
A BEHAVIOR-BASED KERNEL LEVEL
AUTHENTICATION MECHANISM FOR PROTECTING

SYSTEM SERVICES AGAINST MALICIOUS CODE
ATTACKS

A THESIS

Submitted to Pondicherry University in partial

fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

By

K. MUTHUMANICKAM

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
PONDICHERRY ENGINEERING COLLEGE

PUDUCHERRY – 605 014
INDIA

DECEMBER 2016

Dr. E. ILAVARASAN, M.Tech., Ph.D.,

Professor

Department of Computer Science and Engineering

Pondicherry Engineering College

Puducherry – 605 014.

CERTIFICATE

Certified that this thesis entitled “A BEHAVIOR-BASED KERNEL LEVEL

AUTHENTICATION MECHANISM FOR PROTECTING SYSTEM SERVICES

AGAINST MALICIOUS CODE ATTACKS” submitted for the award of the degree of

DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE AND ENGINEERING of the

Pondicherry University, Puducherry is a record of original research work done by

Mr. K. MUTHUMANICKAM during the period of study under my supervision and that the

thesis has not previously formed the basis for the award to the candidate of any Degree,

Diploma, Associateship, Fellowship or other similar titles. This thesis represents independent

work on the part of the candidate.

 (Dr. E. ILAVARASAN)

Supervisor

Date : 13.12.2016

Place: Puducherry

i

ACKNOWLEDGMENT

It is my great pleasure to express my deep sense of gratitude to my supervisor

Dr. E. Ilavarasan, Professor, Department of Computer Science and Engineering,

Pondicherry Engineering College, Puducherry, for his invaluable guidance as well as his

timely advice during the period of the research work. His consistent encouragement and

personal attention are accountable for the successful completion of this thesis.

I express my sincere thanks to Dr. P. Dananjayan, Principal, Pondicherry

Engineering College and Dr. T. Sundararajan and Dr. D. Govindarajulu, Former

Principals, Pondicherry Engineering College for their support and permission to carry out

my research work. I am grateful to Dr. M. Sugumaran, Professor and Head, Department

of Computer Science and Engineering and Dr. D. Loganathan, Professor and Former

Head, Department of Computer Science and Engineering, for their valuable suggestions,

advice and support during the entire course period.

I sincerely thank my Doctoral Committee members, Dr. V. Vijayalakshmi,

Associate Professor, Department of Electornics and Communication Engineering,

Pondicherry Engineering College and Dr. V. Ramalingam, Professor, Department of

Computer Science and Engineering, Annamalai University for providing valuable

comments and constructive suggestions towards improving the quality of this research.

And I would also like thank to Dr. S. Himavathi, Professor and Dean (Research),

Pondicherry Engineering College for her moral support during the entire course period.

I am very much thankful to my fellow researcher Mrs. N. Danapaquiame for her

continuous encouragement and support throughout this research, has helped in the

successful completion of this thesis.

I express sincere and heartfelt thanks to my family members, especially to my

father Shri. V. Krishnan, my mother Shrimathi. K. Chellammal, my brothers

Mr. K. Nagarajan, Mr. K. Ravichandran, Mr. K. Kumar, Mr. K. Chandrasekar, my

daughter M. B. Shivaaniritu and my beloved wife Mrs. R. Bhuvaneswari and friends

for their unlimited love support during every stage of my research period.

K. MUTHUMANICKAM

ii

Abstract

Computer security has long been subjected to protect either an important end-

system or an entire network of hosts. Despite the latest advances in safeguarding the

security of end-system and network, malicious attacks on a large network constantly

become a serious threat to protecting data (data privacy) and service integrity. There are

two main problems that may lead to security risks in a large networked environment. First,

poor security policies and system configurations that acts as entry point to permit attackers

to easily bypass the predefined security defences, and seconly, hidden vulnerabilities

which permit an attacker to execute various attacks remotely against vulnerable servers

and workstations.

Advanced stealthy attacks on a large network is only possible by the presence of

increased vulnerable hosts in the network. The existence of vulnerabilities in the Internet

connected workstations and servers, that compromise the network, are envitable. Malware

writers aims to control the functionalities of the operating system of the victim computer

by executing malicious programs through vulnerabilities found either in the application or

system. As Windows is one of the most popular and widely used operating system in the

modern online world for personal computers, it becomes most malware ridden platform.

Therefore, the security compromise of even a single operation in a system will question

the overall system security, including the security assurance of all currently running

applications within the system. Furthermore, the proper control and management of

ensuring the security of individual applications within a computer system makes the

security analysis a challenging task. Therefore, the compromise of just a single computer

on a network may permit an intruder to gain access to important system resources and

distrupt the normal operations the entire network.

Though there are different security defense mechanisms such as Discretionary

Access Control protection that protect system resources from unauthorized access and the

Mandatory Access Control mechanism which ensures the safe execution of untrustworthy

applications, they are not sufficient to offer complete protection against stealthly advanced

malicious code attacks. This research work mainly focused on improving protection level

and security incident reponse capabilities of an end-system or workstation.

iii

First, a Graph-based static Malware Detection approach namely, GraMD has been

proposed for detecting malware attacks. The proposed GraMD approach has been

compared with the existing well-known mechanisms for malware detection. The

experimental simulation results shows that the proposed GraMD approach outperforms

than the existing approaches for malware detection. However, the static malware detection

approches fails to detect unknown malware attacks and hence found not suitable for

trusted computing environment. This has led to the development of a behaviour-based

dynamic malware detection approach at user-mode namely, User-mode Malware

Detection (UMDetect) for Windows has been developed to provide better malware

detection and prevention than the existing techniques. The experimental results shows that

UMDetect outperforms than existing mecahnisms with improved security against both

known and unknown malicious code attacks. However, UMDetect fails to detect and

prevent stealthy malware attacks which incorporate masquerading technique to evade its

footprints and malware that directly target higher level Application Programming Interface

functions to hook kernel level data structures of the Window operating system.

