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Abstract 

 

Computer security has long been subjected to protect either an important end-

system or an entire network of hosts. Despite the latest advances in safeguarding the 

security of end-system and network, malicious attacks on a large network constantly 

become a serious threat to protecting data (data privacy) and service integrity. There are 

two main problems that may lead to security risks in a large networked environment. First, 

poor security policies and system configurations that acts as entry point to permit attackers 

to easily bypass the predefined security defences, and seconly, hidden vulnerabilities 

which permit an attacker to execute various attacks remotely against vulnerable servers 

and workstations. 

Advanced stealthy attacks on a large network is only possible by the presence of 

increased vulnerable hosts in the network. The existence of vulnerabilities in the Internet 

connected workstations and servers, that compromise the network, are envitable. Malware 

writers aims to control the functionalities of the operating system of the victim computer 

by executing malicious programs through vulnerabilities found either in the application or 

system. As Windows is one of the most popular and widely used operating system in the 

modern online world for personal computers, it becomes most malware ridden platform. 

Therefore, the security compromise of even a single operation in a system will question 

the overall system security, including the security assurance of all currently running 

applications within the system. Furthermore, the proper control and management of 

ensuring the security of individual applications within a computer system makes the 

security analysis a challenging task. Therefore, the compromise of just a single computer 

on a network may permit an intruder to gain access to important system resources and 

distrupt the normal operations the entire network.  

Though there are different security defense mechanisms such as Discretionary 

Access Control protection that protect system resources from unauthorized access and the 

Mandatory Access Control mechanism which ensures the safe execution of untrustworthy 

applications, they are not sufficient to offer complete protection against stealthly advanced 

malicious code attacks. This research work mainly focused on improving protection level 

and security incident reponse capabilities of an end-system or workstation.  
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First, a Graph-based static Malware Detection approach namely, GraMD  has been 

proposed for detecting malware attacks. The proposed GraMD approach has been 

compared with the existing well-known mechanisms for malware detection. The 

experimental simulation results shows that the proposed GraMD approach outperforms 

than the existing approaches for malware detection. However, the static malware detection 

approches fails to detect unknown malware attacks and hence found not suitable for 

trusted computing environment. This has led to the development of a behaviour-based 

dynamic malware detection approach at user-mode namely, User-mode Malware 

Detection (UMDetect) for Windows has been developed to provide better malware 

detection and prevention than the existing techniques. The experimental results shows that 

UMDetect outperforms than existing mecahnisms with improved security against both 

known and unknown malicious code attacks. However, UMDetect fails to detect and 

prevent stealthy malware attacks which incorporate masquerading technique to evade its 

footprints and malware that directly target higher level Application Programming Interface 

functions to hook kernel level data structures of the Window operating system.     

Currently, advanced stealthy malware writers make use of rootkit technique to 

mask malware footprints from Antivirus software. This makes malicious code attacks 

difficult to detect. Though there exist different algorithms for detecting the presence of 

hidden information of a malicious executable, significant research has not been carried out 

to effectively apply such algorithms to optimize malware detection technique. Therefore, 

to discover and list all hidden information of a malicious executable, a novel algorithm 

namely, Concealed Processes and services Discovery Algorithm (CoPDA) that relies on 

cross-check based technique has been proposed. The CoPDA algorithm discovers all 

hidden footprints of a malicious executable by comparing higher-level information about 

running processes and services against its lower-level information that is obtained from 

kernel of the operating system. The proposed CoPDA algorithm has been compared with 

the existing algorithms for detecting hidden malicious code by simulation. The 

experiments have been conducted using a standard real-time datasets and some real-time 

anti-malware detection tools. Experimental results shows that CoPDA outperforms against 

the existing techniques and anti-rootkit detection tools based on their false positives, true 

positives, precision rate, and detection accuracy. 
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As the existing conventional authorization techniques lack a reliable and strong 

process authentication policies against stealthy malicious code attacks, a behaviour-based 

kernel level Process Authentication Mechanism (PAM) has been proposed. The Proposed 

PAM mechanism improves the security strength of the kernel of the operating system by 

incorporating user-mode information through the implemented CoPDA algorithm for 

discovering all suspicious processes of a malicious executable and kernel-mode 

information for authenticating each identified suspicious process during run-time. The 

effectiveness of the proposed PAM mechanism has been evaluated by conducting various 

simulation experiments using real-time datasets and standard benchmarks. The 

experimental results show that PAM outperforms than the existing widely used            

anti-rootkit detection tools and techniques found in the literature in terms of false 

positives, execution time, accuracy, and performance overhead. As a runtime mechanism, 

PAM includes secret authentication information and an authentication module to ensure 

high security assurance.  

The limitations of process authentication mechanism for preventing malicious code 

attacks have also been identified and presented for further exploration in this thesis. 
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CHAPTER 1 

 
INTRODUCTION 

 

The continuing growth of Internet connected devices will drive malware authors to 

use either unpatched system or software vulnerabilities as a way to point a full-blown    

attack. Designing and maintaining a trusted and secure system environment is increasingly 

more important as data flows more freely through the interconnected devices. Though 

many vendors, import different security features into their product, they cannot design a 

complete, secure and trustworthy system to handle current computing environments.   

Malware writers usually look for either system vulnerabilities or application 

vulnerabilities to deposit their code into the victim computer. There are three important     

issues that the defenders may encounter to fix. First, the application process has more 

flexibility to carry out their illegal operations on the victim computer. Second, both     

malware and security system can run in the same execution environment. Therefore,   

malware tries to modify the code segment and execute data segment to achieve their      

ultimate goal. Third, most security systems have incorporated with limited methods to   

dynamically detect the behavior of malicious executable. Malware authors are taking the 

advantage of these three problems making malware more powerful.  

Recent malware often designed with intention to compromise, possibly, many    

victim computers, stay long by hiding its footprints, and circumvent the secured system. 

Remote attackers can even control a large private network by compromising a secured 

server or workstation. This leads to tamper the kernel of the underlying operating system 

which would question the trustworthiness of the entire computing environment. Kernel 

integrity is more important to ensure a secure computing environment.  

Therefore, a new security mechanism needs to be devised to strengthen the security 

of the kernel by avoiding the above said three issues which can permit malware to 

compromise the victim computer. The security of an operating system has long been 

subjected thirst research area. However, recent operating system design concentrates to 

offer better performance, more reliability, compatible and portable over security. This drift 

will never likely face the   challenges of the predictable.  
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The gap between possible features and solutions offered by the current computing 

environments differs what is actually offered by them. However, it is more difficult to 

secure current computing environment without incorporating strong security measures. 

One possible solution is to introduce a mechanism to improve the security strength of the 

kernel to certain extent. In this thesis work, a new security enhancement mechanism 

namely, kernel level Process Authentication Mechanism (PAM) for detecting and 

preventing malicious code attacks has been proposed for Windows environment. By 

authenticating suspicious processes of the executable which are identified by the CoPDA 

algorithm at kernel level during run time, PAM can detect and prevent such attacks 

specifically before being serviced by the kernel. 

The remaining of this chapter is continued by providing the background               

information regarding the problem under investigation. The motivation and challenges of 

the research work, objectives of this work and thesis problem statement are also devised 

and explained. Finally, the contribution out of thesis work and the organizations of the 

chapters in this work are presented in a nutshell.  

 

1.1 Background 

 
This chapter presents background information to make a clear understanding of 

what type of issues, PAM tries to resolve and what kind of different technologies PAM 

makes use of. This chapter also presents information about the layers of abstraction of a 

computer, the growth of current malware families, the most familiar targeted system 

resources and how they are compromised, the different techniques to combat   malware 

attacks, and finally presents the background information about the execution          

environment for PAM. 

All modern computer systems have a piece of most important system software,    

entitled Operating System (OS) or kernel which basically runs on top of the hardware that 

assigns the necessary system resources and supervises the execution of each application 

within the system. The OS as a whole consists of the kernel and may comprise other    

relevant programs for providing necessary services for each incoming request. More 

importantly, the kernel which acts as a part of the OS is responsible for many functions 

such as system calls, manage memory, and interrupts, exceptions, etc,.   
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One of the security mechanisms the system exercises is protection rings which are 

basically a construct of X86 processor architecture. These protection rings strictly provide 

definitions and boundaries for what type of operations they can able to execute. On most 

operating systems, there are four protection rings or privilege levels, which are numbered 

from most privileged (numbered zero) to 3 that represents least privileged mode. At any 

given time, for example, an X86 processor can run in a specific privilege mode, which 

decides what program code can and cannot permit.  Basically the kernel of the OS runs in 

ring 0 and all user code can only run in ring 3. Figure 1.1 shows the various layers of 

abstraction a computer.  

 

 

 

 

 

 

 

 

 

 

           

Figure 1.1 Important layers of abstraction 

 
Since the Microsoft Windows is the most popular desktop OS, it becomes an        

attractive target for malware writers.  The Windows Application Programming Interface 

(API) permits many different applications to utilize the powered features of the Windows 

family of OS. The Window API provides a uniform development environment, many 

communication and synchronization mechanisms, so that users can develop          

applications which are capable of running on all versions of the Windows family. The 

Windows64 API incorporated the features supported by the 64-bit versions of Windows to 

allow programming on the 64-bit Windows. The programming concept and API features 

are about the same as 32-bit Windows architecture. But, in WIN32 the size of the pointer 

is   32 bits whereas in WIN64, its size is 64 bits. 

 

Applications 

Services 

Operating System 

 
OS Kernel 

Hardware 
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According to Microsoft, WOW64 (Windows 32-bit On Windows 64-bit) 

represents a subsystem which can run 32-bit applications on 64-bit versions of Windows. 

The limitation of a 64-bit copy of KERNELBASE.dll, kernel32, etc. a malware using its 

code in the 64-bit OS that facilitates the WOW64 environment. This indicates that the 

higher level APIs such as LoadLibrary(), VirtualProtect(), etc. are not available for direct 

access. For example, let us take a system call invocation under WOW64 on Windows 7 

OS. The code depicted in Figure 1.2 shows that the NtProtectVirtualMemeory() cannot be 

accessed directly, instead a call to the function pointer within the thread environment 

block. 

0:004:x86> uf ntdll32!ZwProtectVirtualMemory  

ntdll32!ZwProtectVirtualMemory:  

774e0038 b84d000000 mov eax,4Dh  

774e003d 33c9 xor ecx,ecx  

774e003f 8d542404 lea edx,[esp+4]  

774e0043 64ff15c0000000 call dword ptr fs:[0C0h] 

774e004a 83c404 add ESP, 4  

774e004d c21400 ret 14h 

 
Figure 1.2.Code to access NtProtectVirtualMemory function 

A system call in computing is a technique in which a software application requests 

necessary services from the kernel of the operating system for completion. System calls 

are the only way to communicate with the kernel of the OS, and they can be accessed by 

programs through a high-level API rather than permitting direct access to it. A system call 

number is usually associated with each system call that can be used as unique identify. 

The computer OS preserves a system call handler table which is indexed according to the 

system call numbers and each entry in the table points the code to be executed. Figure 1.3 

shows a system call invocation in x64 processor. The WOW64 consists of the following 

Dynamic Link Library (DLL) files to support Windows 32-bit programs: Wow64.dll 

which is responsible for marshalling all system calls while translating arguments using a 

system call table to ntdll.dll and wow64win.dll via wow64cpu.dll, and Wow64Win.dll 

which is acting as additional system call marshalling for console subsystems and 

windowing. 
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Figure 1.3 System call in x64 
 

Few important functionalities of WOW63 are performing the mode-switches and 

dispatching system calls that can be either directly or through 

wow64!Wow64SystemServiceEx(). The system call invocation in WOW64 is slightly 

differs from accessing in X64 as shown in Figure 1.4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 System call in WOW64 
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Today, stealthy malicious software is one of the most dangerous and challenging 

security threats. In reality, it is difficult to design a system which guarantees to be either 

secured or to remain secure over time. The kernel of the OS maintains many different data 

structures to provide services to either user programs or to run its own code. Protecting 

such important data structures and data against unauthorized access is a major issue for 

security designers or defenders. A new type of malware will be launched every day by 

modifying its predecessor, reaching 41 million new unique  malware samples during 

second quarter of 2015 [1]. Malicious software can exploit hidden vulnerabilities found in 

the Internet computing environment without user’s knowledge. Basically malware 

includes virus, worm, Trojan horse, and spyware that can be used to disrupt predefined 

computer security policies or operations, gain access to computer systems, gather sensitive 

data, or display unwanted advertising. It can appear in the form of scripts, active content, 

code, or other software. Today, more advanced malicious software is incorporated with 

rootkit techniques to make detection more difficult. 

A rootkit is a technique designed with the intent of permitting a remote attacker to 

maintain highest privilege via backdoor over the resources of the victim computer. 

Different malware adopts the different masquerading technique to avoid its detection. As a 

result, rootkits can dynamically defy detection either by hiding from view or messing 

Antivirus (AV) software. Because of these characteristics, rootkits are potentially 

dangerous to the integrity of user data. In order to carry out illicit operations malicious 

rootkits make use of hooking mechanism which can able to modify the execution flow of a 

system call, but rootkits required to access kernel level APIs to accomplish their 

predefined tasks.  The emergence of the first form of malware attack and hacking tool was 

followed by defensive techniques and automated tools. Today, many security software 

products integrate various defensive measures such as firewalls, AV software, spam 

blockers, etc. Figure 1.5 shows the different possible malware detection techniques, 

classifications of detection, and vital information available for malware analysis. The 

dynamic behavioral malware defense technique must intercept suspicious event and 

analyze them to detect their presence. However, deciding which event to intercept is very 

tedious task. In additions, information about an event alone is not adequate to discover 

whether a process of an application is malicious or legitimate. Though many researchers 

actively involved in this area, they fail to specify perfect definition to it [2-4]. To 

overcome this issue, researchers concentrate on two areas to reveal malicious activities. 
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Figure 1.5 Overview of malware detection system 

First, revealing malicious actions through determining the association between 

memory, files, processes, and other system resources [5-6]. In [6], the author proposed one 

such technique to identify a malware by discovering the concealed link between processes 

using data tainting method. The second approach is the movement towards security policy 

enforcement mechanism which elucidates malicious operations by controlling access 

privileges of various system resources. Any event which violates the predefined security 

policies is concluded as malicious.  

Security Policy Enforcement Mechanism 

 
There exist two useful common malware defense techniques to protect system 

resources against malicious code attacks. They are System Call Monitoring (SCM) 

technique and mandatory Access Control List (ACL) mechanism. The former technique is 

widely used to detect compromised applications and analyze them to minimize the harm 

that they can cause [7-13]. SCM technique relies on setting up policies that impersonate as 

a legitimate application system call and then suspending or terminating execution if the 

application pretended to be legitimate. Though SCM technique alone cannot completely 

protect an end-system, hence it can be used as an additional technique to strengthen the 

detection capabilities of Intrusion Detection System (IDS). The ACL technique relies on 

implementing a Message Authentication Code (MAC) mechanism that requires a 

malware’s signature to define Security Policy Specification (SPS) to enforce access 

restriction to various system objects.  

 



8 

 

Existing MAC security solutions such as APPArmor [14] and grsecurity [15] that 

rely on an authorization mechanism allows a user to enforce strong security policies 

against malicious executables. These MAC solutions are implemented in Linux open OS 

to supervise access rights to different system resources by applying security policy 

specification. An online anomaly based detection technique [16] proposed to identify a 

suspected malicious execution path of an application which relies on measuring 

similarities between execution paths. However, few malicious executable might behave 

like legitimate applications which are very hard to distinguish. Therefore protecting 

individual computers or workstations in a network is a very important. 

The security policy enforcement mechanism elucidates malicious operations by 

controlling access privileges of various system resources. Any event which violates the 

predefined security policies is concluded as malicious. Many related works have been 

found in association with implementing security policy enforcement for modern 

computing environments [6] [17-19]. A kernel-mode protection framework namely, 

WHIPS has been developed for Windows environment by Battistoni et al., [20]. WHIPS 

inspects every system call request in the kernel mode and validates the caller’s service it 

requests such as process name and parameters of the request using a access control 

database and blocked a request that is invalid. The challenge in using WHIPS for 

Windows environment is to exactly defining the access control database specifically 

deciding the safeness of parameters.  

KVMSec [21] focused on periodically checking the integrity of several system 

objects by maintaining secure communication channel with guest environment. However, 

the system runs with partial completion of integrity checking component.  The system 

proposed by Payne et al.  [18] monitors system-wide process manipulation activities to 

hook important system calls and maintains integrity over such hooks to detect malicious 

activites. In addition, malwares that do not adopt system call hook technique can easily 

bypass. To detect the presence of rootkits, XenKIMONO [22] used different techniques 

such as cross-view check, integrity check, etc. However, designing a system to detect all 

kinds of rootkit types is really a difficult task. Another approach [23] that is relying on 

policy enforcement is, system call monitoring. This approach is based on intercepting 

system call invocations and directs the response to the actual system call. The system 

mainly relying on process granularity level and can directly able to discover and prevent 

malicious system call operations. However, this approach suffered from three issues.  
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First, a malicious code which pretends to be legitimate can evade its detection. 

Second, determining which system calls to be controlled is really a difficult task. Third, 

this technique suffered from high false positives.  If both malicious executable and anti-

malware detection software run at the same privilege level, then the policy based 

technique to detect and prevent malware activities become useless defense technique. This 

is one of the main drawbacks of policy enforcement mechanism.  

 
Microsoft‘s new security update  

 
The elementary problem of designing security features to guarantees a secure 

computing environment is that any process running in the kernel mode obtains highest 

privilege can increase its privilege level to access and control over other system resources. 

This also permits the malicious code to rewrite any code segment in memory to run its 

own code and access data part of other processes illegally. Therefore, preventing illegal 

access to code part, kernel object manipulation, and data execution can raise the security 

level substantially. In order to improve the security strength of the operating system, 

Microsoft introduced new additional security features such as Kernel Patch Protection 

(KPP), Address Space Layout Randomization (ASLR) and Data Execution Prevention 

(DEP) from Windows Vista onwards to ensure the trustworthiness of the underlying 

computing environment. ASLR is an important technique which runs to arbitrarily check 

the address range of each process to hide the target location from the attackers. KPP averts 

malicious executable from patching vital data structure and code part by periodically 

validating if any protected kernel memory part is modified. DEP permits marking a certain 

part of primary memory for data keeping sensitive information and prevents the preset 

data area being executed.  

Another useful security enhancement solution to ensure the trustworthiness of the 

underlying computing environment is hardware level implementation of Trusted Platform 

Module (TPM) [24]. TPM is implemented to offer secure information protection by 

integrating cryptographic mechanism in hardware. TPM is one of the popular security 

solution techniques which can guarantee that the system resources are not altered and limit 

access to data. Although TPM is a strong hardware level security solution against 

tampering resistance attacks, the hardware level implementation might be flexible to 

modify the security of the system when needed. There were few hooking techniques have 

been proposed which can bypass these security measures [25-27].  
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Malware can still run with the same level as the security system and may thrive in 

challenging entire security system. A virtualization mechanism permits the execution of 

guest code directly on the physical machine while the executions of traditional virtual 

machine environment like QEMU [28] in user-mode. QEMU is another useful open source 

virtualization technique which offers benefits such as Input / Output emulation and 

initialization of virtual platform.  

Kernel Virtual Machine (KVM) behaves similar to device driver and service user 

request using Input Output Control (IOCTL). KVM uses a virtual memory technique 

called the Shadow Page Table (SPT) [29] which provides a huge memory address space to 

each process than the host’s real memory. The SPT is mainly used for mapping the guest 

code virtual memory onto the system primary memory. However, the introduction of SPT 

technique involves lavish context switching between host and guest. There are many 

barriers to policy enforcement and acceptance. First, if both malicious executable and anti-

malware detection software runs at the same privilege mode then the policy enforcement 

technique to detect and prevent malware become useless defense technique. Second, 

recent malwares with advanced hook techniques can bypass the predefined security 

policies. Typical OS’s kernel often fails to include either stronger restrictions on the 

program executable or protecting system services against malicious code attacks.  

Some effective real-time anti-rootkit solutions also exist to dynamically analyze 

and discover hidden rootkit malware. However, such tools failed to discover kernel level 

API hooks dynamically. Therefore designing a mechanism which is capable of detecting 

and preventing malicious code attacks to protect both user-mode and kernel-mode is a 

challenging problem. Although there were many different approaches have been proposed 

in the past to prevent system service against malicious code attacks, the following issues 

were not addressed significantly in the existing approaches. 

 Resist hidden processes attacks and existential forgery attacks and code injection 

attacks. 

 Strong kernel level authentication to protect system services and important data 

structures. 

 Minimizing the false Positives and runtime overhead for the entire system. 
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Some existing research works have addressed the problem of detecting the hidden 

footprints of malicious executables using crosscheck based approach. These algorithms 

only list the properties of the hidden processes. Microsoft Windows treats the kernel of the 

operating system as a black box; hence makes the complexity of designing a monitoring 

framework becomes a challenging task. Therefore, there is a growing interest for the 

kernel level authentication techniques to protect system services against malicious code 

attacks which enable designers to test and validate suspicious processes either even before 

causing damage to the system resources or compromise the entire system. Malicious code 

is one of the security threats today on the Internet. Attackers can inject malicious code into 

the software by exploiting a hidden bug that may exist in it and execute the injected code 

abnormally. During code injection phase, attackers need to execute privileged events, by 

calling a system service, more importantly, native APIs. Without distinction, the kernel 

provides services to both malicious processes of an application and also to legitimate 

process. Though many vendors, import different security features into their product like 

providing security functionality to completely protect a system, but it may not be adequate 

to trust the system.  

 

1.2 Motivation and Challenges 

Due to the decisive responsibility of the OS in managing large number operations 

in a computer system, the lack of security of an OS will greatly impact the overall security 

of the computing environment, as well as the security assurance of all programs running 

within the environment. If the underneath OS can be compromised, it will certainly lead to 

full information compromise of a secure computing system. Inadequate access control and 

management of execution of individual application processes in an OS can lead to break 

the entire system security policies. 

  Analysis of malicious code attack risk enable defenders to model attack reasoning 

and scenarios about the relationship between dependencies between attack paths. By 

generating comprehensive models about different attack scenarios, it is possible to design 

a specific quantitative measurement technique for attack risks coupled with a network 

settings. Then the outcome can be later used to improve the security configuration of the 

network. However, such a quantitative attack measurement model technique considers 

several technical design challenges.  
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First, the outcome of a quantitative measurement model must have clear semantics 

which could permit for the development of deterministic algorithm for generating the 

expected results. Second, the quantitative analysis of different security risks must be able 

to generate useful conclusions even in the absence of sensitive sampling security data. 

Finally, very large networks are usually highly dynamic in nature. 

Generating attack graphs are normally a well-known method which can offer the 

expected information about attack scenarios and its dependencies of a malicious 

executable. A malicious code attack graph G= (V, E) is a dependency graph in which E 

represents the relationship between and V represents a state transition. Although there 

were many quantitative assessment models exist to depict attack scenarios of a specific 

network, this kind of static analysis suffers from several limitations to handle current state 

of art on security. 

 
 An attack graph model offers only a partial interpretation about attack scenarios of 

a network. The existing methods lack of hard theoretical foundations. 

 Existing design approaches to quantify network attack graphs fail to consider the 

dynamic nature of a networked environment. 

 For larger networks, quantitative analysis of attack graphs fall under NP-complete 

problem which is always non-trivial. 

 
Dynamic analysis based defense mechanisms have been developed to overcome 

these issues.  Such approach works by utilizing the execution flow of legitimate 

applications to discover the presence of a malware. However, attacks such as mimicry and 

shadow attack weaken the dynamic malware analyser. Most OS kernels often enforce only 

a limited access restriction on the application program permitted to carry out its execution. 

As a result, malicious software program which runs as a stand-alone process abuse system 

resources for its execution. Once installed on the victim computer, malicious executable 

can freely run to execute privileges associated with the current user account running the 

process. This may lead to affect the entire network. Therefore, securing both user-mode 

and kernel-mode of an end-system is very important. Dynamic malware analysis based 

user-mode malware detection techniques and anti-malware detection tools have been 

studied and developed. As advanced malware incorporate rootkit techniques to evade 

detection, different algorithms have also been developed to optimize the malware 

detection system. But malware attacks that target kernel level compromise is an issue.  
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Therefore, to protect both user-mode and kernel-mode of the OS, techniques such 

as access control, authorization mechanism, and authentication mechanism have been 

implemented. One of the key foundations of most modern operating systems involves 

employing an appropriate level of access control protection through Discretionary Access 

Control (DAC). In DAC, the owner of an object state which subject(s) can access the 

object. Although this kind protection measures improve security in a time sharing or 

multi-tasking environment to certain extent, it suffers to impose firm security policies for 

individual application executable. Certainty secure applications always demand secure OS, 

and preventing application compromises at the kernel level by enforcing strict access 

control policies are generally considered more attractive and an effective approach. In 

computer security, the ACL technique improves the security level of the OS to certain 

level by enabling either the system or system administrator to specify necessary security 

access rights to resources objects in a file system. 

The ACL mechanism offers a strong separation of application programs that builds 

secure execution of trustworthy applications from un-trusted applications. Therefore, it 

guarantees security for applications by defending and bypassing against the tampering 

with secured applications.  Most malicious executables attempt to run with the same 

privilege level as a user-program or system and tries to increase its privileges level to 

attain its designated goal. Furthermore, the access control policy based mechanisms 

maintained by the OSs are so rudimentary. This permits nearly all privileged applications 

and system services running with root privileges than the program what actually needs. 

Thus, exploitation in any of these running programs can lead to complete system 

compromise. ACLs is appropriate on supervising disclosure of information through 

embedding strict security levels to different system objects and subjects, thus limiting 

access controls into the system. In opposition DAC concentrates on fine-grained access 

control of system objects through different object level permission modes and Access 

Control Matrix (ACM). Limitations in each of this mechanism can fail to satisfy one or 

more of the following three characteristics of an ultimate security mechanism: 

 
(i) Certain incapability to cessation of predefined security policies by evading access  

  controls, policies by the mechanism 

(ii) Obscure continuous privileged interaction with the mechanism 

(iii) Implementing cost-effective and real-time mechanism 
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The above discussed security solutions fall under the category of authorization 

mechanism. However, authorization mechanisms are not alone sufficient to guarantee a 

secure system. Several methods such as public-key cryptography or password can be 

found in a networked environment or multi-user system for user authentication. In a multi-

user OS, depends on managing a huge amount of diverse applications, providing 

authentication to basic operating data is turning out to be more important. With modern 

stealthy malware attack technique, system information which is trusted for granting access 

needs to be rechecked and reassessed.  

An authentication mechanism that used data provenance proposed in [30] pointed 

out the importance of verifying the kernel level authenticity and originality of data flows 

which are consumed by the system. Dai et al. [31] described a digital signing method for 

ensuring integrity and authentication of a signing agent on a system for generating digital 

signatures. It also described how a program signer differs from a human signer and also 

listed the system challenges that are associated with trustworthy of the program signer. 

