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Chapter 1

Introduction

1.1 Section 1

Srinivasa Ramanujan, acknowledged as the famous Indian mathematician was

born on December 22, 1887. His bibliography is brilliantly penned by Robert

Kanigel [62], in The man who knew infinity and by K. Srinivasa Rao [94], in

Srinivasa Ramanujan: a mathematical genius.

During the year 1903-1914, Ramanujan recorded his mathematical discoveries

in three notebooks, without providing proofs. The astounding number of results

are related to Number theory, Hypergeometric functions, Modular functions and

Analysis with significant contribution to the development of Partition theory,

q-series and Continued fractions.

It was only in 1957, the Ramanujan’s notebooks were made public when

Tata Institute of Fundamental Research in Bombay published a photocopy

edition. In 1976, when G. E. Andrews visited the Trinity College Library at

Cambridge University, he unearthed about 140 handwritten pages of Ramanujan

containing over 600 results, fall under the purview of mock theta functions,

q-series, Continued fractions, Asymptotic expansions, Approximations and

Class invariants. In 1988, Narosa Publishing House, New Delhi published a
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photocopy edition of the lost notebook along with few unpublished manuscripts

of Ramanujan.

After the death of Ramanujan on April 20, 1920, G. H. Hardy urged that

Ramanujan’s notebooks be edited and published. Although in 1929, G. N. Watson

and B. M. Wilson had undertaken the task of editing Ramanujan’s notebooks,

but the project never completed partly due to premature death of Wilson in

1935. Bruce C. Berndt of University of Illinois, USA, completed the task with

the help of other mathematicians. As a result, we now have five edited volumes,

Ramanujan’s Notebooks Part I-V [21, 22, 23, 24, 25] which contain proofs of

the theorems or references to the proof in the literature are provided. The five

volumes contain 3254 results. Andrews and Berndt have published [9, 10, 11, 12]

four of approximately five volumes devoted to the claims made by Ramanujan in

the lost note book and other unpublished papers.

It is strongly believed by mathematicians several of the Ramanujan’s results

pertaining to theta function identities, modular equations, continued fractions

remain to be elucidated by the methods known to Ramanujan.

The research work presented in this thesis for the most part is based on and

motivated by the works of Ramanujan.

In what follows we employ the usual notations:

(a)∞ := (a; q)∞ =
∞∏
n=0

(1− aqn),

(a1, a2, · · · , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞

and
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(a)n := (a; q)n =
n−1∏
k=0

(1− aqk) =
(a)∞
(aqn)∞

, n : any integer (1.1.1)

where a and q are complex number with |q| < 1. In particular, if n is a positive

integer

(a)−n =
(−1)nqn(n+1)/2

an(q/a)n
, a ̸= 0. (1.1.2)

we shall define rFs generalized hypergeometric series by

rFs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; z

]
=

∞∑
n=0

(a1)n(a2)n . . . (ar)n
n!(b1)n(b2)n . . . (bs)n

zn,

where

(a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1).

By the ratio test, the rFs series converges absolutely for all z if r ≤ s and for

|z| < 1 if r = s+ 1.

The basic hypergeometric series s+1ϕs is defined by

s+1ϕs

[
a1, a2, . . . , as+1

b1, b2, . . . , bs
; q, z

]
=

∞∑
n=0

(a1)n(a2)n . . . (as+1)n
(q)n(b1)n(b2)n . . . (bs)n

zn,

where |z| < 1 and a1, a2, · · · , as+1, b1, b2, · · · , bs are arbitrary, except that of

course (bj)n ̸= 0, 1 ≤ j ≤ s, 0 ≤ n < ∞ and (a)n is as in (1.1.1). For 0 < |q| < 1,

the series on the right hand side of s+1ϕs converges absolutely for |z| < 1.

The basic bilateral hypergeometric series rψr is defined by

sψs

[
a1, a2, . . . , as
b1, b2, . . . , bs

; q, z

]
=

∞∑
n=−∞

(a1)n(a2)n . . . (as)n
(b1)n(b2)n . . . (bs)n

zn,

where (a)n and (a)−n are as defined in (1.1.1) and (1.1.2) and the denominator
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factor are never zero. For 0 < |q| < 1, the series converges absolutely in the

annulus

[
b1, . . . , br
a1, . . . , ar

]
< |z| < 1.

We use the notation

a1
b1 +

a2
b2 +

a3
b3 + · · ·

, (1.1.3)

for the continued fraction

a1

b1 +
a2

b2 +
a3

b3 + · · ·

.

We let An and Bn denote the nth numerator and denominator respectively, for

(1.1.3). Thus for n ≥ 1,

a1
b1 +

a2
b2 +

a3
b3 +· · ·+

an
bn

=
An

Bn

where

An = bnAn−1 + anAn−2,

Bn = bnBn−1 + anBn−2,

A−1 = 1 = B0

and

A0 = 0 = B−1.

The set of natural numbers is denoted by N , the set of integers by Z, the set of

real numbers by R and the set of complex numbers by C. We set R̂ = R ∪ {∞}

and Ĉ = C ∪ {∞}.
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If pN = 0, we say the continued fraction (1.1.3) terminates, and we assign to

it the value

f :=
a1
b1 +

a2
b2 +

a3
b3 +· · ·+

aN−1

bN−1

=
AN−1

BN−1

,

if an ̸= 0, 1 ≤ n < N . If an ̸= 0, 1 ≤ n < ∞, then the continued fraction

(1.1.3) converges if lim
n→∞

(
An

Bn

)
exists in Ĉ. Its value is given by

f = lim
n→∞

(
An

Bn

)
,

and we write

f :=
a1
b1 +

a2
b2 +

a3
b3 + · · ·

.

If lim
n→∞

(
An

Bn

)
does not exist in Ĉ, (and an ̸= 0, 1 ≤ n < ∞), we say that

(1.1.3) diverges.
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1.2 Section 2

Leibniz observation about partition put in modern notation is, a partition

λ = (λ1, λ2, · · · , λk) of a non-negative integer n is a finite sequence of

non-increasing positive integer parts λi such that n =
k∑

i=1

λi. The partition

function p(n) is the number of partitions of a non-negative integer n, with

the convention that p(0) = 1. For example, we have p(6) = 11, as there are

11 paritions of 6, namely, (6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1),

(2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1). The theory of partition is

a subject that naturally fits into the theory of q-series and also it is highly

combinatorial. Euler, Sylvester, MacMahon, Rogers, Hardy, Ramanujan and

Rademacher have played a seminal role in the development of partitions.

Euler gave the generating function for p(n) using the q-series by

∞∑
n=0

p(n)qn =
∞∏
n=1

1

(1− qn)
.

Often generating functions leads us to relating one class of partition to another.

For example, “The number of partitions of n in which the difference between any

two parts is at least 2 equals the number of partitions of n into parts congruent

to ±1 (mod 5)”, and it is the combinatorial interpretation of the analytic identity

due to Rogers and Ramanujan:

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
, |q| < 1.

A partition is often represented with the help of a diagram called Ferrers-Young

diagram. The Ferrers-Young diagram of the partition λ = (λ1, λ2, · · · , λk) of n

is formed by arranging n nodes in k rows so that the ith row has λi nodes. For
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example, the Ferrers-Young diagram of partition λ = (4, 2, 1) of 7 is

• • • •

• •

•

The conjugate of a partition λ, denoted λ′, is the partition whose Ferrers-Young

diagram is the reflection along the main diagonal of the diagram of λ. Therefore,

the conjugate of the partition (4, 2, 1) is (3, 2, 1, 1). A partition λ is self-conjugate

if λ = λ′. For example, the partition (4,2,1,1) of 8 is self conjugate.

The nodes in the Ferrers-Young diagram of a partition are labeled by row and

column coordinates as one would label the entries of a matrix. Let λ′j denote

the number of nodes in column j. The hook number H(i, j) of the (i, j) node

is defined as the number of nodes directly below and to the right of the node

and including the node itself. That is, H(i, j) = λi + λ′j − j − i + 1. A partition

λ is said to be a t-core if and only if it has no hook numbers that are multiples of t.

Example. The Ferrers-Young diagram of the partition λ = (4, 2, 1) of 7 is

• • • •

• •

•

The nodes (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2) and (3, 1) have hook numbers

6, 4, 2, 1, 3, 1 and 1, respectively. Therefore, λ is a 5-core. Obviously, it is a

t-core for t ≥ 7.

In 1919, Ramanujan [86], [91, pp.210-213] gifted three simple congruences

satisfied by p(n), namely,
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p(5n+ 4) ≡ 0 (mod 5), (1.2.1)

p(7n+ 5) ≡ 0 (mod 7), (1.2.2)

p(11n+ 6) ≡ 0 (mod 11). (1.2.3)

He gave proofs of (1.2.1) and (1.2.2) in [86] and later in a short one page

note [87], [88, p.230] announced that he had also found a proof of (1.2.3). In a

posthumously published paper [88], [91, pp.232-238], Hardy extracted different

proofs of (1.2.1)-(1.2.3) from an unpublished manuscript of Ramanujan [27], [90,

pp.133-177].

Garvan, Kim and Stanton [47, 48] found that t-core are useful in establishing

cranks, which are used to show a combinatorial proof of Ramanujan’s famous

congruences for the partition function. Garvan [46] also proved some “Ramanujan

type” congruences for ap(n) for certain special small primes p. Hirschhorn and

Sellers [56] proved multiplicative formulas for a4(n) and also conjectured similar

multiplicative properties for ap(n) for other primes p.

The t-core conjecture has been the topic of a number of papers

[43, 46, 51, 66, 67, 78, 79]. This conjecture asserted that every natural

number has a t-core partition for every integer t ≥ 4. Using the theory of modular

forms and quadratic forms Granville and Ono [51, 78, 79] have proved the

conjecture. Kiming [66] gave a simple proof for the conjecture. We also refer to

[15, 16, 17, 19, 20, 55, 56, 59, 65, 81] for futher results and generalizations on t-core.

In chapter 2, we obtain infinite families of arithmetic identities involving

15-core and 23-core.
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1.3 Section 3

For integer ℓ > 1, a partition of n is called ℓ-regular if none of its parts is

divisible by ℓ. If bℓ(n) denotes the number of ℓ-regular partitions of n, then the

generating function for bℓ(n) satisfies

∞∑
n=0

bℓ(n)q
n =

fℓ
f1
. (1.3.1)

The arithmetic of ℓ-regular partition functions has received a great deal of

attention. Gordon and Ono [50] proved that if p is prime and pordp(ℓ) ≥
√
ℓ,

then for any positive integers n such that bℓ(n) ≡ 0 (mod pj) is one. Andrews,

Hirschhorn and Sellers [13] established infinite families of congruences modulo

3 for b4(n), and analogous results were proven by Webb [96] for b13(n) and by

Furcy and Penniston [45] for several other values of ℓ. And in [97] Xia found

congruences for b4(n) modulo 8 (for more results on ℓ-regular partitions see

[3, 31, 32, 35, 41, 42, 60, 63, 71, 72, 74, 80, 83, 84, 98, 99, 100]).