Currently, advanced stealthy malware writers make use of rootkit technique to

mask malware footprints from Antivirus software. This makes malicious code attacks

difficult to detect. Though there exist different algorithms for detecting the presence of

hidden information of a malicious executable, significant research has not been carried out

to effectively apply such algorithms to optimize malware detection technique. Therefore,

to discover and list all hidden information of a malicious executable, a novel algorithm

namely, Concealed Processes and services Discovery Algorithm (CoPDA) that relies on

cross-check based technique has been proposed. The CoPDA algorithm discovers all

hidden footprints of a malicious executable by comparing higher-level information about

running processes and services against its lower-level information that is obtained from

kernel of the operating system. The proposed CoPDA algorithm has been compared with

the existing algorithms for detecting hidden malicious code by simulation. The

experiments have been conducted using a standard real-time datasets and some real-time

anti-malware detection tools. Experimental results shows that CoPDA outperforms against

the existing techniques and anti-rootkit detection tools based on their false positives, true

positives, precision rate, and detection accuracy.

iv

As the existing conventional authorization techniques lack a reliable and strong

process authentication policies against stealthy malicious code attacks, a behaviour-based

kernel level Process Authentication Mechanism (PAM) has been proposed. The Proposed

PAM mechanism improves the security strength of the kernel of the operating system by

incorporating user-mode information through the implemented CoPDA algorithm for

discovering all suspicious processes of a malicious executable and kernel-mode

information for authenticating each identified suspicious process during run-time. The

effectiveness of the proposed PAM mechanism has been evaluated by conducting various

simulation experiments using real-time datasets and standard benchmarks. The

experimental results show that PAM outperforms than the existing widely used

anti-rootkit detection tools and techniques found in the literature in terms of false

positives, execution time, accuracy, and performance overhead. As a runtime mechanism,

PAM includes secret authentication information and an authentication module to ensure

high security assurance.

The limitations of process authentication mechanism for preventing malicious code

attacks have also been identified and presented for further exploration in this thesis.

v

CHAPTER TITLE PAGE

 ACKNOWLEDGEMENT i

 ABSTRACT ii

 LIST OF FIGURES viii

 LIST OF TABLES x

 LIST OF ACRONYMS AND ABBREVIATIONS xii

 1 INTRODUCTION 1

 1.1 Background 2

 1.2 Motivation and Challenges 11

 1.3 Objectives of the Research Work 14

 1.4 Thesis Problem Statement 15

 1.5 Summary of the Research Contributions 16

 1.6 Organization of the Thesis 18

2 LITERATURE SURVEY 20

 2.1 Preamble 20

 2.2 Malware 21

 2.2.1 Malware Motivations 23

 2.2.2 Malware Deliverance Machanism 23

 2.2.3 Malware Trend with Hook Techniques 24

 2.2.4 User mode Malware 25

 2.2.5 Kernel mode Malware 26

 2.3 Analysis of Malware Detection and Prevention Techniques 26

 2.3.1 Static Malware Analysis 27

 2.3.1.1 Network Level Malwae Analysis 28

 2.3.1.2 Host Level Malware Analysis 37

 2.3.2 Behavioral Malware Analysis 47

 2.3.2.1 User-Mode malware Detection and Prevention 47

 2.3.2.2 Detection of Hidden Entries in User-mode 52

vi

CHAPTER TITLE PAGE

 2.3.2.3 Combination of User-mode and Kernel-mode

Protection
56

 2.4 Extract of the Literature Survey 59

 2.5 Summary 61

3 PROPOSED GRAPH BASED APPROACH TO DETECT

MALCIOUS CODE ATTACKS 62

 3.1 Preamble 62

 3.2 Proposed Graph-based Approach 63

 3.3 Experimental Setup 67

 3.4 Experimental Results and Discussions 69

 3.4.1 Mathematical Verification 72

 3.4.2 Analysis of the proposed GraMD approach 78

 3.5 Summary 78

4 PROPOSED USER-MODE MALWARE DETECTION AND

PREVENTION APPROACH 79

 4.1 Preamble 79

 4.2 Architecture of the proposed UMDetect 83

 4.3 Experimental Test bed 86

 4.4 Experimental Results and Discussions 87

 4.5 Summary 89

5 PROPOSED HIDDEN PROCESSES AND SERVICES DETECTION

ALGORITHM 90

 5.1 Preamble 90

 5.2 Conceled Processes and services Discovery Algorithm (CoPDA) 93

 5.3 Experimental Results and Discussions 96

 5.3.1 Performance Analysis of CoPDA 97

 5.3.2 Overall Detection Accuracy of CoPDA 100

vii

CHAPTER TITLE PAGE

 5.3.3 Detection through Hindrance 104

 5.3.4 Runtime Overhead of CoPDA 105

 5.4 Summary 107

6 PROPOSED KERNEL LEVEL AUTHENTICATION MECHANISM 108

 6.1 Preamble 108

 6.1.1 Assumptions 113

 6.1.2 Security Models 113

 6.2 Proposed System Architecture of PAM 115

 6.2.1 Security Monitor 115

 6.2.2 Perservation Function 119

 6.2.3 Kernel Level Runtime Authenticator 119

 6.2.4 Process Authentication Protocol 119

 6.3 Experimental Results and Discussions 120

 6.3.1 Test Case 1 121

 6.3.2 Test case 2 124

 6.4 Verification by Mathematical model 127

 6.5 Overall Comparisons of existing approaches and PAM 130

 6.6 Summary 133

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 134

 7.1 Conclusions 134

 7.2 Future Research Directions 138

 REFERENCES 139

 LIST OF PUBLICATIONS 156

 VITAE 158

viii

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 Important layers of abstraction 3