With stealthy malicious code attack techniques, human’s timely reaction to intrusion 

detection is not possible. Also, Microsoft Windows is the most popular and widely used 

OS, attacking a considerable number of systems in local area network by compromising a 

single system is possible. Therefore, the research work is carried out with the following 

objectives. 

 

1.3 Objectives of the Research work 

 

The objectives of the research are as follows: 

(i)      To provide a solution to the graph-based static malware detection approach, by 

devising new graph-generation and graph-matching algorithm to generate 

better detection rate than existing graph-based malware detection approaches 

with lesser false positives.  

(ii)      To develop new dynamic malware detection approach for protecting the       

user-mode of an end-system to provide better results than the existing user-

mode malware detection techniques. 
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(iii)     To devise a new cross-check based algorithm for detecting hidden footprints of 

a malicious executable to optimize user-mode malware detection approach to 

provide better detection rate than existing hidden process detection algorithms. 

(iv)       To develop a new mechanism for authenticating unauthorized processes of an 

executable during runtime before being serviced by the kernel and thus 

ensuring system assurance.  

1.4 Thesis Problem Statement 

 

 Based on the objectives, this research work is focused on designing and developing 

a security enhanced mechanism named, PAM, by detecting and preventing malicious code 

attacks against system services by validating the originality of the suspicious processes of 

an executable application during runtime.  

 
(i)      Static malware detection techniques can effectively detect and prevent known 

malware attacks. Therefore, a graph-base malware detection approach has been 

proposed to provide better results than existing solutions. However, static 

malware detection systems are not effective against unknown malware attacks. 

In addition graph-based approaches belong to NP-complete in nature. 

(ii)       In order to detect and prevent both known and unknown malware threats that 

target API hook attacks, a user-mode malware prevention system has been 

proposed. In order to initialize and carry out illicit operations on a victim 

computer, a malicious executable can create multiple duplicate processes. 

Therefore malwares that incorporate rootkit techniques pose a serious 

challenge to the defenders. 

(iii)       A new novel cross-check based algorithm is also designed and developed to 

discover hidden processes and services. Whenever a new process is created, 

first it will be validated by this algorithm to check whether it is suspicious or 

not. The implementation of the proposed algorithm and its outcome can greatly 

helps to reduce the overall performance overhead of the proposed mechanism. 
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(iv)       The process authentication technique is extended and incorporated with the 

kernel on determining whether each incoming service request of a process is 

legitimate or not. If suspicious then it will be authenticated by the kernel of the 

OS during run time. Therefore, improvement in authenticating of the processes 

of an executable application is incorporated and it is directly improving the 

trustworthiness of kernel level information. 

1.5 Summary of the Research Contributions 

In this thesis work new static malware detection approach and user-mode malware 

detection approach have been developed. Also, list its advantages and security barriers 

associated with them which fail to detect hidden footprints of unauthorized processes a 

malicious executable. Therefore, a novel hidden process and service discovery algorithm 

for optimizing user-mode malware detection has also been developed. Furthermore, the 

process authentication mechanism is extended to guard against kernel level unauthorized 

processes malicious code of an executable at runtime on Windows. This thesis work 

enforces a mandatory authentication on all suspicious processes of an executable whereas 

legitimate processes are directly being serviced by the kernel. 

(i)      The graph based malware detection approach namely, GraMD has been 

designed and implemented to detect malware hook attacks. To model an API 

function call as a graph, a new algorithm namely, API Call graph Algorithm 

(ACA) has been developed. In addition, a modified graph edit distance 

algorithm namely, Graph Matching Algorithm (GMA) to compare two given 

graphs has also been proposed. Real-time malware samples were collected 

from reputed websites and used for evaluating the proposed GraMD. The 

collected are classified into three sets, namely, rootkit, worms, and viruses for 

evaluation purpose and the experiments are conducted for each set separately. 

GraMD approach is compared with the existing approaches for the detection of 

malware attacks and the experimental results show that GraMD consistently 

outperforms the existing techniques with an average of 98.84 % detection rate 

and 0% false positives. However, such statistical approach can effectively deal 

known malware attacks but fail to prevent stealthy unknown attacks. This leads 

to the development of dynamic based malware detection approach 
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(ii)      Detecting and preventing malicious code hook attacks in user-mode namely, 

User-mode Malware Detection (UMDetect) has been developed. Unlike other 

malware hook detection techniques, the UMDetect involved dynamically 

analyzing the behavior of Windows native API hook attacks. A new DLL 

Classification Algorithm (DCA) has been proposed to validate whether the 

DLL files to be imported/exported is malicious or not. For conducting 

experiments, a dataset is obtained from public resources and collaborative 

researchers. The evaluation results show that the proposed UMDetect has 

successfully discovered all malicious hooks and achieved 95-100% detection 

rate with 0% false positives against the existing user-mode malicious code 

detection approaches. Although the implemented technique detect and prevent 

malicious code attacks against important user-mode data structures, it cannot 

deal hidden entries of a malicious executable. Hence a solution needs to be 

devised to discover the hidden footprints of such malwares.  
 

(iii)     A cross-check based algorithm namely, Concealed Processes and services 

Discovery Algorithm (CoPDA) has been developed to discover all suspicious 

processes and services of a malicious executable. A dataset consists of 100 

rootkit malware samples and 50 benign programs are collected from public 

resources. Experimental results show that, the proposed CoPDA algorithm 

detected all hidden processes and services of a malicious executable effectively 

and surpasses some real world anti-rootkit detection tools and existing 

solutions with 99-100% detection rate with 1.82% false positives.  
 

(iv)      Finally, a novel idea to enforce kernel level process authentication namely, 

PAM has been proposed for protecting system services against malicious code 

attacks in Windows. PAM provide strong security against malicious code 

attacks by combing user-mode information through the implemented CoPDA 

algorithm which is responsible to discover all suspicious entries of an 

executable and kernel-mode information by authenticating its originality during 

runtime. As PAM imposed mandatory authentication to confirm the originality 

of all suspicious processes of the executable, it guarantees prevention of 

malicious processes which fail to succeed during the authentication phase, 

thwart its subsequent attacks.  
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The effectiveness of the PAM is compared with the   existing approaches and 

widely used anti-rootkit detection tools. With the advantages of improving 

kernel-security and generic overhead impact of 2%, PAM can become a 

practical solution in the current environment to prevent malicious code attacks.  

 

1.6 Organization of the Thesis 

 
The present chapter explores the background information for converse of the 

research dissertation. The motivation and challenges, objectives and the thesis problem 

statement of the research work are also devised and explained. 

 

Chapter 2 presents the survey on recent works related to the work presented in this 

thesis. The dissertation also analyzed different works to detect and classify malware 

attacks by using behavioral analysis methods to address and avoid the limitations of 

traditional defenses. A detailed discussion and comparison of different antivirus 

techniques can also presented.  The challenging research issues in the current research are 

pointed out. Finally, the extract of the literature survey and the summary of the survey are 

also discussed. 

 

Chapter 3 describes the proposed graph-based static approach for the detection of 

malicious code attacks, GraMD. Followed by the description of the algorithms and 

performance comparison of the ACA and GMA algorithms with existing algorithms are 

reported. We designed and implemented GraMD and its simulation results show better 

detection rate than existing quantitative malware analysis methods. Although this 

technique offers few advantages, its demerits in dealing malicious code attacks force us 

for the development of preventing such attacks rather than detecting them. 

 

Chapter 4 presents the proposed user-mode prevention of malicious code attacks 

against unauthorized process attacks, UMDetect. Subsequently, the operation of the DCA 

algorithm is described. The experimental results with an objective to detect API hook 

attacks that target user-mode data structures and its comparison with existing techniques 

and tools are also presented. However such prevention focused on monitoring only limited 
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user-mode data structures. As a result, kernel level attacks can easily bypass and abuse 

system resources. This clearly pointed out the requirement of kernel level runtime 

verification mechanism.  

 

Chapter 5 presents the proposed CoPDA algorithm developed for ascertaining 

suspicious entries of a malicious executable application. The performance comparison of 

CoPDA algorithm with the existing algorithms is presented. The experimental results are 

compared with the existing algorithms and reported. 

 

Chapter 6 describes the proposed PAM, general kernel level process authentication 

mechanism for general Windows based desktop computers. An introduction about the 

experimental result analysis of the proposed mechanism and existing mechanisms based 

preventing unauthorized processes attacks of an executable application are discussed. The 

simulation results of PAM obtained by various experiments are also illustrated with the 

aid of different graphs. The overall performance comparison of PAM and the existing 

techniques for the detection of unauthorized malicious processes during runtime with the 

help of graphs are also illustrated.   

 

Chapter 7 concludes the research work by summarizing and highlighting the 

findings that are facilitated to accomplish the objectives. The limitations of the research 

work have been identified and presented to carry out the possible future work to improve 

further. 
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CHAPTER 2 

 
                     LITERATURE SURVEY 

 

 This chapter briefly presents an overview of different types of malwares, common 

classes of malicious functions, its trend, two important classes of malwares that target 

Windows platform, and discuss some of the prior work that deals with quantitative 

analysis of malware attacks using graph based approach. Additionally, the prior work on 

securing an end-system in each category such as static analysis, intrusion detection 

techniques, policy enforcement mechanism and system call analysis are pointed out. In 

addition, the advantages and limitations of each technique with the requirement of 

protecting a workstation using user-mode and kernel-mode information are also presented.  

This chapter also presents the challenging issues in the current research which is clearly 

discussed. 

 
2.1 Preamble 
 

Both computer security and information security became more important since the 

introduction of Morris worm which was the first malware released in 1988 and shut down 

10% of the computers on the Internet [32]. Since then many organizations have designed 

and implemented the information security to protect their valuable data. Security 

defenders are under increasing demands to not only defend devastating data breaches but 

to also prevent against attackers who are using advanced techniques to conceal their 

attacks. As stealthy malicious malwares become increasingly advanced, it is become more 

vital than ever to improve defensive techniques and methods constantly. Basically the term 

malicious code includes viruses, worms, Trojan horses, spyware and botnets that can be 

used to gather information about a computer user and access to a system without their 

permission. These malware can appear such as scripts, active content, code, or other 

software. Two general classes of malware programs are: first class of malwares needs a 

host program (viruses, Trojan horses, logic bombs, trapdoors) and second class of 

malwares are independent programs (worms, zombie). Malwares are classified based on 

their characteristics; some malwares do not replicate (activated by trigger) and others that 

producing copies of themselves.  
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2.2 Malware  
 

There are different classes of malware or malcode that have varying methods of 

infecting computers and propagating themselves. The damage being caused by malcode 

into computers varies from fairly innocuous to stealing sensitive information, destroying 

information, and compromising and/or completely disabling computers and networks. 

Traditionally, malwares are categorized into different classes based on their function, 

authorship, and delivery mechanisms. The following list some important malware types: 

 
(i)      Viruses and Worms 

A computer virus is a type of individual self-replicating software malcode that 

must have the ability to propagate on its own by inserting into other 

applications on an infected computer, leaving infections as it travels from one 

computer to another. Almost all viruses malcode may exist on a system as part 

of an executable program, but they will not perform its malicious operations or 

able to propagate until a user executes the host application. Not all viruses are 

malicious – few of them are written to help discover vulnerabilities that may 

exist on a computer. Computer worms have similar behavior as virus malcodes 

in that they are self propagate and can cause similar kind of damage to the 

victim computer. Compared to viruses, worms are standalone file which do not 

require any assistance for propagation. A worm can either exploit 

vulnerabilities on the victim computer or use certain type of social engineering 

tricks for execution. 

 
(ii)       Exploits 

An exploit is a methodology, a command, or a software malcode that can be 

used wither to demonstrate to attack a security vulnerability that may exist on a 

computer or to attack a particular vulnerability. However, exploits are become 

a common component of malcode and make use of software vulnerabilities to 

permit privileged execution of malicious executable. 

 
(iii)      Downloader and Droppers 

Downloaders are usually allowed downloading additional malwares from a 

remote server, while droppers embedded with malwares. However, both install 

additional malware on the compromised system. 
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(iv)       Backdoor 

In the current network environment, it represents the undocumented method of 

accessing a computer surreptitiously bypassing the legal predefined 

authentication mechanisms. Recently, almost all attackers make use of back 

doors to gain and maintain complete administrative access to a computer after 

it has been successfully compromised and permit clandestine remote access 

over them. 

 

(v)       Ransomeware 

Ransomeware prevents service to authorized users by restricting or disabling 

normal functions, or hiding data. They are typically used to harvest money 

from tainted computer users. 

 

(vi)       Bots 

Botnet has become the most serious security threat on the current internet 

infrastructure. A botnet (BotNetwork) is an interconnected collection of 

compromised infected computers (bots) which is remotely controlled by its 

originator (called botmaster or botherder) under a common and control 

infrastructure. Bot is a new type of malware which is designed for malicious 

activity. After the bot code has been installed into a computer, the computer 

becomes a member of the bot network. Here all the bots are under the 

controlled of BotMaster. So if bot exist in computer, it is not harmful until it 

receives command from BotMaster. After receiving the command from 

BotMaster, it is dangerous for system. These bots are not self-propagate from 

one system/network to other system/network. A botnet enrolls its soldiers using 

social engineering techniques or by exploiting software vulnerabilities.  

 

(vii) Trojans 

A Trojan is a type of harmful computer software that are defined to look like 

legitimate or useful program, but contain hidden code that can perform a 

variety of malicious operations on a computer. It may trick users into loading 

and executing. 

 
 
 
 
 
 
 



23 

 

(viii) Rootkits 

A rootkit is a technique which is designed with the intent of allowing the 

remote attacker to maintain highest privilege over the resources in the victim 

operating system. 

 
2.2.1 Malware Motivations  

 Except kiddies, advanced malware writers designed their code for performing 

many illegal activities such as monetary gain, ideologies, and politics. One such malware 

family is, advanced persistent threats which were written against politics and ideologies 

[33]. Advanced persistent threats such as Stuxnet used different delivery techniques to 

gain sufficient access privileges over the victim computer. Malicious malwares are 

intentionally designed to harvest money illegally. For example, Zeus bot is sold in the 

black market as crimeware kit which is used for producing customized malware variants. 

A Botnet is an interconnected collection of compromised computers under remotely 

controlled by BotMaster. A Botnet can be used for massive Distributed-Denial-of-Service 

(DDoS) attacks, installing key-logging that can steal victim’s password and data, and 

compromising computers to prepare them for infection by future attacks. Certain malwares 

are purposefully designed to steal sensitive information such as financial information and 

user credentials which can later sold in the black market. Ransomeware averts service to 

legitimate users by hampering or stopping customary services, or hiding data. This type of 

malwares is used to harvest money forcefully from tainted computer users [34]. 

 
2.2.2 Malware Deliverance Mechanism 

 
 Malwares are designed with the intention of infecting hosts by exploitation of 

unknown vulnerabilities, social engineering, and negligent security practices. Security 

vulnerabilities permit malware authors to freely run their code with necessary privileges. 

These comprise include code injection, input validation, privilege escalation, cross-

scripting vulnerabilities, and input validation. During the release a software, designers 

unintentionally left some of the uncertain vulnerabilities and patches, the malware authors 

make use of these openings before they are known. For example, zero-day vulnerabilities 

are mainly troublesome for many software, because they allow malware writers to 

profitably taint several susceptible hosts. In addition, malware utilizing zero-day 

vulnerabilities can compromise many hosts freely until such vulnerabilities are ascertained 

and patched. 



24 

 

 Malware usually targeting hosts with slipshod security policies seek computers 

with weak passwords. These include scanning an entire network for discovering hosts 

which are running common network services. Once succeed the malware cracks the 

discovered network services by attempting dictionary attacks. Another tricky technique 

which support remote attacker in exploiting a host is by convincing an end-user through 

social engineering. For example, Trojan horses may trick end-user to download and 

execute malware. One such malware family is Zeus or Zbot which has been sent to 

targeted email crusades, in turn sent to targeted victim computers as electronic greeting 

card from shipping invoice or white house. Of these three delivery mechanisms, the use of 

exploiting security vulnerabilities is very rarely used. This is because, the effort required 

to exploit such security breaches. Rather than discovering security vulnerabilities, remote 

attackers typically buy them on the black market [33]. However, exploits are only possible 

as when the targeted vulnerabilities remain open.  

 
2.2.3 Malware Trend with Hook Techniques 

 
More than 50 million of new malware counts were discovered in the fourth quarter 

of 2014. Typically, an average of six new malware samples discovered every second. By 

the end of 2015 [35], the McAfee Labs project has collected more than 500 million 

malware samples. Malwares primarily infect computers through social engineering via 

exploitation of lack of security policies. Malware authors make use of such security 

vulnerabilities to enable privileged execution. Today, most recent malwares are designed 

with advanced techniques depending on the operations which they try to execute. To 

evade detection, most malwares often embed some of the operations at the time of 

executing their code. First, they inject their malicious code into legitimate processes of an 

application to initialize and carry out its illicit operations. Second, they disable all 

currently running security software applications to evade its detection. Thirdly, they can 

hide its existence by accessing hidden file features illegitimately. There are many forms of 

malicious software that can constantly affect a user’s computer. Today, more advanced 

malicious software is incorporated with rootkit techniques to make detection more 

difficult. It has been in the wild for more than 15 years [26]. Different malware adopts the 

different masquerading method to avoid its detection [36]. As a result, rootkits can 

dynamically defy detection either by hiding from view or messing AV software. Because 

of these characteristics, rootkits are potentially dangerous to the integrity of user data.  
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Rootkits can be used for either legitimate purpose, such as debugging or malicious 

purpose when combined with malicious software. In order to execute different pre-coded 

tasks, malicious software needs to perform some initial operations such as enumerating 

processes and services, opening a port, or establishing a network connection on the victim 

computer. A malicious rootkit can use either user-space API hooking or kernel-space API 

hooks in order to remain hidden. Hooking is a set of code which alters the normal behavior 

of the operating system by intercepting the system API functions or information exchange 

passed between different system resources. Hooking can be used for either legal purpose, 

such as debugging and extending functionality or to host many illegal activities with the 

use of rootkit technique. Hooking can be used by malicious code such as rootkits, which 

try to hide themselves. As mentioned earlier, rootkits use different types of hooking 

techniques in order to remain hidden.  

In order to bypass malware preventive measures such as AV software, advanced 

malware writers create a new type of malware by encrypting, signing, reordering, padding, 

compression, or otherwise simply changing its code without modifying its functionalities. 

Such changes can be applied easily by using software tools such as packers and 

encrypters. Few malware variant modify them automatically at the time of propagation. 

For example, metamorphic viruses modify their code structures when they disseminate 

[37]. The computing environment continues to evolve both in complexity and size as 

illustrated by emergence trends such as ultra large scale systems. This certain increase in 

complexity might introduce new and unknown security vulnerabilities which also 

increases the complexity of its detection. All these points motivate the defenders 

community to find a solution which is capable of discovering all malwares that avoid 

traditional defense systems. 

 
2.2.4 User Mode Malware 

User-mode rootkits work in Ring 3 mode, which infects the operating system 

outside the kernel level. They replace drivers, dynamic linked-library files and various 

processes with their own versions, which don’t show the rootkits’ presence. They also 

intercept system calls   between   the   kernel   and   software   programs, making sure the 

forwarded information doesn’t include any evidence of the rootkits. User-mode malicious 

rootkit can able to hook user-mode applications, data structures and system library files 

through API functions to evade its footprints. 

 



26 

 

2.2.5 Kernel Mode Malware 

 
Unlike user-mode malware, kernel-mode malware tries to manipulate either kernel 

level APIs or other system resources. Sometimes an attacker may inject malicious code 

into kernel and misuse control data structures and non-control data structures to obtain 

appropriate access rights over the system objects. Furthermore, a remote attacker may 

target vulnerable software to tricky end-user to download and execute malicious code into 

the victim computer. Such attacks might use rootkit technique to compromise a single 

operation on the victim computer, thus it becomes sufficient to compromise the entire 

system. Therefore by monitoring or inspecting the behavior of each API function call, it is 

possible to discover bot like malicious software. An attacker usually look for single 

vulnerable point on the victim computer but the defender needs to monitor thousands of 

both user-mode and kernel-mode resources.  

2.3 Analysis of Malware Detection and Prevention Techniques 

 
Traditional defense systems against malware attacks include the adaptation of 

security related automated tools, the design of trusted computing environment, and the 

awareness of secure computing practices. Making cognizance about safe computing 

practices to computer users is essentially important in avoiding intrusions, offering less 

chance to phishing attempts, and preventing other intrusive attempts.  

Techniques such as trusted computing ensures protecting sensitive data through 

signing code which permits users to verify that whether it came from trusted party. 

Different anti-malware software is designed uniquely with specific detection time to be 

spent for each stage in the malware life cycle. Each anti-malware technique has its own 

advantages and challenges. Figure 2.1 shows various techniques to be applied during the 

life cycle of a malware to detect malware attacks, it limitations and challenges. Malware 

defense techniques can be classified into three types such as static malware analysis, 

dynamic malware analysis techniques and automatic malware analysis. 
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Figure 2.1 Malware Life cycle versus malware Detection Techniques  

 

2.3.1 Static Malware analysis  
 

Static malware analysis technique is mainly focused on understanding the internal 

structure of its executable part or analyzing it to discover its functionalities without 

executing them. Methods such as AV scanning, string analysis, identification of scripts, 

reverse compilation, and hashing falls under this category. The AV software is no longer a 

match for today's threats. Because it alone does not provide complete protection and does 

not offer enough protection. It cannot be designed to detect, defend and remove all kind of 

malware attacks at any given time. As a result, current anti-malware defense software is 

not completely sufficient. 

Though Antivirus software can detect only known malware types, one of its noted 

advantages is that they generate low false positives. However, such signature-based 

malware detection software’s are suffered from several weaknesses. First, AV software is 

inherently reactive i.e., it finds malware attacks only after a computer has been infected. It 

also requires signatures of unknown malware to be analyzed and discovered prior to 

detection. Second, AV software fails to locate a malware variant which has been modified 

from its predecessor. Thirdly, such security software uses heuristic techniques to discover 

as many common set of malware variants as possible. Recent AV software designers 

focused on reducing the required number of signatures of malware variants and reforming 

its analysis [38] but not against detecting, preventing, and removing zero-day attacks. 
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2.3.1.1 Network Level Malware Analysis 

 
The number of security vulnerabilities that target the Internet and computer 

networks is increasing more and more over time. An IDS is a security application like 

access control mechanism, antivirus software, and/or firewalls, which is developed to 

prevent communication system and information against unusual pattern types. 

These scarce are commonly referred to as peculiarities, exceptions, outliers or 

anomalies in different application domains. The main reason for launching such patterns 

by outside attackers is to purposefully disrupt the computer network, unauthorized access 

to the network and/or steal sensitive information. Several IDS research has been developed 

in the past to improve the detection precision rate and detection stability. As an intruder’s 

exploit is conspicuously vary from the predefined system security policies, they can be 

detected. There are many advantages of making intrusion detection as a component of the 

all-inclusive defense system. However, various traditional computer system and its 

associated applications were designed to situate in a location where security was not a 

major concern. Therefore, such system and applications are targeted by malware writer 

when mounted in the modern network scenario. Additionally, security design flaws or 

bugs in computer system and application become targets by a malware developer to attack 

them. As a result, many existing preventive solutions may not be work well as expected. 

A Host based IDS (HIDS) can monitor a computer for discovering intrusive 

activities, whereas a NIDS checks network related activities or events such as IP 

addresses, network packet traffic, network protocol exercised in those packet, service 

ports, etc. Depending on the type of acquired information to be analyzed, an IDS can be 

further classified into either signature- based, behavior-based or hybrid-based. The 

characteristics of various IDSs are listed in Table 2.1.  

(i) Anomaly based NIDS Techniques 

 
Network intrusion detection technique has been in the wild for more than few 

decades. In a real time scenario, an intranet is connected to the outside world through the 

Internet. Therefore, by installing the Network IDS (NIDS) in a suitable place, it can read 

all network traffics to find out suspicious packets. Though signature-based NIDS are good 

at detecting well-known vulnerabilities, they fail to detect new, unknown vulnerabilities, 

even if they included minimal variants of its predecessor. 
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Table 2.1 Characteristics of various IDSs 

 
Type of IDS Characteristics 

Anomaly 

Based 

(i) Assumes that all intrusive events are inevitably anomalous. 

(ii) It builds an activity profile for legitimate operations and validate 

whether any system state deviates from the pre-established profile. 

(iii) Threshold value need to be set precisely to avoid false positives 

(iv) Computationally expensive, because a large number of profile 

matrices need to updated to minimize system overhead. 

Behavior 

Based 

(i) Detection capability of the underlying system depends on the set of 

unique signature given to detection engine. 

(ii) Capable of detecting only known attacks. 

(iii) Specifying a unique signature for a malware sample that covers all 

of its possible variations is a challenging issue. 

Hybrid Based 

(i) Aim to improve the detection accuracy of the IDS by combining 

both Misuse – and Anomaly – Based techniques. 

(ii) Capable of known and unknown malicious intrusive activities. 

 

The other type of IDS, called, anomaly based NIDS often attempts to determine the 

natural behavior of the system to be secured, and raise an alarm whenever the current 

observation deviates a predefined acceptance threshold. The noted benefit of this method 

is its potential to discover new and previous unfamiliar attack types. Anomaly detection 

has been widely used by security applications such as monitoring enemies’ activities in 

military, detection of cyber intrusions, and online credit card fraud detection.  

In the recent past, researchers developed and presented many important and 

effective anomaly-based intrusion detection techniques that might act as additional line of 

defense in a computer network. There are many literature surveys exist in the field of 

network anomaly detection which gives most useful information about its challenges and 

issues to the defenders community [39-46]. Misuse based IDS types are commonly used to 

explore known intrusive malicious samples but anomaly based IDSs try to discover 

unknown malicious samples.  Anomaly detection system is receiving more and more 

consideration from both real time application implementation and theoretical point of 

view.  
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Based on the type of techniques applied in the ‘behavioral’ classification of 

different events of the underlying system, Anomaly based NIDS (ANIDS) methods can be 

classified into four various classes such as statistical based, machine learning based, 

knowledge based, and combination learners based.  

Statistical based ANIDS 
 

In the statistical based methods, the normal behavior of the given data is 

determined whether an unseen sample is an anomaly or not using statistical inference test. 

Few existing research papers of this scheme are discussed below. 

Tong et al. [47] and his colleagues proposed an anomaly detection system which 

can detect anomalous network packets using kernel component classifiers. For features 

that are associated with some major component, the values are extreme large. The non-

linearity issue of network traffics was well addressed. Wattenburg et al. [48] presented a 

model to detect computer network traffic that might contain anomalies. This model 

importantly relies on statistical inference technique and first order alpha-stable model. The 

alpha-stable modeling is mainly used to classify online network traffics to detect 

anomalies that are associated with flooding and flash-crowd attacks. To achieve promising 

detection accuracy, the model used the generalized likelihood ratio test. Lee at al. [49] 

presented an anomaly detection method based on online over sampling principal 

component analysis algorithm was presented. It attempts to detect the presence of outliers 

from a huge data samples by updating through online. The process of oversampling the 

victim fragment and extracting the direction of the fragment, the proposed approach 

allows determine anomaly activities using the dominant eigenvector. Expert knowledge 

system plays a vital role for handling uncertain pieces of information. 

