULy Ua, U1, Vb, W, We=—00
2(u1+Fugtvrt-+optw - we ) +a+b=0

w4 w2 4vi v fwie w2 fur o ug o+

xq

% eQ{bC(ul +-tuq)tac(vi+--+vp)+ab(wi +--+we ) +abetiy

(4.2.10)

Theorem 4.2.3. Let a, b, ¢, [, m and n are positive integers with a + b+ c = m.

If a, b, ¢ are even, then we have

Imn—1
- Y TS T ol ? Y TS T
% (G 0 e i) 5 s * 3 T )
; \imn + a * Imn!lmn2) 3\lmn + b + Imn | lmn?
z Yy TS T Y T
(Y T Y p o L T Ve, (2
Nimn + c + Imn | lmn? 1344 9, € abc’ lmn? 3(27) ( )
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where

INE

}\134(6% ba Gy, T) = lmniaq

+o0o
Z (_1)u1+-~+ua+w1+~~+wc

UL, Ua, V1, Vp, W1, We=—00
2(ur+-tuatvr+Fvptwi++we)+a=0

xqU%-i---~u§+v%+~~-v§+wf+-~+w§+m+-~~+ua
% 6[Q{bc(ul +-4ug)tac(vi+--+vp)+ab(wi +-+we) pHabeliy

(4.2.12)

Theorem 4.2.4. Let a, b, ¢, [, m and n are positive integers with a +b+ ¢ = m.

If a, b, ¢ are even, then we have

Imn—1
> 0+ 0 o ) 5 G+ 5 T )
9;(# + % + % h;n2) = P (a, b,c; % ﬁ)eg(zh), (4.2.13)
where
+oo
Fasa(a,b, c;y,7) = lmngi Z (—1)wntete

UL, Ua,V1, Vp, W, We=—00
2(ur 4+ Fuatvr+Fvptwi+Fwe ) +a=0

Xqu§+--~u§+v%+---v§+w%+-~-+w2+u1+~-+ua

x el2{be(urteFua) tac(urttv) tab(wi - twe) Habeliy (4 9 14)

50



Theorem 4.2.5. Let a, b, ¢, d, k, I, m and n are positive integers with a + b +

c+d=m. Ifa,b, c, d are even, then we have

klmn—1

3 “( +Q+ ‘ )0"( SR Al )
- Y\ kimn Elmn | klmn2) ?\klmn = b klmn klmn2

S=

c < Y d Yy
% (o )4 (g * 4 )
S\ kimn + 1 + klmn klmn2 A\ klmn + d + klmn klmn2

Yy T
= J1234<a b, c, d; ched’ klmn2> 05(z|7), (4.2.15)

where

Frasa(a, by e, dyy, ) = klmm’“q%b

“+oo

X (_1) 1+ Fugt+z1+-+2xq
UL, Ug,V1,  Vp,WT 5+ We L] 4+ Tg=—00

2(u1 4+ Fug+v1+-FvpFwr - we 1+ 4 g) +a+b=0

« q’u%“r'"U«g‘H}%‘f""’Ug+w%+"'+wz+$%+"'+$§+u1+"'+U«a+U1+"'+'Ub
% e[2{bc(u1+-~~+ua)+ac(vl+-~~+vb)+ab(w1 +-twe) }Habcliy

(4.2.16)
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4.3 RESULTS OBTAINED BY APPLYING JACOBI IMAGINARY

TRANSFORMATION FORMULAE

In this Section, we deduce results applying Jacobi imaginary transformation
formulas (1.1.22)-(1.1.25).

Theorem 4.3.1. For positive even integers l, m, n, a, b and ¢ with a+b+c =m,

we have
Imn—-1 ", 5, 2 2
s“m“renm+46stT(zmn+y)+6zy+zmn—z“lmn a y 2
g q w27 2lmn 07 (nz + =+ nsor|lmn’t
s=0 a
gt 4 Imn?r ) 6¢ i Imn®r) = Hiss(a,b, c;y, 7)0
i\nz + 3+ nswr|lmntr )05 (nz + = 4 nswr|lmn’T | = 123(a, b, ¢y, 7)03(2|7),
(4.3.1)
where
H123(a7 b7 Gy, 7-)
.3—2a—2m 1—m 2( bih ) 1
v 2 T 2 _y“(abtbetac) Y
= ——m { abelmn27x272 §123 <a, b, C; 5 2 >03(Z|7’) (4.3.2)
(Imn?)z abclmn?t’  Imn2t
LJTATAPmPn3a + 242y + 42°mn — 422 lmn
=1
41272 lmn
4s2l2n27r27'2nm+24sln7r7‘(zmn+y)
X q 47272 1mn
s=0
+o0o
% Z (_1)d1+---+da+f1+---+fb
di,+da,f1,0 fp,91, 3ge=—00
2(di+-+dat+frt+e+fotgr++ge) +a=0
5¢ qzmn2(d%+~--d3+f12+~-f§+g%+--~g3+d1+--~da)
[2{bc(dy+---+da)tac(f1+ -+ p)+ablgr +---+gc) }+abc] .
X € abe W, (4.3.3)
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z

Proof: Replacing 7 by ;—-, then replacing z by 2 and y by 275 in (4.2.1), we

TL2
obtain
Imn—1 - yr s 1 ; yn s .
dl Tkl - )
; Nimnr + almn2  Imnl ~ Imn2e )" \imnr S ™ lmn)  Tmner
z Yy TS 1 ym 1
90( - > =7 ( b, = )«9 .
S\lmnt  clmn? + Imn Imn?T 12340, € abclmn?’  lmn?t 3(27)

(4.3.4)

Applying the Jacobi imaginary transformation formulas (1.1.22), (1.1.23) and

(1.1.24) in (4.3.4), we obtain

Imn—1 2\ @ 2\ ®
. - i(nztynt/atnsmT) - i(nz+ymT/b+nswT)
E (—Z\/ —ilmn?te tmn2rr ) (\/ —ilmn2te tmnZrr >
s=0