1.2 Code to access NtProtectVirtualMemory function 4

1.3 System call in x64 5

1.4 System call in WOW64 5

1.5 Overview of malware detection system 7

2.1 Malware Life cycle versus Malware Detection Techniques 27

3.1 Flow diagram of the proposed GraMD approach 63

3.2 API call-graph 64

3.3 Pseudo code for ACA Algorithm 66

3.4 Pseudo code for GMA Algorithm 67

3.5 False positives of the proposed GraMD and existing Approaches 71

3.6 Detection Rate of the proposed GraMD and existing Approaches 71

3.7 Accuracy Rate of the proposed GraMD and existing Approaches 72

3.8 Resource Consumption 77

4.1 Execution flow of WriteFile() API function 80

4.2 HookAPI function 81

4.3 IAT Hook by a Malicious Rootkit 82

4.4 Hooking Inline Function 83

4.5 Overall flow of the proposed UHDetect approach 83

4.6 Pseudo code for DCA Algorithm 84

4.7 Number of hooks generated by different malwares 87

4.8 Comparison between Detection Rate and False Positive Rate 88

4.9 Performance comparion with existing Approaches 88

5.1 Global view of CoPDA Algorithm 94

5.2 Visiblel view of CoPDA Algorithm 95

5.3 Realization of ROC curve (Average Values) 101

5.4 Comparisons of PR and DA 102

ix

FIGURE TITLE PAGE

5.5 Comparions of TPR and FPR 103

5.6
Variation in hidden process detection time depends on the process creation

activity in Windows
104

5.7
Variation in hidden process detection time depends on the process creation

activity in Linux
105

6.1 NtCreateFile API function call 109

6.2 Various levels of checks of a protected process 110

6.3 Overall flow structure of PAM 116

6.4 Diagramatic representation of Security Monitor 118

6.5 Diagramatic representation of guidehook.dll 118

6.6
False Positive comparison (Test case 1) with existing anti-malware

detection tools
124

6.7
False Positive comparison (Test case 2) with existing anti-malware

detection tools
125

6.8 Overall Detection Rate comparison of PAM 130

6.9 Overall runtime Overhead comparison of PAM 131

x

 LIST OF TABLES

TABLE TITLE PAGE

2.1 Characteristics of various IDSs 29

2.2 Taxonomy of various existing NIDS techniques 36

2.3 Taxonomy of various existing Host level static malware Analysis techniques 40

2.4 Taxonomy of various existing Graph-based malware detection approaches 46

2.5
Taxonomy of various existing approaches for detecting and preventing User-

mode malware attacks
51

2.6
Taxonomy of various existing approaches for detecting hidden entries of a

malware
55

2.7
Taxonomy of various existing approaches for detecting and preventing

malicious code attacks at Kernel-mode
58

3.1 Various Malware Families used for Evaluation of GraMD 68

3.2 Comparison between similarity value and detection capability 70

3.3 Utility Derivation 75

3.4 General IAT Hook 76

3.5 Optimal Payoff for P
x 76

3.6 Optimal Payoff for P
y
 76

3.7 General Rootkit detection payoff 77

4.1 Malware family with Hook Type 86

5.1 API functions hooked by malicious rootkits 91

5.2 Characeristics including Testing tools including CoPDA Algorithm 96

xi

TABLE TITLE PAGE

5.3 A brief statistics of the considered evaluation parameters 98

5.4 Summary of computed values 97

5.5 Computation of mean and Confidence Interval 103

5.6 Comparing CoPDA with existing tools 103

5.7 Comparisons of CoPDA with existing tools (For ROC Plot between 0 to 1.0) 104

5.8 Detection of runtime overhead 106

5.9 Overall comparison with existing Approaches 106

6.1 Description of notations and complex words 117

6.2 Description of Symbols 121

6.3 Performance overhead of PAM against Beign samples 122

6.4 Benchmark scores against Malware samples – test case 1 123

6.5 Measurement of performance overhead (CPU cycles) 126

6.6 Benchmark scores against Malware Samples – test case 2 127

6.7 t-test computation 128

6.8
Comparison of existing malware detection and prevention Approaches for

Windows
132

xii

LIST OF ACRONYMS AND ABBREVIATIONS

ACRONYMS ABBREVIATIONS

ACL Access Control List

ACM Access Control Matrix

ANIDS Anomaly based Network Intrusion Detection System

API Application Programming Interface

AR Accuracy Rate

ASLR Address Layout Randomization

CIG Cretential Information Generator

CIL Credential Information List

CoPDA Concealed Process and services Discovery Algorithm

CRSS Client server Runtime SubSystem

DA Detection Accuracy

DAC Discreationary Access Control

DACL Discreationary Access Control List

DEP Data Execution Prevention

DLL Dynamic Link Library

DR Detection Rate

DRM Digital Rights Management

EAT Export Address Table

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

xiii

ACRONYMS ABBREVIATIONS

FTP File Transfer Protocol

HIDS Host Intrusion Detection System

HMAC Hashed Message Authentication Code

HMM Hidden Markov Model

IAT Import Address Table

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IHD IAT Hook Detector

ILT Import Lookup Table

IOCTL Input Output Control

IRC Internet Relay Chat

KPP Kernel Patch Protection

LCSA Longest Common Subsequence Algorithm

LHC Inline Hook Detector

MAC Message Authentication Code

MDS Malware Detection System

MTR Security Monitor

MZ MS-DOS Header

NIDS Network Intrusion Detection System

OS Operating System

PAIDS Proximity Assisted Intrusion Detection System

PAM Process Authentication Mechanism

PE Portable Executable

xiv

ACRONYMS ABBREVIATIONS

PF Perservation Function

PID Process Indentifier

PMP Protected Media Path

PR Precision Rate

RAM Random Access Memory

ROC Receiver Operating Characteristic

RVA Relative Virtual Address

SCM System Call Monitoring

SMTP Simple Mail Transfer Protocol

SPC Secret Process Credential

SPS Security Policy Specification

SPT Shadow Page Table

SSDT System Service Descriptor Table

SVM Support Vector Machine

TEB Thread Environment Block

TP True Positive

TPM Trusted Patform Module

TPR True Positive Rate

WHIPS Windows Host based Intrusion Prvention System

WOW64 Windows 32-bit on Windows 64-bit

RDTSC Read Time Stamp

WDK Windows Driver Development Tool Kit

1

CHAPTER 1

INTRODUCTION

The continuing growth of Internet connected devices will drive malware authors to

use either unpatched system or software vulnerabilities as a way to point a full-blown

attack. Designing and maintaining a trusted and secure system environment is increasingly

more important as data flows more freely through the interconnected devices. Though

many vendors, import different security features into their product, they cannot design a

complete, secure and trustworthy system to handle current computing environments.

Malware writers usually look for either system vulnerabilities or application

vulnerabilities to deposit their code into the victim computer. There are three important

issues that the defenders may encounter to fix. First, the application process has more

flexibility to carry out their illegal operations on the victim computer. Second, both

malware and security system can run in the same execution environment. Therefore,

malware tries to modify the code segment and execute data segment to achieve their

ultimate goal. Third, most security systems have incorporated with limited methods to

dynamically detect the behavior of malicious executable. Malware authors are taking the

advantage of these three problems making malware more powerful.

Recent malware often designed with intention to compromise, possibly, many

victim computers, stay long by hiding its footprints, and circumvent the secured system.

Remote attackers can even control a large private network by compromising a secured

server or workstation. This leads to tamper the kernel of the underlying operating system

which would question the trustworthiness of the entire computing environment. Kernel

integrity is more important to ensure a secure computing environment.

Therefore, a new security mechanism needs to be devised to strengthen the security

of the kernel by avoiding the above said three issues which can permit malware to

compromise the victim computer. The security of an operating system has long been

subjected thirst research area. However, recent operating system design concentrates to

offer better performance, more reliability, compatible and portable over security. This drift

will never likely face the challenges of the predictable.

2

The gap between possible features and solutions offered by the current computing

environments differs what is actually offered by them. However, it is more difficult to

secure current computing environment without incorporating strong security measures.