Though statistical ANIDS have many advantages, its limitation includes the 

following: First, most statistical based techniques rely on the basic assumption of a quasi-

process being stationary which is not realistic in real time. Second, ANIDS can be 

susceptible to blending attacks. Third, time taken to report a detection alarm is directly 

propositional to the time requirement of building models. Finally, choosing the right 

statistic for complex distribution is not straight forward.  
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Soft computing based ANIDS 

 
Soft computing based ANIDS techniques rely on the construction of implicit or 

explicit model which are capable of categorizing the patterns to be analyzed. Soft 

computing system is thought of include techniques such as Artificial Neural Network,  

Artificial Immune System, Fuzzy logic, Genetic Algorithm, Rough set and clustering & 

Outlier because often no single technique can offer exact solution. Research works that 

belong to different categorizes is presented below. 

The outlier aspect of clusters might be sometimes used for quantifying the 

deviance degree of a specific cluster [50] for the detection of cyber intrusions. The Nearest 

neighbor method was applied for data classification. The complexity of proposed 

unsupervised IDS is directly proportional to the size of test dataset and its attributes. 

Zhuang et al. [51] proposed a system named PAIDS (Proximity-Assisted IDS) with the 

goal of identifying the new and fast propagating worms. PAIDS has been trying to obtain 

enhanced performance by working collaboratively with existing anomaly-based IDS. 

Their approach assumes that during the worm-propagation starting phase, the infected 

victim hosts can be grouped based on IP address and DNS used. Jabez et al. [52] proposed 

an outlier based intrusion detection approach to detect cyber intrusions. A specific dataset 

was taken to measure the presence of intrusions by using the neighborhood outlier factor 

method. The use of limited dataset and training model are the two weakness of this 

approach. 

Liu et al. [53] presented an approach that monitors malicious activities at the 

network to prevent known and first-hand attacks using unsupervised neural networks. This 

real hierarchical intrusion time solution uses Principal Components Analysis neural nets to 

avoid the limitations of sing lelevel structures. Conditional based anomaly detection is 

presented in [54]. It relies on finding difference among data attributes which are classified 

into environmental attributes and indicator attributes. This method detects anomalous if 

any deviation in the predefined value of indicator attributes. However, it does not consider 

environmental attributes in few cases. The precision of this method precisely depends on 

its learning phase. Adetunmbi et al. [55] proposed a rough set theory and then a k-NN 

classifier mechanism to determine network intrusions with the intention of increasing 

detection rate of the system and minimal false alarm rate.  
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Classification based Network intrusive detection techniques can achieve better 

results than clustering based mechanisms as they use labeled training instances. In 

conventional classification methods, additional information can be integrated by retraining 

the whole test dataset. But it is a time consuming process. Incremental type of 

classification algorithms [56] make use of such retraining more powerfully. Although 

these mechanisms are effective, they cannot identify known intrusions until sufficient 

training data is supplied to retraining process. Tajbakhsh et al. [57] aimed at constructing a 

model which produces fuzzy association rules with reference to classifiers and use them 

for detecting general network intrusions.  

The fuzzy sets theory provides an effective way to categorize different classes of 

normal and/or anomalous. A training dataset that belongs to a particular type is validated 

by using matching parameters produced by the proposed approach. If the compatibility of 

a test sample falls the predefined threshold, then it is considered as anomalous. Geramitaz 

et al. [58] presented a network intrusion detection system that rely on fuzzy rules to 

recognize the occurrence of specific or general exceptional network patterns. However, 

training instances play a vital role to decide the detection accuracy of the system. The 

research paper [59] is devoted to the development of network intrusion detection system 

that uses genetic algorithms to construct detection rules. A chromosome of individual 

genes mapped to various aspects such as the root-user attempt, type of service attempt to 

use, or logged in or not. The author concludes that malware attacks that are common can 

be traced easily compared to unusual characteristics. 

Visconti et al. [60] presented a performance based Artificial Immune System for 

detecting specific anomalous behavior. This system monitors anomalous activities by 

examining the detailed and different states of specific parameters. An intervaltype-2 fuzzy 

sets hypothesis is applied to dynamically produce different system status. To deal with 

issues of avoiding scale of a large network that can gather flow statistics information 

collectively, Duffield et al. [61] presented a machine learning algorithm to transform 

packet-specific measurement into measurements for discovering unusual anomalies. 

Specifically, the authors make the relationship between network alarms and feature vector 

which was built by extracting flow statistics on the same network traffic. And then a 

unique set of rules to discover anomalous is generated. 
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Abbes et al. [62] presented a method an intrusion detection system that adopts 

protocol analysis and the concept of decision trees. First, the proposed approach generates 

a unique adaptive decision tree for various different application layer protocols. Then, 

detecting either any data record contains anomalies or not. The anomalies record might 

include a variety of footprints such as scans, Trojans, and botnets. However this type of 

system requires precise datasets for exactly detecting anomalies and also not able to 

pinpoint unknown intrusions. Muda et al. [63] presented a two phase prototype model for 

detecting network intrusive activities. At first, k-means clustering algorithm is applied to 

categorize test samples into three clusters that belongs different groups such as probing 

attack data, DoS attack data, and authentic data.  

Such data collection is achieved by setting the value of each cluster centers to the 

mean values obtained by groping appropriate data points. Finally, the authors apply a          

Naive Bayes classifier approach to classify sample data into five different accurate classes 

such as Probing, remote to user, user to root, and normal. Palmieri et al. [64] developed a 

two-phase anomaly detection scheme based on various distributed sensors which are 

located throughout the local area network. With the help of Independent Component 

Analysis, mechanism, the proposed scheme extracts the essential network traffic 

components. These components later will be exercised to construct the standard traffic 

profiles which act as vital role in the next phase to classify anomalous from normal 

traffics. Though soft computing techniques are popular, some disadvantages of them are 

pointed out below. 

 Most techniques suffer from scalability problems and training. 

 The insufficient availability of legitimate network traffic data makes the training of 

these methods more difficult. 

 Rule generation by rough set methods introduces proof-of-completion. 

 Fuzzy association rule based methods, tasks such as dynamic rule update, and rule 

subset identification to be performed at runtime becomes difficult task. 

 
Combination Learners based ANIDS 

 
 A combination learner system and method incorporates multiple techniques to 

attain higher detection accuracy. Examples of such systems are Ensemble-based, Fusion-

based, and Hybrid-based methods. Each method has its own advantages and limitations.  
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Some of existing research works that apply combination learners’ techniques is 

discussed below. Tong et al. [65] introduced a hybrid neural network secure prototype that 

can be used to solve problems of either anomaly detection (or outlier detection) and 

misuse detection. It is capable of detecting collaborative intrusive attacks using memory of 

historical events. Folino et al. [66] presented the idea of ensemble paradigm that uses a 

distributed data mining algorithm with the intention of improving detection accuracy rate 

when discovering malicious or illicit network activities using genetic programming. The 

presented framework rely on distributing data across various autonomous sites and some 

useful knowledge is extracted in   way  from data and uses the pre-generated network 

profiles to forecast anomalous behavior.  

HMMPayl [67] is a fusion-based intrusion detection model where the sequence of 

bytes identifies the payload part of a network packet and Hidden Markov Model (HMM) 

can be used to analyze them. First, the algorithm is used to extract features of network 

packets and then applies HMM assure the same sensitive power of n-gram analysis. 

HMMPayl uses the idea of Multiple Classifiers System to produce better classification rate 

and to avoid evasion of IDSs. 

 
Knowledge – based ANIDS  

 
 In knowledge-based ANIDS techniques, network events or host operations are 

validated against predefined set of patterns or rules of attack. The objective for the design 

of such systems is to discover each known attack uniquely, thus handling of occurrences 

of intrusive activities become easier. Knowledge based methods can also be categorized 

into different approaches such as expert systems, logic-based, and ontology-based.      

Benferhat et al. [68] presented an intrusion detection method and alert correlation scheme 

by combining the expert knowledge with probabilistic classifiers. Especially, the presented 

approach uses three decision tree classifier algorithms, namely, Naive Bayes, Hidden 

Naive Bayes, and Tree Augmented Naive Bayes. The authors claimed that their approach 

achieves better results than existing benchmarking intrusion detection tools. 

Ontology based model with soft computing technique for malware behavior 

analysis is presented in [69]. The proposed system contains two main stages. During the 

first stage, it collects information such as the event logs of network connections, registry 

entries, and local memory activities from the victim system to extract more information 

about unknown malware behavior.  
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Then the extracted information is used to build a unique ontology to discover 

malicious executions. The important advantages of knowledge-based ANIDS are those of 

flexibility and robustness. Their noted drawbacks are listed below. 

 
 The design of high quality knowledge-based ANIDS is often time consuming and 

difficult task. 

 Such methods may not be able to discover unknown intrusions. 

 Non-availability precise signature of legitimate and attack data increases the 

overall false alarm rate of the system. 

 Dynamic updating process of knowledge – base is very costly operation. 

 

The taxonomy of existing network intrusion detection system for malware 

detection with their type of strategy, nature of detection, type of attacks detected along 

with the observations and limitations of the network level malware analysis are tabulated 

in Table 2.2. Another suitable place to detect and prevent malware attacks is the end-

system. Compare to network analysis of malware detection, malware analysis at the      

end-system permits the defenders to closely monitoring the behavior and functionalities of 

a malware instance in a sandboxed environment. So that defenders can design an effective 

malware prevention system. As this thesis work focused on end-system part, network 

intrusion detection techniques have been reviewed but not considered for implementation 

or comparison. 
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Table 2.2 Taxonomy of various existing NIDS techniques 
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Liu             
et al. [53] 

Centralized Non-real time All Attacks 
Defining rules to detect 
various types of malware is a 
challenging problem 

Tong          
et al. [65] 

Centralized Non-real time 
DoS & 
Probing 

Suffer from false positives 

Tajbakhsh  
et al. [57] 

Centralized Non-real time All Attacks 
Training the system to 
classify anomalous is needed  

Su              
et al. [56] 

Distributed Non-real time All Attacks 

Cannot identify known 
intrusions until sufficient 
training data is supplied to 
retraining process 

Folino        
et al. [66] 

Others Non-real time DoS 
Used pre-generated network 
profiles to forecast anomalous 
behavior. 

Wattenberg 

et al. [48] Distributed Real time 
Floods & 

Flash Crowd 
Fail to handle encrypted 
packets. 

Khan          
et al. [59] 

Distributed Non-real time 
MS-SQL 
overflow 
attempt 

Constructing rules to detect 
all possible malwares is a 
tedious task 

Muda         
et al. [63] 

Others Non-real time All Attacks 
Few malware pretend to be 
legitimate which is hard to 
identify 

Ariu           
et al. [67] 

Others Non-real time 
DoS & 
Probing 

The encrypted part of payload 
pose a serious challenge 

Geramitaz  
et al. [58] 

Centralized Non-real time Probing 
Training instances play a vital 
role to decide the detection 
accuracy of the system 

Lee              
et al. [49] 

Centralized Non-real time All Attacks 

Expert knowledge system 
plays a vital role for handling 
uncertain pieces of 
information. 

Huang           
et al. [69] 

Centralized Real time 
Advanced 
Persistent 

Threat 

Not possible to detect all 
malwares. 
Inferred similarity level is not 
sufficient when dealing 
unknown malware 
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Challenging Issues of NIDS 

 
However, despite the inaccurate specification of attack signatures tend to increase the 

false positive rate of anomaly-based system than in signature-based method. The most 

challenging issues of anomaly-based NIDS are: 

 
 Despite the inaccurate specification of attack signatures tend to increase the false 

positive rate of the system than in signature-based method. 

 To reveal detrimental vulnerable attacks those impel to generate inconsiderable 

traffic. Actually this type attacks initiated be an entity inside the secured network. 

 Encryption can be used to prevent content based technique. 

 Blending attacks may traffic to appear legitimate. 

 It is difficult to identify malicious code that does not send or receive any traffic. 

 Sheer packets/second reduce the NIDS ability to keep up and running effectively. 

 It is required to have larger memory to analyze large amount of TCP connection 

fields to discover a wide range of malware attacks. 

 These systems may also be required to track IP fragments, ARP packets, and other 

sensitive information. 

 
2.3.1.2 Host Level Malware Analysis 

 
In addition to network level malware analysis technique approach, another suitable 

place to supervise and investigate the malware’s behavior is at the end-host. It is possible 

to detect a malicious code attack even before it gets executed in the victim computer.  

However, current host-based malicious code detection techniques do not use 

effective models. As a result, these models cannot capture essential properties of a 

malicious executable. Traditional AV software principally relies on either file hashing or 

unique byte sequence of a malware [70]. But malwares with code polymorphism and 

obfuscation can able to bypass these techniques without detouring the natural execution 

flow of a system call. Static analysis based techniques mainly rely on using features of 

malware to identify its attack. Few existing work based on static analysis concentrate on 

byte code analysis using machine learning and data mining have been proposed as an 

alternate to traditional signature based technique [4].  
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In addition, an entropy based unique byte-code analysis technique also exists to 

detect encrypted, packed or embedded malware attacks [71]. Because, static analysis 

based techniques, importantly, relying on features of each malware authors embedded 

encryption or compression technique to obscure such analysis, graph matching, and 

clustering techniques [72-73]. Although this kind of malware defense technique works 

effectively against known malware samples but completely fails to deal unknown malware 

executable. This is because, new malware variants can be easily crafted by integrating 

techniques such as obfuscation, encryption, and self-modification into existing malware 

[74-75]. 

There have been few ideas proposed to detect native API hooks in Windows.       

Wang et al. [76] described an association mining based technique to analyze API 

execution flow. By associating API sequence using Portable Executable (PE) parser, they 

construct association rules and finally the malicious malware is identified. But this 

approach did not focus on various characteristic of a stealthy rootkit. Liu et al. [77] 

presented a review of rootkit detection techniques. Also, the authors developed X-Anti, a 

multi-way based detection method to detect different rootkits. In order to maintain their 

system, each node’s information needs to be updated frequently and timely. Yi et al. [78] 

presented a review to analyze Windows rootkits and various stealth techniques to attack 

the Windows system. They also discussed various detection techniques that have been 

used by the detection tools today. Unfortunately, these techniques also bring new 

challenges to the detection and defense against rootkits. White et. al. [79] developed a 

plug-in to effectively identify the contents of all user allocations. But it will not describe 

every possible allocation. Additionally paging issues, data structure invariant and some 

undocumented APIs in Windows environment were not discussed.  

Hejazi et al. [80] reviewed API calls on the stack to locate some data structure, 

especially those which handles encryption. Their approach works without knowing the 

structure of data which was in user space. This limits their ability to retrieve user data.     

Deng et al. [81] developed IntroLib, a tool to reveal user-level library call and behaviors 

which are generated by a malware based on hardware virtualization. In order to intercept 

library calls made by malware, IntroLib used page-table mechanism at the hypervisor 

level. This however fails to detect malware that could obfuscate its memory structure and 

library calls directly invoked by malware. 
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Researchers have proposed different techniques to protect misuse of Windows 

APIs functions. Because, malicious code can interact with Windows OS through Windows 

APIs function calls. Wang et al. [76] presented a static analysis method to detect malicious 

programs. This method collects the calling sequences of native APIs from legitimate 

programs and sets up a data model using Support Vector Machine (SVM). Then, the 

method proposed by Wang et al. detects malicious code by analyzing its calling sequences. 

Unfortunately, this method is unable to stop malicious code in real time and malicious 

code an easily mimic a legitimate calling sequence.  

Rabek et al. [82] presented a static analysis approach to monitor system calls at run 

time and to identify software executables. This approach is simple, practical and effective 

for user land malware detection. But Rabek et al. approach failed to detect the malicious 

code directly invokes the kernel level service request. Wagner et al. [83] proposed a 

method to handle mimicry attacks in Linux environment. Their method records addresses 

of system call services into Interrupt Address Table (IAT). Whenever a process is waiting 

to get system service it was intercepted by their framework and checks whether the caller 

address is in the IAT. This method was not tested over Windows systems.  Method such as 

the idea presented in [84] can also be used to understand the activities of a malware that 

comes from untrusted outside network using Honeypot. 

With an increasing amount of malware adopting rootkit techniques to evade AV 

software, further research into defenses against rootkit attacks is absolutely essential. The 

taxonomy of existing solutions for detecting malware using static analysis with their type 

of malware to be detected, level of detection, performance overhead, along with the 

observations and limitations of the static analysis of malware detection technique are 

tabulated and given in Table 2.3. 

Challenging Issues of Static Malware Analysis 

 
 This method completely fails to deal unknown malware executable. This is 

because, a  new malware variants can be easily crafted by integrating techniques 

such as obfuscation, encryption, and self-modification into existing malware. 

 Malicious code can sometimes mimic a legitimate calling sequence. 

 Because static analysis techniques rely on using features of malwares to identify 

them, setting precise feature set is a difficult task. 
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Table 2.3 Taxonomy of various existing Host level static malware Analysis techniques  

E
xi

ti
n

g 
S

tr
at

eg
y 

P
er

fo
rm

an
ce

 

O
ve

rh
ea

d
 

T
yp

e 
of

 m
al

w
ar

e 

d
et

ec
te

d
 

L
ev

el
 o

f 
D

et
ec

ti
on

 

O
b

se
rv

at
io

n
s 

Yi et al. 
[78] 

High Rootkit Network 
Packets with encryption, 
compression, etc pose a real 
challenge 

Park et al. 
[73] 

Acceptable Worm Host 
Focused only on limited 
behavior of malwares 

Deng et al. 
[81] 

Acceptable Malware Host 
Kernel level hooking is hard 
to detect 

Mansoori   
et al. [84] 

High 
Intrusive 
Activities 

Host 
Malwares that pretend to be 
legitimate is difficult to 
detect 

Cesare et al. 
[72] 

High 
Packed and 

polymorphic 
malware 

Host 
Unpacking such malware for 
analysis will increase time. 

Canzanese 
et al. [74] 

Acceptable Malware Host 

Malwares with techniques 
such as obfuscation and self-
modification is really 
difficult  

 

 
 

Graph Based Malware Analysis 

 
To eliminate the shortcomings of signature-based approach, defenders have 

utilized graph-based models [70] [85-86]. Graph based model is used to solve many 

complicated problems in engineering and technology. Graph mainly reflects the 

relationship between real world entities and attributes. A graph is an attractive method for 

analyzing malware attacks efficiently [87]. In order to analyze malware attacks in the 

Internet, Red team has been manually generating graphs. But their work has either error-

prone or complex for a malicious malware that adopts API hook technique. So researchers 

are opting different technique such as code graph and call graph, control flow graph, data 

flow graph to build and analyze malware attacks.  
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An API Call Graph (ACG) is a candidate solution which is a suitable data 

illustration of the data and control flood of software programs. Additionally, it offers 

information about local data usage of a procedure and global data that can be exchanged 

between different procedures. Call graph acts as a suitable model either to study the 

behavior of a program or for tracking the flow values between different components of a 

program. ACG can also be used to recognize programs that are never invoked. The API 

function calls of an malicious executable can be extracted either through static analysis 

using binary code disassemble tools such as IDAPro [88] or by executing the malicious 

executable in a sandboxed environment and monitoring them using tools such as 

APIMonitor [89]. 

Graph Construction and Graph Matching Algorithms  
 

A potential solution for constructing an ACG is through using static tools which 

can generate a multipath graph automatically. However, such tools fail to consider the 

actual API function calls being invoked by a malicious executable program.                   

This is because, recent malware authors use techniques such as obfuscation and packing to 

evade detoured malware function calls. An ACG for a program can be easily constructed 

without considering the parameters associated with the calls. This can be achieved by 

constructing a table containing all function calls to be raised which represent nodes of the 

call graph and the reference between calls showing that represent all the edges of the 

graph.  An API function call analysis must only do once and the order in which it is 

analyzed is not important. However, the construction of the call graph depends on the 

order of each function call to be analyzed when presenting the OS resources i.e., 

parameters of the function call. In programs, it is possible to discover invocation of many 

distinct API call references from single API call that contains OS resources. It is therefore, 

important to ascertain all API function call from such a reference API call to construct a 

complete ACG. In order to use ACG to detect the presence of a malware in a computer, it 

is important to compare call graphs that were generated based on malware samples against 

the ones representing legitimate programs. To compare two graphs, it is required to have a 

graph matching algorithm which is basically classified into two types such as exact and 

inexact. The exact graph matching algorithms have been used only when both given 

graphs have same number of vertices, whereas inexact graph matching is useful even 

when the number of vertices is different in both graphs.   
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There are three classes of graph matching techniques; namely, graph isomorphism, 

Longest Common Subgraph (LCS) matching, and graph edit distance. Both graph 

isomorphism and LCS are proven to be NP-complete [90] and computationally expensive 

to calculate edge weight. As a result, the research community has focused to devise fast 

approximation algorithm to avoid such issues. The graph edit distance matching algorithm 

is the best solution to solve inexact problems, but its complexity increases its overall 

execution time. There are many different techniques that could be used to generate an 

ACG and compare two given call graphs. 

Guo et al. [91] proposed a binary translation approach to analyze and detect 

malware execution. The authors generated control flow graph based on malware’s 

behavior and then another API sub-graph was generated to compare its activities.          

Lee et. al. [85] generated a call graph using malware’s Portable Executable (PE) file 

format in which each node represents a system call and each edge represents a call 

sequence. The call graph is then converted into a code graph to analyze them. Li. et al. 

[92] presented a compiler based rootkit prevention technique which cannot permit the 

kernel level control data with arbitrary points. They prevented rootkit attacks by 

transforming kernel control data into indexes of jump tables in which only legitimate jump 

targets are allowed by the kernel’s control flow graph. Since rootkit can inject jump 

instruction in any table, scanning them is a tedious and time consuming process.  

Zander et al. [93] presented a graph theoretic framework for detecting one of the 

dangerous malware known as botnet. A graph portioning algorithm is used to separate 

botnets in a tainted network. But processing encrypted network packets pose a serious 

challenge.  Karbalaie et al. [94] presented a malware detection system based on API 

functions call analysis. Every API call is depicted as a graph and then the Longest 

Common Subsequence (LCS) algorithm is applied to compare two graphs to determine the 

similarity between them. This method can able to confine system calls in execution and 

then generates behavioral graph. The graph which had highest similarity value is 

concluded as malicious. But LCS algorithm can be solved in NP-complete time which 

increases its computational time. Riesen et al. [95] proposed a framework for malware 

detection that rely on hybrid signature using API call graph. The proposed method solves 

the disadvantages of both signature and behavior based methods. This method can able to 

detect both known and unknown malwares with low false positive rate. 
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Few existing research works [90] [96-97] used different techniques such as 

signature matching, pattern matching, packet sampling approach for malware detection but 

such techniques suffer from computational complexity. However, this method generates 

more false alarms. Bai et al. [98] discussed a call graph clustering approach for malware 

detection. The authors represented malware sample as a call graph and compare these call 

graphs based on graph edit distance. Afterwards similarity score to cluster these malware 

samples is calculated. K-medoids and density based clustering algorithm DBSCAN 

techniques are also proposed for clustering malware samples. The authors stated that              

K-medoids clustering technique is not able to address to all malware families whereas 

DBSCAN technique can able to address almost all the malware families.  

The investigations of existing research works have been shown to adopt different 

approaches to generate API call graphs. A major issue of the precise generation of an API 

call graph is its incomplete construction. This is because of the exclusion of API call and 

its associated resources during the construction of the API call graph which may result 

into inaccurate. Jaikumar et al. [99] presented a graph theoretic approach for the detection 

of different kind botnets present in a computer network. For graph generation, the nodes 

which represent an infected computer can be added into the set V if a new computer which 

is not in V exhibit malicious activity.  A noted point this approach is the representation of 

weighted edge which is derived from the exploit co-occurrence of malevolent operations 

across the entire network.  

The cost involved in the bipartition process is the weights of each edge that move 

towards from node in set P to the node in set Q. To make bipartition optimal, the cost 

involved with P and Q is minimized using normalized cut algorithm. The graph bipartition 

is a recursive procedure. The complexity of the graph construction algorithm is O(|V||E|). 

The pseudo code of the graph construction and graph partitioning algorithms are given 

below: 

 
/* Graph Construction Algorithm */ 

1. begin 

2.    for (each compromised computer) do  

a. add compromised computer into V 

b. edge (e) ← assign edge weight that ranges from 0 to 1 

c. if ( new infected computer found) then  
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begin 

i. increase weight of new ‘e’ 

ii. goto step 2 

3.                   end 

4.            else 

 begin 

i. remove a node from V when infected computer postpone  

   its malicious activities 

ii. create a new ‘V’ 

5.                    end 

6. end 

 

/* Graph Partitioning Algorithm */ 

 
Step 1. Estimate |V| dimensional vector to bipartition the given graph 

Step 2. Determine if the bipartite graph can be further bi-partitioned 

Step 3. If step 2 is true then goto step 1. 

 
Elhahi et al. [100] proposed an API call graph technique for the detection of 

malware attacks. First, the function calls to be executed by a malicious executable and its 

dependency parameters will be extracted to model an API call graph. The constructed 

graph is then compared with a database of malware call graph samples using a graph 

matching algorithm. However, the runtime complexity of the graph matching algorithm 

depends on the number of nodes in the query graph. The graph matching algorithm that 

relies on graph isomorphism is given below: 

 
/* Finding Optimal Subgraph Algorithm */ 

 
1. begin 

2.       Similarity ← 0 

3.       for (each subgraphs (a and b) of API call graphs (Q and G)) 

4.         for (each edge in a)  

5.           for(two vertices in a)  

6.                best path ← if two nodes belong to the same dependence subgraph  

          endfor 
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     endfor 

                         endfor 

7.       Similarity (a, b) ← maximum ( similarity value) 

8.       Similarity = similarity + Similarity           

9.   end 

 
Let Q be a query graph and G be a data graph. Let ‘e’ be an edge in Q and two 

vertices x and y belong to G. In addition, x and y belong to the same subgraph in the API 

call graph. Then a modified greedy algorithm namely, graph edit distance is applied to 

find the best path (P) that involves e with x and y using Eqn. (2.1). 

 

  Similarity(Q,G) = maxi 
 )(QEe

maxj Similarity(e,P) / |E(Q)| (2.1) 

The complexity of the algorithm is O(|E(Q)||P|) where |E(Q)| is the number of edges in the 

query graph and |P| is the number of best paths.  