An ℓ-regular bipartitions of n is an ordered pair of ℓ-regular partitions (λ, µ)

such that the sum of all of the parts equals n. Let Bℓ(n) denote the number of

ℓ-regular bipartitions of n. Then the generating function of Bℓ(n) satisfies

∞∑
n=0

Bℓ(n)q
n =

f 2
ℓ

f 2
1

. (1.3.2)

In chapter 3, we establish some congruence modulo ℓ for ℓ-regular bipartitions,

where ℓ ∈ {5, 7, 13}.
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1.4 Section 4

In [40], Corteel and Lovejoy introduced overpartitons. An overpartition of

a positive integer n is a nonincreasing sequence of positive integers whose sum

is n in which first occurrence of a distinct number may be overlined. Let p(n)

denote the number of overpartitions of n. For example, the overpartitions of 3

are (3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1).

The generating function for p(n), is given by

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

=
f2
f 2
1

. (1.4.1)

The function p(n) has been considered recently by number of mathematicians

including Hirschhorn and Sellers [57, 58], Mahlburg [76] and Kim [64].

Overpartitions have been used in combinatorial proofs of many q-series

identities and these partitions aries quite naturally in the study of hypergeometric

series (see[38, 39, 40, 73, 82]). Overpartitions also arise in theoretical physics

as jagged partitions in the solution of certain problems regarding seas of particles

and fields (see[44]), where a jagged partition of n is an ordered sequence of

nonnegative integers (λm, · · · , λ1) that sum to n and satisfy the weakly decreasing

conditions, λj ≥ λj−1 − 1 and λj ≥ λj−2.

Recently, Andrews [8] introduced singular overpartitions. To introduce singular

overpartitions, first he defined some properties of the entries in a Frobenius symbol

for n, which is of the form

 a1 a2 · · · ar

b1 b2 · · · br



10



where the rows are strictly decreasing sequences of non-negative integers and∑r
i=1(ai + bi + 1) = n. Andrews defined a column

aj

bj
in a Frobenius symbol

as (k, i)-positive if aj − bj ≥ k − i − 1, (k, i)-negative if aj − bj ≤ −i + 1 and

(k, i)-neutral if −i+1 < aj−bj < k− i−1. He then divided the Frobenius symbol

into (k, i)-parity blocks, where if two columns
an

bn
and

aj

bj
are both (k, i)-positive

or both (k, i)-negative, then they have the same (k, i)-parity. These blocks are the

sets of contiguous columns maximally extended to the right:

an an+1 · · · aj

bn bn+1 · · · bj

where all the entries have either the same (k, i)-parity or are (k, i)-neutral. The

first non-neutral column in each parity block is called the anchor of the block.

A Frobenius symbol is said to be (k, i)-singular, if the following properties hold

1. there are no overlined entries, or

2. the one overlined entry on the top row occurs in the anchor of a (k, i)-positive

block, or

3. the one overlined entry on the bottom row occurs in an anchor of a

(k, i)-negative block, and

4. if there is one overlined entry in each row, then they occur in adjacent

(k, i)-parity blocks.

Andrews denoted the number of such singular overpartitions of n as Qk,i(n).

He found that Qk,i(n) is equal to Ck,i(n), the number of overpartitions of n in

which no part is divisible by k and only parts ≡ ±i (mod k) may be overlined,

i.e.,
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∞∑
n=0

Qk,i(n)q
n =

∞∑
n=0

Ck,i(n)q
n =

(qk; qk)∞(−qi; qk)∞(−qk−i; qk)∞
(q; q)∞

. (1.4.2)

In chapter 4, we established several new congruences for Ck,i(n) for certain

values of k and i by employing simple p-dissections of Ramanujan’s theta functions.

Since our proofs mainly rely on various properties of Ramanujan’s theta

functions and dissections of certain q-products, we define a t-dissections and

Ramanujan’s general theta function and some of its special cases.

If P (q) denotes a power series in q, than a t-dissection of P (q) is given by

[P (q)]t−dissection =
t−1∑
k=0

qkPk(q
t),

where Pk are power series in qt.

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Ramanujan’s theta function f(a, b) is equivalent of Jacobi’s theta function

[1, 23, 89]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞

certain special cases of f(a, b) are defined by
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φ(q) := f(q, q) =
∞∑

k=−∞

qk
2

=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, (1.4.3)

ψ(q) := f(q, q3) =
1

2
f(1, q) =

∞∑
n=0

=
(q2; q2)∞
(q; q2)∞

, (1.4.4)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞. (1.4.5)

Following Ramanujan, we also define

χ(q) := (−q; q2)∞ (1.4.6)

one can easily show that

φ(q) =
f 5
2

f 2
1 f

2
4

, φ(−q) = f 2
1

f2
, ψ(q) =

f 2
2

f1
, ψ(−q) = f1f4

f2
,

χ(q) =
f 2
2

f1f4
, χ(−q) = f1

f2
and f(q) =

f 3
2

f1f4

where fn := f(−qn).
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1.5 Section 5

Prominent mathematicians like Jacobi, Gauss, Cauchy, Steiltjes and Ramanujan

have contributed significantly to the theory of continued fractions.

Continued fractions are important in several branches of mathematics.

Finite simple continued fractions are useful to solve linear Diophantine equation

ax + by = c whereas infinite continued fractions have been used in computer

algorithm for computing rational approximation of real numbers. Also these

infinite continued fractions play an important role to find solutions of Pell’s

equation x2 − dy2 = N .

Ramanujan’s contribution to the field of continued fraction is magnificent. This

notebooks contains nearly 200 results related to continued fraction. Chapter 12 of

his second notebook [89] is entirely devoted to continued fractions. Several of his

interesting continued fractions can be found in chapter 16 of his second notebook

and in the ‘lost’ notebook of Ramanujan. Ramanujan’s most crowing achievements

in the theory of continued fraction is the Rogers-Ramanujan continued fraction

identity,

R(q) :=
q1/5

1 +

q

1+

q2

1 + · · ·

= q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

|q| < 1. (1.5.1)

The first proof of (1.5.1) was given by Rogers [93]. Ramanujan [89] rediscovered

and proved the continued fraction (1.5.1), therefore the continued fraction (1.5.1)

enjoy the name Rogers-Ramanujan’s continued fraction.

On page 46 of his ‘lost’ notebook [90], Ramanujan gave the following integral

representation for R(q) is
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R(q) =

√
5− 1

2
exp

(
−1

5

)∫ 1

q

(1− t)5(1− t2)5 · · ·
(1− t5)(1− t10) · · ·

dt

t
.

Several generalization and ramification of the continued fraction R(q) have

been recorded by Ramanujan in his ‘lost’ notebook. Also, in his letters [91]

to Hardy, Ramanujan communicated the values of R(e−2π), R(−e−π) and

R(e−2π/
√
5). Many mathematicians like B. C. Berndt and H. H. Chan [26] and

K. G. Ramanathan [85] have extensively studied the values of R(q).

Generalizations and related works of R(q) may be found in papers by Al-Salam

and Ismail [7], B. Gordon [49], M. D. Hirschhorn [52], S. Bhargava and C. Adiga

[28], S. Bhargava, C. Adiga and D. D. Somashekara [29] and many others.

On page 366 of his ‘lost’ notebook, Ramanujan investigated the continued

fraction

G(q) :=
q1/3

1 +

q + q2

1 +

q2 + q4

1 +

q3 + q6

1 + · · ·
, |q| < 1,

which is known as Ramanujan’s cubic continued fraction. H. H. Chan [33] has

established several modular equations relating G(q) with G(−q), G(q2) and G(q3).

Chan and Sen-Shan Huang [34] studied the Ramanujan-Göllnitz-Gordon

continued fraction

H(q) :=
q1/2

1 + q+

q2

1 + q3 +

q4

1 + q5 +

q6

1 + q7 + · · ·
, |q| < 1.

Recently C. Adiga and T. Kim [2] established an integral representation of

a q-continued fraction of Ramanujan and obtained its explicit evaluations, also

they derived its relation with H(q).

15



Motivated by these works in chapter 5 we derive several identities involving

the Ramanujan’s continued fraction M(q) given

M(q) :=
q1/2

1− q +

q(1− q)

1 + q2 +

q(1− q3)2

(1− q)(1 + q4) +

q(1− q5)2

(1− q)(1 + q6) + · · ·
, |q| < 1

= q1/2
(q4; q4)2∞
(q2; q4)2∞

. (1.5.2)
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Chapter 2

Congruences for 15-core and

23-core partition

2.1 Introduction

If at(n) denotes the number of partitions of n that are t-core, then the generating

function for at(n) is given by [47, Equation (2.1)], [77, Proposition (3.3)]

∞∑
n=0

at(n)q
n =

(qt; qt)t∞
(q; q)∞

. (2.1.1)

The study of t-cotes for t prime first arose in connection with Nakayama’s

conjecture [61, 92]. Using the theory of modular forms, Granville and One [78]

proved that

a3(n) = d1,3(3n+ 1)− d2,3(3n+ 1), (2.1.2)

where dr,3(n) is the number of divisors of n congruent to r (mod 3). Baruah

and Berndt [15] used a modular equation of Ramanujan to prove that

17



a3(4n+ 1) = a3(n), for all n ≥ 0. (2.1.3)

In [55, 56], Hirschhorn and Sellers used some elementary generating function

manipulations to find certain congruences and the following infinite families of

arithmetic relations involving 4-cores: for k ≥ 1,

3ka4(3n) = a4

(
32k+1n+

5× 32k − 5

8

)
, (2.1.4)

(2× 3k − 1)a4(3n+ 1) = a4

(
32k+1n+

13× 32k − 5

8

)
, (2.1.5)(

3k+1 − 1

2

)
a4(9n+ 2) = a4

(
32k+2n+

7× 32k+1 − 5

8

)
, (2.1.6)(

3k+1 − 1

2

)
a4(9n+ 8) = a4

(
32k+2n+

23× 32k+1 − 5

8

)
. (2.1.7)

In the next section, we obtain our main results.
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2.2 Main Theorems

In order to prove our main results, we collect a few lemmas.

By the binomial theorem, for any positive integer k,

f 2k

1 ≡ f 2k−1

2 (mod 2k). (2.2.1)

Lemma 2.2.1. (Cui and Gu [41, Theorem 2.2]) If p ≥ 5 is a prime and

±p− 1

6
:=


p− 1

6
, if p ≡ 1 (mod 6),

−p− 1

6
, if p ≡ −1 (mod 6),

then

(q; q)∞ =

p−1
2∑

k=− p−1
2

k ̸=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 (qp

2

; qp
2

)∞. (2.2.2)

Furthermore, if −(p−1)
2

≤ k ≤ (p−1)
2
, k ̸= (±p−1)

6
, then 3k2+k

2
̸≡ p2−1

24
(mod p).