- 5 z(nz+y7‘r7’/c+ns7r7‘)
V—ilmn?te” tmnZar 4y nsr|lmn*r

0" <nz + T nstT|lmn T) ( PR A nstT|lmn 7')
a

, 1
= Ve T (a6 )0
e 12\DDC helmn?’  tmnlr (7).
(4.3.5)
Simplifying (4.3.5), we obtain
tmn—1 s 7r T nm+65ﬂ'7'znm+65y7r T +6zy7r7'+z nm— z2ln'm yﬂ'T
Z q e 07 (nz +—+ nSWTllmn27>
a
0 (nz + n87r7'|lmn27> 05 (nz + 2 ns7r7'|lmn27)
a a
?:3—2112—2m 1—2m y 1
T 7T
= —————F (a,b,c; , — >9 z|T).
(Imn2)miz 7 1% abclmn?’  Imn2Tt 3(2]7)
(4.3.6)
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Replacing y by % in (4.3.6), we obtain (4.3.1) and (4.3.2) of Theorem 4.3.1.

Applying series expansion of (1.1.10), (1.1.12) and (1.1.13) in (4.3.1), we have

o0
Hisz(a,b,c;y,7) Z qu e
wW=—00

Imn—1 +o00
2 2 223 2 2
. 24zy+4z“mn—4z“lmn+l“m“n°n“7%a
= i% i Ty > E E (_1)d1+ +dat+f1t++fo

s=0 U1, Ua,V1, VW1, ,Wec=—00

el2(dittdat fit -+ fotgittge)tatinzH{2(di+-+dat fit -+ fotgi+-+gc)FalinsTT

e[2{bc(d1+~~-+da)+ac(f1+--~+fb)+ab(gl+--~+gc)}+abc]z'ns7r7

2 22

4 +24 +24
X g i R (A A B f o f o gR g i da)

n—1[-1 m-1 400
. 24zy+422mn7422lmn+l2m2n37r27'2a
= Zaq 47272 Iimn E E (_1)d1+"'+da+f1+"'+fb

ﬁ:O a=0 s=0 UL, Ua,V1, " Vp, W1, " We=—00

w e2(dittdatfittfotgittge)tatinz+{2(di+-+datfit+fo+g1++gc)+a}tin(sint-antB)rr

e[Z{bC(dl +-+da)tac(fi++fp)+ab(gi+-+gc) }Habelin(sin+an+B)mT

% qzmn2(d§+~~~+d§+ff’+~-+f§+g%+~~-+g§+d1+-~+da)

4(5ln+o¢n+5)27r27'2nm+24(sln+an+ﬂ)Trszn+24(sln+an+B)7r7'y
X q 47272 imn

—_

-1 m— +00

2 2 2,23 22
. 24zy44z"mn—4z"lmn+l“mn°n“1%a
=1"q 1722 imn E (_1)d1+ +da+f1++fp

a=0 s=0 U1, Uqa,V1, " Vp,W1, " Wec=—00

% 6{2(d1+~~-+da+f1+~~-+fb+g1+-~~+gc)+a}inz+{2(d1+~~~+da+f1+~~~+fb+g1+~--+gc)+a}in(sln+an)7rr
% 6[Q{bc(dl +-4da)tac(fi++fp)+ab(gi+-+gc) Habclin(sln+an)mr

5 qlmn2(d§+~~-+d§+f§+---+f,,2+g%+---+g§+d1+-~-+da)

4(sln+an)2ﬂ'27'2nm+24(sln+o¢n)7r7'zmn+24(sln+an)7r7’y
X q 47272imn

o4



23 90 M1 +o0

2 2 2
. 24zy4+4z“mn—4z“lmn+l“m“n°n“rt%a
iq o s § ( 1)d1+ +da+fr4-+fo

=0 U1, *Uqg, V1, Vp,W],  We=—00

w el2(ditetdatfit+fotgite+ge)talinz
X 6{2(d1+"'+da+f1+"'+fb+g1+~~~+gc)+a}insln7r7

% 6[2{bc(d1 +-+da)tac(fi++fp)+ab(gi++gc) }Habclinsinmr

432l2n27r272nm+24sln7r72mn+24sln7r7y

lmn? (d3 e dg + fR o [ g2 it tda) + a2 2lmn . (4.3.7)

X q

Comparing the constant term on both sides of (4.3.7), we easily get (4.3.3). Hence

the proof of Theorem 4.3.1. O]

Similarly, we can prove the following Theorems 4.3.2-4.3.5

Theorem 4.3.2. For positive even integers [, m, n, a, b and ¢ with a+b+c = m,

we have
lmn—1 5 4 4 2 2
s“m t“nm+6swT(zmn+y)+6zy+z“mn—z“lmn a y 9
E q m272lmn 91 (nz + - _|_ nsmT lm’fl T
a
5=0

0" (nz + % + ns7r7’lmn27'> o5 (nz + % + ns7r7"lmn27'> = Higs(a, b, c;y, 7)05(z|7),

(4.3.8)
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where

H124(CL, b7 cG vy, T)

.3—2a—2m 1—m

— 2
—= %q_%ylzél <a,7 b7 C’ y s 1 )93(Z|T> (439)
(Imn?) = abclmn?t’  Imn?t
G0 (a 4 b) 4+ 242y + 42°mn — 42%lmn
- 4272 lmn
m—1 00
« q452127r27—2nz:§t§;1;fzwr(zmn+y) +Z (_1)d1+~~~+da+g1+'“+gc
s=0 dly"'da,fly“'flngl"" 3ge=—00

(di+-+datfrt+fotrgrt-+ge)+ 452 =0

x qzmn2(d§+-~-dg+ff+---f§+g%+~~gg+d1+~~da+f1+~-+fb)

[2{be(dy ++++da)Fac(fy++Fp)+ablgy+-+gc) +abe] .
X e abc Zy.