Zhao et al. [101] presented a graph based approach to detect known as well as 

unknown malware. The function call graph of a malicious executable is extracted and 

analyzed through machine learning technique to identify unknown executable files. But 

representing the complete control flow of programs is a tedious task. Park et al. [73] 

proposed an approach for the construction of a behavioral graph that represents the 

execution behavior of a set of known malware instances. The behavioral graph is 

generated by clustering or grouping a set of unique behavioral graphs that represent kernel 

level objects and its features based on system call traces Even though this method 

produces 0% false positives, malware writers obfuscate legitimate system calls by 

rewriting the binaries or source code itself. Table 2.4 presents the taxonomy of graph 

construction algorithms and graph comparison algorithms developed for detecting 

malwares along with their complexity, observations and limitations. 
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Table 2.4 Taxonomy of various existing graph-based malware detection approaches 
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Lee et. al. [85]  
 

O(|V||E|) 
V=system calls,  
E=relationship between 
system calls 

Does not consider 
information about call 
graph parameters 

Using graph union 
and intersection  

Few edges are omitted  

Park et. al. 
[73]  

O(|V||E||µ|| |) 
V=kernel objects, 
E=Dependency between 
two kernel objects 

Discards potential  
information such as 
dependency between 
system calls 

Using weighted 
common behavioral 
graph 

Few edges are omitted 

Zhao et. al. 
[101]  

O(n × D(lg(|D|))) 
V=system calls, 
E=Dependency between 
V 

Do not consider parameter 
information aspects of 
system calls 

Data mining and 
Feature selection 

Lacking of training  

Elhadi et al. 
[100]  

O(|E(Q)||P|) 

V=API calls and its 
associated resources, 
E=Dependency between 
V 

Take longer time to 
construct a call graph  

Graph Edit Distance 
algorithm 

Takes longer time to 
compare call graph and 
model graph 

Jaikumar et al. 
[99]  

O(|V| |E|) 

V=Infected computers 
E=Liklihood of similar 
activities between two 
Computers 

Takes longer time to 
identify all infected 
computers in a network 

Graph partitioning is 
applied. Graphs are 
separated based on 
the behavior of 
infected computers 

Fail to detect a bot is 
which designed to 
perform its pre-
programmed behavior 
in random order. 
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Challenging Issues of Graph based Malware Detection 

 The runtime overhead of graph based approach is usually NP-complete 

 Graph based approach is more robust and evade detecting unknown attacks 

 Some malware which pretend to be legitimate is a challenging issue  

 An attack graph model provides only limited view of security of a network and for 

a large network, analyzing a hug volume of attack scenarios is a tedious process 

 
2.3.2 Behavioral Malware Analysis 

 
One of the techniques proposed to address the weakness of traditional static 

malware defense mechanisms are based on behavioral analysis or dynamic analysis. In 

behavioral analysis method, the predefined properties of executing legitimate software are 

used to discover the presence of malware. Behavioral monitoring of each system call 

innovation made by processes of an executable is often utilized in recent anti-malware 

software. This approach works effectively, as it terminates malicious actions when it 

discovers such actions [6].  

A complex problem which forces the anti-malware software to run longer time is 

the huge quantity of data being generated by malware on a daily basis. The cross-view 

validation technique for detecting hidden traces of stealthy malware have been learned and 

implemented for testing user- applications [102], within the kernel of the OS [77], inside 

the virtual machine [103] and using coprocessor hardware techniques [104].  

2.3.2.1 User-Mode malware Detection and Prevention 

 
 Malicious rootkits refer to a collection of software routines designed to hide their 

presence and other malicious activities and enable the attacker to take control of the victim 

computer. Moreover, rootkits can also be used as backdoor to spy user or system’s 

activities. The attacker can then capture sensitive information about either end-user or 

computer. As Windows is the one of the most popular and widely operating system, today 

much malicious software is being developed with the intention of affecting Windows OS. 

In order to launch malicious activities, Windows rootkits adopt a mechanism called 

‘hooking’ which can modify the predefined execution path of a system call. However, 

rootkits need to access native APIs to accomplish their tasks. There exist two different 

rootkits such as user-mode rootkits and kernel-mode rootkits. The former types of rootkits 

work in ring 3 i.e. infect the victim computer outside the kernel and try to the original 
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system related files with fake detoured code. Unlike user-mode rootkits, kernel-mode 

rootkits affects the OS core and thus can permit the remote attacker to take complete 

control of the victim computer. Both type of rootkits intercept the pre-installed anti-rootkit 

software’s in the victim computer and make sure that they does not include any footprints 

of its own. As mentioned earlier, rootkits use different types of hooking techniques to 

misuse both user-mode and kernel-mode data structures such as IAT/EAT and SSDT to 

remain hidden and evade anti-malware software.  

 

Import address table hooking 

 
The Import Address Table (IAT) is the most important call table of the user space 

modules. The IAT keeps the references of all routines exported by a particular Dynamic 

Link Library (DLL). And each DLL that an application is linked with, particularly at load 

time, will have its own IAT. Many executable files have embedded one or more IATs in 

their structure that are used to store the addresses of existing libraries that they import 

from DLLs. Most of the user land rootkits use the IAT hooking technique to intercept the 

API function calls. IAT entries are filled by the Windows loader at boot time. Thus, to 

maneuver an IAT, it is mandatory to access the address space of the request. One way to 

achieve this is by using DLL injection technique. Normally rootkits use DLL injection 

techniques to modify the address of the specific function in the IAT to point to the address 

of the rootkit function where it is presented. Therefore, when the application calls a 

specific function, the rootkit function is called instead. 

 

Inline Hooking 

 
Detour patching is another technique to divert the predefined execution path to 

malicious code without altering IAT call table entries. This technique is implemented by 

inserting a JUMP statement into the target routine to divert the execution path. Therefore, 

whenever the currently executing thread executes this jump instruction, the control is 

transferred to a detour routine. The original portion of the code from the target function 

which is deposited, in coincidence with the jump instruction returns back to the target 

code, is known as ‘trampoline’. Therefore, the initial jump in the trampoline replaces a 

certain code when it is inserted and at the end. Using this technique it is possible to 

arbitrarily intercept the flow of execution. Intercepting every system service calls that use 

native API is a tedious and time consuming process.  
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Forrest et al. [105] expressed the idea of using a profile for system calls of high 

privileged processes. This approach offers many advantages compare to user-mode 

behavior based detection techniques. First, kernel root processes are more vulnerable than 

user-level processes onto a computer system. Second, they have predefined set of behavior 

that is more firm over time. Ideally, each kernel service request is mapped to a predefined 

set of system call chain of execution paths that it can spawned. Deng et al. [81] presented 

IntroLib, a framework for tracing user-mode library function calls made by malicious 

executables. IntroLib is enabled by hardware virtualization and residing outside the guest 

OS. In order to monitor the control flow transitions between library functions and 

malware, IntroLib utilized shadow page table technique in hypervisors. But IntroLib is 

virtual machine based in nature and cannot detect system call reordered attacks.  

Lutas et al. [106] proposed a hypervisor based method of protecting user-mode 

processes against malware attacks in Windows. This method is also based on hardware 

virtualization. In order to protect user-mode processes against malware attacks, page-fault 

execution is injected in the guest OS to monitor all swap-in and swap-out memory 

operations. However, signature of different functions must be extracted from each OS 

separately to locate malware attacks. Aboughadareh et al. [107] presented a framework 

named, SEMU that combines both user-mode and kernel-mode analysis outside the guest 

OS to analyze malware attacks. The OS that runs on the virtual machine introspects all 

kind of operations between the OS and malware. At user-mode, SEMU logs all kind of 

activities such as system calls, input output controls, and information exported by DLLs.  

Ahmed et al. [96] presented a runtime malware monitoring and detection system 

that rely on API call arguments (spatial information) and its dependence sequences 

(temporal information) information and machine learning algorithms i.e., malware 

detection rely on spatial-temporal information available in the API function calls. This 

malware detection approach requires to define the accurately and also cannot prevent 

evasion attempts. Another malware detection approach that relies on anti-debugging 

function which mainly used to prevent malware form analyzing a malicious program is 

proposed by        Yoshizaki et al. [108]. If the behavioral patterns of an application differ 

from the behavioral patterns of legitimate application, then it is detected as malicious.  
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Table 2.5 presents the taxonomy of user-mode only malware detection by 

monitoring few important user-mode data structures along with their type of detection, 

samples taken, performance overhead, data structures monitored, observations and 

limitations. 

Challenging Issues of User-Mode only Malware Detection Approach 

 
 Malware that target to evade detection cannot be detected by only monitoring user-

mode data structures 

 The behavior of few malicious programs may behave and appears to be legitimate 

programs. 

 Malware that directly invoke API function calls through kernel level cannot be 

detected. 

 Advanced stealthy malware might duplicate its name and identities similar to 

benign programs and try to forge the kernel of the OS to get service 
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Table 2.5 Taxonomy of various existing approaches for detecting and preventing User-mode malware attacks 
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Hejazi et al. 
[80]  9 API functions API hook attacks Not validated 

Sensitive API 
functions 

Tracing API function calls and its 
flow is not resolved 

Ahmed et al.   
[96] 

416 Malicious 
samples 

100 benign samples 

Malware attacks 0 % API function calls Fail to encounter evasion attempts 

Kumar et al. 
[102]  

Legitimate 
applications 

Memory resident 
attacks 

Not validated None 
Scanning the code and data segment 
of memory is a tedious process 

Deng et al.[81]  93 Malicious 
Samples 

Hypervisor based 
Library function calls 

< 15 % None 
Virtual machine based in nature and 
System call reordered cannot be 
detected 

Aboughadareh 
et al. [107] 

3 Malicious 
Samples 

Hook Attacks > 20 % DLL files Virtual machine based technique 

Yoshizaki etal. 
[108]  Ago bot Malware attacks 0 % 

API call parameters 
and its sequences 

Did not tested in real time 
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2.3.2.2 Detection of Hidden Entries in User-mode  

 
In order to execute different pre-coded tasks, malicious software needs to perform 

some initial operations such as enumerating processes and services, opening a port, or 

establishing a network connection on the victim computer. A malicious rootkit can use 

either user-space Application Programming Interface (API) hooking or kernel-space API 

hooks in order to remain hidden. All the detection methods found in the literature 

implemented different techniques with the intention to assist the defenders in ascertaining 

rootkit footprints. These techniques range from identifying for unique signature pattern in 

the impending malware sample to supervising system behavior. The important issue with 

live analysis is the authentic information such as files and functions returned by the OS. 

The crosscheck-based comparison approach that aims to ascertain hidden processes and 

services concealed by stealthy malicious executables by comparing two different list of 

information. Blacklight, one of the Windows rootkit detection tools use cross-check based 

approach for discovering hidden footprints of malware. Its pseudo-code given below. 
 
 
/* Hidden Process Detection Algorithm using cross-check based Approach */ 

 
Step 1.  Start looping from 0 to 0x41DC valid Process Identifier (PID) 

Step 2.  Call OpenProcess() function on every PID. The OpenProcess function calls  

             NtOpenProcess () function. 

Step 3. The NtOpenProcess function calls PsLookupProcessByProcessId to verify whether  

the process exist in the list. PsLookupProcessByProcessId uses the PspCidTable to      

verify the same. 

 

Step 4. NtOpenProcess function calls ObOpenObjectByPointer to obtain the handle of the  

            process being checked. 

Step 5. If successful then store the information about the process in a list. 

Step 6. Goto step 1 

Step 7. Obtain another list of information by using CreateToolhelp32Snapshot which  

 extract information about all currently running process. 

Step 8. Compare the two different list of information. The discrepancy between them  

 discovers the hidden entries. 
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From the introduction of VICE, the first rootkit detection tool, many researcher 

proposed and implemented different cross-check based solution in the form of either 

algorithm or tool. Few existing solution that talked about discovery of hidden entries in 

Windows were discussed below.  

In order to detect hidden processes, Kumar et al. [102] presented an approach to 

crosscheck two different process lists generated by calling higher-level user-mode APIs 

and lower-level APIs. The discrepancy between the two lists shows hidden processes. 

However, if the application runs under limited privilege rights then it would fail to 

manipulate system related resources and also cannot access protected memory areas. Saur 

et al. [109] discussed an algorithm to locate paging structures of impending processes 

which are concealed by malicious software. Schuster et al. [110] developed a search 

prototype to scan an entire memory dump to reveal hidden or terminated processes and 

threads. Burdach et al. [111] described an approach to enumerate unseen processes. This 

approach is actually implemented in the Windows memory forensics toolkit.  

Betz et al. [112] developed a tool, called MemParser to enumerate the active 

running processes of the underlying operating system. Their tool can also dump the 

process memory. George et al. [113] programmed Kntlist to analyze and evaluate kernel’s 

internal data structures such as list and table to extract important processes, threads, and 

other data. The Windows kernel keeps many tables and list to manage all of its resources. 

By inspecting them, it is possible to catalog all items which can help for detecting for 

malware footprints. However, this approach cannot detect kernel objects that are 

influenced by the OS and processes have already been terminated but not entirely erased 

from the memory.  

As many rootkits adopt a hooking technique to hide their traces, Yin et al. [114] 

programmed HookFinder, a tool to find hooked activities of unfaithful binaries using fine-

grained crash analysis approach. But, it has not been revised since 2008. Another similar 

tool, HookMap [115] has utilized backward data segmentation technique to trace address 

of memory pages which can be abused by malicious rootkits to embed hooks. The 

crosscheck view approach was used in GhostBuster [116] to detect rootkits by comparing 

two different sets of information, inside-the-box and outside-the-box. However, rebooting 

the OS during an external scan would produce a complexity overhead.  
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Microsoft’s Rootkit Revealer [117] is a rootkit detection tool which generates two 

different lists of information in the same underlying system to reveal the presence of 

rootkits. However, it can detect persistent rootkits that can only hide files and registry-

related settings in Windows operating systems. But it does not detect hidden processes and 

services. To detect hidden processes, they compare the process scheduling list to the list of 

all processes within the kernel. Though their discussion is on Linux, the same concept can 

be applied to Windows.  

Rootkit detection systems require inspection from outside the potentially 

compromised operating system. For example, virtual machine introspection [118] runs a 

security service within a privileged domain and uses memory introspection APIs exposed 

by the hypervisor to analyze the state of a guest system. Most existing anti-rootkit 

detection tools crosscheck information generated by tainted system calls against system 

information generated by its own for identifying rootkit traces. A stealthy malware 

conceals its footprints by controlling OS function calls which cannot be hidden. But, using 

offline investigation to reveal hidden traces of a malware is very difficult. In short, most 

existing techniques suffer from issues such as lack of integration, high false positive rate, 

overhead produced by complex configurations and scalability and performance issues.  

Jones et al. [119] described and implemented a tool named, Lycosid, a virtual 

machine monitoring method for the detection of hidden processes and services. Lycosid 

uses cross-view validation approach to compare the information obtained about processes 

in a guest OS and information obtained at lower - level using Ant farm VMM component. 

However, Lycosid obtained both information from virtual machine which is not always 

produces trusted output. In addition, guest level component is vulnerable to malware 

corruption.  

Richer et al. [120] presented a system named, Linebreaker which can able to detect 

hidden rootkit footprints by comparing hypervisor level information and OS level 

information obtained from guest OS. Similar work presented in [121] also used cross-view 

comparison approach for detecting hidden entries of rootkits. This approach compares the 

VM extracted states and hypervisor extracted VM’s execution states. The taxonomy of 

detecting hidden processes and services of malicious programs in user mode for 

optimizing or improving the a malware detection approach samples taken for testing, 

performance overhead, platform implementation, type of detection, and observations and 

limitations is presented in Table 2.6. 
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Table 2.6 Taxonomy of various existing approaches for detecting hidden entries of a malware 
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Wang et al. 
[116]  

10 File hidden 
malwares and     
120 spyware 

< 10 % Windows 

Cross-view for 
detecting ghostware 
programs that hide 
files 

It cannot detect malware that hide 
processes in user-mode 

Jones et al. 
[119]  

50 Processes 0.7 – 5.3 % Linux 
Cross-check based 
approach 

It obtained both information about 
processes from the VMM and guest 

Kumar et al. 
[102]  

50 Samples < 10 % Windows Scanning memory Malware affected memory pages are used 

Fu et al. [122]  2 rootkit malwares Nil Windows Cross-view 
Few malware can bypass the anti-rootkit 
detection tools used in the experiment 

Xie et al. 
[121] 

3 applications 2.5 Linux 
Cross-check based 
approach 

Trust hypervisor level information 

Richer et al. 
[120]  

13 Rootkit samples 9.5 % Windows 
Cross-check based 
approach 

Rely on hypervisor level information 
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2.3.2.3 Combination of User-mode and Kernel-mode Protection 

 
Attackers may also tricky end-users through drive-by-download attacks to 

compromise a vulnerable computer or network. For launching drive-by-download attacks, 

remote attackers might use vulnerable browser or its plug-in. Hsu et al. [123] presented a 

scheme namely, BrowserGuard to detect and prevent drive-by-download attacks by analyzing 

each and every downloaded objects. Based on the outcome of the analysis phase, 

BrowserGuard either permit or block the object being downloaded without user’s consent. 

Without analyzing the runtime state of the malicious object being downloaded and its source 

file, the BrowserGuard can able to block the execution of a malicious application. However, 

BrowserGuard was designed to support only IE 7.0 browser that runs in a Windows platform. 

Malware that incorporates rootkit technique may also become a serious threat to system 

security. Baliga et al. [124] developed an anomaly based prototype namely, Gibraltar for 

automatically discovering kernel level rootkits that target modifying kernel level data 

structures. Gibraltar mainly applied the concept of data structure invariants to identify kernel 

level malicious rootkits. Though Gibraltar was effective against kernel-mode malware attacks, 

it was designed to identify only 23 rootkits. 

 Remote attacks might also use vulnerable software to inject malicious code 

with the intention of hooking and compromising system services. Sun et al. [125] proposed a 

behaviour-based method for analyzing the behaviour of an API function call both in Windows 

and Linux platform. This approach only blocked malicious API function calls and permit all 

legitimate system services being directly serviced by the kernel. But identifying malicious 

operations that directly calling lower level API functions pose a serious challenge. Similar to 

remote attacks, insider attacks is also a serious threat to system security. Rajagopalan et a. 

[19] presented a policy-based mechanism namely, Authenticated System Call for the purpose 

of discovering compromised applications in Windows. The authenticated system call 

mechanism used an extra argument in addition to system call arguments to check whether an 

application is malicious or not. However, such authenticated system call mechanism required 

to incorporate precise set of policies to locate malicious operations. 
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The system proposed by Nguyen et al. [128] captures malicious code attacks by 

hooking kiSystemService Dispatch Table (SSDT) in the kernel mode. Therefore, any 

malicious code which does not follow the predefined route execution will be detected as 

unauthentic code. The idea was implemented without modifying the kernel of the Windows 

OS, which results ease implementation. However, such proposed approach had certain 

limitations. First, invocation of a system service request with incorrect dispatch ID results into 

system crash. Second, implementation difficulty was neglected which weaken their system’s 

security strength. Third, guessing attack can easily compromise their solution. As an API call 

indicates how a particular task is executed, the values that are supplied to it may also 

important to detect malware attacks. The behavioral operations of binary files are extracted by 

executing them in a controlled environment. The feature sets are defined through API calls 

and its parameters which may then used to create vectors. The feature that deviates from 

legitimate executable is detected as malicious. 

Wang et al. [115] proposed a scheme namely, HookMap with the aim to monitor and 

analyze flow of execution of an application to discover the kernel level hooks that could be 

possibly hijacked by malware for evasion. However, HookMap had challenges such as 

accurately identifying the kernel level hooking with relevant run time context information. In 

addition, dissimilarity in the kernel-mode is also a serious problem. A similar approach was 

proposed [126] to protect SSDT through monitoring user-mode data structures. The taxonomy 

of detecting hidden processes and services of malicious programs in user mode for optimizing 

or improving the a malware detection approach samples taken for testing, performance 

overhead, platform implementation, type of detection, and observations and limitations is 

presented in Table 2.7. 
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Table 2.7 Taxonomy of various existing approaches for detecting and preventing malicious code attacks at Kernel-mode 
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Rajagopalan 
et al. [19]  

3 samples 
 

 96 % 
0.73 – 7.92 % 

Compromised 
applications 

User-mode and 
kernel-mode 

Vulnerable to frankestin 
attacks 

Nguyen         
et al. [128]  

5 applications 
 

  95 % 
3 – 9 % 

Code injection 
attacks 

User-mode and 
kernel-mode 

Supply of incorrect PID lead to 
system crash 

Wang et al. 
[116]  8 Rootkit malwares 98 % 5 – 7 % Kernel hook attacks Kernel-level It fails to detect kernel non-

control data hooks 

Sun et al. 
[125]  

8 applications 97 % 8.8 – 9.10 % 
Malicious code 
attacks 

User-mode and 
kernel-mode 

Malwares that target higher 
level APIs cannot be detected 

Hsu et al. 
[123]  

7 – 18 antivirus 
terminators 

98 % 0.42 – 1.77 % 
Drive-by-download 
attacks 

User-mode and 
kernel-mode 

It can support IE 7.0 on a 
Windows System 

Salehi et al. 
[127]  

385 benign samples 
100 malware 
samples 

98.40 % 3 % Malware attacks Kernel – mode It cannot detect unknown 
malwares effectively 
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Challenging Issues of Behavioral Malware Analysis 

 
 The increase in computational overhead and false positive rate limit its real-time 

applicability 

 Recent malwares can mimic as benign and react later which is very difficult to 

handle 

 System call based dynamic analysis technique rely on the assumption that the 

predefined execution flow of an executable can be coarsely 

 Attacks such as mimicry attack and shadow attack etc. can succeed against process 

level signature based system call detectors. 

 
2.4 Extract of the Literature Survey 

 
Even though advanced anomaly detection approaches can detect unseen type of 

intrusions in real time, it is still relatively immature in the field of network security. The 

computer network traffic seems to be a complicated dynamical system, triggered by many 

factors.  Though there were various different schemes have been discussed in the past to 

detect exceptions, they are mostly based only upon traditional statistical results. In these 

schemes, all network factors are combined to examine the dissimilar network traffics. 

Additionally, detection approaches based on deep packets analysis have reached their 

limits. If attackers implement packet-encryption, then network level malware detection 

becomes a very challenging problem and therefore, network based malware analysis 

technique has not been focused in this research work but surveyed to understand exiting 

techniques and to understand the functionalities of different malware variants.   

In addition to network level malware detection technique, another appropriate spot 

to detect and prevent malware attacks is at the end-system. Though static malware analysis 

technique is effectively applied to detect malwares, it is well suited for detecting malwares 

with known signatures. Because such technique relies on signatures or properties of 

malwares, malware writers embedded techniques such as encryption and compression to 

complicate its detection. Many existing graph based approaches were effectively only to 

detect certain malware activities at the end-system. Such approach needs human assistance 

and suffers from false positives when dealing a huge amount of attack scenarios. 

Additionally solving graph based problem falls under NP-complete problem.  
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Also, malware analysis technique such as AV software mainly relies on using 

features of existing malwares to discover its malicious activities. Therefore static 

malwares techniques are not suited preventing stealthy unknown malicious code attacks. 

Many different malware defense mechanisms were proposed based on dynamic 

analysis in the past to detect malware attacks at user-mode in Windows. Although these 

techniques were proposed to address the weakness of static malware analysis techniques, 

attacks such as lower level API hook attacks and malwares that incorporate rootkit 

techniques to evade AV software and can bypass them.  

In order to discover the hidden entries of a malicious executable to optimize the 

user-mode malware detection approaches, many different cross-check based algorithms 

have been developed and proposed by the research community. In addition, much familiar 

and widely used anti-rootkit detections are also available. But optimizing the detection 

rate, accuracy rate, and false positive is a challenging problem. 

Though many existing policy based solutions overcome some of the problems of 

dynamic malware analysis technique, setting exact policy set for each and newer malware 

variant is a difficult task. In addition, the existing process authorization techniques are not 

sufficient to prevent kernel level malicious code attacks. As a solution, combining user-

mode information and kernel-mode information can provide stringer security against 

stealthy malicious code attacks. 

Hence, to overcome the limitations of the existing malicious code detection 

approaches and algorithm and to provide best detection rate, the following approaches are 

to be devised. 

 
(i) Devising new graph-based malware detection approach using two new 

algorithms to model API function call as a graph and comparing two given 

graphs respectively to rid of the drawbacks of the existing graph-based static 

malware detection approaches and provide better results than existing 

approaches reported in this thesis. 

 
(ii) Devising a new user-mode malware detection approach for detecting and 

preventing malicious code API hook attacks. 
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(iii) Devising a new cross-check based algorithm to discover the hidden entries of a 

malicious executable. The proposed algorithm can also be used to optimize the 

user-mode malware detection approach. 

 

(iv)  Devising a new security enhancement mechanism using both user-level 

information and kernel-level authentication to detect and prevent malicious 

code attacks that target hooking system services in Windows platform. 

 
2.5 Summary 
 

In this chapter, various categories of malware detection and prevention techniques 

such as intrusion detection systems, graph based approaches, static malware analysis, 

behavioral malware analysis, and security policy enforcement techniques have been 

reviewed. The advantages and limitations and challenging issues of well-known and 

widely applied malicious code defense techniques in each category are pointed out. 

Further, the need for mandatory runtime authentication on all suspicious system call 

invocations made be processes of an executable which improves the security strength of 

the kernel is pointed out. Finally, this chapter is concluded extract of the literature survey 

and challenging issues in the current research of a literature survey. 
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CHAPTER 3 

 
 

PROPOSED GRAPH-BASED APPROACH TO DETECT MALICIOUS CODE 

ATTACKS 

 

Today, many modern malware developers is taking the advantage of API hook 

technique to take the control of the victim computer which making it difficult to detect 

their presence. Because of the sophistication of rootkit tools, a remote attacker can use 

native API to compromise any computer which can later be used for many illegal activities 

such as sniffing network lines, capturing passwords, sending spam and DDoS attack, etc. 

Thus to protect end-system by identifying and preventing native API malicious code 

hooking is a challenging problem to the defenders. Today, many different malware-

analysis tools incur specific features against malwares but manual and error-prone. 

Therefore, a behavior-based monitoring detection system has been proposed to effectively 

detect native API hooks in user-mode. Unlike other malware identification techniques, this 

approach involved dynamically analyzing the behavior of native API call hooking 

malwares. A brief preamble about the significance of graph based malware detection is 

discussed in the subsequent section. 

 
3.1 Preamble  

 
Though malicious computer software can be referred to with different names such 

as virus, worm, Trojan, spam, botnet, etc., their ultimate goal is to cause damage either to 

the end-computer or end-user. The advancement in computer technology allows the 

malware writer to integrate obfuscation technique to evade detection specifically API 

hooking. Unfortunately, signature-based detection approach such as anti-virus software on 

the end-computer is not effective against attacks such as system call reordering. To 

overcome this shortcoming, many different behavior-based approaches have been offered. 

However, these approaches bear limitations such as higher false positives; fail to detect 

zero-day attacks, fails to improving the accuracy rate from past experience, etc. In this 

chapter, an API call graph approach has been proposed to capture detouring activities to be 

performed during malicious software execution.  
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As graph based approach can be effectively applied to replica complicated relation 

between entities, it is opted to visualize malicious rootkit behavioral activities by 

monitoring system API calls during runtime. This will help the defender to optimally 

capture malicious system calls from benign calls. 