Lemma 2.2.2. (Ahmed and Baruah [6, Eqn. (3.5)])

1

(q; q)∞(q15; q15)∞
=

1

(q2; q2)2∞(q30; q30)2∞

(
ψ(q6)ψ(q10) + qf(q90, q150)f(q2, q14)

+q15f(q30, q210)f(q6, q10)
)
. (2.2.3)
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Theorem 2.2.1. For any non-negative integer k, we have

∞∑
n=0

a23
(
8 · 232k+1n+ 232k+1 − 22

)
qn ≡ f1f2 + q2f1f4f46 (mod 2). (2.2.4)

Proof. From (2.1.1), we have

∞∑
n=0

a23(n)q
n ≡ f 3

184

f1f23
(mod 2). (2.2.5)

Now from [101, Lemma 2.1.], we have

1

f1f23
≡

∞∑
n=0

p11231(2n)q
2n + q + q3f2f46 (mod 2) (2.2.6)

where p11231(n) is defined by

∞∑
n=0

p11231(n)q
n =

1

f1f23
.

From (2.2.5) and (2.2.6), we obtain

∞∑
n=0

a23(n)q
n ≡ f 3

184

(
∞∑
n=0

p11231(2n)q
2n + q + q3f2f46

)
(mod 2). (2.2.7)

Extracting the terms involving q2n+1 from both sides of (2.2.7), dividing both

sides by q and then replacing q2 by q, we obtain

∞∑
n=0

a23(2n+ 1)qn ≡ f 3
92 + q

f2f
7
46

f1f23
(mod 2). (2.2.8)
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Now, substituting (2.2.6) in (2.2.8) and extracting the terms involving q2n from

both sides of the resulting congruence and then replacing q2 by q, we obtain

∞∑
n=0

a23(4n+ 1)qn ≡ f 3
46 + q

f2f184
f1f23

+ q2f2f184 (mod 2). (2.2.9)

Again substituting (2.2.6) in (2.2.9) and extracting the terms involving q2n

from both sides of the resulting congruence and then replacing q2 by q, we obtain

∞∑
n=0

a23(8n+ 1)qn ≡ f 3
23 + q2f2f

5
23 (mod 2). (2.2.10)

Taking p = 23 in (2.2.2), and q replacing by q2, we get

f2 =

 11∑
k=−11
k ̸=−4

(−1)kq3k
2+kf

(
−q46(35+3k),−q46(35−3k)

)
+ q44f1058

 (2.2.11)

Note that for −11 ≤ k ≤ 11 and k ̸= −4,

3k2 + k ̸≡ 44 (mod 23).

Employing (2.2.11) in (2.2.10) and extracting the terms involving q23n from both

sides of the resulting congruence and then replacing q23 by q, we obtain

∞∑
n=0

a23(184n+ 1)qn ≡ f1f2 + q2f1f4f46 (mod 2). (2.2.12)

Which is the k = 0 case of (2.2.4). Now suppose (2.2.4) holds for some k ≥ 0.

Again taking p = 23 in (2.2.2), we obtain
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f1 =

 11∑
k=−11
k ̸=−4

(−1)kq
3k2+k

2 f
(
−q23(35+3k),−q23(35−3k)

)
+ q22f529

 (2.2.13)

Note that for −11 ≤ k ≤ 11 and k ̸= −4,

3k2 + k

2
̸≡ 22 (mod 23).

If we replace q by q4 in (2.2.13), we get

f4 =

 11∑
k=−11
k ̸=−4

(−1)kq2·(3k
2+k)f

(
−q92(35+3k),−q92(35−3k)

)
+ q88f2116

 (2.2.14)

Note that for −11 ≤ k ≤ 11 and k ̸= −4,

2 · (3k2 + k) ̸≡ 88 (mod 23).

Employing (2.2.11), (2.2.13) and (2.2.14) in (2.2.12) and extracting the terms

involving q23n+20 from both sides of the resulting congruence, dividing both sides

by q20 and then replacing q23 by q, we obtain

∞∑
n=0

a23
(
8 · 232k+2n+ 7 · 232k+2 − 22

)
qn ≡ q2f 3

23 + q4f2f
5
23 (mod 2). (2.2.15)

Employing (2.2.11) in (2.2.15) and extracting the terms involving q23n+2 from

both sides of the resulting congruence, dividing both sides by q2 and then replacing

q23 by q, we obtain

22



∞∑
n=0

a23
(
8 · 232k+3n+ 232k+3 − 22

)
qn ≡ f1f2 + q2f1f4f46 (mod 2). (2.2.16)

This completes the proof by induction of (2.2.4).

Theorem 2.2.2. If ℓ ∈ {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}, then for all n ≥ 0,

a23 (8(23n+ ℓ) + 1) ≡ 0 (mod 2) (2.2.17)

and if m ∈ {1, 7, 9, 12, 13, 16, 17, 19, 21, 22}, then for all n ≥ 0,

a23
(
8 · 232k+2(23n+m) + 7 · 232k+2 − 22

)
≡ 0 (mod 2). (2.2.18)

Proof. Employing (2.2.11) in (2.2.10) and then equating the coefficients of q23n+ℓ

from both sides we obtain (2.2.17). And also employing (2.2.11) in (2.2.15) and

then equating the coefficients of q23n+m from both sides we obtain (2.2.18).

Theorem 2.2.3. For any non-negative integer k, we have

∞∑
n=0

a15

(
8 · 52k+1n+

70 · 52k − 28

3

)
qn ≡ f5f

3
3 (mod 2). (2.2.19)

Proof. Again from (2.1.1), we have

∞∑
n=0

a15(n)q
n ≡ f240

f1f15
(mod 2). (2.2.20)

Substituting (2.2.3) in (2.2.20) and extracting the terms involving q2n from
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both sides of the resulting congruence and then replacing q2 by q, we obtain

∞∑
n=0

a15(2n)q
n ≡ f120f12f20

f2f30f3f5
(mod 2). (2.2.21)

Now, from [18, Eq. (4.11)], we have

∞∑
n=0

p3151(2n+ 1)qn = q
f 2
2 f

2
30

f 2
3 f

2
5 f1f15

, (2.2.22)

where p3151(n) is defined by

∞∑
n=0

p3151(n)q
n =

1

f3f5
.

Extracting the terms involving q2n+1 from both sides of the congruence, dividing

both sides by q, replacing q2 by q and then employing (2.2.22), we obtain

∞∑
n=0

a15(4n+ 2)qn ≡ qf2f
3
30 (mod 2). (2.2.23)

From (2.2.23), we have

∞∑
n=0

a15(8n+ 6)qn ≡ f1f
3
15 (mod 2). (2.2.24)

Ramanujan [91] stated the following identity without proof:

f1 = f25
(
R−1 − q − q2R

)
, (2.2.25)
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where

R =
(q5, q20; q25)∞
(q10, q15; q25)∞

.

Substituting (2.2.25) in (2.2.24) and extracting the terms involving q5n+1 from

both sides of the resulting congruence, dividing both sides by q and then replacing

q5 by q, we obtain

∞∑
n=0

a15(40n+ 14)qn ≡ f5f
3
3 (mod 2). (2.2.26)

Which is the k = 0 case of (2.2.19). Now suppose (2.2.19) holds for some

k ≥ 0. Next, take power three on both side in (2.2.25) and replacing q by q3, we

obtain

f 3
3 = f 3

75

(
S−3 − 3q3S−2 + 5q9 − 3q15S2 − q18S3

)
(2.2.27)

where

S =
(q15, q60; q75)∞
(q30, q45; q75)∞

.

Substituting (2.2.27) in (2.2.26) and extracting the terms involving q5n+4 from both

sides of the resulting congruence, dividing both sides by q4 and then replacing q5

by q, we obtain

∞∑
n=0

a15

(
8 · 52k+2n+

110 · 52k+1 − 28

3

)
qn ≡ qf1f

3
15 (mod 2). (2.2.28)

Substituting (2.2.25) in (2.2.28) and extracting the terms involving q5n+2 from

both sides of the resulting congruence, dividing both sides by q2 and then replacing

q5 by q, we obtain
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∞∑
n=0

a15

(
8 · 52k+3n+

70 · 52k+2 − 28

3

)
qn ≡ f5f

3
3 (mod 2). (2.2.29)

This completes the proof by induction of (2.2.19).

Theorem 2.2.4. For all n ≥ 0,

a15(8n+ 2) ≡ 0 (mod 2) (2.2.30)

a15(8(5n+ s) + 6) ≡ 0 (mod 2), s ∈ {3, 4}(2.2.31)

a15

(
8 · 52k+1(5n+ s) +

70 · 52k − 28

3

)
≡ 0 (mod 2), s ∈ {1, 2}.(2.2.32)

Proof. The result (2.2.30) follows from (2.2.23). Employing (2.2.25) in (2.2.24)

and then equating the coefficients of q5n+s from both sides we obtain (2.2.31).

Employing (2.2.27) in (2.2.19), we obtain (2.2.32).
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Chapter 3

Congruences for ℓ-Regular

bipartition modulo ℓ

3.1 Introduction

We stated in the introductory chapter that the generating function of Bℓ(n)

satisfies

∞∑
n=0

Bℓ(n)q
n =

f 2
ℓ

f 2
1

. (3.1.1)

For example,

∞∑
n=0

B4(n)q
n =

f 2
4

f 2
1

. (3.1.2)

Recently Lin [68] studied the arithmetic properties of the function ped−2(n)

whose generating function is identical to that of B4(n), and in [69] and [70]

established infinite families of congruences modulo 3 for B7(n) and B13(n). For

example,
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B7

(
3αn+

5 · 3α−1

2

)
≡ 0 (mod 3) (3.1.3)

and

B13(3
αn+ 2 · 3α−1 − 1) ≡ 0 (mod 3). (3.1.4)

for all α ≥ 2 and n ≥ 0.

In next section we obtain our main result.
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3.2 Main Theorems

In this chapter we establish some congruences modulo ℓ for ℓ-regular bipartitions,

where ℓ ∈ {5, 7, 13}.

By the binomial theorem, it is easy to see that for any prime number ℓ,

fℓ ≡ f ℓ
1 (mod ℓ).