One possible solution is to introduce a mechanism to improve the security strength of the

kernel to certain extent. In this thesis work, a new security enhancement mechanism

namely, kernel level Process Authentication Mechanism (PAM) for detecting and

preventing malicious code attacks has been proposed for Windows environment. By

authenticating suspicious processes of the executable which are identified by the CoPDA

algorithm at kernel level during run time, PAM can detect and prevent such attacks

specifically before being serviced by the kernel.

The remaining of this chapter is continued by providing the background

information regarding the problem under investigation. The motivation and challenges of

the research work, objectives of this work and thesis problem statement are also devised

and explained. Finally, the contribution out of thesis work and the organizations of the

chapters in this work are presented in a nutshell.

1.1 Background

This chapter presents background information to make a clear understanding of

what type of issues, PAM tries to resolve and what kind of different technologies PAM

makes use of. This chapter also presents information about the layers of abstraction of a

computer, the growth of current malware families, the most familiar targeted system

resources and how they are compromised, the different techniques to combat malware

attacks, and finally presents the background information about the execution

environment for PAM.

All modern computer systems have a piece of most important system software,

entitled Operating System (OS) or kernel which basically runs on top of the hardware that

assigns the necessary system resources and supervises the execution of each application

within the system. The OS as a whole consists of the kernel and may comprise other

relevant programs for providing necessary services for each incoming request. More

importantly, the kernel which acts as a part of the OS is responsible for many functions

such as system calls, manage memory, and interrupts, exceptions, etc,.

3

One of the security mechanisms the system exercises is protection rings which are

basically a construct of X86 processor architecture. These protection rings strictly provide

definitions and boundaries for what type of operations they can able to execute. On most

operating systems, there are four protection rings or privilege levels, which are numbered

from most privileged (numbered zero) to 3 that represents least privileged mode. At any

given time, for example, an X86 processor can run in a specific privilege mode, which

decides what program code can and cannot permit. Basically the kernel of the OS runs in

ring 0 and all user code can only run in ring 3. Figure 1.1 shows the various layers of

abstraction a computer.

Figure 1.1 Important layers of abstraction

Since the Microsoft Windows is the most popular desktop OS, it becomes an

attractive target for malware writers. The Windows Application Programming Interface

(API) permits many different applications to utilize the powered features of the Windows

family of OS. The Window API provides a uniform development environment, many

communication and synchronization mechanisms, so that users can develop

applications which are capable of running on all versions of the Windows family. The

Windows64 API incorporated the features supported by the 64-bit versions of Windows to

allow programming on the 64-bit Windows. The programming concept and API features

are about the same as 32-bit Windows architecture. But, in WIN32 the size of the pointer

is 32 bits whereas in WIN64, its size is 64 bits.

Applications

Services

Operating System

OS Kernel

Hardware

4

According to Microsoft, WOW64 (Windows 32-bit On Windows 64-bit)

represents a subsystem which can run 32-bit applications on 64-bit versions of Windows.

The limitation of a 64-bit copy of KERNELBASE.dll, kernel32, etc. a malware using its

code in the 64-bit OS that facilitates the WOW64 environment. This indicates that the

higher level APIs such as LoadLibrary(), VirtualProtect(), etc. are not available for direct

access. For example, let us take a system call invocation under WOW64 on Windows 7

OS. The code depicted in Figure 1.2 shows that the NtProtectVirtualMemeory() cannot be

accessed directly, instead a call to the function pointer within the thread environment

block.

0:004:x86> uf ntdll32!ZwProtectVirtualMemory

ntdll32!ZwProtectVirtualMemory:

774e0038 b84d000000 mov eax,4Dh

774e003d 33c9 xor ecx,ecx

774e003f 8d542404 lea edx,[esp+4]

774e0043 64ff15c0000000 call dword ptr fs:[0C0h]

774e004a 83c404 add ESP, 4

774e004d c21400 ret 14h

Figure 1.2.Code to access NtProtectVirtualMemory function

A system call in computing is a technique in which a software application requests

necessary services from the kernel of the operating system for completion. System calls

are the only way to communicate with the kernel of the OS, and they can be accessed by

programs through a high-level API rather than permitting direct access to it. A system call

number is usually associated with each system call that can be used as unique identify.

The computer OS preserves a system call handler table which is indexed according to the

system call numbers and each entry in the table points the code to be executed. Figure 1.3

shows a system call invocation in x64 processor. The WOW64 consists of the following

Dynamic Link Library (DLL) files to support Windows 32-bit programs: Wow64.dll

which is responsible for marshalling all system calls while translating arguments using a

system call table to ntdll.dll and wow64win.dll via wow64cpu.dll, and Wow64Win.dll

which is acting as additional system call marshalling for console subsystems and

windowing.

5

Figure 1.3 System call in x64

Few important functionalities of WOW63 are performing the mode-switches and

dispatching system calls that can be either directly or through

wow64!Wow64SystemServiceEx(). The system call invocation in WOW64 is slightly

differs from accessing in X64 as shown in Figure 1.4.

Figure 1.4 System call in WOW64

6

Today, stealthy malicious software is one of the most dangerous and challenging

security threats. In reality, it is difficult to design a system which guarantees to be either

secured or to remain secure over time. The kernel of the OS maintains many different data

structures to provide services to either user programs or to run its own code. Protecting

such important data structures and data against unauthorized access is a major issue for

security designers or defenders. A new type of malware will be launched every day by

modifying its predecessor, reaching 41 million new unique malware samples during

second quarter of 2015 [1]. Malicious software can exploit hidden vulnerabilities found in

the Internet computing environment without user’s knowledge. Basically malware

includes virus, worm, Trojan horse, and spyware that can be used to disrupt predefined

computer security policies or operations, gain access to computer systems, gather sensitive

data, or display unwanted advertising. It can appear in the form of scripts, active content,

code, or other software. Today, more advanced malicious software is incorporated with

rootkit techniques to make detection more difficult.

A rootkit is a technique designed with the intent of permitting a remote attacker to

maintain highest privilege via backdoor over the resources of the victim computer.

Different malware adopts the different masquerading technique to avoid its detection. As a

result, rootkits can dynamically defy detection either by hiding from view or messing

Antivirus (AV) software. Because of these characteristics, rootkits are potentially

dangerous to the integrity of user data. In order to carry out illicit operations malicious

rootkits make use of hooking mechanism which can able to modify the execution flow of a

system call, but rootkits required to access kernel level APIs to accomplish their

predefined tasks. The emergence of the first form of malware attack and hacking tool was

followed by defensive techniques and automated tools. Today, many security software

products integrate various defensive measures such as firewalls, AV software, spam

blockers, etc. Figure 1.5 shows the different possible malware detection techniques,

classifications of detection, and vital information available for malware analysis. The

dynamic behavioral malware defense technique must intercept suspicious event and

analyze them to detect their presence. However, deciding which event to intercept is very

tedious task. In additions, information about an event alone is not adequate to discover

whether a process of an application is malicious or legitimate. Though many researchers

actively involved in this area, they fail to specify perfect definition to it [2-4]. To

overcome this issue, researchers concentrate on two areas to reveal malicious activities.