3.2 Proposed Graph-based Approach 

 
It is assumed that most malicious malwares are developed by inheriting 

characteristics from its previous version. For example, the various versions of TDSS 

rootkit are: TDL1 which was designed to load and run at the time of booting the operating 

system which was designed with the intention of infecting system drivers. TDL2 appears 

to be same as TDL1. However, it includes different names with random string and also 

imports new technique to avoid detection and removal. In order to obtain control over the 

victim computer, TDL3 patches the disk controller driver. Some features of TDL2 were 

updated to make detection and removal more difficult. The aim of TDL4 variant is the 

same as that of TDL3, but patched master boot record to make infection of computers with 

64-bit processor. The overall flow diagram of the GraMD approach is given in Figure. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Flow diagram of the proposed GraMD approach 
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API call Graph Generation  

 
The proposed GraMD consists of two important stages which are referred as pre-

processing stage and post-processing stage. The pre-processing stage is responsible to 

collecting necessary resources of an API function call and integrating them as a graph. The 

API call graph is generated using the proposed call graph construction algorithm using the 

extracted API resources. Which act as graph nodes. The edge in a graph represents the 

relationship between two nodes. A directed graph G=(V, E) is visualized as a call graph in 

which V is a set of vertices that represent a function call of an executable program and E is 

a set of edges which depicts the relationship between two system calls. A directed edge 

(u,v) in E represents a function call of the program, u→v. GraMD attempts to discover the 

malicious code attacks which integrate API detouring technique to launch their illegal 

activities using an API call graph approach. As API function call is a finite set of sequence 

of invocations with ordered parameters and also they communicate with the use of handles 

(Unique identifier), GraMD can identify all necessary resources to construct an API call 

graph for a corresponding function call. For example, Figure 3.2 shows the OpenProcess  

API function call that visually approached as a call graph. The graph shows all internal 

function of the OpenProcess function and all its subsequent calls. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.2 API call-graph 
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Algorithm for computing Graph Edit Distance 

For given a large set of graphs, the difficulty for the computation of the exact 

subgraph of the call graph is to determine exact edit distance that best matches to the 

approach graph. Because new malware can be created from its predecessor and by 

approaching the malware sample as a call graph, the difficulty of categorizing malware 

variants is to discover subgraphs that best match with high similarity. If the call graph has 

more than one edge in common with the approach graph then measuring the similarity of 

best neighbor matching edges is chosen. For two graphs Call Graph (CG) and Approach 

Graph (MG), the problem of determining approximate subgraph is to discover the best 

match subgraph Sa using Equations 3.1 and 3.2 

Sa = Gpara max . sim(MG,CG)              (3.1) 

Sa = Maximize {Simval(CG,MG) = 1} then CG is isomorphic to MG.    (3.2) 

where CG  G and sim(CG,MG) represents the level of matching between CG and MG. 

 
Pre – Processing stage 
 

The pre-processing stage starts by identifying and gathering all API calls of a 

running executable along with all its associated identities such as registry enumeration, 

process manipulation, network resources, memory management, etc. This phase is 

indented to identify all the nodes and edges of an API call graph. And then, a data 

dependent edge of a pair of nodes is generated using the parameters connected with two 

API calls.  A malicious program is executed in an isolated environment and instructed to 

identify the resources of a function being executed. Based on the function call traces, 

GraMD identified the relationships between two function calls. An API call and all its 

associated parameters are used to generate a graph using ACA algorithm which is given in 

Figure 3.3. 

To construct an API call graph, all the functions associated with an executable will 

be identified by referring the Import Address Table (IAT) and Export Address Table 

(EAT). If an API function call is raised then its corresponding name and its parameters are 

extracted to construct an API call graph in which each node contains the function name 

and an edge is established using its parameters list. If two parameters in the parameter list 

are same, then it reflects the dependence between the current and previous API call. 

Finally, all the API call graphs are kept in a database. 
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/* Algorithm for Generating API call dependent graph */ 

1 begin 

2 Extract all function calls of an executable 

3 Select a function 

4 if (Native API call) 

5  { 

6     s.node ← function_name; 

7    Get parameters(function_name); 

8    d.node ← recursive(pointer call analysis); 

9 // Recursive function call 

10    Anynode.generategraph(); 

11  } 

12 endif 

13   Store it in database 

14 end 

 

Figure 3.3 Pseudo code for ACA algorithm 

 
Post – Processing stage 
 

Today, a malware writer can develop a malware by updating new features and 

techniques with its predecessor rather than coding from scratch. This information can help 

the defender to reduce the complexity of considering all kinds of addiction while inquiry 

the approach graph. The objective of the post-processing stage is to generate a subgraph of 

the data graph by referring the approach graph. The intricacy of a graph comparison 

approach has increased when all kinds of dependencies between the edges and nodes in 

Call Graph (CG) and Approach Graph (MG) are accounted. In order to avoid this issue, 

each graph is simplified by finding the best matching subgraph (SG) that can be used to 

exactly identify a malicious API hook attack. The idea of graph comparison is to generate 

a subgraph of CG by best matching the MG. The GED technique [95] is applied to 

determine the similarity between CG and MG. The value of each edge is normalized 

between 0 and 1.  
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The modified graph matching algorithm given in Figure 3.4 mainly used two 

compare two given graphs and to compute the similarity value. Since both the CG and the 

subgraph of MG contain only limited number of edges, the graph matching algorithm 

performs better. This will also help us to prove its correctness. 

 

/* Algorithm for matching two graphs */ 
 

1 begin 
2 simval← 0; 

3 Get the paths of (P1, P2) 

4 if (Paths  P1 and P2 has same label for all edges) then 

5 for each path find similarity using GED do 

6 simval ← simval+simGED(P1, P2) 

7 s.node ← function_name; 

8 endfor 

9 p← number of paths in Q 

10 simval(Q, G) ← simval|P|; 

11 if (simval(P1) = =  simval(P2) )      

12 Msg “malicious API call found”; 

13 Alert(); 

14 endif 

15 end 

 

Figure 3.4 Pseudo code for GMA algorithm 

 

3.3 Experimental Setup 

 
All experiments are carried out on ACER Core Duo with 2.93 GHz processor with 

4 GB RAM and the host machine runs windows 7 operating system. For each system call, 

a corresponding CG is generated and the same is compared with MG. By analyzing many 

root malware attacks, the threshold value of 97% is set to determine whether a generated 

call graph imitates malicious activity or not. If the calculated similarity value of any 

malware exceeds the predefined threshold similarity value, then it can be suspected as a 

malicious malware.  
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By and large, researchers have opted a graph based approach for comparing two 

graphs that aims to detect a malware attack with their own malware datasets against 

various assessment techniques such as LCSA, N-gram, etc. In order to evaluate the 

robustness and effectiveness of the GraMD, a malware dataset that includes different 

families of attacks is collected from some reputed websites [129-130]. Table 3.1 lists the 

malware samples along with the technique integrated used for testing and training against 

various existing techniques. Each malware sample is run in an isolated environment to 

identify and extract API calls and its parameters using the API Monitor tool [89]. 

Table 3.1 Various Malware Families used for evaluation of GraMD 

Malware Family Hook Type Hook Technique 

Rootkit.win32.Agent. Kernel DKOM 

Rustock.A. User Hook 

Rustock.B. User and kernel Hook 

Rustock.C. User and Kernel Hook 

AFX rootkit User Hook 

FU rootkit Kernel DKOM 

HideProcessHook Kernel Hook 

Phide User DKOM 

Shadow walker Kernel DKOM 

YYT rootkit User Hook 
 

The API calls of an executable are identified by analyzing binary files statistically 

using tool like IDA Pro [88] or by executing the binary files dynamically in an isolated 

environment using a tool like API monitor. To dynamically analyze a malicious 

executable files the following three operations are performed. First, the obfuscation cover 

is removed. Secondly, unpacking and decryption are performed over the executable. 

Finally, functions are extracted with all its parameters. Finally, the call graph is generated 

for each API function call using the algorithm given in Figure 3.3. In order to utilize call 

graphs to exactly locate API hook attacks, it is necessary to compare a call graph that 

reflects the API hook behavior against those that reflect benign behavior. To compare two 

call graphs, a modified GED algorithm i.e., GMA algorithm is applied to determine its 

similarity by matching CG with MG. When two graphs have the similarity value either 

greater than or equal to the predefined threshold value, then it is said to be exact matching 

or suspicious malicious call. 



69 

 

3.4 Experimental Results and Discussions 

 
The evaluation results are obtained by conducting simulation experiments for 

comparing the proposed GraMD method against existing methods using some common 

parameters such as true positive, false positive, detection rate, and accuracy rate. These 

parameters are defined and calculated below. 

 True Positive (TP) occurs when a malware is correctly detected as a malware. 

 False Positive (FP) occurs when a legitimate sample is caught to be a malware. 

 Detection Rate (DR) =                                                              (3.3)  

 

 Accuracy Rate(AR) =                                                      (3.4)  

 

 False Positive Rate (FPR) =                                                          (3.5)  

 
 Receiver Operating Characteristic (ROC) curve – It is a two dimensional graph 

used to visualize the performance of the proposed approach by plotting TPR on the 

X axis against FPR on the Y axis. 

 
The effectiveness of the proposed GraMD approach in detecting malware hook 

attacks is evaluated using a dataset consists of 200 malware samples and 50 benign 

applications. The benign applications are gathered by freshly installing application on a 

computer that runs a fresh copy of Windows XP OS. The malware dataset is downloaded 

from a publicly accessible website called ‘VX Heavens’ and divided into three groups 

namely, Rootkits, Worms, and Trojans, which a group on the average contains 70 

malwares and 15-17 benign programs. Then, 70 percent of the dataset is used to train 

GraMD and 30 percent for testing it. 

The accuracy and detection rate of the proposed GraMD approach is further 

investigated by conducting the experiments twenty times and the averaged minimum and 

maximum similarity value of all malware samples from each group is calculated and 

averaged. Table 3.2 shows the averaged similarity values and detection capability of each 

group of existing approaches including the proposed GraMD. 
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Table 3.2 Comparison between similarity value and detection capability  

 

Technique Maximum SV Minimum SV 
Number of malware 
samples not detected 

Family: Rootkits 
Park et. al. [73] 87.74 31.28 4 
Zhao et. al. [101] 92.68 40.56 2 
Elhadi et al. [100] 97.73 58.62 1 
Proposed GraMD 98.23 58.08 1 
Family: Worms 
Park et. al. [73] 82.21 12.18 2 
Zhao et. al. [101] 88.10 19.23 2 
Elhadi et al. [100] 81.69 12.01 1 
Proposed GraMD 92.08 42.34 0 
Family: Trojans 
Park et. al. [73] 80.86 31.90 2 
Zhao et. al. [101] 94.79 18.64 2 
Elhadi et al. [100] 79.32 33.83 1 
Proposed GraMD 90.29 43.56 0 

 
 
 

Table 3.2 shows that the proposed GraMD method has achieved an average of 

93.20 similarity value. Among all, the Park et al. method failed to detect 8 malware 

samples in total produces lowest performance. Whereas Zhao et al. method undetected 

only 6 malware samples. The Elhadi et al. method failed to detect an average of one 

malware sample but GraMD undetected only one malware sample and surpasses the 

method proposed by Elhadi et al. Another important consideration of GraMD approach is 

to evaluate its effective against the detection rate benign samples.  

Figure 3.5 shows that the methods proposed by Park et al., has achieved an average 

of 15.9% of FPR, whereas, Zhao et al., with 11.9 %. In case of rootkits malware samples, 

the method proposed by Elhadi et al., and GraMD failed to detect one instance. The reason 

is, more advanced stealthy malware with rootkit technique intelligently evade its detection. 

The proposed GraMD approach detected all instance of Worms groups and Trojans groups 

correctly and surpasses the existing approaches. 
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Figure 3.5 False Positive Rate of the proposed GraMD and existing Approaches 

 Figure 3.6 shows that the proposed GraMD approach achieved 100% detection 

rate in the worm and Trojan groups but only 97.68 % in rootkit group. This is because, 

before execution, few malware rootkit samples checks whether it is running in a 

sandboxed environment. If so, then they postpone its near future activities. The method 

proposed by Elhadi et al. achieved an average of 97.59% against the same dataset which is 

the second highest in the list. Moreover, the method proposed by Park et al. has achieved 

the lowest DR in all malware datasets. 

 

 

 

 

 

 

 

 

 
 

           

   
 

Figure 3.6 Detection Rate of the proposed GraMD and existing Approaches 
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Figure 3.7 shows the overall accuracy rate of GraMD approach and other existing 

techniques against all 250 malware samples. The GraMD approach achieved the highest 

accuracy rate of 98 % against all 50 rootkit malware samples, but achieved an average of     

100 % in the Trojans and worms groups. Elhadi et al. method has achieved next best result 

than other comparable techniques with an average of 98.21% AR. Moreover, the methods 

proposed by Park et al. and Zhao et al., have achieved an average accuracy rate of 95.09 % 

and 96.53 % respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 3.7 Accuracy Rate of the proposed GraMD and existing Approaches 

 
From the above experimental results and discussion, it is clear that GraMD 

approach outperforms than the rest of discussed existing approaches in all aspects. A 

game-theoretic approach is also used to ensure the optimization of resources consumed by 

the GraMD approach. The game theoretic model dynamically selects a specific API 

targeted by stealthy rootkit malware based on the expected attack scenario. 

3.4.1 Mathematical Verification 

 
A two-player repeated non-cooperative game approach is selected, since malicious 

code attacks are trying to compromise the victim computer repeatedly. More specifically 

malicious code attacks that target hooking user-mode data structures during runtime is 

considered. It is assumed that the game is played between the two players: the GraMD and 

the Malicious Code (MC). The MC is the attacker and the GraMD is the defender. The 

objective of MC is to use ‘n’ number of processes or APIs (e.g. in worst case) from the 
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victim computer with the intention of performing and launching some illegal activities. A 

malicious rootkit attack is successful when atleast ‘m’ APIs out of ‘n’ APIs is utilized. It is 

assumed that a malware attack will not be achieved in single step. Therefore, the GraMD 

detects the initial infection and predict the next attack to be launched in the near future 

based on past experience or historical information. Then, the GraMD immediately 

monitors additional APIs for ‘t’ additional time period as the attack is expected to be 

launched.  

Game Strategies 
 

Let (AS,CA,AR,T), where AS is the set of APIs equipped with PAM which is 

referred to as defender, CA is the system cost for monitoring additional API, AR is the set 

of attackers and T = {1, 2,…n} is the set of target computers. To minimize the 

intermediate calculations, a two-player, non-cooperative game is selected in which the 

number of repetition depends on the number of the attacking steps. Ait is also assumed 

that both players are known about the strategies and utility function they have.  

The possible strategies for GraMD are {no_attention, monitoring}. If the GraMD 

detects an API hook attack, it can select either to ignore the current task or to monitor. In 

case of monitor, the GraMD will select more additional important APIs to monitor. The 

type of the API to be monitored and the length of the monitoring time highly depends on 

the information base of GraMD. The monitoring time will be chosen from the information 

base, based on the attack scenario. When GraMD detects initial rootkit attack which will 

be carried out in multiple steps, it will be able to detect the next possible attack action. At 

the same time, the GraMD will choose to increase additional important APIs being 

monitored. After completing additional task, the GraMD resumes monitoring the standard 

predefined number of APIs.  

On the other hand, the available strategies for the rootkit attacker i.e. MC are 

{end_process, proceed, waiting}. The strategy ‘end_process’ indicates to abandon the 

attack in order not to be detected; strategy ‘proceeds’ means proceeding with the 

predefined next step and strategy ‘wait’ indicates launching the next attack step after 

certain period of time. Since predicting the delay time for every attack action is difficult, 

the delay time to derive the approach is also considered. 
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Formulating the Game 
 

The set of APIs to be monitored by GraMD is denoted as Ac = {a1, a2,…an}. The 

APIs are continuously monitored by GraMD as long as it is in live state. Let Cm denotes 

the additional computational system cost needed for monitoring single API at time ‘t’, 

which is represented as: Cm=r × a, Where ‘a’ is a single API to be monitored and ‘r’ is 

the number of clock pulse to monitor a single API and the time deviation is calculated 

using two local timestamps of the two events.  

Now the total increased system resource cost α is computed in case when the 

GraMD choose ‘monitor’ strategy. This can be represented as:  

α = Summation of drift in monitoring period of each additional API 

   = Time taken to monitor all protected APIs 

                = )(Cm tm
a A
          (3.6) 

Where tm is the additional time to monitor single API. Then, converting these normal 

functions into utility function will be easy for us to apply game theory concept and it is 

given as: 

( ( , )) ( ( , ))R f t a t am m                                  (3.7) 

Where   is the weight parameter to describe the system cost of GraMD. If GraMD detects 

an API hook attack, it will have utility gain of , and - is the cost of damage to be 

caused. Hence the utility function of GraMD with its possible outcomes is: 

                       Cm   detect and stop 

U GraMD =                 t tm d       (3.8) 

                       Cm    0t where tm t dd
     

                       0C t where tm m t md
     

  

 

Where tm  is the increased monitoring time because of the additional APIs to be 

monitored and td  is the delay in launching the near future attack or current attack and   

is false alarm rate of the GraMD. On the other side, when the attack is successful, the 

attacker will gain   and   otherwise. Let Ca  is defined as the security APIs 

consumed by the attacker to make the next step to be successful. This is represented as: 
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( )C t r aa d        (3.9)  

 

Where r is the number of clock pulse to monitor a single additional API and td is the delay 

time. Then, the cost-Utility function for the attacker is defined as below: 

 

( ( )) ( ( ))R f C t C ta d a d  
     (4)  

Where    is the scale factor to define reward for a successful attack. Hence, the utility 

function of RM is given by:        

        0 stop            

                    t tm d     

UMC =          0C t t where ta d m m               (4.1) 

                    0C t where ta d t dm
          

 
Table 3.3 shows the increased system resources for both the GraMD and the MC in 

general format. The Si indicates different strategies to be selected by the GraMD in which 

the monitoring time and the API being monitor will vary. 

 

Table 3.3 Utility Derivation 

 

Players End_process Proceed 

delaytime variation 

td tm    t td m   

no_attention ,0   ,     ,C Cmi ai      , Cai     

( , )S t ai d i   ,0Cmi    ,Cmi     ,C Cmi ai      ,C Cmi ai      

 
 
Performance Evaluation 
  

A case study is conducted to evaluate and simulate the game approach. Since delay 

time in launching near future attack will vary from attack to attack, let’s set it from the 

historical data. A dataset of 100 different rootkit samples is collected which adopt both 

user-mode hook and analyzed them in windows XP virtual machine. By observation, most 

of the rootkit samples affect common native API functions to perform illegal activities in 

the victim computer. The GraMD’s information base contains most commonly affected 

native API functions and their respective DLL file.  
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The evaluation describes the game after the initial attack action i.e., it is infecting 

all executables in the victim computer which is being detected by the GraMD. Now, the 

GraMD will take narrow action based on its intelligence about the impending attack 

following the infecting executables in the attack scenario i.e. from (no attention, increasing 

the additional APIs to be monitored by 50, and monitoring time duration by 400sec, 

900sec, and 1500sec). Also, set  =2, d=0.020,  =3500, and 
' =2500. Table 3.4 

shows the manipulated results for the first round. 

 
Table 3.4 General IAT Hook 

 

 end_process Proceed 800 1200 

no_attention 3500, 0 -3500, 2000 -3500, 900 -3500, 300 

400 2700, 0 2700, -3000 -4300, 900 -4300, 300 

900 1100, 0 1100, -3000 1100, -4100 -5900, 300 

1500 500, 0 500, -3000 500, -4100 500, 4700 

 

It is mentioned earlier that the players are rational and also the attacker knows defender 

strategies and will try to maximize its gain. The optimized result for xP  and yP  is 

calculated using Gambit tool. Table 3.5 and Table 3.6 contain the game result for Table 

3.4. 

Table 3.5 Optimal payoff for xP  

 

payoff no_attention 20 30 50 

300 ½ 4/35 0 27/70 

 

Table 3.6 Optimal payoff for yP  

 

payoff end_process proceed 30 50 

0 13/20 7/50 0 21/100 

 

Finally, a payoff matrix is constructed for general malware hook detection with three 

different strategies as shown in Table 3.7. For simplicity only binary values are used to 

represent the output from rootkit detection module i.e. value 1 represents success and 

value 0 represents failure. 
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Table 3.7 General Rootkit detection payoff 

 
 RegistryKey IAT Inline 

No_attention 1,0 0,1 0,1 

IAT 1,0 1,0 0,1 

IAT, Inline 1,0 1,0 1,0 

 

Simulation Result 

  
 For every scenario, a game theory approach is simulated to calculate payoff matrix. 

From the calculated payoff matrix, the Nash Equilibrium is generated using Gambit tool. 

Each scenario is simulated 10 times in our approach to calculate its corresponding utility 

resource. The average of every scenario is found and is plotted in a graph using MatLab 

software. In addition, the same 10 different samples are simulated in traditional approach 

and corresponding resource values are calculated to discover the difference. Figure 3.8 

shows that GraMD approach takes less resource consumption than traditional approach. 

  

 

Figure 3.8 Resource Consumption 
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3.4.2 Analysis of the proposed GraMD approach 

 
As GraMD divides an API call graph into simple paths and does comparison based 

on these paths instead of comparing the API call graph as a whole, it greatly reduces the 

complexity problem and also avoids scalability problem. In nature, graph matching 

algorithms belong to NP-complete problem and have a computational complexity due to 

slowness. Additionally, many such algorithms do not efficiently solve scalability problem. 

But all these issued are resolved in GraMD. Suppose the sum of the length of a path is ’n’ 

with size ’d’, then , the time complexity of GMA algorithm is O(n log p+ d2) which takes 

less time with reduced space requirement compare to existing graph based malware 

detection techniques.  

 

3.5 Summary 

 
Today, most malware authors have integrated API hooking technique with their 

code to evade detection. In this chapter, a graph based GraMD method has been presented 

to discover API hook attacks which are based on suspicious system call traces and the 

relationship between these calls. In turn, these system calls are represented as a call graph 

and then graph mapping technique is applied. Finally, the system determines the similarity 

rate using GED technique. The experimental evaluation results conducted on the malware 

samples prove that the proposed GraMD method incurs an average of 98-100 % detection 

rate which replicates a significant optimization over the existing methods. 

Though a graph based approach can be effectively detect known malware activities 

but analyzing a hug volume of attack scenarios for a large network is a tedious process. In 

addition, graph based static approach failed to detect and prevent stealthy unknown 

malware. To overcome these limitations, a user-mode malware detection and prevention 

technique using dynamic malware analysis has been proposed and implemented which is 

described in Chapter 4. 
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CHAPTER 4 
 
 

PROPOSED USER-MODE MALWARE DETECTION AND PREVENTION 

APPROACH 

 
It is conspicuous from Chapter 2 that the graph based methods are generally 

preferred for detecting malwares based on the attack scenarios rather than preventing 

malicious attacks. Therefore, a behavior-based malware defense technique, UMDetect has 

been proposed for detection and prevention of malicious code attacks at user-mode. The 

architecture of the proposed UMDetect approach, test-bed and dataset used for evaluation, 

and comparison with the existing techniques are discussed in this chapter. 

 
4.1. Preamble 

  
Today, almost all modern malware writers have been incorporating hooking 

technique into their code either to compromise an end-system or evade its footprints from 

malware detection software and tools which make its detection more difficult. After the 

victim computer has been compromised, it can be later used for launching many illicit 

operations such as stealing important user information, sniffing network lines, sending 

spam, etc,. Therefore, detecting and preventing advanced API hook attacks is a 

challenging problem. Many existing solutions can be effective against API hook attacks 

but error prone and manual. Therefore, a behavior-based monitoring detection method 

namely, UMDetect has been proposed to effectively detect and prevent native API hooks 

in user-mode. Compare to existing malware identification techniques, UMDetect has been 

designed to dynamically monitoring and analyzing the behavior of API function call 

hooking attacks. The experimental evaluation results show that the proposed UMDetect 

approach produced better performance than the existing anti-hook detection tools and 

approaches with no false positive. 

As discussed in Chapter 1, WOW64 subsystem permits executing 32-bit 

applications over 64-bit versions of Windows and thus malware writers are taking this 

advantage to exploit 32-bit versions of processor through 64-bit versions. Figure 4.1 

shows the flow of execution of a user-mode application that invokes WriteFile()  system  

service  routine  which  is implemented in the kernel mode. 
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Figure 4.1 Execution flow of WriteFile() API function 

 
The order of executing each step is explained below: 

i. The user application calls the user mode WriteFile() function. 

ii. The  WriteFile() calls ZwWriteFile() native APIfunction which has a stub in 

ntdll.dll. 

iii. Then, ZwWriteFile() calls KiFastSystemCall function which in turn executes the 

SYSENTER instruction. 

iv. In response to SYSENTER, the program control is transferred to KiFastCallEntry() 

which is located in ntoskrnl.exe as executive service. 

v. This will cause the KiSystemService dispatcher to  call NtWriteFile() function 

using the dispatch ID. 

 
Rootkits use several variations of hooking techniques during its lifetime.  There 

have been many anti-rootkit detection tools are available for the purpose of detecting 

rootkit malwares. Each time such a tool is run, a log file is generated to keep a list of 

detected hooks. The amount of data in these log files is overwhelming as they hold 

information about each and every hook that had been detected on the system. On an 

average, each of these log file contains several hundred lines of code and data.  
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In order to perform malicious operations over the victim computer, malicious 

codes need to interact with the OS through Windows subsystem API libraries. The actual 

implementation of the native API functions resides in ntoskrnl.exe which is located in the 

kernel. Each native API has a reference inside ntdll.dll which is isolated in the user mode. 

After the malicious instructions are deposited in a victim computer, code-injection attacks 

must use native API calls to do further damage. Hooking various API functions into the 

victim computer is an important attacking technique employed by sophisticated malware. 

To defeat current hook detectors, modern malware writers maintain discovering new 

hooking mechanisms. However, the existing malware analysis technique is typically 

manual or error- prone. Therefore, UMDetect, a behavior based monitoring mechanism 

that does not require prior information about hooking method to defeat user-mode hook 

attacks has been proposed. 

 
Import Address Table Hooking 
 

The IAT is the most important call table in the user-mode which keeps references 

of all routines exported by a particular DLL files. IAT entries are filled by the Window 

automatically during load time.  And each DLL that an application is linked with, 

particularly at load time, will have its own IAT. Many executable files have embedded one 

or more IATs in their structure that are used to store the addresses of existing libraries that 

they import from DLLs. Most of the user land rootkits use the IAT hooking technique to 

intercept the APIs at boot time.  Thus, to maneuver an IAT, it is necessary to access the 

address space of the request. Normally rootkits use DLL injection techniques to modify 

the address of the specific function in the IAT to point to the address of the rootkit 

function where it is presented. Therefore, whenever the application calls a specific 

function, the rootkit function is called instead. Hooking a module’s IATs using DLL 

injection can be accomplished by calling HookAPI () function as shown in Figure 4.2. 
 

HookAPI (File *fptr, char* apiName) 

{ 

DWORD bAddress; 

bAddress = (DWORD) GetModuleHandle (NULL) 

return (walkImportLists (fptr, bAddress, apiName)) 

} 

Figure 4.2 HookAPI Function 
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Figure 4.3 shows IAT hook through CreateFile API function. The rootkits had 

managed to create a hook by overwriting the address of the CreateFile function in the IAT 

of the user application. If the entry point of CreateFile in the IAT is successfully modified 

with the address of rootkit routine, all native API calls in the target process are rerouted to 

rootkit routine.  