Lemma 3.2.1. (Hirschhorn and Sellers [60])

f5
f1

=
f8f

2
20

f 2
2 f40

+ q
f 3
4 f10f40
f 3
2 f8f20

. (3.2.1)

Theorem 3.2.1. For all α ≥ 1 and n ≥ 0, we have

B5

(
4αn+

4α − 1

3

)
≡ 2αB5(n) (mod 5) (3.2.2)

and

B5

(
4αn+

5× 4α − 2

6

)
≡ 0 (mod 5). (3.2.3)

Proof. If we square both sides of (3.2.1), extract the terms involving odd powers

of q, then divide by q and replace q by q
1
2 , we find that

∞∑
n=0

B5(2n+ 1)qn = 2
f 3
2 f5f10
f 5
1

. (3.2.4)

This yields
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∞∑
n=0

B5(2n+ 1)qn ≡ 2f 3
2 f10 (mod 5). (3.2.5)

It follows that, extract the terms involving even powers of q and replace q by

q
1
2 , we find that

∞∑
n=0

B5(4n+ 1)qn ≡ 2f 3
1 f5 ≡ 2

f 2
5

f 2
1

≡ 2
∞∑
n=0

B5(n)q
n (mod 5). (3.2.6)

If from (3.2.5), we extract the terms involving odd powers of q, then divide by

q and replace q by q
1
2 , we find that

∞∑
n=0

B5(4n+ 3)qn ≡ 0 (mod 5). (3.2.7)

and thus

B5(4n+ 1) ≡ 2B5(n) (mod 5) (3.2.8)

and

B5(4n+ 3) ≡ 0 (mod 5). (3.2.9)

for all n ≥ 0. Iteratively replacing n by 4n + 1 in (3.2.8) yields (3.2.2), while

replacing n by 4n+ 3 in (3.2.2) and utilizing (3.2.9) yields (3.2.3).
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Theorem 3.2.2. For all n ≥ 0,

B7(25n+ 12) ≡ 5B7(5n+ 2) + 4B7(n) (mod 7). (3.2.10)

Proof. Ramanujan [91] stated the following identity without proof:

f1
f25

= R−1 − q − q2R, (3.2.11)

where

R =
(q5, q20; q25)∞
(q10, q15; q25)∞

. (3.2.12)

Using quintuple product identity (see [37]), Watson [95] gave a proof for

(3.2.11). Later Hirschhorn [53] generalized (3.2.11) and established the identity

f 6
5

f 6
25

= R−5 − 11q5 − q10R5. (3.2.13)

From (3.1.1), we have

∞∑
n=0

B7(n)q
n =

f 2
7

f 2
1

≡ f 12
1 (mod 7). (3.2.14)

Substituting (3.2.11) into (3.2.14), we have
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∞∑
n=0

B7(n)q
n ≡ f 12

25 (R
−1 − q − q2R)12 (mod 7)

≡ f 12
25

R12
(1 + 2qR + 5q2R2 + 3q3R3 + 6q4R4 + 3q5R5 + q6R6 + 2q7R7

+ 4q9R9 + 3q10R10 + q11R11 + 4q12R12 + 6q13R13 + 3q14R14

+ 3q15R15 + 5q17R17 + q18R18 + 4q19R19 + 6q20R20 + 4q21R21

+ 5q22R22 + 5q23R23 + q24R24) (mod 7). (3.2.15)

If from (3.2.15), we extract those terms in which the power of q is congruent

to 2 modulo 5 and then divide by q2, we find that

∞∑
n=0

B7(5n+ 2)q5n ≡ f 12
25 (5R

−10 + 2q5R−5 + 4q10 + 5q15R5 + 5q20R10) (mod 7)

≡ f 12
25

(
5(R−5 − 11q5 − q10R5)2 + 4q10

)
(mod 7)

≡ f−
25

(
5

(
f 6
5

f 6
25

)2

+ 4q10

)
(mod 7)

≡ 5f 12
5 + 4q10f 12

25 (mod 7). (3.2.16)

On replacing q by q
1
5 , we find

∞∑
n=0

B7(5n+ 2)qn ≡ 5f 12
1 + 4q2f 12

5 (mod 7)

≡ 5
f 2
7

f 2
1

+ 4q2
f 2
35

f 2
5

(mod 7)

≡ 5
∞∑
n=0

B7(n)q
n + 4

∞∑
n=0

B7(n)q
5n+2 (mod 7). (3.2.17)

Theorem 3.2.2 follows from (3.2.17).
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Corollary 3.2.1. For α ≥ 0 and for all n ≥ 0,

B7

(
58αn+

58α − 1

2

)
≡ 3αB7(n) (mod 7), (3.2.18)

B7

(
58α+1n+

58α+1 − 1

2

)
≡ 3αB7(5n+ 2) (mod 7), (3.2.19)

B7

(
58α+2n+

58α+2 − 1

2

)
≡ 3α (5B7(5n+ 2) + 4B7(n)) (mod 7), (3.2.20)

B7

(
58α+3n+

58α+3 − 1

2

)
≡ 3α (B7(5n+ 2) + 6B7(n)) (mod 7), (3.2.21)

B7

(
58α+4n+

58α+4 − 1

2

)
≡ 3α (4B7(5n+ 2) + 4B7(n)) (mod 7), (3.2.22)

B7

(
58α+5n+

58α+5 − 1

2

)
≡ 3α (3B7(5n+ 2) + 2B7(n)) (mod 7), (3.2.23)

B7

(
58α+6n+

58α+6 − 1

2

)
≡ 3α (3B7(5n+ 2) + 5B7(n)) (mod 7), (3.2.24)

B7

(
58α+7n+

58α+7 − 1

2

)
≡ 3α (6B7(5n+ 2) + 5B7(n)) (mod 7). (3.2.25)

Theorem 3.2.3. For all n ≥ 0,

B7(9n+ 4) ≡ 2B7(3n+ 1) + 2B7(n) (mod 7). (3.2.26)

Proof. Entry 1(iv) on page 345 of [23] is Ramanujan’s cubic continued fraction

f 3
1 = f 3

9 (u
−1 − 3q + 4q3u2), (3.2.27)

where

u =
f3f

3
18

f6f 3
9

.
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Again from (3.1.1), we have

∞∑
n=0

B7(n)q
n =

f 2
7

f 2
1

≡ f 12
1 (mod 7) (3.2.28)

Substitution (3.2.27) into (3.2.28), we have

∞∑
n=0

B7(n)q
n ≡ f 12

9 (u−1 − 3q + 4q3u2)4 (mod 7)

≡ f 12
9

u4
(1 + 2qu+ 5q2u2 + 6q3u3 + 5q5u5 + 5q7u7

+ 3q8u8 + 4q9u9 + 2q10u10 + 4q12u12) (mod 7). (3.2.29)

If from (3.2.29), we extract those terms in which the power of q is congruent

to 1 modulo 3 and then divide by q and replace q by q
1
3 , we find that

∞∑
n=0

B7(3n+ 1)qn ≡ f 12
3 (2v−3 + 5q2v3 + 2q3v6) (mod 7)

≡ 2f 12
3

(
(v−1 + 4qv2)3 − 5q

)
(mod 7)

≡ 2f 12
3

(
f 12
1

f 12
3

+ 22q

)
(mod 7). (3.2.30)

Here we have used Entry 1 on the page 345 in [23], namely,

f 12
1

f 12
3

+ 27q = (v−1 + 4qv2)3, (3.2.31)
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where

v :=
f1f

3
6

f2f 3
3

.

Using (3.2.30), we find

∞∑
n=0

B7(3n+ 1)qn ≡ 2f 12
1 + 2qf 12

3 (mod 7)

≡ 2
f 2
7

f 2
1

+ 2q
f 2
21

f 2
3

(mod 7)

≡ 2
∞∑
n=0

B7(n)q
n + 2

∞∑
n=0

B7(n)q
3n+1 (mod 7). (3.2.32)

Theorem 3.2.3 follows from (3.2.32).

Theorem 3.2.4. For all n ≥ 0,

B13(25n+ 24) ≡ 7B13(5n+ 4) + 5B13(n) (mod 13). (3.2.33)

Proof. Again from (3.1.1), we have

∞∑
n=0

B13(n)q
n =

f 2
13

f 2
1

≡ f 24
1 ≡ f 24

25 (R
−1 − q − q2R)24 (mod 13)

≡ f 24
25

R24
(1 + 2qR + 5q2R2 + 10q3R3 + 7q4R4 + 12q5R5 + 6q6R6

+ q8R8 + 4q9R9 + 3q10R10 + 8q11R11 + 10q12R12 + 3q13R13

+ 10q14R14 + 8q15R15 + 10q16R16 + 5q17R17 + 7q18R18

+ 4q19R19 + 8q20R20 + q21R21 + 8q22R22 + 10q23R23
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+ 5q24R24 + 3q25R25 + 8q26R26 + 12q27R27 + 8q28R28

+ 9q29R29 + 7q30R30 + 8q31R31 + 10q32R32 + 5q33R33

+ 10q34R34 + 10q35R35 + 10q36R36 + 5q37R37 + 3q38R38

+ 9q39R39 + q40R40 + 6q42R42 + q43R43 + 7q44R44

+ 3q45R45 + 5q46R46 + 11q47R47 + q48R48) (mod 13).

(3.2.34)

If from (3.2.34), we extract those terms in which the power of q is congruent

to 4 modulo 5 and then divide by q4, we find that

∞∑
n=0

B13(5n+ 4)q5n ≡ f 24
25 (7R

−20 + 4q5R−15 + 10q10R−10 + 4q15R−5 + 5q20

+ 9q25R5 + 10q30R10 + 9q35R15 + 7q40R20) (mod 13)

≡ f 24
25

(
7(R−5 − 11q5 − q10R5)4 + 5q20

)
(mod 13)

≡ f 24
25

(
7

(
f 6
5

f 6
25

)4

+ 5q20

)
(mod 13)

≡ 7f 24
5 + 5q20f 24

25 (mod 13). (3.2.35)

On replacing q by q
1
5 , we find

∞∑
n=0

B13(5n+ 4)qn ≡ 7f 24
1 + 5q4f 24

5 (mod 13)

≡ 7
f 2
13

f 2
1

+ 5q4
f 2
65

f 2
5

(mod 13)

≡ 7
∞∑
n=0

B13(n)q
n + 5

∞∑
n=0

B13(n)q
5n+4 (mod 13). (3.2.36)

Theorem 3.2.4 follows from (3.2.36).

36



Theorem 3.2.5. For all n ≥ 0,

B13(9n+ 8) ≡ 5B13(3n+ 2) + 4B13(n) (mod 13). (3.2.37)

Proof. Again from (3.1.1), we have

∞∑
n=0

B13(n)q
n =

f 2
13

f 2
1

≡ f 24
1 ≡ f 24

9 (u−1 − 3q + 4q3u2)8 (mod 13)

≡ f 24
9

u8
(1 + 2qu+ 5q2u2 + 2q3u3 + 6q4u4 + 6q5u5 + 6q6u6 + 4q7u7

+ 10q8u8 + 9q9u9 + 5q11u11 + 11q13u13 + 9q14u14 + 3q15u15

+ 9q16u16 + q17u17 + q18u18 + q19u19 + 5q20u20 + 6q21u21

+ 8q22u22 + 3q24u24) (mod 13). (3.2.38)

If from (3.2.38), we extract those terms in which the power of q is congruent

to 2 modulo 3 and then divide by q2 and replace q by q
1
3 , we find that

∞∑
n=0

B13(3n+ 2)qn ≡ f 24
3 (5v−6 + 6qv−3 + 10q2 + 5q3v3

+ 9q4v6 + q5v9 + 5q6v12) (mod 13)

≡ f 24
3 (5(v−1 + 4qv2)6 − 10q(v−1 + 4qv2)3 + 9q2) (mod 13).

(3.2.39)

Using (3.2.31), we find
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∞∑
n=0

B13(3n+ 2)qn ≡ f 24
3

(
5
f 24
1

f 24
3

+ 4q2
)

(mod 13)

≡ 5f 24
1 + 4q2f 24

3 (mod 13)

≡ 5
f 2
13

f 2
1

+ 4q2
f 2
39

f 2
3

(mod 13)

≡ 5
∞∑
n=0

B13(n)q
n + 4

∞∑
n=0

B13(n)q
3n+2 (mod 13). (3.2.40)

Theorem 3.2.5 follows from (3.2.40).