7

Figure 1.5 Overview of malware detection system

First, revealing malicious actions through determining the association between

memory, files, processes, and other system resources [5-6]. In [6], the author proposed one

such technique to identify a malware by discovering the concealed link between processes

using data tainting method. The second approach is the movement towards security policy

enforcement mechanism which elucidates malicious operations by controlling access

privileges of various system resources. Any event which violates the predefined security

policies is concluded as malicious.

Security Policy Enforcement Mechanism

There exist two useful common malware defense techniques to protect system

resources against malicious code attacks. They are System Call Monitoring (SCM)

technique and mandatory Access Control List (ACL) mechanism. The former technique is

widely used to detect compromised applications and analyze them to minimize the harm

that they can cause [7-13]. SCM technique relies on setting up policies that impersonate as

a legitimate application system call and then suspending or terminating execution if the

application pretended to be legitimate. Though SCM technique alone cannot completely

protect an end-system, hence it can be used as an additional technique to strengthen the

detection capabilities of Intrusion Detection System (IDS). The ACL technique relies on

implementing a Message Authentication Code (MAC) mechanism that requires a

malware’s signature to define Security Policy Specification (SPS) to enforce access

restriction to various system objects.

8

Existing MAC security solutions such as APPArmor [14] and grsecurity [15] that

rely on an authorization mechanism allows a user to enforce strong security policies

against malicious executables. These MAC solutions are implemented in Linux open OS

to supervise access rights to different system resources by applying security policy

specification. An online anomaly based detection technique [16] proposed to identify a

suspected malicious execution path of an application which relies on measuring

similarities between execution paths. However, few malicious executable might behave

like legitimate applications which are very hard to distinguish. Therefore protecting

individual computers or workstations in a network is a very important.

The security policy enforcement mechanism elucidates malicious operations by

controlling access privileges of various system resources. Any event which violates the

predefined security policies is concluded as malicious. Many related works have been

found in association with implementing security policy enforcement for modern

computing environments [6] [17-19]. A kernel-mode protection framework namely,

WHIPS has been developed for Windows environment by Battistoni et al., [20]. WHIPS

inspects every system call request in the kernel mode and validates the caller’s service it

requests such as process name and parameters of the request using a access control

database and blocked a request that is invalid. The challenge in using WHIPS for

Windows environment is to exactly defining the access control database specifically

deciding the safeness of parameters.

KVMSec [21] focused on periodically checking the integrity of several system

objects by maintaining secure communication channel with guest environment. However,

the system runs with partial completion of integrity checking component. The system

proposed by Payne et al. [18] monitors system-wide process manipulation activities to

hook important system calls and maintains integrity over such hooks to detect malicious

activites. In addition, malwares that do not adopt system call hook technique can easily

bypass. To detect the presence of rootkits, XenKIMONO [22] used different techniques

such as cross-view check, integrity check, etc. However, designing a system to detect all

kinds of rootkit types is really a difficult task. Another approach [23] that is relying on

policy enforcement is, system call monitoring. This approach is based on intercepting

system call invocations and directs the response to the actual system call. The system

mainly relying on process granularity level and can directly able to discover and prevent

malicious system call operations. However, this approach suffered from three issues.

9

First, a malicious code which pretends to be legitimate can evade its detection.

Second, determining which system calls to be controlled is really a difficult task. Third,

this technique suffered from high false positives. If both malicious executable and anti-

malware detection software run at the same privilege level, then the policy based

technique to detect and prevent malware activities become useless defense technique. This

is one of the main drawbacks of policy enforcement mechanism.

Microsoft‘s new security update

The elementary problem of designing security features to guarantees a secure

computing environment is that any process running in the kernel mode obtains highest

privilege can increase its privilege level to access and control over other system resources.

This also permits the malicious code to rewrite any code segment in memory to run its

own code and access data part of other processes illegally. Therefore, preventing illegal

access to code part, kernel object manipulation, and data execution can raise the security

level substantially. In order to improve the security strength of the operating system,

Microsoft introduced new additional security features such as Kernel Patch Protection

(KPP), Address Space Layout Randomization (ASLR) and Data Execution Prevention

(DEP) from Windows Vista onwards to ensure the trustworthiness of the underlying

computing environment. ASLR is an important technique which runs to arbitrarily check

the address range of each process to hide the target location from the attackers. KPP averts

malicious executable from patching vital data structure and code part by periodically

validating if any protected kernel memory part is modified. DEP permits marking a certain

part of primary memory for data keeping sensitive information and prevents the preset

data area being executed.

Another useful security enhancement solution to ensure the trustworthiness of the

underlying computing environment is hardware level implementation of Trusted Platform

Module (TPM) [24]. TPM is implemented to offer secure information protection by

integrating cryptographic mechanism in hardware. TPM is one of the popular security

solution techniques which can guarantee that the system resources are not altered and limit

access to data. Although TPM is a strong hardware level security solution against

tampering resistance attacks, the hardware level implementation might be flexible to

modify the security of the system when needed. There were few hooking techniques have

been proposed which can bypass these security measures [25-27].

10

Malware can still run with the same level as the security system and may thrive in

challenging entire security system. A virtualization mechanism permits the execution of

guest code directly on the physical machine while the executions of traditional virtual

machine environment like QEMU [28] in user-mode. QEMU is another useful open source

virtualization technique which offers benefits such as Input / Output emulation and

initialization of virtual platform.

Kernel Virtual Machine (KVM) behaves similar to device driver and service user

request using Input Output Control (IOCTL). KVM uses a virtual memory technique

called the Shadow Page Table (SPT) [29] which provides a huge memory address space to

each process than the host’s real memory. The SPT is mainly used for mapping the guest

code virtual memory onto the system primary memory. However, the introduction of SPT

technique involves lavish context switching between host and guest. There are many

barriers to policy enforcement and acceptance. First, if both malicious executable and anti-

malware detection software runs at the same privilege mode then the policy enforcement

technique to detect and prevent malware become useless defense technique. Second,

recent malwares with advanced hook techniques can bypass the predefined security

policies. Typical OS’s kernel often fails to include either stronger restrictions on the

program executable or protecting system services against malicious code attacks.