 
Figure 4.3 IAT Hook by a Malicious Rootkit 

 
The walkImportLists() function checks the module’s PE signature by adding a 

Relative Virtual Address (RVA) to   the   base   address.   Then   checking   each   import 

descriptor will list all routines that are imported from the corresponding DLL. If Import 

Lookup Table (ILT) and IAT contain entries, then the names in the descriptor’s IAT are 

compared against the name of the function that needs to be restored. If there is a match, 

substitute the address of the hooked function. 

 
Inline hooking 

 
Inline hooking or detour patching is another technique to divert the predefined 

execution path to malicious code without altering IAT call table entries. This technique is 

implemented by inserting a JUMP statement into the target routine to divert the execution 

path. Therefore, whenever the currently executing thread executes this jump instruction, 

the control is transferred to a detour routine. The original portion of the code from the 

target function which needs to be redeposited, in coincidence with the jump instruction 

returns back to the target code, is known as ‘trampoline’.  



83 

 

Therefore, the initial jump in the trampoline replaces a certain code when it is 

inserted and at the end the necessary instructions might be executed which were replaced 

and then bounce back to the target code as shown in Figure 4.4. 

 

 
Figure 4.4 Hooking Inline Function  

 
4.2 Architecture of the proposed UMDetect 

 
To monitor and detect native API hooking in the user space, UMDetect intercepts 

native API calls in user mode and looking the traces of IAT entry modification and inline 

hooking. The proposed UMDetect approach is supposed to be installed in a clean system 

and it seizes native API system calls in user mode before they get service from the kernel 

of the OS. Figure 4.5 shows the proposed architecture of the UMDetect system. 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.5 Overall flow of the proposed UMDetect approach 
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DLL classification Algorithm 
 

The proposed UMDetect approach consists of three important modules: DLL 

classification, IAT hook detector and inline hook detector. Intercepting every system 

service calls that use native API is a tedious and time consuming process. Therefore, in 

order to allow legitimate system service calls to be serviced as normal, a new algorithm 

namely, DLL Classification Algorithm (DCA) has been developed. The pseudo code of 

the DCA algorithm is given in Figure 4.6. 

/* Algorithm for DLL Classification*/ 

1. begin 

2. Get DLL Name and handle using GetFileVersionInfo()  

3.  if ((szDllName, dwHandle, dwCount, pBuffer) != 0) 

4.     { 

5.      Extract DLL file information and Store it in a file; 

6.     } 

7.  else use  VerQueryValue()  extract  VarFileInfo  and ValueLen; 

8.   if (bVer && dwValueLen != 0) 

9.    { 

10.    Store DLL file informations; 

11.    } 

12.  if (extracred DLL informations are valid) 

13.   { 

14.     legitimate DLL; 

15.   } 

16. malicious DLL and terminate application; 

17. end 

 

 Figure 4.6 Pseudo code for DCA Algorithm 

 
Since most of the malicious code cannot include properties such as vendor name, 

description and version details in its DLL file,  the  DCA algorithm verifies these 

information to check whether the processes associated with the DLL file is malicious or 

not.  
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To get the vendor name of the DLL file, the GetFileVersionInfo() API function is 

called to get the file version information buffer which contains all the property values of a 

DLL file. To get the specified property value of the DLL file, the VerQueryValue() 

function is invoked. Finally VerQueryValue() function identifies whether the DLL file to 

be imported into IAT is either legitimate or suspicious. 

 
IAT Hook Detector 

 
The IAT Hook Detector (IHD) is the first level of defense module against native API 

hook in the user-mode. All processes that are associated with the suspicious DLL file are 

are given as input to this module. To detect native API hooks in IAT, the IHD performs 

the following steps: 

 
a. The IHD obtains a list of currently running processes by calling the 

EnumProcesses function. 

b. For   each process,   the   PrintProcessNameAndID function is called by passing it 

to the process identifiers which in turn call functions OpenProcess to get the 

process handle, EnumProcessModules to extract the module handles and 

GetModuleBaseName to find the name of the executable file along with process id.  

c. Then IHD compares each process with unknown processes. If legitimate, the 

LoadLibrary function is invoked to load the process into memory. After reading 

the MS-DOS header (MZ), PE, PE extended and section header from the 

executable, IHD determines DLL of an application which has been loaded and also 

the address range of each DLL in memory. Then IHD examines the IAT of the 

executable to examine the entries in each IAT. 

d. Finally, if any entry drops outside of the module’s address collection, the IHD stop 

executing the DLL; otherwise it will be serviced as a legitimate system service 

call. 

 
Inline Hook Detector 

 
As an alternative approach to IAT hooking, many malware writers keep call table 

entries within the requested range and instead modify the code that it points to. Inline 

Hook Detector (LHC) is another level of defense to strengthen the proposed UMDetect 

approach. First, LHC reads the executable file to reach the Export Address Table (EAT).  
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And then LHC calls the ExportAddrTable API function to read the addresses of 

each function in EAT which are responsible for invoking native API functions. To detect 

the detour patches of each function in the DLL file, LHC uses the CheckForOutside 

function to trap 0xE9 or 0xEA which will be opcode for the unconditional near and far 

jump respectively, in the first five bytes of the DLL’s API function. Finally LHC 

identified the address where the CPU will jump to the function and then checks the CPU 

jump address to determine whether it lies outside the pre-allocated address range for the 

DLL file. If any function which are not in the predetermined address range is considered 

to be malicious. 
 

Table 4.1 Malware Family with Hook Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Experimental Test bed 

 
A sandboxed experimental environment setup was arranged with a computer that 

runs Microsoft Windows 7 SP3 OS, Core 2 Duo 2.93 GHz of processor and 2 GB of 

memory and the guest machine runs Windows XP OS. In order to evaluate the 

effectiveness and performance of the proposed UMDetect approach, a set of 20 user-mode 

malware samples (two samples from each family) has been collected from some reputed 

websites, in addition to 10 benign samples. Table 4.1 lists the test samples which are taken 

for evaluating UMDetect. 

 

Malware family name Type of Hook 

Papras IAT 

Bacalid/DetNat IAT 

Haxdoor-B INLINE 

Agent IAT 

Feebs-A INLINE 

Qukart INLINE 

Virut INLINE 

Alman-B IAT 

ProAgent INLINE 

Alman-A IAT 
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4.4 Experimental Results and Discussions 

 
Each malware sample was run in a controlled environment to detect the hooks 

generated by them in the victim machine. Few malware executable does not hook library 

functions when it starts running, but, as time increases, the number of hooks also 

increased. Figure 4.7 shows the result of the total number of hooks generated by each 

malware sample. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Number of hooks generated by different malwares 

 

To show the precision rate of the proposed UMDetect approach, each malware was 

run separately against few standard hook detection tools such as BlackLight [131], 

IceSword [132], VICE [133], R3 Hook scanner [134], and UMDetect.  Figure 4.8 shows 

the values of DR and FPR of various testing tools including UMDetect. Figure 4.8 

indicated that the proposed UMDetect method outperforms than other existing with 95 % 

DR. This is because, few malware behaves liked legitimate. When the testing platform 

reboots again UMDetect detects those malware behavior correctly. Therefore the DR of 

UMDetect falls between 95-100 %. In order to determine FPR of UMDetect, 10 legitimate 

API hooks are implemented as a C++ file in Microsoft Visual studio. Every time a C++ 

file is executed, the proposed UMDetect method identifies all with no false positives. 
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Figure 4.8 Comparison between Detection Rate and False Positive Rate 

 
However, IceSword and R3 Hook Scanner have achieved the same DR of 75 % 

with different false positives. But, both IceSword and VICE has achieved 7 % of FPR. In 

addition the CPU cycles taken by various existing techniques such as the methods 

proposed by Deng et al., Abonghadareh et al., Yoghi et al., and the proposed UMDetect 

have been determined to estimate the overhead to be caused. Figure 4.9 points out that the 

proposed UMDetect approach has caused minimum overhead (2359 CPU cycles before 

executing UMDetect and 3659 CPU cycles after executing UMDetect) than the existing 

approaches.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Performance comparison with the existing Approaches 
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4.5 Summary 

 
With an increasing amount of malware adopting rootkit techniques to evade AV 

software, further research into defenses against malware that integrate rootkit technique to 

evade its detection is absolutely essential. A behavior-based method to trace and prevent 

user-mode malware that target hooking user-mode data structures has been implemented 

on Windows. There are few existing works that aimed to detect and prevent user-mode 

malware has been found in the literature. In addition, several user-mode hook detection 

tools are also available which can be used to detect these types of hooks. The proposed 

UMDetect has been evaluated using a dataset that consists of real-time malware that aims 

to misuse user-mode data structures on Windows. The experimental evaluation results 

indicated that the proposed UMDetect approach incurs 5% better detection rate than 

existing techniques.  

The proposed malicious code detection and prevention approach surpass the 

existing approaches concerning the prevention of malicious code attacks in user-mode. 

However, UMDetect failed to identify and prevent the foot prints of malicious rootkit 

malware. Therefore, the task of discovering the hidden foot prints of malicious rootkit 

malware can really improve and optimize the detection rate and performance of the entire 

malware detection system which is resolved in Chapter 5. 
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CHAPTER 5 

 
 

PROPOSED HIDDEN PROCESS AND SERVICES DETECTION 

ALGORITHM  

 
It is manifest from the literature that the hidden process detection algorithms are 

generally preferred for optimizing the malware detection system. A new algorithm namely, 

Concealed Processes and services Discovery Algorithm (CoPDA) has been proposed and 

developed for discovering the hidden entries of malicious rootkit malware. In the subsequent 

sections a brief preamble about the hidden process detection algorithm is given and then the 

proposed CoPDA algorithm is validated by conducting various experiments using a real time 

dataset. The true positives, false positives, precision rate, detection through hindrance, and 

detection rate of the algorithm are derived and presented. The effectiveness of the algorithm is 

evaluated by comparing it to the widely used anti-rootkit detection tools and existing hidden 

process detection algorithms using various performance metrics.  

 

5.1 Preamble 

There are many forms of malicious software that can constantly affect a computer. 

Today, more advanced malicious software is incorporated with rootkit techniques to make 

detection more difficult. A rootkit is a technique which is designed with the intent of allowing 

the remote attacker to maintain highest privilege over the resources in the victim operating 

system. It has been in the wild for more than few decades. Different malware adopts different 

masquerading methods to avoid its detection. As a result, rootkits can dynamically defy 

detection either by hiding from the view of AV software. Because of these characteristics, 

rootkits are potentially dangerous to the integrity of user data. 

Rootkits can be used for either legitimate purpose, such as debugging or malicious 

purpose when combined with malicious software. There are two basic classes of rootkit which 

are classified based on the mode of operation, such as user-mode rootkits and kernel-mode 

rootkits. As the latter operates in the Windows kernel, they are more powerful than the 

former.  
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In order to execute different pre-coded tasks, malicious software needs to perform 

some initial operations such as enumerating processes and services, opening a port, or 

establishing a network connection on the victim computer. A malicious rootkit can use either 

user-mode API hooking or kernel-mode API hooks in order to remain hidden. Table 5.1 lists 

some important API function names which are targeted by malicious rootkit families to 

execute their operations. 

 

Table 5.1 API functions hooked by malicious rootkits 

Rootkit Malware Hooked Functions 

Zbot ZwCreateThread 

Win32/Cutwails 

ZwOpenKey, 
ZwEnumerateKey 

ZwSetValueKey 

WinNT/Omexo ZwReadFile 

Win32/Ursnif 
CreateProcessA 

CreateProcessW 

WinNT/Ramnit.gen!A 
ZwOpenKey 

ZwCreateKey 

Win32/Dorkbot 

CreateFileA/W 

CopyFileA/W 

ZwEnumerateValueKey 

Win32/Eyestye ZwEnmerateValueKey 

 

There are many different techniques [26] [135] which have already been proposed to reveal a 

rootkit footprint.  

i. Signature based – This approach uses unique signature, i.e., the byte sequence of 

known rookits. Additionally, heuristics and behavior models based on certain actions 

are used to identify a certain family of rootkits. 
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ii. Detecting detours – Windows operating systems are comprised of many important 

data structures such as Import Address Table (IAT), Export Address Table (EAT), and 

Interrupt Descriptor Table (IDT) in user-space and System Service Descriptor Table 

(SSDT) in kernel-space which allows a programmer to carry out task execution. 

Rootkits can either modify or alter these data structures to execute their own code. As 

a result, when there is a request for system related activities, it will always be executed 

by the detoured rootkit code. 

iii. Crosscheck approach – In order to decept rootkit presence, they may alter particular 

data when returned to the defender. Therefore, one of the common approaches to 

detecting rootkit traces is by comparing the results returned from a high-level system 

call and low-level system call. 

iv. Integrity check – A digital signature is created using a cryptographic hash function 

when the system is installed with a clean operating system. Then, each library call is 

checked for code alternation. 

v. Alternative trusted medium - A rootkit can dynamically conceal its existence only 

when it is running. Therefore, the finest trustworthy technique for kernel-level rootkit 

revealing is to shutdown the infected computer and then checks its storage space by 

booting from an alternative trusted medium. 

vi. Memory dumps – In order to capture a live rootkit, this method analyzes the virtual 

memory of the underlying operating system in offline state using a debugging tool. 

 
All the detection methods listed above implemented different techniques with the 

intention to assist the defenders in ascertaining rootkit footprints. These techniques range 

from identifying for unique signature pattern in the impending malware sample to supervising 

system behavior. The important issue with live analysis is the authentic information such as 

files and functions returned by the OS. Most existing anti-rootkit detection tools crosscheck 

information generated by tainted system calls against system information generated by its 

own for identifying rootkit traces. A stealthy malware conceals its footprints by controlling 

OS function calls which cannot be hidden. But, using offline investigation to reveal hidden 

traces of a malware is very difficult.  
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In short, most existing techniques suffer from issues such as lack of integration, high 

false positive rate, overhead produced by complex configurations and scalability and 

performance issues. Therefore, to overcome the drawbacks of the existing algorithms, a new 

hidden processes and services detection algorithm is developed and presented in the 

subsequent sections. 

 

5.2 Concealed Processes and services Discovery Algorithm (CoPDA) 

From the survey, it is identified that almost all malware hide their footprints such as 

processes and services including the entries in registry, files, etc., to stay undetected and 

perform their illegal activities for a longer time. Therefore, focusing on locating these 

footprints to stop them before causing damage is important. This crucial point is mainly used 

to develop CoPDA effectively. As many data guard programs might use techniques such as 

encryption or access control to hide files locally, these issues are not considered. Rootkits 

may hide their traces and activities either from the user or AV. This vital point is mainly used 

to determine whether the underlying operating system includes hidden rootkit traces or not. 

The hidden character of a rootkit can be formalized as follows. 

Let )(tGa  be the set of system-wide objects of type a at time t, and )(tVa  be the set of 

visible objects of type a at time t. Let o be an object of type a. At time t, if thereexist o such 

that )()( tVotGo aa  , then o is caught as hidden at time t. Otherwise, if 

))()((  tVtG aa then the underlying system is in a stable state (with respect to a at time t). 

Let A represent all the available objects in the underlying system. Then,  

)(t
a
G
Aa

UG



 and

)(t
a
V
Aa

UV



 where G and V are the global view and visible 

view of objects in the underlying system, respectively. If any object is in the global view, but 

not in the visible view, then it is caught as a hidden object. As a result, by comparing G and 

V, the list hidden objects are discovered in the target computer. The proposed algorithm, 

CoPDA, is a practical tool that point out the user-level hidden rootkit processes and services. 

In order to produce hard evidence about the hidden processes and hidden services of a 

malicious rootkit, it is mandatory to have a global view and visible view of objects in the core 

system.  
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CoPDA is a crosscheck-based approach to discover and listing hidden processes and 

services by comparing the global view and visible view. One of the methods user-mode 

rootkits can use to hide their detection is to hook a native API function and filter its traces. A 

Windows process will open many handles associated with a process which can be used to 

detect hidden processes. One way to enumerate handles is to scroll through the process 

handles of CSRSS.EXE which holds the handles to all running processes. A list of the global 

view (G) is generated which contains the handles to all running processes by going through 

the process handle of the CSRSS.EXE process of the physical operating system. As rootkits 

hook normal process enumeration functions, the finest way to identify all processes is to make 

use of the NtQuerySystemInformation function. The pseudo code of the global view of the 

CoPDA algorithm is depicted in Figure 5.1. 

 

/* Algorithm for GlobalView */ 

1. begin  

2.          Allocate necessary memory to handle table  

3.          Loop through the range of valid handles  

4.         begin  

5.              Pid←handles.UniqueProcessId  

6.              if Pid belongs to CSRSS.EXE  

7.              begin  

8.                Get Current ProcessId using OpenProcess and GetCurrentProcessId 

9.              end  

10.         end  

11.         repeat loop  

12.        begin  

13.          Enumerate all Processes using NtQuerySystemInformation function  

14.          Separate all child processes created by Services.exe  

15.       end  

16. end  
 

Figure 5.1 Global View of CoPDA algorithm  
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Furthermore, in Windows operating system, services can only run with highest 

privilege mode. As a result, rootkits integrate services not only to keep control over the entire 

system, but also to manage its tasks and to remain undiscovered. Since services are visible to 

the end user, it is important for a rootkit to conceal its services to prevent itself from being 

detected. CoPDA has the ability to locate all hidden services by extracting information from 

Services.exe which is an important process in Windows operating systems for revealing 

rootkit footprints.  

In order to produce a list of the visible view (V), a list of all running processes is 

generated by taking a snapshot of currently running processes in the system using 

CreateToolhelp32Snapshot in the guest operating system with which is used to discover 

hidden rootkit processes and services. Then the child processes that are manipulated by 

Services.exe are separated. The pseudo code of the visible view of the CoPDA algorithm is 

depicted in Figure 5.2. Finally, the entries in the global view are compared against the entries 

in the visible view. Any difference in these two data lists reveal hidden traces of malware. 

/* Algorithm for VisibleView */ 

1. begin  

2.        Take a snapshot of all processes in the system using Createhelp32Snapshot  

3.        Set the size of ProcessEntry32 structure  

4.        Loop through the range of valid process in Process32Entry  

5.        begin  

6.            Walk the snapshot of processes and retrieve the information about each process                  

   using OpenProcess, Process32First, and Process32Next functions 

7.        end 

8.        repeat loop  

9. end  
 

Figure 5.2 Visible View of CoPDA algorithm  
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5.3 Experimental Results and Discussions 

 
 All the experiments are conducted on a physical machine built with an ACER Core 

Duo machine with 2.93 GHz processor, 2 GB of memory and Microsoft Windows 7 as the 

physical operating system. The guest operating system runs Microsoft Windows XP SP1 with 

no service pack. CoPDA has been implemented using the Microsoft Visual Studio 2008 

development environment. Different anti-rootkit detectors are opted for in to verify the 

strengths of CoPDA algorithm using various metrics. Table 5.2 summarizes a description of 

the version and revealing techniques of various anti-rootkit detection tools including CoPDA 

which were used for the evaluation procedure.  

 

 Table 5.2 Characteristics of testing tools including CoPDA Algorithm 

Sl.

No 
Tool Name Version Hooking Cross-View 

1 GMER [136] 1.0.15.15281 Yes No 

2 HeliosLite [137] 1.005 Yes Yes 

3 IceSword [132] 1.22en Yes Yes 

4 Rootkit Unhooker [138] 3.8.388.480 SR2 Yes Yes 

5 HiddenFinder [139] 1.5.6 Yes Yes 

6 BlackLight [131] 2.2.1046 Yes Yes 

7 CoPDA -- Yes Yes 

 

  



 

97 

 

5.3.1 Performance Analysis of CoPDA 
 
 A dataset consist of 1000 malware samples are obtained that belong to different 

infecting technique such as virus, worms, Trojans, rootkits and backdoors from a publicly 

available database [130] [141-142]. Then a carefully read, analyze and record the technical 

details of each malware individually.  

 Finally, a dataset which consists of 100 malware samples that mainly utilized API 

hooking, registry hiding and process hiding technique has been selected for testing and 

training CoPDA algorithm. This study helped to design the CoPDA to react against unknown 

malware. In order to determine the effectiveness of CoPDA in detecting hidden rootkit 

footprints, mainly, hidden processes and services, different samples with cross validation 

technique is used. The dataset is divided into ten groups – a group on the average contains 10 

malwares and 9-10 benign samples. Then the tools are trained on nine groups and the 

remaining one group is used for testing them which is shown in Table 5.3. The computed 

values of all the metrics considered are summarized in Table 5.4. 

Table 5.4 Summary of computed values 

Tool Name 

Weighted Average (%) 

TPR FPR PR Recall F-Measure DA 

Hellioslite 88.14 5.93 93.67 88.14 90.76 91.03 
GMER 85.53 6.00 94.33 85.53 89.45 89.42 
HiddenFinder 85.52 8.13 91.98 85.52 86.82 86.83 
RootkitRevealer 0.0 0.0 0.0 0.0 0.0 0.0 
IceSword 96.18 3.82 96.18 96.18 96.08 96.12 
BlackLight 96.0 3.0 97.27 96.0 96.47 96.50 
Rootkit Unhooker 84.53 7.55 91.85 84.53 87.95 88.50 
CoPDA 100 1.82 98.09 100 98.99 99.02 
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Table 5.3 A brief statistical report of the considered evaluation parameters 

Tool Name Metrics Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10 Avg. 

HelliosLite 

TP 9 8 9 8 8 8 9 9 9 8 8.5 

FP 1 0 0 1 0 1 0 1 1 1 0.6 

TN 9 9 10 8 9 9 8 10 10 9 9.1 

FN 2 1 0 1 0 2 1 2 1 2 1.2 

FAR 10.00 0.00 0.00 11.11 0.00 10.00 0.00 9.09 9.09 10.00 5.93 

PR 90.00 100.00 100.00 88.89 100.00 88.89 100.00 90.00 90.00 88.89 93.67 

GMER 

TP 9 10 9 9 9 9 10 9 9 9 9.2 

FP 1 0 1 1 0 1 0 1 0 1 0.6 

TN 9 10 9 9 8 9 10 9 9 9 9.1 

FN 1 2 2 3 1 1 2 2 1 1 1.6 

FAR 10 0 10 10 0 10 0 10 0 10 6.00 

PR 90 100 90 90.00 100.00 90 100 90 100 90.00 94.00 

HiddenFinder 

TP 9 9 8 9 9 9 10 9 9 8 8.9 

FP 1 1 0 1 1 1 1 0 1 1 0.8 

TN 9 8 9 9 9 10 8 9 9 9 8.9 

FN 2 2 3 2 2 1 2 2 1 2 1.9 

FAR 10 11.11 0 10 10 9.09 11.11 0 10 10 8.13 

PR 90.00 90.00 100.00 90.00 90.00 90.00 90.91 100.00 90.00 88.89 91.98 

RootkitRevealer 

TP 0 0 0 0 0 0 0 0 0 0 0 

FP 0 0 1 0 0 0 0 0 0 1 0.2 

TN 10 10 9 10 10 10 10 10 10 9 9.8 

FN 0 0 0 0 0 1 0 0 0 0 0.1 

FAR 0 0 10 0 0 0 0 0 0 10 2.00 

PR 0 0 0 0 0 0 0 0 0 0 0.00 
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IceSword 

TP 9 10 9 10 9 9 10 10 10 10 9.6 

FP 0 1 1 0 1 0 0 0 1 0 0.4 

TN 10 9 10 10 10 9 10 10 9 10 9.7 

FN 1 0 1 0 0 0 0 1 1 0 0.4 

FAR 0 10 9.09 0 9.09 0 0 0 10 0 3.82 

PR 100 90.91 90 100 90 100 100 100 90.91 100 96.18 

BlackLight 

TP 10 10 9 9 10 10 10 9 9 10 9.6 

FP 0 1 0 0 1 0 1 0 0 0 0.3 

TN 10 9 10 10 9 10 9 10 10 10 9.7 

FN 0 0 1 1 0 0 0 1 1 0 0.4 

FAR 0 10 0 0 10 0 10 0 0 0 3 

PR 100 90.91 100 100 90.91 100 90.91 100 100 100 97.27 

Rootkit Unhooker 

TP 9 8 9 8 9 9 9 8 8 9 8.6 

FP 1 1 2 1 1 0 0 1 0 1 0.8 

TN 9 9 9 10 9 9 10 10 10 10 9.50 

FN 1 2 2 3 2 1 1 2 1 1 1.60 

FAR 10 10 18.18 9.09 10 0 0 9.09 0.00 9.09 7.55 

PR 90 88.89 81.82 88.89 90 100 100 88.89 100.00 90 91.85 

Proposed CoPDA 
Algorithm 

TP 10 9 10 10 9 10 10 10 9 10 9.7 

FP 0 1 0 0 0 0 1 0 0 0 0.2 

TN 10 10 10 10 9 10 10 10 10 9 9.8 

FN 0 0 0 0 0 0 0 0 0 0 0 

FAR 0 9.09 0 0 0 0 9.09 0 0 0 1.82 

PR 100 90.00 100 100 100 100 90.91 100 100 100 98.09 

DA 100 95 100 100 100 100 95.24 100 100 100 99.02 



 

100 

 

5.3.2 Overall Detection Accuracy of CoPDA 
 
 From the usability point of view, allowing CoPDA to generate a low false alarm 

rate is an important issue; otherwise CoPDA will not be competitor against existing anti-

rootkit detection tools if it stopped legitimate applications frequently. CoPDA identifies 

malicious hidden rootkit process and service by generating and matching two dissimilar 

views. The creation of the visible view is manipulated in the user-space of the guest 

operating system. Then, the production of the global view and the matching of the two 

views are completed in the physical operating system. The performance metrics for 

determining the effectiveness of CoPDA are described below.  

 The Precision Rate (PR) and Overall Detection Accuracy (DA) are calculated as 

follows. 

    PR = 
FPTP

TP


     (5.1) 

   DA = 
FNFPTNTP

TNTP




    (5.2) 

 F-Measure – It denotes the measurement of a test’s accurateness by adding recall 

value and precision value into a single measure of performance. Normally, the 

result closer to 100% is good. F-Measure is computed as follows. 

( 

                                                                                                                       (5.3)                                                

 

 Table 5.4 shows that all anti-rootkit detection tools achieved different detection 

accuracy rate, i.e. detecting hidden processes and services, with different FPR. It is 

realized that CoPDA achieved an average of 98.09% PR with 99.02% DA of locating 

hidden processes and services. As few benign applications imitate operations performed 

by malicious software, CoPDA produced 1.82% FPR. When restarting the system, 

CoPDA correctly identified all hidden processes and services with no false alarm. Overall, 

CoPDA had outperformed all other anti-rootkit detection tools in all measures. The feature 

supplied with Receiver Operating Characteristic (ROC) is commonly used to evaluate the 

performance of malware detection tools in computer security. 

callRePR

callRe*PR
*2MeasureF



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Figure 5.3 depicts the generated ROC curve of eight anti-rootkit detection tools including 

CoPDA. As the curve bypasses the upper-left region, CoPDA achieved 100% TPR, 

indicated that CoPDA offers the best result among the other anti-rootkit detection tools. 