(4.3.10)

Theorem 4.3.3. For positive even integers [, m, n, a, b and ¢ with a+b+c = m,

we have
Imn—1
527r27—2nm+65ﬂ'7’(zmn+y)+6zy+22m”*22lm" a y 2
q m272lmn 91 (nz + - _|_ nSﬂ-T‘lmn 7-)
: : a
s=0

05 (nz + % + ns7r7’lmn27'> o5 (nz + % + ns7r7"lmn27'> = Hizs(a, b, c;y, 7)05(z|7),

(4.3.11)
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where

Hyza(a,b, c;y,7)

3—2a—2m 1—-m
7 2 T 2 _ y?(abtbetac) Y 1
= abelmn27272 ﬁ ( ’b7 7 y )0 4312
(Imn?)=z q B\G2S belmn2r lmn2t s(2I7) - )

LT Pmn® (a + ¢) 4+ 24zy + 42°mn — 42°lmn
=3

4272 lmn
2,2 2 2 3 +oo

m—1
4s°1*m°1°n°m+24sinwt(zmn+y)
X E q 47272imn E (—1)d1++da
s=0

di,da,f1, fb,9157 ,ge=—00
(ditFdatfit+-+fotgi+-+ge)+25<=0

x qimn? (@4 dir gt gl gt g2 +o1+-gc)

[2{be(dy ++-+da)+ac(fy++fy)+ablgy ++ge)}+abe] |
X e abc W

(4.3.13)

Theorem 4.3.4. For positive even integers l, m, n, a, b and ¢ with a+b+c =m,

we have
tmn—-1" , 5 , 2 2
s“m“r“nm+6swT(zmnty)+6zy+z“mn—z“lmn . y 2
E q w2 2imn 04 (nz + =+ nSWT’lmn 7')
a
s=0

05 (nz + % + ns7r7’lmn27> 05 (nz + % + nswr‘lmn%) = Hysy(a, b, c;y, 7)05(2|7),

(4.3.14)
where
Haza(a,b,c;y,7)
(1) 2 _bsierey Y 1
— (lmn2)% q abclmnZmT ﬁ234 <a7 b; (6N abclmn2T7 _lmn27>93(2’7—) (4315)

T2 r22m2nde + 242y + 42%2mn — 42%lmn

4m272lmn

o7



+o0
2,2 2 2 3
4s“1“m°1“n’m+24sinwr(zmn+y) Z (_1)d1++da

X q 4r272imn
s=0 dl,---da,fl,“'fb,gl,“',gc:*OO
(di+-+datfi++fot+g1++ge)+5=0
% qzmn2(d§+-~~d3+g%+-~-g3+g%+~--g§+d1+~--da+f1+-~-+fb)

[2{be(dy+--+da)+ac(f1++fp)+ab(gy+-+gc) }+abe] .
X e abc Y

(4.3.16)

Theorem 4.3.5. For positive even integers k, [, m, n, a, b, ¢ and d with a + b+

c+d=m, we have

klmn—1  , , , 5 9
s“m T “nm+48ystr+z“mn+8zny+2zstrmn—z“kimn a y 2
g q 727 2lmn 07 (nz + = + nswr|kimn’t
a
s=0

0 (nz + % + nswr‘klmn%—) 05 <nz + 2 nswr‘klmn%)
C

03 (nz + % + ns7r7"k:lmn27'> = Hioss(a,b,c,d;y, 7)03(2|T), (4.3.17)
where

H1234(a, b,c,d;y, 7')

( ) 1—2a—m 1—-m 2 ) 1
—1 2 T 2 Y (abc+bed+acd+abd y
— T abedklmn27272 ﬁ1234 <a, b, C, d, 9 v 2 )93(2’7—)
(klmn?)> abedklmn?®t’  klmn?t
(4.3.18)
222 Pm?n®(a + b) + 8zmrmn + 42*mn + 32zny — 42%kimn
Am2r2klmn
-1

e 432k2l27r2T2n3m+32yw75kln+skln iy
X E q ar272klmn E

s=0 dy,da, f1, f6,91, .9e, R, sha=—00

(di4-+dat frt+fotgit+gethi+-+ha)+22=0

% (_1)d1+~~~+da+h1+-~+hd
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% qkzmn2(d%+---dg+f12+---f,?+g%+---g2+h§+---h3+d1+---da+f1+---+f,,)

2{bcd(dy+---+dq)+acd(f1+ -+ fp)+abd(g1+---+gc)+abc(h1+---+h )+abed} .
1y
X e abed .

(4.3.19)
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4.4 RESULTS OBTAINED AS DIFFERENCE OF JACOBI THETA

FUNCTIONS

L. C. Shen has obtained the Fourier series expansion of triple product of Jacobi
theta functions in [100]. These expansion can be converted into difference of theta
functions as follows:

Lemma 4.4.1. From (1.1.10), (1.1.11), (1.1.12) and (1.1.13), we have

01(2|7)02(2[7)05(2|T) =

—ig*?(q% ¢*)2{€" 04 (32 + 277[37) — e H0,(3z — 277[37)},  (4.4.1)
01(2[7)02(2|7)0a(2|7) =
iq*(¢% 4% {e"*03(32 + 277 |37) — ™ "#03(32 — 277(37)} (4.42)

01(2[7)03(2|7)0a(2|7) =

i (% )2 {eP20,(3z + n7|37) — e H#0,(32 — 7T |37)}, (4.4.3)
02(2]7)05(2|7)04(2|7) =
—iqg" " (¢% ¢*)2 {270, (32 + 77|37) — e 226,(32 — w7|37)} . (4.4.4)

Proof: We have from [100, Proposition 2.1]