Some effective real-time anti-rootkit solutions also exist to dynamically analyze

and discover hidden rootkit malware. However, such tools failed to discover kernel level

API hooks dynamically. Therefore designing a mechanism which is capable of detecting

and preventing malicious code attacks to protect both user-mode and kernel-mode is a

challenging problem. Although there were many different approaches have been proposed

in the past to prevent system service against malicious code attacks, the following issues

were not addressed significantly in the existing approaches.

 Resist hidden processes attacks and existential forgery attacks and code injection

attacks.

 Strong kernel level authentication to protect system services and important data

structures.

 Minimizing the false Positives and runtime overhead for the entire system.

11

Some existing research works have addressed the problem of detecting the hidden

footprints of malicious executables using crosscheck based approach. These algorithms

only list the properties of the hidden processes. Microsoft Windows treats the kernel of the

operating system as a black box; hence makes the complexity of designing a monitoring

framework becomes a challenging task. Therefore, there is a growing interest for the

kernel level authentication techniques to protect system services against malicious code

attacks which enable designers to test and validate suspicious processes either even before

causing damage to the system resources or compromise the entire system. Malicious code

is one of the security threats today on the Internet. Attackers can inject malicious code into

the software by exploiting a hidden bug that may exist in it and execute the injected code

abnormally. During code injection phase, attackers need to execute privileged events, by

calling a system service, more importantly, native APIs. Without distinction, the kernel

provides services to both malicious processes of an application and also to legitimate

process. Though many vendors, import different security features into their product like

providing security functionality to completely protect a system, but it may not be adequate

to trust the system.

1.2 Motivation and Challenges

Due to the decisive responsibility of the OS in managing large number operations

in a computer system, the lack of security of an OS will greatly impact the overall security

of the computing environment, as well as the security assurance of all programs running

within the environment. If the underneath OS can be compromised, it will certainly lead to

full information compromise of a secure computing system. Inadequate access control and

management of execution of individual application processes in an OS can lead to break

the entire system security policies.

 Analysis of malicious code attack risk enable defenders to model attack reasoning

and scenarios about the relationship between dependencies between attack paths. By

generating comprehensive models about different attack scenarios, it is possible to design

a specific quantitative measurement technique for attack risks coupled with a network

settings. Then the outcome can be later used to improve the security configuration of the

network. However, such a quantitative attack measurement model technique considers

several technical design challenges.

12

First, the outcome of a quantitative measurement model must have clear semantics

which could permit for the development of deterministic algorithm for generating the

expected results. Second, the quantitative analysis of different security risks must be able

to generate useful conclusions even in the absence of sensitive sampling security data.

Finally, very large networks are usually highly dynamic in nature.

Generating attack graphs are normally a well-known method which can offer the

expected information about attack scenarios and its dependencies of a malicious

executable. A malicious code attack graph G= (V, E) is a dependency graph in which E

represents the relationship between and V represents a state transition. Although there

were many quantitative assessment models exist to depict attack scenarios of a specific

network, this kind of static analysis suffers from several limitations to handle current state

of art on security.

 An attack graph model offers only a partial interpretation about attack scenarios of

a network. The existing methods lack of hard theoretical foundations.

 Existing design approaches to quantify network attack graphs fail to consider the

dynamic nature of a networked environment.

 For larger networks, quantitative analysis of attack graphs fall under NP-complete

problem which is always non-trivial.

Dynamic analysis based defense mechanisms have been developed to overcome

these issues. Such approach works by utilizing the execution flow of legitimate

applications to discover the presence of a malware. However, attacks such as mimicry and

shadow attack weaken the dynamic malware analyser. Most OS kernels often enforce only

a limited access restriction on the application program permitted to carry out its execution.

As a result, malicious software program which runs as a stand-alone process abuse system

resources for its execution. Once installed on the victim computer, malicious executable

can freely run to execute privileges associated with the current user account running the

process. This may lead to affect the entire network. Therefore, securing both user-mode

and kernel-mode of an end-system is very important. Dynamic malware analysis based

user-mode malware detection techniques and anti-malware detection tools have been

studied and developed. As advanced malware incorporate rootkit techniques to evade

detection, different algorithms have also been developed to optimize the malware

detection system. But malware attacks that target kernel level compromise is an issue.

13

Therefore, to protect both user-mode and kernel-mode of the OS, techniques such

as access control, authorization mechanism, and authentication mechanism have been

implemented. One of the key foundations of most modern operating systems involves

employing an appropriate level of access control protection through Discretionary Access

Control (DAC). In DAC, the owner of an object state which subject(s) can access the

object. Although this kind protection measures improve security in a time sharing or

multi-tasking environment to certain extent, it suffers to impose firm security policies for

individual application executable. Certainty secure applications always demand secure OS,

and preventing application compromises at the kernel level by enforcing strict access

control policies are generally considered more attractive and an effective approach. In

computer security, the ACL technique improves the security level of the OS to certain

level by enabling either the system or system administrator to specify necessary security

access rights to resources objects in a file system.

The ACL mechanism offers a strong separation of application programs that builds

secure execution of trustworthy applications from un-trusted applications. Therefore, it

guarantees security for applications by defending and bypassing against the tampering

with secured applications. Most malicious executables attempt to run with the same

privilege level as a user-program or system and tries to increase its privileges level to

attain its designated goal. Furthermore, the access control policy based mechanisms

maintained by the OSs are so rudimentary. This permits nearly all privileged applications

and system services running with root privileges than the program what actually needs.

Thus, exploitation in any of these running programs can lead to complete system

compromise. ACLs is appropriate on supervising disclosure of information through

embedding strict security levels to different system objects and subjects, thus limiting

access controls into the system. In opposition DAC concentrates on fine-grained access

control of system objects through different object level permission modes and Access

Control Matrix (ACM). Limitations in each of this mechanism can fail to satisfy one or

more of the following three characteristics of an ultimate security mechanism:

(i) Certain incapability to cessation of predefined security policies by evading access

 controls, policies by the mechanism

(ii) Obscure continuous privileged interaction with the mechanism

(iii) Implementing cost-effective and real-time mechanism

14

The above discussed security solutions fall under the category of authorization

mechanism. However, authorization mechanisms are not alone sufficient to guarantee a

secure system. Several methods such as public-key cryptography or password can be

found in a networked environment or multi-user system for user authentication. In a multi-

user OS, depends on managing a huge amount of diverse applications, providing

authentication to basic operating data is turning out to be more important. With modern

stealthy malware attack technique, system information which is trusted for granting access

needs to be rechecked and reassessed.