Remark 1. Families of congruences analogous to those in Corollary 3.2.1 can be

derived from (3.2.26), (3.2.33) and (3.2.37).
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Chapter 4

Congruences for Andrews’

singular overpartitions

4.1 Introduction

We stated in the introductory chapter that Andrews [8] introduced singular

overpartition denoted by Cδ,i(n), which count the number of overpartitions of n

in which no part is divisible by δ and only parts ≡ ±i (mod δ) may be overlined.

The generating function for Cδ,i(n), is given by, δ ≥ 3 and 1 ≤ i ≤
⌊
δ
2

⌋
,

∞∑
n=0

Cδ,i(n)q
n =

(qδ; qδ)∞(−qi; qδ)∞(−qδ−i; qδ)∞
(q; q)∞

. (4.1.1)

.

In his paper [8], G. E. Andrews also proved that for n ≥ 0,

C3,1(9n+ 3) ≡ C3,1(9n+ 6) ≡ 0 (mod 3).

Chan et al. [36] generalized and found infinite families of congruences modulo

3 for C3,1(n), C6,1(n), C6,2(n) and modulo 2 for C4,1(n). For example, they proved

that for n, k ≥ 0,

C3,1(2
k(6n+ 5)) ≡ 0 (mod 8).
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Recently, Ahmed and Baruah [5] using simple p-dissections of Ramanujan’s theta

functions have proved several congruences for C3,1(n), C8,2(n), C12,2(n), C12,4(n),

C24,8(n) and C48,16(n). Subsequently, Naika and Gireesh [75] prove congruence

modulo 6, 12, 16, 18 and 24 for C3,1 and infinite families of congruence modulo

12, 18, 48, and 72 for C3,1(n). In the next section, we obtain our new congruences

for C3,1(n), C12,3(n), C44,11(n), C60,15(n), C75,25(n) and C92,23(n).
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4.2 Main Theorems

In order to prove our main results, we collect a few lemmas.

Lemma 4.2.1. (Hirschhorn and Sellers [57]) The following 3-dissection holds

f2
f 2
1

=
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

. (4.2.1)

Lemma 4.2.2. ( Baruah and Ojah [18, Theorem 4.3]) The following 2-dissection

holds

1

f1f3
=

f 2
8 f

5
12

f 2
2 f4f

4
6 f

2
24

+ q
f 5
4 f

2
24

f 4
2 f

2
6 f

2
8 f12

. (4.2.2)

Multiplying both sides of (4.2.2) by f 2
1 and replacing q by q11, we find

f11
f33

≡ f 5
22

f132
+ q11

f132
f22

(mod 2). (4.2.3)

Lemma 4.2.3. (Hirschhorn, Garvan and Borwein [54]) The following 2-dissection

holds

f 3
3

f1
=
f 3
4 f

2
6

f 2
2 f12

+ q
f 3
12

f4
. (4.2.4)

Lemma 4.2.4. (Ahmed and Baruah [4, Lemma 2.3]) If p ≥ 3 is prime, then

(q; q)3∞ =

p−1∑
k=0

k ̸= p−1
2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞. (4.2.5)
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Furthermore, if k ̸= p−1
2
, 0 ≤ k ≤ p− 1, then k2+k

2
̸≡ p2−1

8
(mod p).

Lemma 4.2.5. (Hirschhorn [53]) We have,

1

f1
=
f 5
25

f 6
5

(
1

R4(q5)
+

q

R3(q5)
+

2q2

R2(q5)
+

3q3

R(q5)
+ 5q4 − 3q5R(q5)

+ 2q6R2(q5)− q7R3(q5) + q8R4(q5)

)
, (4.2.6)

where R(q) is the Rogers-Ramanujan continued fraction defined, for | q |< 1,

by

R(q) :=
q1/5

1 +

q

1+

q2

1 + · · ·
.

Lemma 4.2.6. (Baruah and Ahmed [14, Eqn. (2.4)])

1

(q; q)∞(q11; q11)∞
≡ 1

(q2; q2)2∞(q22; q22)2∞

(
ψ(q12) + q6

ψ(−q66)χ(q22)
χ(−q4)

+q
ψ(−q6)χ(q2)
χ(−q44)

+ q15ψ(q132)

)
(mod 2). (4.2.7)

Lemma 4.2.7. (Berndt [23, Entry 31, p. 48])

Let Un = an(n+1)/2bn(n−1)/2 and Vn = an(n−1)/2bn(n+1)/2 for an integer n. Then

f(U1, V1) =
n−1∑
r=0

Urf

(
Un+r

Ur

,
Vn−r

Ur

)
. (4.2.8)

Theorem 4.2.1. For all n ≥ 0,

C3,1(12n+ 11) ≡ 0 (mod 144). (4.2.9)

Proof. From [75, Eq. 3.19], we have

42



∞∑
n=0

C3,1(4n+ 3)qn = 6
f 3
2 f

3
6

f 6
1

. (4.2.10)

Substituting (4.2.1) in (4.2.10), we have

∞∑
n=0

C3,1(4n+ 3)qn = 6f 3
6

(
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

)3

= 6
f 15
6 f

18
9

f 24
3 f

9
18

+ 36q
f 14
6 f

15
9

f 23
3 f

6
18

+ 144q2
f 13
6 f

12
9

f 22
3 f

3
18

+ 336q3
f 12
6 f

9
9

f 21
3

+ 576q4
f 11
6 f

6
9 f

3
18

f 20
3

+ 576q5
f 10
6 f

3
9 f

6
18

f 19
3

+ 384q6
f 9
6 f

9
18

f 18
3

. (4.2.11)

It follows that

∞∑
n=0

C3,1(12n+ 11)qn = 144
f 13
2 f

12
3

f 22
1 f

3
6

+ 576q
f 10f 3

3 f
6
6

f 19
1

. (4.2.12)

Theorem 4.2.1 follows from (4.2.12).

Theorem 4.2.2. If p is prime with p ≡ 5 (mod 6) and α ≥ 0, then

∞∑
n=0

C3,1

(
24p2αn+ 7p2α

)
qn ≡ 36pα(−1)α·

p−2
3 (q; q)3∞(q4; q4)∞ (mod 128).

(4.2.13)

Proof. It follows from (4.2.11) that

∞∑
n=0

C3,1(12n+ 7)qn = 36
f 14
2 f

15
3

f 23
1 f

6
6

+ 576q
f 11
2 f

6
3 f

3
6

f 20
1

. (4.2.14)
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Using (2.2.1) in (4.2.14), we have

∞∑
n=0

C3,1(12n+ 7)qn ≡ 36
f 3
2 f12
f1f3

+ 64qf2f
3
12 (mod 128). (4.2.15)

Substituting (4.2.4) into (4.2.15), we have

∞∑
n=0

C3,1(12n+ 7)qn ≡ 36f 3
2 f12

(
f8
f12

+ q
f24
f4

)
+ 64qf2f

3
12 (mod 128),

≡ 36f 3
2 f8 + 100qf2f

3
12 (mod 128). (4.2.16)

From (4.2.16), we have

∞∑
n=0

C3,1(24n+ 7)qn ≡ 36f 3
1 f4 (mod 128), (4.2.17)

which is the α = 0 case of (4.2.13). Now suppose that (4.2.13) holds for some

α ≥ 0. Substituting (2.2.2) and (4.2.5) in (4.2.13), we have

∞∑
n=0

C3,1

(
24p2αn+ 7p2α

)
qn

≡ 36pα(−1)α(
±p−1

6
+ p−1

2
)

 p−1∑
k=0

k ̸= p−1
2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞


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×


p−1
2∑

k=− p−1
2

k ̸=±p−1
6

(−1)kq4
3k2+k

2 f

(
−q4

3p2+(6k+1)p
2 ,−q4

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q4
p2−1
24 (q4p

2

; q4p
2

)∞

 (mod 128). (4.2.18)

For a prime p ≥ 5, 0 ≤ k ≤ p− 1 and
−(p− 1)

2
≤ m ≤ (p− 1)

2
, now consider

the congruence

k2 + k

2
+ 4 · 3m

2 +m

2
≡ 7p2 − 7

24
(mod p), (4.2.19)

which is equivalent to

3(2k + 1)2 + (12m+ 2)2 ≡ 0 (mod p).

Since

(
−3

p

)
= −1 as p ≡ 5 (mod 6) the solution (4.2.19) is k =

p− 1

2
and

m =
p− 1

6
. Therefore, extracting the terms involving qpn+

7p2−7
24 from both sides

of (4.2.18) and then replacing qp by q, we find that

∞∑
n=0

C3,1

(
24p2α+1n+ 7p2α+2

)
qn ≡ 36pα+1(−1)(α+1)· p−2

3 (qp; qp)3∞(q4p; q4p)∞ (mod 128).

(4.2.20)

Extracting the terms containing qpn from both sides of identity (4.2.20) and

then replacing qp by q, we find that
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∞∑
n=0

C3,1

(
24p2α+2n+ 7p2α+2

)
qn ≡ 36pα+1(−1)(α+1)· p−2

3 (q; q)3∞(q4; q4)∞ (mod 128)

(4.2.21)

This completes the proof by induction of (4.2.13).

Theorem 4.2.3. If p is prime p ≥ 5, such that

(
−3

p

)
= −1, than for any

nonnegative integer α and n,

C3,1

(
24p2α+1(pn+ j) + 7p2α+2

)
≡ 0 (mod 128).

Proof. Employing (2.2.2) and (4.2.5) and then comparing the coefficients of qpn+j,

1 ≤ j ≤ p− 1, on both side of (4.2.20), we deduce Theorem 4.2.3.

Theorem 4.2.4. If p is prime with p ≡ 5 or 7 (mod 8) and α ≥ 0, then

∞∑
n=0

C3,1

(
24p2αn+ 19p2α

)
qn ≡ 100pα(−1)α·

p−2
3 (q6; q6)3∞(q; q)∞ (mod 128).

(4.2.22)

Proof. From (4.2.11), we have

∞∑
n=0

C3,1(24n+ 19)qn ≡ 100f 3
6 f1 (mod 128) (4.2.23)

which is the α = 0 case of (4.2.22). Now suppose that (4.2.22) holds for some

α ≥ 0. Substituting (2.2.2) and (4.2.5) in (4.2.22), we have

∞∑
n=0

C3,1

(
24p2αn+ 19p2α

)
qn
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≡ 100pα(−1)α(
±p−1

6
+ p−1

2
)

 p−1∑
k=0

k ̸= p−1
2

(−1)kq6
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)q6pn·
pn+2k+1

2

+ p(−1)
p−1
2 q6

p2−1
8 (q6p

2

; q6p
2

)3∞



×


p−1
2∑

k=− p−1
2

k ̸=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 (qp

2

; qp
2

)∞

 (mod 128). (4.2.24)

For a prime p ≥ 5, 0 ≤ k ≤ p− 1 and
−(p− 1)

2
≤ m ≤ (p− 1)

2
, now consider

the congruence

6 · k
2 + k

2
+

3m2 +m

2
≡ 19p2 − 19

24
(mod p), (4.2.25)

which is equivalent to

2(6k + 3)2 + (6m+ 1)2 ≡ 0 (mod p).