01 (2|7)05(2|7)0s(2|7) = 2¢*%(¢%; 4P Z (=1)"¢*+*" sin(6n + 4)z

. n 3n2+4n n 12 —(6n (%
Z—Zq?’/Q(QQ;QQ)zo Z (—1)ng+ (e(ﬁ +4)iz _ ,—(6n+4) )

n=—oo
[e.o]

_ —iqs/Q(QZ;QQ)zO <e4iz Z (_1)nq3n262ni(27r’r+32)

n=—oo
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o0

_ otz Z (_1)nq3n262ni(27r7'—3z)>. (4.4.5)

n=—oo

We obtain (4.4.1) by replacing n by —n in second summation and by the definition

of 04(z|7) (1.1.13). Similarly, (4.4.2) and (4.4.4) can be proved. Now

(s (ra(elr) = 20?2 3 " sin(6n 1 1)z
:iq1/4(q2;q2)zo< f: q3n2+ne—(6n+1)iz - f: q3n2+ne(6n+l)iz>
— i ) <e2iz i 2 (201 (3z4mr)
_ 2z i q3n2—3nei(2n—1)(3z—7r7)>. (4.4.6)

(4.4.3) is achieved by replacing n by —n in the first summation and n by n — 1 in

the second summation and employing (1.1.11). O

In this Section, we obtain some new results by employing lemma 4.4.1.
Theorem 4.4.2. Setting a = b = ¢ =t in (4.2.1) and employing (4.4.1), we

obtain

z

Imn—1 e4i(lmn+%+l;sn)94<3(L+ % + IS 4 27 |37 )

Imn Imn Imn? | lmn?
iAo z Y s\ _ 27T | _3T
s=0 € fmn ot bmn 64 S(Imn + t + lmn) Imn? | lmn?2

Yy T
= (6%, Yo elr), (447)
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where

Imn 2
%23(t7t7t;y77—) = m Z (_1)U1+ Futtwi+--+we
TAH)o0 oy trir oot i ——oo

ui+-tur v+ tortwir +twe +=0
Xqu§+---+u§+v§+---+v§+w§+---w?+u1+---+ut+v1+---+vt
w e2{t (Uit Fuetvietvetwi e fwe) iy

(4.4.8)

4.4.3. Setting a = b = ¢ = r in (4.2.9) and employing (4.4.2), we

Theorem
obtain
r
Imn—1 di( A+ 245 2z y s 2n7 | _37
e ! 03 3(lmn + r + lmn) + Imn? | lmn?
_ oA ) z Y ws \ __ 2nwT | 3T
s=0 € ! ! 93 3(lmn + r + lmn) Imn? I lmn?
Ly T
= '%/124 (Tu r,r 7’_37 lmn2 93<Z|7—), (449)
where
%24(T7 rry, 7-) =
l Ry
—mn E (_1)U1+~~-+um+w1+~~+wr
r/2(q2- 42)2r
q (q ’q )OO ULy Up, U1,y VUp, W1, Wr=—00

Uy Uy 01+ U e +1=0

x qu%-i---~+u3+v%+~--+v3+wf+~-~w3+u1+~~~ur+v1+~--+vr

% 62{r2(u1+~"+ur+”1+"'+w+w1+"'+w’")+r}iy. (44 10)
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Theorem 4.4.4. Setting a = b = ¢ = p in (4.2.11) and employing (4.4.3)

obtain
20( o+ ) 3 b
5=0 _e_Zi(ﬁJr%ﬂ::”)@? <3<lmn lmn> T2 zik)
Hiaa s )Bs(elr),  (4411)
= i z|lT 4.
134\ D, P, D; p37 lmn2 3 ’
where

Hisa(p, 0Dy Y, T)

l o
_ mn Z (— 1)t tuptwittwy
p( 2. 2)210
7G5 97 ) UL, Up, V1, Vp, W1, Wp=—00

w1 Fup+or - FvpFwi - Fwp+5=0

% qu%+~~~u2+v%+~-+v§+w%+--~w§+u1+~~~up+v1+-~~+vp

2{p2(ul+---+’U,p+7)1+"'+Up+wl+.n+wp)+p}iy. (44 12)

Theorem 4.4.5. Setting a = b = ¢ = x in (4.2.13) and employing (4.4.4)

obtain
imn—1 [ 2i(pm i+ 3(= ms ) 4 AT 37 _ ¢
Imn Imn Imn? | lmn?
—2i(32 ) s T | 37T _
s=0 e tmn 91 (3(lmn lmn> Imn? lmn2>

y T
= %34($,$,I;E,m>03(2|7'), (4.4.13)
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where

Ao, , 23y, 7)

l —
_ mn E : (—1)uattustwre s
Zx(q2 q2)2x
11 /0 UL, U UL, Vg, Wy, Wy =—00

ul - tuz+v1+ v w4 we + 5 =0

Xqu§+~--u§+v%+~-~+v§+w%+-~w3+u1+~-uz+v1+---+vz

y e2{x2(u1+~"+Uz+U1+"'+Uf+w1+m+wz)+x}iy. (44 14)
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4.5 APPLICATION

In this Section, we gives some special cases of Theorems 4.2.1-4.2.5 and obtain

some interesting identities of theta functions.

Corollary 4.5.1. For |l and n positive even integers, we have

6ln—1
> (5 * 5 * doloie) % (G * 5 * Gl
<03 (5 + 3+ i )~ 10 (0773 (0 gz ) 5 (00 ) a1
(4.5.1)

Proof: Settinga=0=c=21in (4.2.1)

o7 .
'/123(27 27 27 Y, T)
—+o00
( 1)u1+uaqu%—f—u%—l-vf—i-vg—l—wf—i-w%—l-ul+u2+v1+v2

= —6Ilng Z

u,u2,v1,v2,W1,W2=—00
u1+uz+vi+vetwi+we+2=0
8{(u14u1)+(vi4v2)+ (w1 +w2)+2}iy

“+o0o
u?+ud+o?+v+witwitur +us+vi+us

= —6lng Z (—1)rtve q

u1,u2,v1,v2,W,W2=—00
(4.5.2)

= 6ln9%(0|7‘)9§(O|7‘)9§(0|7‘).