An authentication mechanism that used data provenance proposed in [30] pointed

out the importance of verifying the kernel level authenticity and originality of data flows

which are consumed by the system. Dai et al. [31] described a digital signing method for

ensuring integrity and authentication of a signing agent on a system for generating digital

signatures. It also described how a program signer differs from a human signer and also

listed the system challenges that are associated with trustworthy of the program signer.

With stealthy malicious code attack techniques, human’s timely reaction to intrusion

detection is not possible. Also, Microsoft Windows is the most popular and widely used

OS, attacking a considerable number of systems in local area network by compromising a

single system is possible. Therefore, the research work is carried out with the following

objectives.

1.3 Objectives of the Research work

The objectives of the research are as follows:

(i) To provide a solution to the graph-based static malware detection approach, by

devising new graph-generation and graph-matching algorithm to generate

better detection rate than existing graph-based malware detection approaches

with lesser false positives.

(ii) To develop new dynamic malware detection approach for protecting the

user-mode of an end-system to provide better results than the existing user-

mode malware detection techniques.

15

(iii) To devise a new cross-check based algorithm for detecting hidden footprints of

a malicious executable to optimize user-mode malware detection approach to

provide better detection rate than existing hidden process detection algorithms.

(iv) To develop a new mechanism for authenticating unauthorized processes of an

executable during runtime before being serviced by the kernel and thus

ensuring system assurance.

1.4 Thesis Problem Statement

 Based on the objectives, this research work is focused on designing and developing

a security enhanced mechanism named, PAM, by detecting and preventing malicious code

attacks against system services by validating the originality of the suspicious processes of

an executable application during runtime.

(i) Static malware detection techniques can effectively detect and prevent known

malware attacks. Therefore, a graph-base malware detection approach has been

proposed to provide better results than existing solutions. However, static

malware detection systems are not effective against unknown malware attacks.

In addition graph-based approaches belong to NP-complete in nature.

(ii) In order to detect and prevent both known and unknown malware threats that

target API hook attacks, a user-mode malware prevention system has been

proposed. In order to initialize and carry out illicit operations on a victim

computer, a malicious executable can create multiple duplicate processes.

Therefore malwares that incorporate rootkit techniques pose a serious

challenge to the defenders.

(iii) A new novel cross-check based algorithm is also designed and developed to

discover hidden processes and services. Whenever a new process is created,

first it will be validated by this algorithm to check whether it is suspicious or

not. The implementation of the proposed algorithm and its outcome can greatly

helps to reduce the overall performance overhead of the proposed mechanism.

16

(iv) The process authentication technique is extended and incorporated with the

kernel on determining whether each incoming service request of a process is

legitimate or not. If suspicious then it will be authenticated by the kernel of the

OS during run time. Therefore, improvement in authenticating of the processes

of an executable application is incorporated and it is directly improving the

trustworthiness of kernel level information.

1.5 Summary of the Research Contributions

In this thesis work new static malware detection approach and user-mode malware

detection approach have been developed. Also, list its advantages and security barriers

associated with them which fail to detect hidden footprints of unauthorized processes a

malicious executable. Therefore, a novel hidden process and service discovery algorithm

for optimizing user-mode malware detection has also been developed. Furthermore, the

process authentication mechanism is extended to guard against kernel level unauthorized

processes malicious code of an executable at runtime on Windows. This thesis work

enforces a mandatory authentication on all suspicious processes of an executable whereas

legitimate processes are directly being serviced by the kernel.

(i) The graph based malware detection approach namely, GraMD has been

designed and implemented to detect malware hook attacks. To model an API

function call as a graph, a new algorithm namely, API Call graph Algorithm

(ACA) has been developed. In addition, a modified graph edit distance

algorithm namely, Graph Matching Algorithm (GMA) to compare two given

graphs has also been proposed. Real-time malware samples were collected

from reputed websites and used for evaluating the proposed GraMD. The

collected are classified into three sets, namely, rootkit, worms, and viruses for

evaluation purpose and the experiments are conducted for each set separately.

GraMD approach is compared with the existing approaches for the detection of

malware attacks and the experimental results show that GraMD consistently

outperforms the existing techniques with an average of 98.84 % detection rate

and 0% false positives. However, such statistical approach can effectively deal

known malware attacks but fail to prevent stealthy unknown attacks. This leads

to the development of dynamic based malware detection approach

17

(ii) Detecting and preventing malicious code hook attacks in user-mode namely,

User-mode Malware Detection (UMDetect) has been developed. Unlike other

malware hook detection techniques, the UMDetect involved dynamically

analyzing the behavior of Windows native API hook attacks. A new DLL

Classification Algorithm (DCA) has been proposed to validate whether the

DLL files to be imported/exported is malicious or not. For conducting

experiments, a dataset is obtained from public resources and collaborative

researchers. The evaluation results show that the proposed UMDetect has

successfully discovered all malicious hooks and achieved 95-100% detection

rate with 0% false positives against the existing user-mode malicious code

detection approaches. Although the implemented technique detect and prevent

malicious code attacks against important user-mode data structures, it cannot

deal hidden entries of a malicious executable. Hence a solution needs to be

devised to discover the hidden footprints of such malwares.

(iii) A cross-check based algorithm namely, Concealed Processes and services

Discovery Algorithm (CoPDA) has been developed to discover all suspicious

processes and services of a malicious executable. A dataset consists of 100

rootkit malware samples and 50 benign programs are collected from public

resources. Experimental results show that, the proposed CoPDA algorithm

detected all hidden processes and services of a malicious executable effectively

and surpasses some real world anti-rootkit detection tools and existing

solutions with 99-100% detection rate with 1.82% false positives.

(iv) Finally, a novel idea to enforce kernel level process authentication namely,

PAM has been proposed for protecting system services against malicious code

attacks in Windows. PAM provide strong security against malicious code

attacks by combing user-mode information through the implemented CoPDA

algorithm which is responsible to discover all suspicious entries of an

executable and kernel-mode information by authenticating its originality during

runtime. As PAM imposed mandatory authentication to confirm the originality

of all suspicious processes of the executable, it guarantees prevention of

malicious processes which fail to succeed during the authentication phase,

thwart its subsequent attacks.

18

The effectiveness of the PAM is compared with the existing approaches and

widely used anti-rootkit detection tools. With the advantages of improving

kernel-security and generic overhead impact of 2%, PAM can become a

practical solution in the current environment to prevent malicious code attacks.

1.6 Organization of the Thesis

The present chapter explores the background information for converse of the

research dissertation. The motivation and challenges, objectives and the thesis problem

statement of the research work are also devised and explained.