Since

(
−2

p

)
= −1 as p ≡ 5 or 7 (mod 8) the solution to (4.2.25) is k =

p− 1

2

and m =
p− 1

6
. Therefore, extracting the terms involving qpn+

19p2−19
24 from both

sides of (4.2.24) and then replacing qp by q, we find that
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∞∑
n=0

C3,1

(
24p2α+1n+ 19p2α+2

)
qn ≡ 100pα+1(−1)(α+1)· p−2

3 (q6p; q6p)3∞(qp; qp)∞ (mod 128).

(4.2.26)

Extracting the terms containing qpn from both sides of the above and then

replacing qp by q, we find that

∞∑
n=0

C3,1

(
24p2α+2n+ 19p2α+2

)
qn ≡ 100pα+1(−1)(α+1)· p−2

3 (q6; q6)3∞(q; q)∞ (mod 128),

(4.2.27)

This completes the proof by induction of (4.2.22).

Theorem 4.2.5. If p is prime p ≥ 5, such that

(
−2

p

)
= −1, than for any

nonnegative integer α and n,

C3,1(24p
2α+1

(
pn+ j) + 19p2α+2

)
≡ 0 (mod 128).

Proof. Employing (2.2.2) and (4.2.5) and then comparing the coefficients of qpn+j,

1 ≤ j ≤ p− 1, from both side of (4.2.26), we deduce Theorem 4.2.5.

Theorem 4.2.6. For k ≥ 0, we have

C12,3

(
4kn+

4k − 1

3

)
≡ C12,3(n) (mod 2), (4.2.28)

C12,3

(
4k+1n+

10 · 4k − 1

3

)
≡ 0 (mod 2), (4.2.29)

C12,3

(
4k+1n+

4k(6m+ 1)− 1

3

)
≡ 0 (mod 2), 1 ≤ m ≤ 7. (4.2.30)
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Proof. From (4.1.1), we have

∞∑
n=0

C12,3(n)q
n ≡ f 3

3

f1
(mod 2). (4.2.31)

Using (4.2.4) in (4.2.31), we found

∞∑
n=0

C12,3(2n+ 1)qn ≡ f 3
6

f2
(mod 2). (4.2.32)

It follows that

C12,3(4n+ 1) ≡ C12,3(n) (mod 2) (4.2.33)

and

C12,3(4n+ 3) ≡ 0 (mod 2). (4.2.34)

The results (4.2.28) and (4.2.29) follow by induction, using (4.2.33) and (4.2.34)

respectively. Again from (4.2.31), we have

C12,3(2n) ≡ f8 (mod 2). (4.2.35)

It follow that

C12,3(16n) ≡ f1 (mod 2) (4.2.36)

and

49



C12,3(16n+ 2m) ≡ 0 (mod 2), (4.2.37)

V for 1 ≤ m ≤ 7, using (4.2.28) in (4.2.37), we have the result (4.2.30).

Theorem 4.2.7. For all n ≥ 0,

C44,11(16n+ 2) ≡ 0 (mod 2), (4.2.38)

C44,11(16n+ 14) ≡ 0 (mod 2), (4.2.39)

C44,11(16n+ 10) ≡ 0 (mod 2), (4.2.40)

C44,11(176n+ 16m+ 6) ≡ 0 (mod 2), 1 ≤ m ≤ 10. (4.2.41)

Proof. Again from (4.1.1), we have

∞∑
n=0

C44,11(n)q
n ≡ f 2

22

f1f11
(mod 2). (4.2.42)

Substituting (4.2.7) in (4.2.42) and extracting the terms involving q2n from

both sides of the congruence and then replacing q2 by q, we have

∞∑
n=0

C44,11(2n)q
n ≡ 1

f2

(
ψ(q6) + q3

f 2
66f4f11
f22f2f33

)
(mod 2). (4.2.43)

Using (4.2.3) in (4.2.43) and extracting the terms involving q2n+1 from both
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sides of the congruence, dividing both sides by q and then replacing q2 by q, we

have

∞∑
n=0

C44,11(4n+ 2)qn ≡ q
f 2
33f

5
11

f11f66
,≡ qf44 (mod 2). (4.2.44)

Extracting the terms involving q4n+1 from both sides of the congruence,

dividing both sides by q and then replacing q4 by q, we have

∞∑
n=0

C44,11(16n+ 6)qn ≡ f11 (mod 2) (4.2.45)

The results (4.2.38)-(4.2.40), follow from (4.2.44). The result (4.2.41) follows

from (4.2.45).

Theorem 4.2.8. For any non-negative integer k, we have

∞∑
n=0

C60,15

(
20 · 52kn+

19 · 52k+1 − 11

6

)
qn ≡ f 3

3 f10 (mod 2). (4.2.46)

Proof. From (4.1.1), we have

∞∑
n=0

C60,15(n)q
n ≡ f 2

30

f1f15
(mod 2). (4.2.47)

Substituting (2.2.3) in (4.2.47) and extracting the terms involving q2n from

both sides of the resulting congruence and then replacing q2 by q, we obtain

∞∑
n=0

C60,15(2n)q
n ≡ f 2

6 f
2
10

f2f3f5
(mod 2). (4.2.48)
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Extracting the terms involving q2n+1 from both sides of the congruence,

dividing both sides by q, replacing q2 by q and then employing (2.2.22), we obtain

∞∑
n=0

C60,15(4n+ 2)qn ≡ qf2f
3
15 (mod 2). (4.2.49)

Now replacing q by q2 in (2.2.25), we get

f2 = f50
(
M−1 − q2 − q4M

)
, (4.2.50)

where

M =
(q10, q40; q50)∞
(q20, q30; q50)∞

.

Substituting (4.2.50) in (4.2.49) and extracting the terms involving q5n+3 from both

sides of the resulting congruence, dividing both sides by q3 and then replacing q5

by q, we obtain

∞∑
n=0

C60,15(20n+ 14)qn ≡ f 3
3 f10 (mod 2). (4.2.51)

Which is the k = 0 case of (4.2.46). Now suppose (4.2.46) holds for some

k ≥ 0. Substituting (2.2.27) in (4.2.51) and extracting the terms involving q5n+4

from both sides of the resulting congruence, dividing both sides by q4 and then

replacing q5 by q, we obtain

∞∑
n=0

C60,15

(
20 · 52k+1n+

23 · 52k+2 − 11

6

)
qn ≡ qf2f

3
15 (mod 2). (4.2.52)

Substituting (4.2.50) in (4.2.52) and extracting the terms involving q5n+3 from
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both sides of the resulting congruence, dividing both sides by q3 and then replacing

q5 by q, we obtain

∞∑
n=0

C60,15

(
20 · 52k+2n+

19 · 52k+3 − 11

6

)
qn ≡ f 3

3 f10 (mod 2). (4.2.53)

This completes the proof by induction of (4.2.46).

Theorem 4.2.9. For all n ≥ 0,

C60,15

(
20 · 52k(5n+ s) +

19 · 52k+1 − 11

6

)
qn ≡ 0 (mod 2), s ∈ {1, 2}.

(4.2.54)

Proof. Employing (2.2.27) in (4.2.46), we obtain (4.2.54).

Theorem 4.2.10. For all n ≥ 0,

C75,25(10n+ 9) ≡ 0 (mod 2), (4.2.55)

C75,25(80n+ 20m+ 14) ≡ 0 (mod 2), 1 ≤ m ≤ 3. (4.2.56)

Proof. Again from (4.1.1), we have

∞∑
n=0

C75,25(n)q
n ≡ f25

f1
(mod 2). (4.2.57)

Substituting (4.2.6) in (4.2.57), extracting the terms involving q5n+4 from both
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sides of the congruence, dividing both sides by q4 and then replacing q5 by q, we

have

∞∑
n=0

C75,25(5n+ 4)qn ≡ f 6
5

f 6
1

≡ f 3
10

f 3
2

(mod 2). (4.2.58)

The result (4.2.55) follow from (4.2.58). Also from (4.2.58), we have

∞∑
n=0

C75,25(10n+ 4)qn ≡ f 3
5

f 3
1

≡ f10f5
f2f1

(mod 2). (4.2.59)

Substituting (3.2.1) in (4.2.59), extracting the terms involving q2n+1 from both

sides of the congruence, dividing both sides by q and then replacing q2 by q, we

have

∞∑
n=0

C75,25(20n+ 14)qn ≡ f4f40
f8

(mod 2). (4.2.60)

The result (4.2.56) follows from (4.2.60).

Theorem 4.2.11. For any non-negative integer k, we have

∞∑
n=0

C92,23

(
4 · 232kn+

232k+1 − 17

6

)
qn ≡ f23 + qf1f46 + q2f2f

3
23 (mod 2).

(4.2.61)

Proof. From (4.1.1), we have

∞∑
n=0

C92,23(n)q
n ≡ f 2

46

f1f23
(mod 2). (4.2.62)

From (2.2.6) and (4.2.62), we have
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∞∑
n=0

C92,23(n)q
n ≡ f 2

46

(
∞∑
n=0

p11231(2n)q
2n + q + q3f2f46

)
(mod 2). (4.2.63)

Extracting the terms involving q2n+1 from both sides of (4.2.63), dividing both

sides by q and then replacing q2 by q, we obtain

∞∑
n=0

C92,23(2n+ 1)qn ≡ f46 + q
f2f

2
46

f1f23
(mod 2). (4.2.64)

Now substituting (2.2.6) in (4.2.64) and extracting extracting the terms

involving q2n from both sides of the resulting congruence and then replacing q2 by

q, we obtain

∞∑
n=0

C92,23 (4n+ 1) qn ≡ f23 + qf1f46 + q2f2f
3
23 (mod 2). (4.2.65)

Which is the k = 0 case of (4.2.61). Now suppose (4.2.61) holds for some k ≥ 0.

Employing (2.2.13) and (2.2.11) in (4.2.65) and extracting the terms involving q23n

from both sides of the resulting congruence and then replacing q23 by q, we obtain

∞∑
n=0

C92,23

(
4 · 232k+1n+

232k+1 − 17

6

)
qn ≡ f1 + qf2f23 + q2f1f2f46 (mod 2).

(4.2.66)

Employing (2.2.13) and (2.2.11) in (4.2.66) and extracting the terms involving

q23n from both sides of the resulting congruence, dividing both sides by q22 and

then replacing q23 by q, we obtain
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∞∑
n=0

C92,23

(
4 · 232k+2n+

232k+3 − 17

6

)
qn ≡ f23 + qf1f46 + q2f2f

3
23 (mod 2).

(4.2.67)

This completes the proof by induction of (4.2.61).