 

 

 

 

 

 

 

Figure 5.3 Realization of ROC Curve (Averaged Values) 

 

 From Figure 5.4 GMER scans for hidden processes, services, threads, files, as well 

as the detection of several different types of hooks. In our test, it had a precision rate of 

94.33%. One important downfall of GMER is that it cannot allow a user to perform any 

other task while it is scanning the target systems. HeliosLite utilizes the cross-view 

approach to detect rootkits and can be executed from a USB drive. Against the rootkit 

samples that were taken for tests, it achieved a precision rate of 93.67%. IceSword scans 

the entire system to categorize hidden processes and services, files, registry settings, ports 

and startup items. IceSword spotted all the processes and services hidden of all the five 

rootkit families. It produced 100% precision as it detected all the hidden processes and 

services. However, while reacting to FU and FUTo rootkit malware, IceSword was unable 

to discover the rootkit which was responsible for hiding them. One important limitation of 

IceSword is that it only works effectively within the Windows XP OS, and fail to function 

in another environment. By scanning the entire target system, the BlackLight anti-rootkit 

tool identified hidden processes when executed against FU and FUTo rootkits. But fail to 

discover the rootkit. However, BlackLight achieved good results, detecting all the rootkits 

in our experiments. 
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Figure 5.4 Comparisons of PR and DA 

  

 Rootkit Unhooker detects hidden processes, and files, but failed to discover hidden 

services and registry key values. As a result, it produced an 88.5% detection rate. 

HiddenFinder also uses cross-view technique to identify hidden processes, but only 

attained a 91.85% of the precision rate although it has not been revised since 2008. 

RootkitRevealer was the first rootkit detection application that used cross-view 

mechanism to detect persistent rootkits that can only hide files and registry-related settings 

in Windows operating systems although it does not detect hidden processes and services. 

Therefore, it has not been taken as a test tool.  

 CoPDA produces a total high detection precision rate of 98.09%. No other tested 

anti-rootkit detection tools achieved better TPR, FAR, PR and DA than CoPDA. Finding 

the mean for the other tools and compared with the proposed CoPDA produced higher 

values compared to the other tools.  Mean and confidence interval for the ten set of 

samples are calculated against parameters such as true positive rate, false positive rate, 

recall, precision rate, F-measure, and detection accuracy which is given in the Table 5.5. 
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Table 5.5 Computation of mean and Confidence Interval 

Mean for 10 Groups(µ) 95 % CI 

TPR 74.127 35.516 to 112.738 

FAR 5.083 2.443 to 7.724 

Recall 74.127 35.516 to 112.738 

PR 78.548 38.100 to 118.994 

F-Measure 76.1308 36.7545 to 104.876 

DA 92.41 87.548 to 97.282 

  

 The comparison between the mean of both CoPDA and other tools are given in 

Table 5.6 which clearly shows that CoPDA outperforms than existing tools in terms of all 

features listed. 

Table 5.6 Comparing CoPDA with existing tools 

TPR FAR Recall PR F-Measure DA 

Other Tools 74.13 5.08 74.13 78.55 76.13 92.41 

CoPDA 100 1.82 100 98.09 98.99 99.02 
 
 
 Similarly, ROC curve is plotted using precision rate and detection accuracy to 

confirm the effectiveness of CoPDA. To achieve the same, the values between 0 to 1.0 are 

used. The calculated values are given in the Table 5.7. For the tabulated values, a graph is 

plotted using TPR and FPR as shown in the Figure 5.5 to compare CoPDA with other 

tools. The linear grid in the graph confirms that CoPDA achieves higher performance rate 

over the other tools. 

 

 
               
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 Comparisons of TPR and FPR 
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Table 5.7 Comparisons of CoPDA with existing tools (For ROC Plot between 0 to 1.0) 
 

TPR FAR Recall PR F-Measure DA 

Other Tools 0.74 0.51 0.74 0.78 0.76 0.92 

CoPDA 1 0.0182 1 0.98 0.99 0.99 
 
 

5.3.3 Detection through Hindrance 

 The timeliness and precision of CoPDA is evaluated when spotting a single hidden 

process. When the victim computer contained more than one hidden process, the 

discrepancy between the global view list and visible view list is larger which leads to 

much easier detection. Therefore, enabling CoPDA to detect a single hidden process 

implies an unconditional detection state. The synthetic process creator which is a tool for 

procreating processes randomly is utilized to determine the variation in detection against 

different amount of process load. It is shown in Figure 5.6. 

 

 

 

 

 

 

 

  

 
 

Figure 5.6 Variation in hidden process detection time depends on the process creation 
activity in Windows 

 

In [140], the authors point out that process appearances are exploding than 

obsession. Hence, we select a Pareto distribution with k=1 (shape metric) for process 

inter-landing time. By varying the Pareto locality metric, the average rate of process 

creation is stabilized which is directed to sizable process creation. This dissemination 

makes the detection process difficult. The process lifetime interval is set between 0 and 1 

second based on uniform process distribution to keep the test system in a stable state.  
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To keep hiding processes in Windows, the rootkit malware fu.exe hides its traces 

by directly modify a process token used by the OS. In addition, a guest process reporting 

tool is opted to fabricate hidden processes in Linux operating systems. The process 

creation time for different sets of process activity levels in Windows and Linux operating 

system are measured, the same is given in Figure 5.7 where the X-axis represents different 

process activity levels and the Y-axis represents the detection time. Figure 5.7 also states 

that each process creation and depart action increases the detection time. When the 

legitimate process consignment is reasonable, the presence of single malicious rootkit 

process is spotted every time. However, there is a bigger discrepancy in detection time 

under intense process creation that introduces false positives. However, CoPDA reduces 

the result of false positive identification.  

 

 

 

 

 

 

 

 

  

 

  

 

Figure 5.7 Variation in hidden process detection time depends on the process creation 

activity in Linux. 

5.3.4 Runtime Overhead of CoPDA 

 While CoPDA runs continuously for detecting hidden processes, it is important to 

ensure that it produces significant runtime overhead. In order to assess the runtime 

overhead CoPDA algorithm, there are three benchmarks are executed in Windows and in 

the Xen hypervisor including CoPDA. After executing all five test samples and its average 

value is tabulated in Table 5.8.  
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Table 5.8 Detection of runtime overhead 

Name of the 
Benchmark 

Runtime in 
seconds % of 

overhead CoPDA Xen 

Compile 21.164 21.041 0.6 

CreateProc 5.601 5.303 5.1 

MemAlloc 5.523 5.220 3.5 

 
  
 The CreateProc is capable of creating and destroying 1000 processes rapidly. The 

MemAlloc allots a 200 MB fragment of memory and performs page table switching. 

CoPDA generates a 5.1 % runtime overhead for CreateProc benchmark and a 3.5 % 

runtime overhead for MemAlloc. For the Compile benchmark which includes the bash 

shell source, CoPDA causes a tiny runtime overhead of 0.6%. The CoPDA was tested and 

tweaked principally around 32-bit Windows and produced positive outcomes.  

The proposed hidden process detection algorithm is compared with the existing 

algorithms proposed by Desheng et al., Xie et al., Richer et al., based on detection 

accuracy and performance overhead. Table 5.9 indicated that both the algorithm proposed 

by Desheng et al. and CoPDA have achieved 100 % detection rate, but Desheng et al. has 

selected only two malware samples for testing. However, in all aspects the proposed 

CoPDA algorithm outperforms than other existing algorithms with 100 % detection 

accuracy and true positives. 

Table 5.9 Overall comparison with existing Approaches 

Approaches 
Overhead 

(%) 

Detection Accuracy 

(%) 

Richer et al. [120] 9.5 98 

Xie et al. [121] 2.5 96 

Desheng et al. [122] 0 100 

Proposed CoPDA 0.6 100 
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5.4 Summary 

 Cross-check based algorithms have been effectively applied to discover the hidden 

foot prints of a malicious executable. The CoPDA algorithm, a cross-check based 

approach has been developed and implemented which runs in the user-space in Windows 

to discover hidden processes and services of a malicious executable. CoPDA maintains a 

separate process list that contains all running processes and services by continuously 

monitoring the victim computer. Then, another list is generated by dynamically analyzing 

lower-level processes and services and then the two lists of data are cross-checked to 

discover hidden processes and services. The experimental results show that CoPDA 

outperforms the existing algorithms which are proposed by Desheng et al., Xie et al., and    

Richer et al. The CoPDA algorithm gives considerable improvement over the algorithm 

proposed by    Richer et el., and surpasses the algorithms proposed by Desheng et al., and 

Xie et al. 
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CHAPTER 6 

 
 

PROPOSED KERNEL LEVEL AUTHENTICATION MECHANISM 
 
 

The trustworthiness of the underlying computing environment is very important to 

ensure total system security. The key issue in system security is verifying the originality of 

an application to check whether the application is legitimate or malicious before being 

serviced by the kernel of the OS. A novel kernel level process authentication mechanism 

has been proposed for imposing mandatory authentication to validate the originality of all 

suspicious processes of the executable rather than verifying all. PAM is evaluated using 

different test-beds and datasets and compared with the existing techniques concerning the 

prevention of unauthorized malicious process attacks before abusing system resources. In 

the subsequent sections, a brief preamble about process authentication to prevent 

malicious code attacks, the proposed system architecture of PAM mechanism and 

experimental results are presented in this chapter.  

 

6.1. Preamble 

Today, hackers frequently integrate rootkit techniques into their code to 

compromise and evade detection. A malicious rootkit is a software tool which is designed 

with the intention of acquiring and maintaining privileged access rights over the resources 

of the underlying OS while concealing its footprints by subverting legitimate OS behavior. 

Most computers have included an ACL feature to prevent an authorized application for 

obtaining access to confined resources. But rootkits might use the vulnerabilities in the 

target computer or use social engineering attacks to get mounted. After successfully 

installed, the rootkit does not want to be identified by an existing anti-rootkit tool so as to 

prevent its access. One of the best ways to bypass this is to become invisible to all running 

software applications on the target machine. Most software applications trust the OS to 

provide authentic information about its environment in which it is running. The 

application inquires the OS, for example, files and registry keys which are necessary for 

configuring the application, using the API provided by the Windows subsystem. Windows 

comprises of many sub-system DLLs to offer many different features to the programmers.  
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Among all, ntdll.dll is acting as an intermediate interface to the forward Native 

API calls to kernel-mode and is located in user-mode. The implementation of each native 

API calls is located in ntoskrnl.exe which resides in the kernel. Each native API call has a 

stub in ntdll.dll. Figure 6.1 shows how the NtCreateFile() native API function call is 

requested. The parameters for accessing a particular system service are kept in the stack in 

advance. The system service number and the address of kiFastCallEntry stub are pushed to 

EAX and EDX respectively. Then kiFastCallEntry stub moves its address to register ESP 

and starts executing SYSENTER in ntdll.dll. 

NtCreateFile: 

mov eax, 0x17 

mov edx, kiFastCallEntry_add 

call edx 

kiFastCallEntry: 

mov edx, esp 

mov SYSENTER 

 
Figure 6.1. NtCreateFile API function call 

 
Then kiSystemService, the service dispatcher in the kernel-mode use the system 

service number which is stored in the register EAX to lookup in the System Service 

Dispatch Table (SSDT) to forward the request to the actual routine which service the 

incoming request. After completing the system service, the kernel switches to the user-

mode using the return address which is stored in ESP. In order to hide its existence and 

stay for an extended period of time, rootkits hijack these undocumented APIs and observe 

for any request an application may arise that might be incriminating.  

Many advanced stealthy malware re-route the flow of a system call by modifying 

their address in SSDT to point to the detoured code. Therefore, its detoured code runs 

whenever the system call is invoked. The OS then executes the code at that address. The 

combination of privileged rights and stealthy technique make malicious rootkits or codes a 

particularly serious threat. In order to protect few important processes, Microsoft had 

introduced protected process feature in Windows Vista. For example, in Windows Vista, 

Protected Media Path (PMP) utilizes protected process mechanism to offer a high level of 

protection for providing stronger protection of sensitive media content. Whenever a new 

process is started, the system performs different level of checks as given in Figure 6.2. 
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Figure 6.2 Various levels of checks of a protected process  

 

The same validation checks are pertained for all threads that belong to protected 

processes. The protected process concept has evolved to strengthen the security and 

protect end-user. By default, only certain processes will be started as protected. Microsoft 

restricts third parties from accessing protected processes. Also, a protected process has 

unconstrained privilege access over other protected processes. However, a custom 

protected process, which integrates random code attack can bypass the complete system. 

The main purpose of introducing protected process feature is to provide an environment 

for protecting and enhance Digital Right Management (DRM) functionality in Windows 

Vista x64. But open privileged access to system process would weaken kernel level 

protection. Most Malware Detection System can either only detects either only detect 

attacks before its execution or after the victim computer has been compromised.  
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The first method has only limited information to detect malware attacks. On the 

other hand, the second method fails to prevent the damage to be caused which cannot 

guarantee for system security. Therefore, recent security systems need to be strengthened 

to ensure total system security or trusted computing environment. Developing a 

mechanism for improving the security strength of an OS is very essential, because the 

hackers target the most popular OS such as Windows rather than Linux environment. This 

research work exhibits the need for re-examining the system’s fundamental process 

identification system. Therefore, the idea of kernel level runtime authentication has been 

developed to discover and prevent malicious code attacks that target hooking system 

services during runtime.  

If any process or application fails to supply the kernel generated credential 

information at runtime, PAM labels it to be malicious and suspend or terminate their 

future activities. To be accurate, after detecting a suspicious process or application, PAM 

remarks it to be suspicious and validate its originality. PAM directly permits benign 

processes to get kernel service so as to improve the overall performance of the prototype.  

The innovation of PAM is that, it incorporates light-weight system call authentication 

technique to verify the authenticity of suspicious processes at runtime which is not often 

done by the OS kernel.  

Additionally, PAM identifies the suspected processes and executable which can act 

as agents of remote hackers and restricts them. PAM is designed to be implemented on 

Windows and conduct various experiments to demonstrate its effectiveness and efficiency.  

 PAM is a novel kernel level system call authentication mechanism which includes 

malicious code tracing and authenticating their originality to prevent malicious 

code attacks that directly invoking a system service call in the kernel mode on a 

marketable OS in a friendly manner. 

 PAM has been designed and implemented on Windows OS to prevent process 

forging attacks at runtime without using their signature. 

 The important reasons of incompatibility and low usability issues were 

investigated of existing anti-rootkit detection tools. 

 
In short, the runtime mechanism, PAM, can enrich the security strength of current 

computing environment with the following properties: 
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 PAM cannot be compromised by malwares with kernel level privilege that target 

system call runtime hooking in contrast to the traditional security systems 

 PAM, as a runtime authenticator framework, exposes malware attacks which 

execute data at user-mode, modifies code, and modify kernel mode data structures 

illegitimately. 

 The dynamic malware prevention method of PAM implements uncircumventable 

more flexible better than that of current malware defense security systems. 

 
Dynamic Detection and Prevention. PAM must prevent malicious executable at the 

moment when they illegally attempts to hook kernel level data structures during runtime.  

 
Preventing Kernel tampering. Recent stealthy malwares attempt to access kernel level 

information and code to carry out its illicit activities on the victim computer. PAM must 

ensure the trustworthiness of kernel level data and code by restricting the behavior of each 

and every suspicious process. This access restriction helps to limit or completely control 

the range of malicious activities. 

 
Tamper Resistent. PAM must function acceptably even when the malicious executable 

runs on the target computer and not offer any chance to the malware to subvert the preset 

protection mechanism. 

Low performance overhead. The additional functionalities to be incorporated into kernel 

must guarantee the performance of the entire system. 

 
Combat against recent stealthy malware attacks. PAM must detect and prevent unknown 

malware attacks and advanced stealthy malware that target misusing kernel level 

resources. 

 
 
Target Malware 

 
PAM monitors system wide process manipulation in user mode to discover and 

prevent foot prints of malicious executables. However the primary goal of PAM is to 

protect kernel data structure and the malware that attempt to hook system services at 

runtime. 
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PAM Memory Protection 

 
 PAM disables write operation on user-mode helper components and the kernel. 

 When a malware attempts to alter a kernel protected memory area, the processor 

identified the access breach and raises a page fault. 

 PAM checks whether the address of the raised page fault is protected. 

 PAM raises an alert and shuts down the computer, if it identified any access 

breaches that are associated with its components. 

 
6.1.1 Assumptions 

 
An attacker’s target system is defined as a computer which permits malicious code 

exploiting vulnerable processes. The intention of malicious software is causing damage to 

the victim computer by invoking system services using either user-mode or kernel-mode 

API functions. It is assumed that the attacker cracks PAM if it holds any one of the 

following properties. 

 
 Malicious code cannot call any system service using user-mode native API 

invocation. If so, it will be caught by the CoPDA Algorithm. 

 Malicious code cannot be allowed to read or write the memory from user-mode 

stack. 

 The malicious code will not be permitted to scan the code part of the legitimate 

executable. Otherwise, the OS triggers general protection error message. 

 Malicious code is prohibited to amend read-only pages in memory. Violation of 

this property must call a native API which is disallowed. 

 Malicious code cannot exchange their process ID and thread ID. Also, the shared 

memory concept of modern OS disallows to search other process’s memory area. 

 
In addition, it is assumed that the defender does not have any clue about the type of 

resource an attack may utilize to achieve its ultimate goal. 

 
6.1.2 Security Models 

 
(i) The design goals of PAM – The goal towards PAM design is to guarantee that the 

kernel of the OS appropriately authenticates each system service call to be raised by the 

application during runtime and malicious code cannot pretend to be legitimate process.  
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PAM design trusted elements are the Process Identifier (PID), the kernel credential 

information, the kernel loadable code, and the kernel’s protected area of memory. It is 

assumed that the kernel of the OS does not include any malicious code, as it is hard to 

design any protected computer without this. The kernel memory security properties such 

as integrity and confidentiality are also preserved.  

 
(ii) Malware Attack Type – Advanced stealthy malware code on the victim computer may 

run without user intervention as a user-level process. A remote attacker can inject 

malicious code into software and force them to abnormally execute the injected code. 

During code injection phase, the malware attempts to perform a certain operations at the 

user-space. The injected malicious code creates duplicate processes that are necessary for 

execution in the user-space. Then, the malicious code may pretend to be a legitimate 

process by spoofing process names. Hence, it is not possible to process names as unique 

identifier for differentiating running processes. 

There are many different requirements to generate inimitable secret data for 

process authentication problem. Some of them are common that can be found in other 

credential scheme, whereas few are uncommon and new. 

 
(i) Confidentiality – A secret Process Credential (SPC) s shall not be known to 

malicious user-mode processes. 

(ii) Originality and reproduction – For each process, only one SPC must be 

supplied. The SPC is updated during re-execution of the same process. 

Additionally, valid SPC cannot be duplicated. 

(iii) Anti-replay Attacks – As the authentication mechanism changes the credential for    

  every system call invocation, reclaiming SPC for replay attack will be disallowed. 

(iv) Runtime Supervising – Before processing each process request, the 

authentication mechanism needs to ensure that if this request has been already 

authenticated or not. This can be achieved by querying the information and status 

of that process which is stored in the kernel helper processes. 
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6.2 Proposed System Architecture of PAM 

 
PAM authenticates each suspected process system calls, whereas all legitimate 

process will get kernel service directly. This actually improves the overall performance of 

the PAM. PAM retains kernel issued credentials and knowledge of each suspected process 

in the user-mode. This information is queried by the kernel during the authentication phase 

to determine whether to allow the system call or not. The PAM acts as a sandbox that can 

prevent malware from violating kernel’s predefined security policies. PAM comprises of 

four important components, namely, the security monitor, the preservation function, the 

Credential Information Generation Function and the runtime authenticator is given in 

Figure 6.3. 

 
6.2.1 Security Monitor 

 
The Security Monitor (Mtr) component is responsible for monitoring process 

manipulation on a system-wide basis. To prevent the installation and execution of 

malicious programs, we control process creation in the user-mode on a system-wide basis 

by hooking NtCreateSection() function which cannot be easily bypassed by any process to 

launch a new process. Whenever a new process is created in the user-mode, it will be 

monitored by the Mtr and is tested by the CoPDA algortihm. Intercepting processes and 

verifying each and every incoming system service request during runtime is a tedious and 

time consuming task. Therefore, the CoPDA algorithm allows each legitimate system 

service call invocation to be serviced as normal and classifying the remaining as 

suspicious. This is achieved by comparing the currently running processes and services 

against the same information obtained kernel level. 

 After loading and initialization necessary information, the Mtr suspends the 

main thread of each suspected process. Next, the Mtr hooks each suspected process by 

inserting guidehook.dll into it by allocating necessary space using VirtualAllocEx 

function. Finally, the Mtr initialize the hooked dll by calling CreateRemoteThread and 

resume the suspended thread. Therefore, whenever the hooked is called, execution 

transfers to our detoured code, which is indirectly get executed, and after completion, the 

control is transferred back to allow the original function routine for completion. 
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Operations of guidehook.dll. First, the memory is scanned to find the address of 

ntdll.dll which contains stubs of kernel API functions. In Windows, the ntdll.dll is the first 

module to be loaded, i.e., the first LDR_MODULE entry in 

InInitializationOrderModuleList. Since, the register EAX = PEB → Ldr. 

InInitializationOrderModuleList.FLink, then [EAX+0] ← List entry’s FLink and [EAX+4] 

← List entry’s BLink. As a result, the base address value of ntdll.dll at [EAX+8] is 

obtained. Then, the ntdll.dll is hooked by inserting, the Preservation Function and 

Credential Information Generation Function into it by using WriteProcessMemory 

function. Then, the entry point of each native APIs is located by inspecting ntdll.dll and 

replaces sysenter command by jump preservation function.  

Therefore, the detoured code will be executed first whenever a suspected process 

requests a system service. Finally, a read-only page is created in the memory by setting 

PAGE_READONLY protection flag of VirtualProtect function where the address of a 

process authentication function is stored at M. The description of notations and complex 

words is given in Table 6.1.  

 

Table 6.1 Description of notations and complex words 

Notation / word Description 

Mtr Security Monitor 

VirtualProtect It changes the access protection of a process 

VirtualAllocEx This function initializes and allocates necessary memory 

WriteProcessMemory 
This function is used to write data to an area of memory in 
a specified process 

LDR 
It is a pointer to a PEB_LDR_DATA structure which 
actually contains information about the modules to be 
loaded for the process 

EAX  Register 

ESP Stack pointer register 

FLink & Blink Forward Link and Backward Link 

PEB Process Environment Block 

 

In addition, the diagrammatic representation of the security monitor and 

guidehook.dll is depicted in Figure 6.4 and Figure 6.5 repectively. 
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       Figure 6.4 Diagrammatic representation of Security Monitor 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5 Diagrammatic representation of guidehook.dll 
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6.2.2 Preservation Function 

 
The Preservation Function (PF) is one of the kernel helper processes which reside 

in the user-mode. To avoid data integrity problems while processing PF and Credential 

Information Generation Function, it is necessary to make a copy of their register values in 

advance. All these values are kept in the stack which will be restored later when the 

Credential Information Generation Function task is over. The EIP instruction pointer value 

is restored when the Runtime Authenticator queries the Credential Information Generation 

Function. To allow the Credential Information Generation Function to perform correctly, 

we backup the stack pointer ESP at memory address, E. If any malicious 

process/application tries to bypass this phase, it will fail to succeed in the authentication 

stage. 

6.2.3 Kernel Level Runtime Authenticator 

 
The Runtime Authenticator (RA) is the kernel-mode component which is the heart 

of our design. Its goal is to authenticate each suspected process at the kernel mode during 

runtime before being serviced. When a system service request enters into the kernel for the 

first time, the RA checks the Status list (S) which only maintains processes that have been 

successfully authenticated previously. If any request has not been authenticated, the RA 

queries the CGF by sending the query (Pid) to retrieve its HMAC value. 

In response, the CGF reply with the h value of the corresponding Pid which is 

retrieved from CIL. If the returned h value is null or the delay associated with received h 

exceeds t value, the authentication check is disallowed. Otherwise, the RA recomputes 

h’←hmac(Pid, p.srn) and compares both the values of h and h’. If matches, then the 

authentication check is successful. Otherwise p is concluded as malicious. Finally, 

information about serviced system call entries are removed from the list S and the same is 

reflected in the CIL. 

 
6.2.4 Process Authentication Protocol 

 
The process authentication protocol runs between user-mode and the kernel for 

ensuring secure communication. Let p represent a new user process with a unique Pid and 

p.srn represent the copy of p’s secret information. We write hmac-req (p.Pid) for sending 

p’s secret credential information retrieval request to RA and a secure hash code generation 

function, HMAC. 
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1. For each suspected process, p, the CGF performs the following operations: 

a. Generates a cryptographically Strong Random Nonce (srn) with a time frame, t and  

forwards (p.Pid,p.srn) to RA. The time frame will expire some (short) time 

afterward or if no response from p. 

b. Computes h←HMAC(p.Pid, p.srn) and stores (p.Pid, h)  in CIL. 

2. When p enters the kernel for the first time, RA performs the following operations: 

a. RA confirms whether p.Pid Є S. If so, it will be serviced by retrieving its Pid and  

  dispatch identifier. 

b. RA recalculates h’←HMAC(p.Pid, p.srn).   

c. RA queries the CGF with p.Pid to send its h value. If there is such value is  found in  

the CIL, then p is reported as malicious. 

d. If a delay in receiving the HMAC exceeds t, then the authentication request will  

not be processed. 

e. RA compares h with h’. If matches, the authentication request succeeds. Otherwise, 

p is reported as malicious. 

3. When p completes, all its corresponding entries in both S and CIL are about to be  

    deleted. 

 
The constraint of a process of an application in order for authentication protocol to 

succeed, it requires the knowledge of the kernel generated credential. For example, if a 

process which belongs to the Internet Explorer browser claims to be legitimate, then it 

must succeed the authentication phase by supplying kernel generated credentials. The 

process identifier which is used for generating credentials is maintained by the kernel and 

assumed to be unforgeable and trustworthy. 

 
6.3 Experimental Results and Discussions 

 
 The effectiveness and performance of PAM is evaluated in using a dataset consists 

of 350 malware samples [129-130] [142-143] has been obtained based on its attacking 

techniques employed and execution environment. In addition, 50 benign samples are also 

obtained from two reputed websites [144]. The computation of performance overhead, true 

positives, and false positives of PAM are determined through conducting two test cases 

namely, test case 1 and test case 2. Test case 1 is conducted on a single workstation with a 

dataset consists of 50 malwares and Test case 2 is conducted on a client-server model 

using a dataset consists of 300 malware samples. 
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Test case 1: 

 The experiment is conducted on a computer with 2.8 GHz Intel Pentium 4 

processor, 4 GB of memory and running Windows 7 OS and performed a series of tests on 

Windows XP OS. This is because WOW64 intercepts all OS system calls made by a 32-bit 

application. There are two important reasons for the selection of Windows operating 

system for evaluating the proposed PAM. First, Windows is the most popularly used OS 

and malware creators ensure that their creations will work in all types of OS from 

Windows XP to mobile OS. Secondly, system calls and API functions of x32 bit 

applications will work on x64 bit OS without requiring additional settings. The Microsoft 

Windows Driver Development Kit [145] was used for implementing the kernel driver 

module of PAM.  