Changing 7 by g in (4.5.2), we obtain Corollary 4.5.1.

Setting [ = n =1 in Corollary 4.5.1,

Ze2< T ‘6) ( T3 +_’6> <_+%+%S‘%)

2
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— 602 (o %)03 (o

Setting z —— 6z, y — 2y and 7 — 67 in (4.5.3), we obtain

%)93 (o%)eg(zh). (4.5.3)

Hf(z+y|7)9§(z—|—y\7')0§(z+y|7')—|—0f<z—|—y+%‘7)9§(z+y+g’7>
9§<z—|—y+ ‘ >+9f<z+y+g‘7)9§<z+y—l—g‘7>02<z+y+g‘ >
Gf(z+y+ ‘ >62<z+y+g’ )02(z+y+g‘ >+92<z+y+2§ )
05(;: 2?‘ )62<z—|—y+—‘ >+«92(z+y+—‘ )92(z+y+—‘ )

02 <z g’ ) 02(0]7)02(0]7)62(0|7)05 (62|67). (4.5.4)

03z + Ym0z + ylr)03C +ylr) + 63 (= -y + 2| 7) 3 (= + v+ 5| 7)
i(e 0 ) + 8+ ve S o S )

i
3
02 (z 4+ y|T)03 (2 + y|T)03 (2 + y|7T) +92(z—|—y——) >€2<z—|—y——’ )
2
3

0 <z+y——‘ )+92(z+y——} )92<z+y——( )92(z+y——‘ )

= 607(0|7)05(0|7)03(0|7)05(62|67). (4.5.5)
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2 +y|m)0i(z +yl7)
)+9§(z+y+%‘¢>
92<z+y+§‘ )92(z+y+§’ >+92< +y— )6’2<z+y—f’ >

O DR LR DGR

= 662(0|7)05(0|7)03(0|7)05(62|67). (4.5.6)

07 (z 4+ y|7)05(2 + y|7)05 (2 + y|T) + 0F(2 + y|7)05

+92<z+y —‘ )92<z+y —‘ )92<z+y

CDI>] OOI-\-] O-'>I=] PN

Setting y = 0 in (4.5.5) and (4.5.6), we obtain

A+ P S+ )+ S~ - )
- (e~ (e~ P~ ) (e S-S 1)

(4.5.7)

Taking a = b= c =2 in (4.2.9), we obtain

Corollary 4.5.2. For |l and n positive even integers, we have

6ln—1

> (5 + 2" Ginlee) % G * 5 i 72) % (i + 3 1 )

6ln2>92 <0 6ln2)92 <0| 61n2> 3(2[7)-

(4.5.8)

— 6lng? (o
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Setting [ = n = 1 in Corollary 4.5.2 and then z — 6z, y — 2y and 7 — 67,

we obtain

07 (z + y|7)05(z + y|7 )Qi(z+y|7')+9f<z+y+%‘7)«9§(z+y+g’7>
62(24—@/4— ‘ )—|—92<z+y+g’7>9§<z+y+g‘7>62<z+y+g‘ )
0 50 )0 51) e )
eg(z %‘ )02(Z—|—y+—‘ )+62<z—|—y+—‘ )92(z+y+—’ )
ez<z %‘ ) 662(0]7)62(0|7)62(0|7)05(62]67). (4.5.9)

03 (2 + y|T)05(2 + y|T)05 (2 + y|7) + 01 (2 + y|7)05 (2 + y|T )92<z+y|7')
+02(z+y —‘ )62<z+y —‘ )02<z+y—g )+62<z+y+§‘ )
9§<z+y+§‘ >Oi<z+y+§) >+92<z—|—y g )92<z+y——) )
oo ) oo ) EI 0 )

= 667 (0]7)05(0]7)03(0|7)05(62]67). (4.5.10)

Setting y = 0 in (4.5.10), we obtain

01 (21703 (=|)05 (=] ) + 07 (] )03 (=] 7) 05 (ZIT)
(= FP)(-- SR 5h) o+ 5
(-~ ) (-- S5 (e

= 662(0]7)05(0[7)03(0|7)03(62|67). (4.5.11)
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Taking a = b= ¢ =2 in (4.2.11), we obtain

Corollary 4.5.3. For |l and n positive even integers, we have

%t * 5 * imler) B (Gin 5+ il ae) % (et * 5 i)
\6in 6Inl6in2/) 3 \6in 6ln 6ln? 6in 6ln 6ln?

— 6lng? (0\#)95 (o)#)ei (0|#)93(z17).
(4.5.12)

Setting [ = n = 1 in Corollary 4.5.3 and then z — 6z, y — 2y and 7 — 67,

we obtain

e§<z+y|r)0§(z+y\7>92(2+y|7>+9f(2+?~/+%‘T)eg(ﬁwgw
)i (= +u+glr)e(s + v+ 5)

’ )9 (z+y+ ‘ >+62<z+y+—‘ )
7)

v SR ) v ) )

0§<Z+y+z‘7> —|—0f<z+y f
6 3
T
2

—i—@f(z—i—y—FQ‘ )92(z+y+

5
03(=+y+ %7) — 662(0|7)62(0|7)62(0|7)85(62|67). (4.5.13)

03z + yIT)03(= + Ym0 (= + ylr) + 03z + om0z + o103 (= + yir)

+92<z+y——‘ )02<z+y——‘ )92<z+y—§7> +0f<z+y+%‘¢>
9§(z+y+§‘7'>92(z+y+§’7> +9%<z+y g7>0§(z+y——’ >
(r0-3h) (o= TP P)(o-)

= 662(0|7)05(0|7)03(0|7)05(62|67). (4.5.14)
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Setting y = 0 in (4.5.14), we obtain