Theorem 4.2.12. If ℓ ∈ {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22} then for all n ≥ 0,

C92,23

(
4 · 232k(23n+ ℓ) +

232k+1 − 17

6

)
≡ 0 (mod 2). (4.2.68)

Proof. Employing (2.2.13), (2.2.11) in (4.2.61) and then equating the coefficients

of q23n+ℓ from both sides we obtain Theorem 4.2.12.

Theorem 4.2.13. For any non-negative integer k, we have

∞∑
n=0

C92,23

(
2 · 232kn+

7 · 232k+1 − 73

88

)
qn ≡ f 2

23 + qf1f
3
23 (mod 2). (4.2.69)

Proof. Again from (4.1.1), we have

∞∑
n=0

C92,23(n)q
n ≡ f 2

46

f1f23
(mod 2). (4.2.70)

Now, from [18, Eq. (1.9)], we have

∞∑
n=0

p[11231](2n+ 1)qn =
f2f46
f 2
1 f

2
23

+ q
f 2
2 f

2
46

f 3
1 f

3
23

, (4.2.71)

where p[11231](n) is defined by
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∞∑
n=0

p[11231](n)q
n :=

1

f1f23
. (4.2.72)

Extracting the terms involving q2n+1 from both sides of (4.2.70), replacing q2

by q and then employing (4.2.71), we have

∞∑
n=0

C92,23(2n+ 1)qn ≡ f 2
23 + qf1f

3
23 (mod 2), (4.2.73)

which is the k = 0 case of (4.2.69). Now suppose (4.2.69) holds for some k ≥ 0.

Setting U1 = a = −q, V1 = b = −q2 and n = 23 in (4.2.8) and using the identity

f(a, b) = af(a−1, a2b), we find the following 23-dissection of f(−q,−q2) = f1.

f1 = f(−q782,−q805)− qf(−q851,−q736)− q2f(−q713,−q874)− q5f(−q920,−q667)

+ q7f(−q644,−q943)− q12f(−q989.− q598)− q15f(−q575,−q1012)

+ q22f(−q1058,−q529) + q26f(−q506,−q1081)− q35f(−q1127,−q460)

− q40f(−q437,−q1150) + q51f(−q1196,−q391) + q57f(−q368,−q1219)

− q70f(−q1265,−q322)− q77f(−q299,−q1288) + q92f(−q1334,−q253)

+ q100f(−q230,−q1357)− q117f(−q1403,−q184)− q126f(−q161,−q1426)

+ q145f(−q1472,−q115) + q155f(−q92,−q1495)− q176f(−q1541,−q46)

− q187f(−q23,−q1564). (4.2.74)

Employing (4.2.74) in (4.2.69) extracting the terms involving q23n from both

sides of the resulting congruence, replacing q23 by q, we have
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∞∑
n=0

C92,23

(
2 · 232kn+

7 · 232k+1 − 73

88

)
qn ≡ f 2

1 + qf 3
1 f23

≡ f2 + qf1f2f23 (mod 2) (4.2.75)

Next, squaring (4.2.74), we have

f2 ≡ f 2(−q782,−q805) + q2f 2(−q851,−q736) + q4f 2(−q713,−q874) + q10f 2(−q920,−q667)

+ q14f 2(−q644,−q943) + q24f 2(−q989.− q598) + q30f 2(−q575,−q1012)

+ q44f 2(−q1058,−q529) + q52f 2(−q506,−q1081) + q70f 2(−q1127,−q460)

+ q80f 2(−q437,−q1150) + q102f 2(−q1196,−q391) + q114f 2(−q368,−q1219)

+ q140f 2(−q1265,−q322) + q154f 2(−q299,−q1288) + q184f 2(−q1334,−q253)

+ q200f 2(−q230,−q1357) + q234f 2(−q1403,−q184) + q252f 2(−q161,−q1426)

+ q290f 2(−q1472,−q115) + q310f 2(−q92,−q1495) + q352f 2(−q1541,−q46)

+ q374f 2(−q23,−q1564) (mod 2). (4.2.76)

Employing (4.2.74) and (4.2.76) in (4.2.75), extracting the terms involving

q23n+21 from both sides of the congruence, dividing both sides by q21 and then

replacing q23 by q, we have

∞∑
n=0

C92,23

(
2 · 232k+1n+

7 · 232k+2 − 73

88

)
qn ≡ f 2

23 + qf1f
3
23, (4.2.77)

This completes the proof by induction of (4.2.69).
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Theorem 4.2.14. If m ∈ {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}, then for all n ≥ 0,

C92,23

(
2 · 232k(23n+m) +

7 · 232k+1 − 73

88

)
≡ 0 (mod 2). (4.2.78)

Proof. Employing (4.2.74) in (4.2.69) and then equating the coefficients of q23n+m

from both sides we deduce Theorem 4.2.14.

In the next theorem we have some interesting congruences for C12,3(n),

C44,11(n) and b2(n) modulo 2. From (4.2.45), we have

∞∑
n=0

C44,11(176n+ 6)qn ≡ f1 (mod 2) (4.2.79)

Theorem 4.2.15. For any prime p ≥ 5, α ≥ 1, and n ≥ 0,

C12,3

(
16p2αn+

2(24i+ p)p2α−1 − 2

3

)
≡ 0 (mod 2), (4.2.80)

For i = 1, 2, · · · , p− 1. For any prime p ≥ 5, α ≥ 0, and n ≥ 0,

C12,3

(
16p2α+1n+

2(24i+ 1)p2α − 2

3

)
≡ 0 (mod 2), (4.2.81)

where j is an integer with 0 ≤ j ≤ p− 1 such that

(
24j + 1

p
= −1

)
.

Proof. We note for 2-regular partitions modulo 2

∞∑
n=0

b2(n)q
n ≡ f1 (mod 2).

In [41] Cui and Gu have proved several interesting results, for example, for any
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prime p ≥ 5, α ≥ 1, and n ≥ 0,

b2

(
p2αn+

(24i+ p)p2α−1 − 1

24

)
≡ 0 (mod 2). (4.2.82)

And for any prime p ≥ 5, α ≥ 0, and n ≥ 0,

b2

(
p2α+1n+

(24j + 1)p2α − 1

24

)
≡ 0 (mod 2), (4.2.83)

where j is an integer with 0 ≤ j ≤ p−1 such that

(
24j + 1

p
= −1

)
. Theorem

4.2.15 follows from (4.2.36) and the results (4.2.80) and (4.2.81).

Remark: Similar results can be obtained for (4.2.79).
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Chapter 5

An Interesting q-Continued

Fractions of Ramanujan

5.1 Introduction

The celebrated Rogers-Ramanujan continued fraction is define by

R(q) :=
q1/5

1 +

q

1+

q2

1 +

q3

1 + · · ·
, |q| < 1. (5.1.1)

In his first two letters to Hardy [91], Ramanujan communicated several

theorems about R(q) and S(q) := −R(−q). In these two letters, Ramanujan

claimed that

R(e−2π) =

√
5 +

√
5

2
−

√
5 + 1

2
,

and

S(e−π) =

√
5−

√
5

2
−

√
5− 1

2
.

On page 365 of his ‘lost’ notebook, Ramanujan wrote five modular equations

relating R(q) with R(−q), R(q2), R(q3), R(q4) and R(q5). Motivated by these

works, in this chapter, we study the Ramanujan continued fraction
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M(q) :=
q1/2

1− q +

q(1− q)

1 + q2 +

q(1− q3)2

(1− q)(1 + q4) +

q(1− q5)2

(1− q)(1 + q6) + · · ·
, |q| < 1

= q1/2
(q4; q4)2∞
(q2; q4)2∞

. (5.1.2)

In Chapter 16 Entry 12 of [23], Ramanujan has recorded the following

continued fraction

(a2q3; q4)∞(b2q3; q4)∞
(a2q; q4)∞(b2q; q4)∞

=
1

1− ab +

(a− bq)(b− aq)

(1− ab)(1 + q2) +

(a− bq3)(b− aq3)

(1− ab)(1 + q4) + · · ·
, |ab| < 1, |q| < 1.(5.1.3)

In fact setting a = q1/2 and b = q1/2 in (5.1.3), we obtain (5.1.2).

In Section 5.2 we obtain an interesting q-identity related to M(q) using

Ramanujan’s 1ψ1 summation formula [23, Ch. 16, Entry 17]

∞∑
n=−∞

(a)n
(b)n

zn =
(az)∞(q/az)∞(q)∞(b/a)∞
(z)∞(b/az)∞(b)∞(q/a)∞

, |b/a| < |z| < 1, (5.1.4)

and Andrew’s identity [9, p. 57]

∞∑
n=0

qkn

1− qln+k
=

∞∑
n=0

qln
2+2kn 1 + qln+k

1− qln+k
. (5.1.5)

In Section 5.3 we obtain several relation of M(q) with theta function φ(q),

ψ(q) and χ(q). In Section 5.4 we obtain an integral representation of M(q). In

Section 5.5 we derive a formula that help us to obtain relation among M(q1/2),
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M(q), M(q2) and M(q4). We establish explicit formulas for the evaluation of

M(e−π
√
n)

M(e−π
√
n/2)

in Section 5.6.
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5.2 q-Identity related to M(q)

Theorem 5.2.1.

M(q) =
∞∑
n=0

qn(8n+4)+1/2 1 + q8n+2

1− q8n+2
−

∞∑
n=0

q(n+1)(8n+4)+1/2 1 + q8n+6

1− q8n+6
(5.2.1)

Proof. Changing q to q2, then setting a = q2, b = q10 and z = q2 in 1ψ1 summation

formula (5.1.4) we obtain

(q4; q4)2∞
(q2; q4)2∞

=
∞∑
n=0

q2n

1− q8n+2
−

∞∑
n=0

q6n+4

1− q8n+6
(5.2.2)

employing Andrews identity (5.1.5) with k = 2, l = 8 and k = 6, l = 8 in both the

summations in right side of the identity (5.2.2) respectively and finally multiplying

both sides of the resulting identity with q1/2 and using product represtation of

M(q) (5.1.2), we complete the proof of Theorem 5.2.1.

5.3 Some Identities involving M(q)

We obtain relation of M(q) in terms of theta function φ(q), ψ(q) and χ(q).

Theorem 5.3.1.

M(q) = q1/2
ψ4(q)

φ2(q)
, (5.3.1)

8M(q2) = φ2(q)− φ2(−q) , (5.3.2)

16M2(q) = φ4(q)− φ4(−q) , (5.3.3)

M2(q)

M(q2)
= φ2(q2) , (5.3.4)

4M(q2) = φ2(q)− φ2(q2) , (5.3.5)

M−1(q) +M(q)

M−1(q)−M(q)
=

1 + qψ4(q2)

1− qψ4(q2)
, (5.3.6)

8M(q2) =
χ2(q)

χ2(−q)
ϕ2(−q2)− ϕ2(−q) . (5.3.7)
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Proof. Using [23, Ch. 16, Entry 22(ii)] in (5.1.2), we obtain

M(q) = q1/2ψ2(q2) . (5.3.8)

Employing [23, Ch. 16, Entry 25(iv)] in (5.3.8), we obtain (5.3.1).