 In order to evaluate the efficiency of PAM, a standard micro benchmark namely, 

KeQueryPerformanceCounter is used on a work station to determine the additional time to 

be taken for executing the proposed PAM. The benchmark function returns the number of 

ticks per second (ts) i.e. additional time taken for executing PAM, using 

PerformanceFrequency function. The symbols used in test case 1 are given in Table 6.2.  

 
Table 6.2 Description of Symbols 

Symbol Description 

ts Number of ticks per second 

T1 
First invocation time at which the 
KeQueryPerformanceCounter function is called. 

T2 
Second invocation time at which the 
KeQueryPerformanceCounter function is called. 

Ti 
i th invocation time at which the KeQueryPerformanceCounter 
function is called. 

T T2-T1 

 T Overhead caused by KeQueryPerformanceCounter function׀

 Tnapi Overhead accounted by new native API׀

Tnapi Execution time of a native API 

t Clock counter of KeQueryPerformanceCounter 
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 Let Ti is the ratio of the clock ticks counter per second (ti) to the 

PerformanceFrequency and T represents the difference in execution time between the 

first invocation (T1) and second invocation (T2) of KeQueryPerformanceCounter. On the 

other hand, ׀T is the overhead incurred by KeQueryPerformanceCounter which is 

measured by two consecutive calls of the same function. Similarly, ׀Tnapi is the 

overhead caused by new native API which is computed by Equation 6.1. 

) = Tnapi׀    ) - T2, napi׀  T    (6.1)׀ - (T1, napi׀

 There are four important legitimate native API functions are considered in which 

three of them namely, NtOpenFile, NtCreateFile, NtWriteFile and NtOpenProcess are 

critical and other one, NtClose, is non-critical. Each native API is executed separately and 

interrupted by the PAM and the same test is repeated 1000 number of times and obtained 

its average value. Table 6.3 depicts the statistical result of execution of test case 1. In 

order to estimate the impact of the PAM with respect to the core system, the execution 

time of the genuine native API (gA) and the overhead caused by the corresponding native 

API (oA) intercepted by PAM are computed and averaged. 

Table 6.3 Performance overhead of PAM against Benign Samples 

API being 

examined 

Average API execution 

time (µsec) 
Overhead 

 
gA oA 

NtOpenProcess 779 620 0.79 

NtOpenFile 5234 1924 0.37 

NtCreateFile 2353 2059 0.87 

NtWriteFile 6127 5479 0.89 

NtClose 658 527 0.80 

  

 The results given in the Table 6.3 shows the overhead caused by four different 

native APIs that are intercepted by the proposed PAM. The maximum overhead of 0.89 

was caused by NtCreateFile API function and the minimum overhead of 0.37 introduced 

when executing NtOpenFile function. This indicates that the overhead incurred by PAM 

before malware set has been executed on the workstations is 0.52 which is acceptable in 

real time.  
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 Also, PAM has identified all the legitimate applications correctly and thus 

produces 0 false positives. Table 6.4 depicts the averaged value additional scores taken by 

the proposed PAM against different malware samples. 

Table 6.4 Benchmark Scores against Malware Samples – test case 1 

Malware 
samples 

Generic 
PAM 

Enabled 

1 – 10 1315 1347 

11 – 20 1285 1315 

21 – 30 1341 1356 

31 – 40 1311.7 1322.7 

1 – 50 1298 1327 

Average 6550.7 6667.7 

 

 In addition, assessing the efficiency of PAM is required to determine its impact on 

the overall system performance and the overhead caused by PAM. The measurement of 

PAM’s performance is measured using PCMark8 benchmark tool [147]. All tests were 

conducted without user intervention except for executing the benchmark. The benchmark 

results have taken an average of 10 iterations. PAM is tested by loading all its 

components. PCMark8 is operated by simultaneously performing various different system 

level operations such as I/O operations, process creation and system call invocations. The 

benchmark provides the overall performance of the system relative to overall score.  

 The Table 6.4 also shows that when evaluating PAM on a single work station (with 

50 malware samples) incurred smaller overhead (117 Scores). While performing I/O 

operations and system call operations in parallel, PAM incurred total score of 227 and 229 

respectively. Figure 6.6 reports the false positives achieved by all kernel level anti-

malware detection tools against malware samples and benign samples taken for test case1. 

Out of 4 tools, PAM closely shows superior results than all existing anti-malware 

detection tools with no FPR. Actually, producing no false positive tuned the performance 

of the PAM.  
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Figure 6.6 False Positive comparison (Test case1) with existing anti-malware detection 
tools 

Test case 2: 

 
 The performance overhead incurred by PAM is computed by measuring the CPU 

cycles to be taken for executing additional tasks such as intercepting each system call, API 

function and authenticating their originality. To evaluate the additional overhead caused 

by PAM, a client-server test bed that runs with 2.8 GHz Intel Pentium 4, 4 GB RAM and 

running both Windows XP professional OS with SP3 as well as Windows 7 is arranged. 

To validate the experimental results and confirm the adaptability of PAM in real time, a 

client-server model as a test-bed has been setup as test case 2.  

 The noteworthy servers such as an FTP server, and IIS server, and an IRC chat 

server include all malicious samples. Another server runs the only web server in full trust 

mode which only holds benign samples to examine trusted communications. The end 

computer installed with Windows XP OS run different client programs such as FTP client 

applications, email application such as Thunderbird, IRC clients, web browsers such as IE 

and Firefox, newsgroups and eMule which are attractive targets of malware attacks. 

Certain protocols such as FTP, ICMP, IRC, SMTP and eMule are defined as dangerous. 

Then, few malicious samples are purposefully introduced into the host and carried out 

different actions between the client and server. With this setup, the effectiveness of PAM 

can be carefully evaluated with and without considering it.  
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 It is also confirmed whether the malicious samples are executed on the host 

machine using the log files generated by the tools with and without setting security 

protection. The same is manually verified in the log files of process, files and registry 

entries. Except the file-copy operation, the behavior of few native API functions can be 

monitored only by intercepting one system call, for example, NtCreateFile(), and 

NtOpenFile(), etc. However, behaviors like code-injection into other processes consist of 

invocation of multiple system calls such as OpenProcess(), VirtualAllocEx(), 

WriteProcessMemory(), CreateRemoteThread(), etc. Therefore, it is planned to intercept 

the first system call itself to prevent the execution of subsequent calls which would 

disallow other subsequent calls. The outcome is confirmed using three popular anti-rootkit 

detection techniques: GMER [136], IceSword [132], and Redline [146]. All these tools are 

capable of detecting rootkit malware samples that target SSDT hook attacks.  

 Each security tool is tested against all of the samples. For each kind of samples, the 

total number of false positives and false negatives are computed after launching PAM. A 

false positive is noted when a security tool incorrectly identifies a benign activity as 

malicious. Figure 6.7 shows the False Positive Rate (FPR) obtained by testing all the four 

malicious code detection tools including PAM.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 False Positive comparison (Test case 2) with existing  

anti-malware detection tools 

 

 

GMER (FPR=24%) 

 

IceSword (FPR=24%) 

 

Redline (FPR=32%) 

 

PAM (FPR=4%) 
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 Both GMER and IceSword anti-malware security tools incurred FPR about 24%, 

but in case of Redline it was 32%, whereas PAM had FPR of 4%. When the PAM is re-

started againg, it identified all malware correctly, thus causes 0 % FPR. On the other hand, 

the False Negative Rate (FNR) of GMER and IceSword was 20% and 15% respectively. 

As Redline’s detection capability of SSDT hook attacks depends on the type of API 

function to be hooked, it achieved FNR by 65%. However, the FNR of PAM was almost 

zero. As a conclusion of this test, the PAM can effectively block any type of malware that 

targets system call hooks. But none of the existing anti-malware security tools tested dealt 

kernel level authentication mechanism to verify the originality of a system call invocation. 

For all test cases, every system call and API function are invoked 100 times and their 

averaged CPU cycles are given in Table 6.5 With PAM enabled, the malicious executable 

incurred 1.3-38.1% performance overhead than native functions, while the benign 

executable incurred only 0-1.9%. 

Table 6.5 Measurement of performance overhead (CPU Cycles) 
(The columns PAM-b and PAM-m illustrate the CPU cycles acquired by the benign 

programs and malware programs). 

Function Native PAM-b PAM-m 

NtOpenFile 167703 169721 (1.2%) 169823 (1.3%) 

NtWriteFile 245201 249993 (1.9%) 338546 (38.1%) 

NtCreateFile 334568 338579 (1.2%) 348579 (4.2%) 

NtCreateProcess 206556 208945 (1.1%) 215326 (4.2%) 

OpenService 6568202 6568423 (<0.1%) 6679899 (1.7%) 

 
 The result of intercepting NtWriteFile() function produced the highest performance 

overhead of 38.1% as an outcome of capturing file-copy operation. As each system is 

designed to enforce different policies, it is hard to compare the overhead of authenticated 

system call with other system call monitor. The generic performance overhead impact is 

2% PAM as a result of intercepting the system call and API function to verify their 

originality which is well below of other systems and also acceptable. Table 6.6 gives a 

comparison of performance overhead PAM in terms of relative scores measured by 

PCMark benchmark against malicious code detection and prevention using the 

combination of user-mode information and kernel-mode information.  
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 The performance overhead of PAM is increased by 96 scores in total (almost 1% 

increase compare to test case 1) when a client-server model with a largest dataset is used. 

This is because of attempting to run PAM by executing multiple legitimate applications, 

malwares samples, I/O operations and system call operations simultaneously. However, 

such overhead is acceptable and does not affect the overall system performance but 

ensures total security against malicious code attacks. 

 

Table 6.6 Benchmark scores against Malware samples – test case 2 

Malware 
samples 

Generic 
 

PAM 
Enabled 

 

1 – 60 1442 1483 

61 – 120 1401 1443 

121 – 180 1399 1438 

181 – 240 1438.5 1484.5 

241 – 300 1421.6 1466.6 

Average 7102.1 7315.1 

 

6.4 Verification by Mathematical Model 

Hypothesis Test. A statistical verification has been conducted to check whether there is a 

significant deviation in the performance of the kernel/system before and after enabling the 

PAM. To achieve this, two null and alternative hypothesis are defined as follows. 

H0: Statistically, there is no significant difference in the kernel performance after enabling 

PAM. 

H1: Statistically, there is some association between before and after enabling PAM. 

 The given data in Table 6.7 has shown the CPU cycles as obtained from the two 

test cases. Hence the CPU cycles in the two tests can be regarded as correlated and 

therefore, the t-test for paired values was opting to confirm the performance deviation 

between these two cases.  Let d = x1– x2  and 
_

d = Σd / n, where x1 and x2 denote the CPU 

cycles in the two tests and n is the number of functions tested. 
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Table 6.7 t-test computation 

     Function 
PAM-b PAM-m 

d d2 d d2 

NtOpenFile 2018 4072324 2120 4494400 

NtWriteFile 4792 22963264 93345 8713289025 

NtCreateFile 4011 16088121 14011 196308121 

NtCreateProcess 2389 5707321 8770 76912900 

OpenService 221 48841 111697 12476219809 

   Σd=13431   Σd2=180391761   Σd=229943   Σd2=21467224255 

 tcal = 0.912871 tcal = 1.970616 

 

where 


d  represents the mean of the difference and S Applying t-test, 

represents the standard deviation of the difference. From t-table, for γ=n-1=4 degrees of 

freedom, t0.05=2.776. In both cases, i.e., PAM-b and PAM-m, tcal < t0.05, hypothesis H0 

has been accepted and it is concluded that there is no significant change in the 

kernel/system performance after enabling PAM framework. 

 
Security Assurance 

 
The strength of security protection guaranteed by PAM is verified by analyzing the 

confidentiality of the credentials used on authentication stage and the integrity of PAM 

components. Without using a strong pseudorandom number generator for generating secret 

credentials, forging the existing credentials is impossible. Also, a malicious process’s 

arbitrary code that might try to replace PAM generated credentials. It cannot successfully 

bypass the authentication stage. This is because the arbitrary code which is not generated 

by PAM does not appear in the record. To prevent another application, revealing the secret 

information generated to perform a challenge-response attack to be launched by a 

malware, PAM restricts read access. A malware may attempt to steal secret information 

from PAM components or application’s memory at runtime. This issue is resolved by 

using the typical process memory segregation feature offered in the OS itself. PAM 

ensures confidentiality by disallowing the other applications that have direct access to the 

secret credentials except PF and CGF which are kernel helper processes. 

S
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t
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PAM components span both the user-space and the kernel- space. The Runtime 

Authenticator resides in the kernel. As we trust the integrity of kernel resources, this 

component is trustworthy. However, the integrity of user-space components, the PF and 

the process CGF need to be confirmed which may be the ideal targets of malware spoofing 

and tampering. Only the kernel of the OS can access or modify the code segment of these 

components. 

(i) Forge – When the malicious code directly requests the kernel service, the authenticator 

which resides in the kernel checks if it has already authenticated. For a given unique 

process identifier which can never be forged to call a system service, the authenticator will 

immediately asks the requests to reach the process validation function 

(ii) Password Guess – The malicious code cannot bypass the process validation function. 

The malicious code can evade the authentication check function, if and only if, it 

successfully retrieve or guess the secret credential information. Recall that the secret 

information is 23 or 55 bits in length and assigned randomly for a suspicious process at 

load time which is very hard to retrieve.  

As the value of this is hard-coded into the preservation function which is a kernel 

helper process, learning it by scanning the code segment is not permitted. When a 

legitimate process invokes a system service call, the secret information will be unavailable 

in the stack and removed after successful check. However, malicious code cannot intercept 

this request to learn the value of secret information. The process validation function 

resides in the read-only page of the code segment. Only the kernel helper process          

(i.e., process with highest privilege) can only access or modify the code segment of the 

authentication function. 

Compatibility and Usability 
 

The good compatibility of PAM is ensured by achieving a significant reduction of 

the false positives. PAM directly prevents malicious code attacks rather than detecting 

illegitimate information flooding that may result in a false positive. Additionally, we 

formulate different exception rules to prevent producing a large number of false positive 

results. This actually helps to reduce the net FPR of PAM. Software usability mainly 

concerns with the assessment of effectiveness and efficiency with which end-users can 

perform tasks with a software tool.  
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Assessing usability now becomes an important element in the software 

development process. As PAM does not include any configuration settings, it 

automatically detects and prevents the potential malicious code API hook attacks. 

Chance of Successful attack 
 

PAM is capable of classifying interpreted software applications functioning as a 

stand-alone process. However, PAM cannot reveal the malicious code that is already 

injected into the authenticated process and runs as a stand-alone process. The strength of 

PAM lies on accuracy of classification precision. The trustworthy classification of an 

application is a challenging and difficult task, and it inexactness may permit a malware to 

acquire the secret credentials of a legitimate process. In order to improve the detection 

capability of PAM, many advanced static and dynamic monitoring and analyzing 

techniques need to be combined. Figure 6.8 shows that PAM outperforms than existing 

approaches proposed by Sun et al., Hau et al., and Salehi et al. in all aspects with improves 

security level with 100 % detection rate. 

 

 

 

 

 

 

 

 

 

Figure 6.8 Overall Detection Rate comparison of PAM 

6.5 Overall Comparison of existing Approaches and PAM 
 
 The notable strength of PAM is that it will directly prevent the malicious code 

hook attacks rather than locating them that many results in a false positive. There are 

various existing works have been proposed in the past by researchers to strengthen the 
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security of the kernel, but only few of them dealt kernel level authentication to prevent 

malicious code attacks such as hooking kernel level data structures.  

 Figure 6.9 depicts the overhead incurred by existing approaches while detecting 

and preventing malicious code attacks at the kernel-mode including PAM. Almost all 

existing approaches implemented for preventing malicious code attacks with the 

combination of user-mode and kernel-mode information, but did not apply kernel level 

process authentication mechanism. A few existing approaches obtained low performance 

overhead using either real-time dataset or own dataset except the approach proposed by 

Sun et al. with 36.7 % of overhead. This is because the proposed method by Sun et al. has 

only tested legitimate API functions which involved few important additional function 

calls. However, the proposed PAM mechanism outperforms than other existing 

approaches listed in the literature with 2% runtime overhead and has the potential to be 

customized or used in real-time. The PAM mechanism outperforms than the existing 

mechanisms in all aspects and has the potential to be combined real-time malware defense 

to provide stronger security for preventing different kind of malicious code attacks. 

 

 

 

 

 

 

 

 

 

Figure 6.9 Overall runtime Overhead comparison of PAM  

(Computed using additional time taken) 

The performance overhead, false positives and sample set for test analysis of 

existing techniques for the prevention of malicious code attacks that target kernel level 

hooking attacks are compared and tabulated is shown in the Table 6.8.  
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Table 6.8 Comparison of existing malware detection and prevention Approaches with proposed PAM for Windows 

Sl.No. 
Existing 
Solution 

Kernel 
Recompilation 

Features 

Protection 
of User-

mode 

Resist 
hidden 
process 
attacks 

Resist 
Malicious 

code attacks 

Supply of 
Incorrect 

ID 

Runtime 
Overhead 

Security 
Level 

Detection 
Level 

1 
Rajagopalan    
et al. [19] 

Policy based 
Detection 

NO Neglected YES 
Policy 
Based 

7.92% Minimal 
Kernel-

Level(Linux) 

2 
Nguyen et al. 
[126] 

NO NO NO YES 
System 
Crash 

9% LOW Kernel-Level 

3 Yin et al. [114] NO Neglected Neglected NO NO 0 % Minimal Kernel-Level 

4 Sun et al. [125] NO Neglected Neglected NO NO 36.70% Minimal Kernel-level 

5 Hsu et al. [123] NO Neglected NO YES NO LOW Minimal Kernel-Level 

6 
Salehi et al. 
[127] 

NO NO NO YES NO (FP) 3% Minimal OS-Level 

7 Proposed PAM NO YES YES YES NO 2% HIGH 
User & 

Kernel-Level 
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6.8 Summary 
 

Kernel level authentication has been effectively applied to identify and prevent 

malicious executable before the cause damage to the end-system. The PAM, a kernel level 

process authentication mechanism has been developed and implemented with an objective 

to detect and prevent unauthorized access through processes of a malicious application to a 

greater extent. PAM is a security enhancement mechanism that incorporates an algorithm 

for discovering hidden processes and services has been developed and implemented to 

authenticate all suspicious system calls made by the processes during runtime before 

getting services form the kernel of the OS.  

To evaluate the performance overhead and suitability of the PAM, several 

experiments have been conducted on Windows to study the effectiveness of the PAM in 

terms of detection rate and performance overhead. According to simulation experimental 

results PAM outperforms the existing approaches proposed by Sun et al., Hau et al., and 

Salehi et al. with negligible performance overhead (2%) and 100 % detection rate. The 

PAM mechanism gives considerable security improvement over the approached proposed 

by Sun et al., Hau et al., and surpasses the security mechanism proposed by Salehi et al.  
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CHAPTER 7 

 
 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 
 

This chapter concludes the dissertation with a brief discussion on the merits of the 

developed algorithms and techniques developed for malicious code detection and 

prevention. It also reveals a few open problems in the focused area of research.  

 
7.1 Conclusions 

  
The most ominous form of cyber attack is imperceptible. Such attacks may become 

a targeted attack that mainly utilizes some sophisticated stealthy techniques, such as 

defeating the OS, evading AV software, etc., Poor system configurations and security 

policies may act as entry-point and permit a remote attacker to easily bypass the 

predefined system security policies and execution of different attacks against vulnerable 

workstations and servers. More advanced attacks on a large private network is only 

possible with the existence of susceptible intermediate workstations in the network. 

Remote attacker makes network malware analysis more difficult by encrypted packets and 

end-to-end encryption. Therefore, another suitable place to detect and prevent malicious 

code attacks is the end-system. 

A stealthy attacking technique works silently, evading the footprints of an 

attacker’s events. By masking evidence of the operations, the criminal had enough time to 

perform any kind illegal activities. In order to stay ahead of the traditional security 

measures and tools, many cyber criminals apply ingenuity in stealth plans. Because 

Windows is the one of the most popular and widely used operating system in the 

information communication environment for personal computers, it becomes most attract 

target for malware writers. It is possible for a remote attacker to control a large network 

even by compromising a server or workstation. Tampering the kernel of the operating 

system would question the trustworthiness of the underlying computing environment. 

Therefore, Kernel integrity is more important to ensure a secure computing environment. 

For years, security experts have urged the requirement of extra layer of security measures 

across workstations and networks.  
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Though many approaches have been suggested to detect and analyze malicious 

code attacks, still they suffer the adaptation of ineffective approaches. In addition, 

literature survey reveals that system call monitoring using policy based technique are not 

sufficient to ensure trustworthiness of the computing environment by detecting and 

preventing malicious code attacks. Alternatively, the process authorization mechanisms 

can also an alternate mechanism but not sufficient to handle stealthy malicious code 

attacks. In this research, graph-based malware detection approach, detection of malicious-

code attacks at User-mode, hidden processes and services detection algorithm, and kernel 

level process authentication mechanisms have been proposed. The developed approaches 

and algorithms were evaluated by conducting simulation experiments using different 

datasets.  

(i) A graph based static approach namely, GraMD has been developed for detecting 

malware attacks. The graph-based approach classified malware attacks based on 

monitoring and capturing the execution of system calls while interacting with the 

kernel of the operating system. Two novel graph-based algorithms namely, ACA 

and GMA have also been developed and incorporated into GraMD for API call 

graph generation and comparing two graphs respectively. The proposed GraMD 

approach each system call as a call graph using ACA algorithm. Then, the 

generated call graph is compared against approach graphs using GMA algorithm 

by determining the similarity value through means of graph isomorphism.  

The experimental results show that GraMD outperforms the existing 

approached proposed by Park et al., Zhao et al., and Elhadi et al. with 97.68-100 

percent detection rate and 3.40-6 percent false positive rate. It is also verified 

mathematically that the GraMD utilizes only minimum number of API function 

calls using game theoretic approach and thus GraMD takes less time with reduced 

space requirement compare to existing graph based malware detection approaches. 

However, with an increasing amount of malware adopting rootkit techniques to 

evade AV, further research into defenses against malicious code attacks is 

absolutely essential.  

(ii) A dynamic based user-mode malicious code detection and prevention approach 

namely, UMDetect has been proposed. The proposed UMDetect traced and prevent 

user-mode malware with native API hook functionality in Windows.  
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UMdetect make use a novel DLL classification algorithm namely, DCA 

algorithm which has been proposed and implemented to determine whether the 

exported / imported DLL file is malicious or legitimate. Experimental results 

indicate that the UMDetect outperforms than existing anti-malware detection tools 

such as BlackLight, IceSword, VICE, and R3 Hook Scanner with 100 percent 

detection rate and negligible performance overhead. In addition, the overhead of 

UMDetect (1300 CPU cycles for completion) is also compared with the methods 

proposed by Deng et al., Abonghadareh et al., and Yoghi et al. Because, the DCA 

used only countable API function for completion, the runtime complexity of DCA 

is very negligible. In order to optimize the proposed UMDetect approach, a new 

algorithm for detecting hidden entries of a malicious application has been proposed 

which is explained next. 

(iii) The problem of discovering hidden footprints of a malicious executable in 

Windows has also been explored in this thesis work. Because, advanced malware 

authors have taking the advantage of rootkit technique to evade the footprints of 

their malicious code, detecting them is a challenging and can also be used for 

optimizing performance overhead of a malware detection approach. A cross-view 

based hidden processes and services detection algorithm namely, CoPDA has been 

proposed. At runtime, the CoPDA algorithm discovers all hidden entries in 

Windows and validates whether they are legitimate or suspicious.  

Experimental results indicate that the CoPDA algorithm outperforms than 

existing anti-rootkit detection tools such as Hellioslite, GMER, HiddenFinder, 

IceSword, BlackLight, and Rootkit Unhooker with 100 percent accuracy rate and 

1.82 percent of false positives. In addition, the performance overhead of CoPDA 

algorithm has also been compared against existing techniques cross-view based 

hidden process detection approaches proposed by Desheng et al., Xie et al., and 

Richer et al. The CoPDA algorithm caused a tiny overhead of 0.6 percent (10.762 

seconds taken for completion). 

(iv) This thesis finally proposed a kernel level process authentication mechanism 

namely, PAM to validate the originality of all suspicious processes of a malicious 

executable during runtime.  
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PAM enhanced the security strength of the computing environment by the 

combination of user-mode information through CoPDA algorithm for discovering 

suspicious processes and services of a malicious executable and kernel mode 

information by authenticating all identified suspicious processes and services 

during run time. The proposed mechanism is an extension of process 

authentication mechanism by incorporating strong security check. The impact of 

how process authentication mechanism can effectively isolate and disallow 

malicious processes from getting system services and preventing system resources 

against malicious code attacks are also discussed. PAM ensure only authenticated 

service request being serviced by the kernel, it blocks all malicious processes and 

thwart subsequent attacks.  

The effectiveness of PAM is evaluated using different datasets, 

benchmarks, and test-beds. Experimental results show that PAM surpasses existing 

anti-rootkit detection tools such as GMER, IceSword, and Redline with zero 

percent false positives. The low overhead of 1 percent when evaluating PAM on a 

single computer (with smaller number of malware and legitimate samples), is 

because of the testbed with single computer and the variability present in malware 

samples. But the overhead increased to 2 percent when a client-server scenario 

with various malware samples is used.  The proposed PAM outperformance than 

the existing approaches proposed by  Sun et al., Hsu et al., and Salehi et al. with 

the generic overhead of 1-2 percent and does not significantly affect the overall 

system performance. Mathematical verification can also be done to verify the 

same. The authentication mechanism of PAM is portable and can be integrated 

with other static or dynamic behavior based system call monitoring tools with 

customization.  

The essence of this research work lies in better detection and prevention of 

unauthorized process of a malicious executable through authenticating its originality 

during runtime which would significantly contribute to the better enhancement of this 

research work. 
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7.2 Future Research Directions 

 
 In this research, an attempt is made to provide solutions for detecting and 

preventing malicious code attacks by developing and implementing a kernel level process 

authentication mechanism. The various algorithms and techniques developed in this thesis 

can be further extended in the following sections. 

(i) The algorithms developed for graph-based malware detection approach applied 

modified graph-edit distance isomorphism algorithm for comparing two graphs. 

Because, graph matching algorithms plays a vital role in malware detection 

process, GMA algorithm can be extended to optimize its complexity further to 

some extent. 

(ii) The algorithm developed for finding hidden suspicious entries can be extended 

to use authentication mechanism to overcome the limitations of misusing 

undocumented specifically, kernel level API functions. 

(iii) As cyber criminals will make sure that their malicious software creations work 

equally on Windows XP to Android OS, porting PAM to Android OS for 

mobile devices to provide strong authentication to applications is very essential. 

This will be considered as future work. 
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