01(217)03 ([ 7)05 (=] ) + 05 (=] 7)05 (2| 7) i( )
O DL DL DR
(=5~ )~ ) i

= 662(0]7)05(0]7)03(0]7)03(62|67). (4.5.15)

Taking a = b= ¢ =2 in (4.2.13), we obtain

Corollary 4.5.4. For |l and n positive even integers, we have

T z Yy wWS| T 2 Yy wWS| T
o b B+
6ln2) 3\t T2 T emlemz) "\ T2 6inl6inz

— 6lnb? (o‘#)eg (o)%)ei (m#)eg(zm.
(4.5.16)

6ln—1 » y s
92<— Yy, s
26 T2 6

s=

Setting [ = n = 1 in Corollary 4.5.4 and then z — 6z, y — 2y and 7 — 67,

we obtain

03(2+y|7)0§(2+y|¢)0§(z+y|7‘)+0§<z+y+ﬁ‘7>0§<z—l—y+%’7>
0i(z+y+ — ‘)+82(z+y+3‘7>9§<z+y+ ‘)02(2+y+ ‘7’)—1—

<

e+ SR SR ) <o )
(e
(e

02( 2 + )0 <Z+y+—‘>+92(z+y+56‘ )«92(z+y+—‘ )
02 ™) = 603(0]7)63 (01763 (0]7)05 (6:/67).

Z+

3 ‘

Lo
4.5.17

51 (45.17)

70



+92<z+y——‘ )92<z+y——‘ )92<z+y—g )
9§<z+y—|—§‘7>9§(z+y+§’7>—|—9§<z+y—gT)é’g(z+y—g’7>
A=y =3|r) (= v - Gl)ei (= +v-5])

= 603(0|7)03(0|7)03(0|7)05(62|67). (4.5.18)

Setting y = 0 in (4.5.18), we obtain

O3 (<1 65 (2| )03 aIr) + 63 )3 21763 (1)
#0i(e = 5l AG = 5o (e 5l) + (e 5 G+ 5
+ (=5l

(- +3h) (=3P~ T3 =5

02 <z - %‘ )92 (z - —‘ ) — 662(0|7)62(0[7)82(0|7)04(62(67). (4.5.19)

Taking a = b= ¢ =d =2 in (4.2.15), we obtain

Corollary 4.5.5. For k, | and n positive even integers, we have

8kin—1
; % (s 5+ sl sime)® (Sim * 5 st |5
9‘%(% + g + 8::[871 8kln2>0 (SI:ln 82[871 8k:§n2>
:8kl”9%<0‘w>93<0 6ln2>6 ( ‘61712) ( in? 2) bs(2]7).

(4.5.20)
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Setting ¥k = | = n = 1 in Corollary 4.5.5 and then z —— 8z, y —— 2y and

T — 87, we obtain

01(z +yl7)03 (= + y|7)05(= + y|7)0i(= + yl7)

‘T)@%(Z—Fy—i-g’7)92<2+y+%‘7'>
‘T>9§<z+y+4‘ )9 <z+y+4‘7'>
L

i
—|—9<z+y—|— ‘)9§<z—|—y+ T §<z+y+§‘7>92<z+y+3§‘r>

+

03(z + y|7)05(2 + y|7)03 (2 + y|T)03 (2 + y|T)
O L G S U LA CRR A S A CS 1 )
R(en= TG - PRS- )
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+ﬁ%z+y——’yﬂe+y——w)W@+y——)yﬁe+y——’>

= 862(0|7)05(0|7)63(0|7)03(0|7)03(82|87). (4.5.22)
Simplifying (4.5.22), we obtain

01(z +ylm)03(2 + yIm)05 (= + y|T)0i (= + yI7)

+92(2—|—y—E’ >02<z+ —%‘ §( >0§<z+y—— )
e v v v 3
—|—92<z+y——‘ )92(z+y——‘ )92<z+y 3%’7)02<z—|—y——’ )

= 46%(0|7)05(0|7)65(0|7)07(0|7)03(82|87). (4.5.23)

Setting y = 0 in (4.5.23), we obtain

01 (2|7)05 (2| 7)05(2|7)03 (| 7)

(e~ Ty 2
(e Sy o)
(e ) )

= 465(0|7)05(0|7)605(0|7)03(62|67).

N

(
(z

\_//\

(4.5.24)
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CHAPTER V

A BEAUTIFUL CONTINUED FRACTION IDENTITY

FROM RAMANUJAN’S NOTEBOOK
5.1 INTRODUCTION

Ramanujan recorded about 200 results on continued fractions in his notebooks
[91] and lost notebook [93] without proof. The only result on continued fraction
that he published [92] [90, pp. 214-215], is related to the now celebrated Roger-
Ramanujan continued fraction defined by

2 3
q q
. <1
1 1 +-..7 ’q’ ’

=

—
)

S~——
I
— =
—

+14+ 1 +

S(q) == —R(—q),

which was first introduced by L.J. Roger [95] and independently rediscovered
by Ramanujan. In his first two letters to G.H. Hardy [90, pp. xxvii-xxviii],
[28, pp. 21-30, 53-62], Ramanujan communicated several results concerning R(q).

In particular, he asserted that

R(e™*q) = > +2\/g — ﬁ; L
Semg) - Vel
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which were first proved by G.N. Watson [112]. In his lost notebook [93, pp. 26],

Ramanujan claims that

Rg) = ﬁ‘lexp(<—1/5>/ Ui =) ﬁ) (5.11)

2 (1—t5)(1—t10)"' t

Vil W5 L PPy
— 2 B 14 % exp ((1/5>/q (1 —t1/5)(1 —t2/5) . m) , (5.1.2)

where 0 < ¢ < 1. The equality (5.1.1) was first proved by G.E. Andrews [16]
and equality (5.1.2) was proved by S.H. Son [108]. On page 365 of his lost

notebook [93], Ramanujan recorded five modular equations relating R(q) with

R(—q), R(¢*), R(¢*) R(¢") and R(q").