From (5.3.1), we have

M(q2) = q
ψ4(q2)

φ2(q2)
. (5.3.9)

Employing [23, Ch. 16, Entry 25(vii)] and [23, Ch. 16, Entry 25(vi)] in (5.3.9),

we obtain (5.3.2). Identity (5.3.3) immediately follows from (5.3.8) and [23, Ch.

16, Entry 25(vii)].

Again from (5.3.1), we have

M2(q)

M(q2)
=
ψ8(q)φ2(q2)

ψ4(q2)φ4(q)
, (5.3.10)

employing [23, Ch. 16, Entry 25(iv)], in the identity (5.3.10) we obtain (5.3.4).

From (5.3.2) and (5.3.3), we have

64M2(q2) + 16M2(q) = 16φ2(q)M(q2), (5.3.11)

dividing the above identity (5.3.11) throughout by 16M(q2) and using (5.3.4)

we obtain (5.3.5).

From (5.3.1), we deduce that
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M−1(q) +M(q) =
φ4(q) + qψ8(qψ)

q1/2φ2(q)ψ4(q)
, (5.3.12)

and

M−1(q)−M(q) =
φ4(q)− qψ8(qψ)

q1/2φ2(q)ψ4(q)
. (5.3.13)

On dividing (5.3.12) by (5.3.13) and using [23, Ch. 16, Entry 25(iv)] in the

resulting identity, we complete the proof of (5.3.6).

From (1.4.3) and (1.4.6), we have

φ(−q) + χ(q)

χ(−q)
φ(−q2) = (q; q)∞

(−q; q)∞

[
1 +

f(q, q)

f(−q,−q)

]
,

employing [23, Ch. 16, Entry 30(ii)] in right hand side of above identity we

obtain

φ(−q) + χ(q)

χ(−q)
φ(−q2) = 2(q8; q8)5∞(q32; q32)2∞

(q4; q4)2∞(q16; q16)2∞(q64; q64)4∞

M(q16)

q8
. (5.3.14)

Again from (1.4.3) and (1.4.6), we have

φ(−q)− χ(q)

χ(−q)
φ(−q2) = (q; q)∞

(−q; q)∞

[
1− f(q, q)

f(−q,−q)

]
,

employing [23, Ch. 16, Entry 30(ii)] and [23, Ch. 16, Entry 18(ii)] in right

hand side of above identity we obtain
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φ(−q)− χ(q)

χ(−q)
φ(−q2) = −4q(−q8; q8)∞(q64; q64)3∞

(−q16; q32)∞
q8

M(q16)
. (5.3.15)

Multiplying (5.3.14) and (5.3.15) we complete the proof of (5.3.7).

Theorem 5.3.2. Let u =M(q), v =M(−q) and w = (q2), then

u2 − v2 = 8w2

Proof. On substituting (5.3.4) in (5.3.5), we obtain

φ2(q) =
4M2(q2) +M2(q)

M(q2)
. (5.3.16)

Changing q to −q in (5.3.16), we have

φ2(−q) = 4M2(q2) +M2(−q)
M(q2)

. (5.3.17)

Subtracting (5.3.17) from (5.3.16) and using identity (5.3.2), we complete the

proof of Theorem 5.3.2.

5.4 Integral Representation of M(q)

Theorem 5.4.1. For 0 < |q| < 1,

M(q) = exp

∫ (
1

2q
+

4

q

[
φ4(−q)− 1

8
+
qφ′(q)

2φ(q)

])
dq , (5.4.1)

where φ(q) and ψ(q) are as defined in (1.4.3) and (1.4.4).

67



Proof. Taking log on both sides of (5.3.1), we have

logM(q) =
1

2
log q + 4 logψ(q)− 2 logφ(q). (5.4.2)

Employing [23, Ch. 16, Entry 23(ii)] and [23, Ch. 16, Entry 23(i)] on right

hand side of (5.4.2), we obtain

logM(q) =
1

2
log q + 4

∞∑
n=1

q2n

2n(1 + q2n)
. (5.4.3)

Differentiating (5.4.3) and simplifying, we have

d

dq
logM(q) =

1

2q
+

4

q

[
∞∑
n=1

(−1)nqn

(1 + qn)2
+

∞∑
n=1

q2n−1

(1 + q2n−1)2

]
. (5.4.4)

Using Jacobi’s identity [23, Ch. 16, 33.5, p. 54)] and [23, Ch. 16, Entry 23(i)]

and integrating both sides and finally taking exponentiating both sides of identity

(5.4.4), we complete the proof of Theorem 5.4.1.

5.5 Modular Equation of Degree n and Relation

Between M(q) and M(qn)

In the terminology of hypergeometric function, a modular equation of degree n is

a relation between α and β that is induced by

n
2F1(1/2, 1/2; 1; 1− α)

2F1(1/2, 1/2; 1;α)
=

2F1(1/2, 1/2; 1; 1− β)

2F1(1/2, 1/2; 1; β)
,

where

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
(c)kk!

xk,
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and

(a)k =
Γ(a+ k)

Γ(a)
.

Let Z1(r) =2 F1(1/r, r − 1/r; 1;α) and Zn(r) =2 F1(1/r, r − 1/r; 1; β), where n is

the degree of the modular equation. The multiplierm(r) is defined by the equation

m(r) =
Z1(r)

Zn(r)
.

Theorem 5.5.1. If

q = exp

(
−π 2F1(1/2, 1/2; 1; 1− α)

2F1(1/2, 1/2; 1;α)

)
, (5.5.1)

then

α = 16
M4(q)

M4(q1/2)
(5.5.2)

Proof. From (5.1.2) and (1.4.3), we have

M(q)φ2(q) = q1/2
(q4; q4)2∞
(q2; q4)2∞

(−q; q2)4∞(q4; q4)2∞
(−q2; q2)4∞(q2; q4)2∞

= M2(q1/2). (5.5.3)

Substitution (5.5.3) in (5.3.3), we obtain

16M2(q) =
M4(q1/2)

M2(q)

[
1− φ4(−q)

φ4(q)

]
. (5.5.4)

From a know identity [23, Ch. 16, p.100, Entry 5] and (5.5.1) it is implied that
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α = 1− φ4(−q)
φ4(q)

. (5.5.5)

Using (5.5.5) in (5.5.4), we complete the proof of (5.5.2).

Let α and β related by (5.5.1). If β has degree n over α then from Theorem 5.5.1,

we obtain

β = 16
M4(qn)

M4(qn/2)
(5.5.6)

Corollary 5.5.1. Let u =M(q1/2), v =M(q), w =M(q2) and x =M(q4), then

16x4v2 + 32x3wv2 − 4x3wu4 + 24x2w2v2 + 8xw3v2 − xw3u4 + w4v2 = 0. (5.5.7)

Proof. From [23, Ch. 16, p.216, Entry 24(v)], we have

√
1− α =

(
1− β1/4

1 + β1/4

)2

. (5.5.8)

On using (5.5.6) with n = 4 and (5.5.2) in (5.5.8), we obtain

√
u4 − 16v4

u4
=

(
w − 2x

w + 2x

)2

. (5.5.9)

Squaring both side of (5.5.9) and then simplifying, we obtain (5.5.7).
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5.6 Evaluations of M(q)

As an application of Theorem 5.5.1, we establish few explicit evaluation of M(q).

Let qn = e−π
√
n and let αn denote the corresponding value of α in (5.5.1). Then

by Theorem 5.5.1, we have

M(e−π
√
n)

M(e−π
√
n/2)

=
1

2
α1/4
n . (5.6.1)

From [23, p. 97, Ch. 17], we have α1 =
1
2
, α2 =

(√
2− 1

)2
and α4 =

(√
2− 1

)4
.

Thus from (5.6.1), it immediately follows

M(e−π)

M(e−π/2)
=

(
1

2

)5/4

, (5.6.2)

M(e−
√
2π)

M(e−π/
√
2)

=
1

2

√√
2− 1, (5.6.3)

M(e−2π)

M(e−π)
=

√
2− 1

2
. (5.6.4)

Ramanujan has recorded several modular equation in his notebook [89, p.

204-237] and [89, p. 156-160] which are very useful in the computation of class

invariants and the values of theta function. Ramanujan has also recorded values

of theta function φ(q) and ψ(q) in his notebook. For example

φ(e−π) =
π1/4

Γ(3/4)
, (5.6.5)

ψ(e−π) = 2−5/8eπ/8
π1/4

Γ(3/4)
, (5.6.6)

φ(e−π)

φ(e−3π)
=

4

√
6
√
3− 9. (5.6.7)
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From (5.3.8) and (5.6.6), we have

M(e−π/2) = 2−5/4

√
π

Γ2(3/4)
, (5.6.8)

Using (5.6.8) and (5.6.2), we obtain

M(e−π) =

√
π

Γ2(3/4)
. (5.6.9)

Setting (5.6.9) in (5.6.4), we obtain

M(e−2π) =

√
2− 1

2

√
π

Γ2(3/2)
(5.6.10)

J.M. Borwein and P.B. Borwein [30] are the first to observe that class invariant

could be used to evaluated certain of φ(e−nπ). The Ramanujan Weber class

invariants are defined by

Gn := 2−1/4q−1/24
n (−qn; q2n)∞

and

gn := 2−1/4q−1/24
n (−qn; q2n)∞, (5.6.11)

where qn = e−π
√
n. Chan and Huang has derived few explicit formulas for

evaluating K(e−π
√
n/2) in the terms of Ramanujan Weber class. Similar works are

done by Adiga et.,al. Analogoues to these works we obtain explicit formulas to

evaluate
M(e−π

√
n)

M(e−π
√
n/2)

.
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Theorem 5.6.1. For Ramanujan Weber class invariant defined as in (5.6.11), let

p = G12
n and p1 = g12n , then

M(e−π
√
n)

M(e−π
√
n/2)

=
1

2

1√√
p(p+ 1) +

√
p(p− 1)

, (5.6.12)

M(e−π
√
n)

M(e−π
√
n/2)

=
1

2

√√
p21 + 1− p1. (5.6.13)

Proof. From [34], we have

gn = [4αn(1− αn)]
−1/24 .

Hence

αn =
1

(
√
p(p+ 1) +

√
p(p− 1))2

(5.6.14)

Using (5.6.14) in (5.6.1), we obtain (5.6.12).

Also from [34], we have

2g12n =
1

√
αn

−
√
αn.

Hence

√
αn =

√
(p21 + 1)− p1. (5.6.15)

Using (5.6.15) in (5.6.1), we complete the proof of (5.6.13).

Example: Let n = 1, Since G1 = 1, from Theorem 5.6.1 we have

M(e−π)

M(e−π/2)
=

(
1

2

)5/4

.
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Let n = 2. Since g2 = 1, from Theorem 5.6.1 we have

M(e−
√
2π)

M(e−π/
√
2)

=
1

2

√√
2− 1.

Remark: Using [89, p.229] it is easily verified that M(q) and K(q) are related by

the equation

M(q2)K(q) +K(q)M(q)−M(q2) = 0.
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