Motivated by these works, in this Chapter we study the Ramanujan continued
fraction
1 ¢1+¢*)° ¢'(1+¢")? ¢°Q+¢°)?

A = <1
(@ -+ 1-¢ + 1-¢° + 1—-¢g* +--7 d

= L= (5.1.3)

A similar continued fraction is been previously studied by C. Adiga and N. Anitha

[1].
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5.2 A ¢-IDENTITY RELATED TO A(q)

Theorem 5.2.1.

(a54")% ~~ 4"
Ala) = 550 Z Sntd (5.2.1)
(6% 6%)% <= 1+ ¢*

12

Proof: Changing ¢ to ¢®, then setting a = —¢*, b = —¢*? and z = ¢* in 1y

summation formula (1.2.1), we complete the proof of Theorem 5.2.1. O
5.3 PRODUCT REPRESENTATION FOR A(q)

Theorem 5.3.1. Let A(q) be defined by (5.1.3). Then

Alq) = . (5.3.1)

Proof: From [26, Ch. 16, Entry 11], for |¢| < 1

(—@)oo(b)os = (@)oo(=b)w _a—b (a—bg)(ag—b) qla—bg*)(ag® —b)
(—a)oo(D)oo + (@)oo (—b)oe 1 —q+ 1—¢3 + 1—¢° 4o
(5.3.2)

Rationalizing left hand side of (5.3.2) and then changing ¢ to ¢*, a to ¢ and b to
—¢q in the resulting identity, we obtain
2
{(—¢ )3 — (@ )3} 2q ¢(1+¢)?  ¢'(1+q")

_ . (533
Codlh -G 1-@+ 1-g + 1-qg0 4. O

Multiplying numerator and denominator of left hand side of (5.3.3) by (¢%;¢*)e
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and using (5.4.9), we obtain

{fla,q) — f(—q,—@)}*  2q 1+ ¢*1+4q")?

- . 5.3.4
q)— fA(—¢—q) 1-¢ + 1—¢° + 1—¢0 +... (5.3.4)
Employing [26, Ch. 16, Entry 30 (iii) and (vi)] in (5.3.4) we obtain
2(1. % 2 2(1 2)2 401 4\2
qf*(Lq) 2 F(1+¢*)?*  ¢(1+qY (535)

gl T-@ + 1@ + 1-g® +--

Finally applying [26, Ch. 16, Entry 18(ii)] and (1.2.6), we complete the proof

(5.3.1). 0
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5.4 SOME IDENTITIES INVOLVING A(q)

We obtain several relations of A(q) in terms of theta function ¢(q) and ¥ (q).

Theorem 5.4.1.

Alg) = :ﬁzggg (5.4.1)
Alg) = :ﬁggi; (5.4.2)
Ag) = 902(164;2_)?((14)’ (543)
w - 2D
ADAR AW = Fr (5.4.6)
ROARAIAG) -~ SO (5.47)

Proof: Replacing ¢ by ¢* in [26, Ch. 16, Entry 23(v)] and then squaring both
sides, we obtain (5.4.1). On using [26, Ch. 16, Entry 25(iv)] in (5.4.1) we obtain
(5.4.2).

Setting a = b = ¢*> and a = b = ¢* in [26, Ch. 16, Entry 30(i)] and substituting in

(5.3.1) we have

- (1) (56)

Using [26, Ch. 16, Entry 25(iii)] twice in (5.4.8), we obtain (5.4.3).

Using [26, Ch. 16, Entry 25(iii)] and [26, Ch. 16, Entry 25(iv)] in (5.3.1), we have
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Employing [26, Ch. 16, Entry 25(ii)] in (5.4.9), we obtain

A@>::<;;ii%> (w@);;ﬁ—@)'

From [26, Ch. 16, Entry 25(i)] and [26, Ch. 16, Entry 25(v)], we have

Substituting (5.4.11) in (5.4.10), we obtain (5.4.4).

Proofs of (5.4.5), (5.4.6) and (5.4.7) follows directly from (5.3.1).

We can also observer the following for A(q)

Theorem 5.4.2. If u = A(q), v = A2(q) and w = Ai(q), then

—t+—t——— = vtuw.

Proof: From (5.3.1) we have

wo = A(q) A} (g) = (jggi)
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(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)



which completes the proof of (5.4.12).

Also from (5.3.1), we have

u v w1 ¢2(q8)¢(q4)+¢(q8)¢%(q4)+ () v3qY) v (g
vow o u w2 Y)Y ga(ed)  wr(gt) V@) gR(ed)
Y(q®) +¢%(q8)
v(gY) i (gt

which completes the proof of (5.4.13).
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5.5 INTEGRAL REPRESENTATION OF A(q)

Theorem 5.5.1. For 0 <|q| <1,

A(q) = exp / (M) dq, (5.5.1)

q
where p(q) is as defined in (1.2.5).

Proof: Taking log on both sides of (5.3.1), we have

log A(q) = 2log ¥(q°) — 2logv(q*) . (5.5.2)

Employing [26, Ch.16, Entry 23(ii)] on right hand side of (5.5.2), we obtain

> n4n

log A(g Z ol + q4n . (5.5.3)

-
Differentiating (5.5.3) and simplifying, we have

n4n

ilogA Si

—. 5.5.4
dq q = (1+q"m)? 554

Using Jacobi’s identity [26, Ch.16, Identity 33.5, pp. 54| and integrating both
sides and finally exponentiating both sides of identity (5.5.4), we complete the

proof of Theorem 5.5.1. O]
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5.6 RELATION BETWEEN A(q) AND HYPERGEOMETRIC

FUNCTION

In this Section, we deduce relations between A(q) and hypergeometric function

o F1(a, b; ¢; x) where

(@)r(b

oFi(a,b;c;x) = Ok k) lz| < 1. (5.6.1)
0

o]
k=

Theorem 5.6.1. If

:’E )
©*(q)
2F1(é7§>171_k2)
q €xXp ™ 2F1(;’§’1,k2> 5
and
11
Fil=, =1k
z 2 1(2727 ) )7
then
. 1
(Z) A(Q):_7
q
) 11 , ,
(i) A(q)+2—q q—x{1+\/(1—fv>—\/(1—x>— (1 —z)3}

Proof: From [26, Ch. 17, Entry 11(i), pp. 123], we have

¥(q) %z (g)é : (5.6.2)

Then employing (5.6.2) in (5.3.1) we obtain (i).
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Again from [26, Ch. 17, Entry 11(iv),(v), pp. 123] and (5.3.1), we have

L(1-(Wi-2)?

Rationalizing (5.6.3) and simple manipulation completes the proof of (ii).
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5.7 MODULAR EQUATIONS OF DEGREE n

This Section contains new modular equations of B(q), where B(q) = 2¢A(q).

We say modulus 5 has degree n over the modulus a when

F 1;1— Pz 511
2 1(2712717 ) _ 2 1(2’12 - ﬁ) (571)
2F1(272717a) (5 5 )

where 2 F(a, b; ¢; ) is defined as in (5.6.1). A modular equation of degree n is an
equation relating o and /8 induced by (5.7.1).

Theorem 5.7.1. If

2F1<§,%;1;1—a)>
qg=exp|—T , 5.7.2
( 2F1<%7%;1a@) ( )
then
1—B@U4
=1 (—=) . 5.7.3
“ (1+B@) (5.73)

Proof: On employing [26, Ch. 16, Entry 25(ii)] and [26, Ch. 16, Entry 25(v)] in

(5.3.1), we have

)
1 ©(q)
AM)_QQ L =)
©(q)
Thus,
)
B@)Z——zﬁgg. (5.7.4)
b ©(q)
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Also from [26, Ch. 17, Entry 5, pp. 100] and (5.7.2) it is implied that

4(_
a=1-2 E ) (5.7.5)
v'(a)
Using (5.7.5) in (5.7.4), we complete the proof of (5.7.3). O

Let g and « is related by (5.7.2). If § has degree n over « then from Theorem

5.7.1, we obtain

. (1=B(@)\"
s (LB 618

Corollary 5.7.2. Let | = B(q), m = B(¢®), n = B(q*), then
(i) 1* — 4Pm3 + 61°m?* — 4dm +m* =0

(ii) 1* + U*n* + 41*n3 + 61*n® + 4*n — 8n® —8n =0

Proof: From [26, Ch. 19, Entry 5 (ii), pp. 230 |, we have

N

(aB)i +{(1—a)(1 - B} =1. (5.7.7)

On using (5.7.6) with n = 3 and (5.7.3) in (5.7.7) and simplifying we complete the

proof of Corollary 5.7.2.(i).

When f has degree 4 over o then we have from [26, Ch. 18, Eq. (24.22), pp.

215 |

VB = (1_(1—_2‘)> . (5.7.8)



On using (5.7.6) with n =4 and (5.7.3) in (5.7.8), we obtain

B -t

Squaring both sides of the above identity and simplifying we complete the proof

o~ ~

of Corollary 5.7.2.(ii). O
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5.8 EXPLICIT FORMULA FOR THE EVALUATION OF A(q)

Let ¢, = e™V™ and o, denote the corresponding values of a in (5.7.2). From

Theorem 5.7.1 we have

1—(1—ap,)

Blem™) = 1+ (1—a)

I ST

Hence

Ay = Lol = (L= an)

3 ) (5.8.1)

NS ST

From [26, Ch. 17, pp. 97], we have oy = %, ap = (vV2—1)%, oy = (V2 - 1%

2

Thus from (5.8.1), we have

Ale™) = % ﬁ_l
N g (—2+2v2)7
A = 5 { 14 (—2+2V2)1 }
o 1— (=164 12/2)3
Al =5 {1 + (- 16+12x/_)i}
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The Ramanujan-Weber class invariant is defined by

G =24 P (= 42) oo

and

Gn =272 (g0 42 oo (5.8.2)

where ¢, = e ™. Chan and Huang [44] has derived few explicit formula for
evaluation of S(e~™V™2) in terms of Ramanujan Weber class. Similar works are
also carried out by Adiga et. al. [5]. Analogous to these works we obtain explicit
formula for the evaluation of A(e=™V").

Theorem 5.8.1. For Ramanujan Weber class invariant as defined in (5.8.2) and

let p= G2 and p; = g'2, then

Ay = Lo | 220 p+ J* ) R {zp P JF 1l
e~ ™Yy — leﬂ\/ﬁ 1 {_2p1(p1 — \/r)}lﬂ
A( ) = 2 1+ {=2p1(p1 — \/m)}l/‘*] ' (5.8.4)

Proof: From [42, Eq. 4.7, pp. 85|, we have

G = [an(1 — a,)] 7V

Hence,
1

(vplp+1) + /plp —

oy =

(5.8.5)
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Using (5.8.5) in (5.8.1) we obtain (5.8.3).

Also from [42, Eq. 4.9, pp. 85], we have

Hence
VOn = \/ (p% + 1) —P1-

Using (5.8.6) in (5.8.1) we obtain (5.8.4).

Example. Let n = 1. Since G1 =1, from Theorem 5.8.1 we have

— ™ 2!/t —1
Ale™) =3¢ (m)

Let n = 2. Since go = 1, from Theorem 5.8.1 we have

vy L s 1= (2v2-2)
Ale™) =3¢ {1+(2\/§—2)1/4}‘

Let n = 3. Since G* =2, from Theorem 5.8.1 we have

A(e™™V3) = len\/ﬁ { (8 4+ 4v/3)1/* — <7+4\/§>1/4} |

2 (8+ 4V/3)1/4 + (7 + 44/3)1/4
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