Chapter 2 presents the survey on recent works related to the work presented in this

thesis. The dissertation also analyzed different works to detect and classify malware

attacks by using behavioral analysis methods to address and avoid the limitations of

traditional defenses. A detailed discussion and comparison of different antivirus

techniques can also presented. The challenging research issues in the current research are

pointed out. Finally, the extract of the literature survey and the summary of the survey are

also discussed.

Chapter 3 describes the proposed graph-based static approach for the detection of

malicious code attacks, GraMD. Followed by the description of the algorithms and

performance comparison of the ACA and GMA algorithms with existing algorithms are

reported. We designed and implemented GraMD and its simulation results show better

detection rate than existing quantitative malware analysis methods. Although this

technique offers few advantages, its demerits in dealing malicious code attacks force us

for the development of preventing such attacks rather than detecting them.

Chapter 4 presents the proposed user-mode prevention of malicious code attacks

against unauthorized process attacks, UMDetect. Subsequently, the operation of the DCA

algorithm is described. The experimental results with an objective to detect API hook

attacks that target user-mode data structures and its comparison with existing techniques

and tools are also presented. However such prevention focused on monitoring only limited

19

user-mode data structures. As a result, kernel level attacks can easily bypass and abuse

system resources. This clearly pointed out the requirement of kernel level runtime

verification mechanism.

Chapter 5 presents the proposed CoPDA algorithm developed for ascertaining

suspicious entries of a malicious executable application. The performance comparison of

CoPDA algorithm with the existing algorithms is presented. The experimental results are

compared with the existing algorithms and reported.

Chapter 6 describes the proposed PAM, general kernel level process authentication

mechanism for general Windows based desktop computers. An introduction about the

experimental result analysis of the proposed mechanism and existing mechanisms based

preventing unauthorized processes attacks of an executable application are discussed. The

simulation results of PAM obtained by various experiments are also illustrated with the

aid of different graphs. The overall performance comparison of PAM and the existing

techniques for the detection of unauthorized malicious processes during runtime with the

help of graphs are also illustrated.

Chapter 7 concludes the research work by summarizing and highlighting the

findings that are facilitated to accomplish the objectives. The limitations of the research

work have been identified and presented to carry out the possible future work to improve

further.

20

CHAPTER 2

 LITERATURE SURVEY

 This chapter briefly presents an overview of different types of malwares, common

classes of malicious functions, its trend, two important classes of malwares that target

Windows platform, and discuss some of the prior work that deals with quantitative

analysis of malware attacks using graph based approach. Additionally, the prior work on

securing an end-system in each category such as static analysis, intrusion detection

techniques, policy enforcement mechanism and system call analysis are pointed out. In

addition, the advantages and limitations of each technique with the requirement of

protecting a workstation using user-mode and kernel-mode information are also presented.

This chapter also presents the challenging issues in the current research which is clearly

discussed.

2.1 Preamble

Both computer security and information security became more important since the

introduction of Morris worm which was the first malware released in 1988 and shut down

10% of the computers on the Internet [32]. Since then many organizations have designed

and implemented the information security to protect their valuable data. Security

defenders are under increasing demands to not only defend devastating data breaches but

to also prevent against attackers who are using advanced techniques to conceal their

attacks. As stealthy malicious malwares become increasingly advanced, it is become more

vital than ever to improve defensive techniques and methods constantly. Basically the term

malicious code includes viruses, worms, Trojan horses, spyware and botnets that can be

used to gather information about a computer user and access to a system without their

permission. These malware can appear such as scripts, active content, code, or other

software. Two general classes of malware programs are: first class of malwares needs a

host program (viruses, Trojan horses, logic bombs, trapdoors) and second class of

malwares are independent programs (worms, zombie). Malwares are classified based on

their characteristics; some malwares do not replicate (activated by trigger) and others that

producing copies of themselves.

21

2.2 Malware

There are different classes of malware or malcode that have varying methods of

infecting computers and propagating themselves. The damage being caused by malcode

into computers varies from fairly innocuous to stealing sensitive information, destroying

information, and compromising and/or completely disabling computers and networks.

Traditionally, malwares are categorized into different classes based on their function,

authorship, and delivery mechanisms. The following list some important malware types:

(i) Viruses and Worms

A computer virus is a type of individual self-replicating software malcode that

must have the ability to propagate on its own by inserting into other

applications on an infected computer, leaving infections as it travels from one

computer to another. Almost all viruses malcode may exist on a system as part

of an executable program, but they will not perform its malicious operations or

able to propagate until a user executes the host application. Not all viruses are

malicious – few of them are written to help discover vulnerabilities that may

exist on a computer. Computer worms have similar behavior as virus malcodes

in that they are self propagate and can cause similar kind of damage to the

victim computer. Compared to viruses, worms are standalone file which do not

require any assistance for propagation. A worm can either exploit

vulnerabilities on the victim computer or use certain type of social engineering

tricks for execution.

(ii) Exploits

An exploit is a methodology, a command, or a software malcode that can be

used wither to demonstrate to attack a security vulnerability that may exist on a

computer or to attack a particular vulnerability. However, exploits are become

a common component of malcode and make use of software vulnerabilities to

permit privileged execution of malicious executable.

(iii) Downloader and Droppers

Downloaders are usually allowed downloading additional malwares from a

remote server, while droppers embedded with malwares. However, both install

additional malware on the compromised system.

22

(iv) Backdoor

In the current network environment, it represents the undocumented method of

accessing a computer surreptitiously bypassing the legal predefined

authentication mechanisms. Recently, almost all attackers make use of back

doors to gain and maintain complete administrative access to a computer after

it has been successfully compromised and permit clandestine remote access

over them.

(v) Ransomeware

Ransomeware prevents service to authorized users by restricting or disabling

normal functions, or hiding data. They are typically used to harvest money

from tainted computer users.

(vi) Bots

Botnet has become the most serious security threat on the current internet

infrastructure. A botnet (BotNetwork) is an interconnected collection of

compromised infected computers (bots) which is remotely controlled by its

originator (called botmaster or botherder) under a common and control

infrastructure. Bot is a new type of malware which is designed for malicious

activity. After the bot code has been installed into a computer, the computer

becomes a member of the bot network. Here all the bots are under the

controlled of BotMaster. So if bot exist in computer, it is not harmful until it

receives command from BotMaster. After receiving the command from

BotMaster, it is dangerous for system. These bots are not self-propagate from

one system/network to other system/network. A botnet enrolls its soldiers using

social engineering techniques or by exploiting software vulnerabilities.

(vii) Trojans

A Trojan is a type of harmful computer software that are defined to look like

legitimate or useful program, but contain hidden code that can perform a

variety of malicious operations on a computer. It may trick users into loading

and executing.

23

(viii) Rootkits

A rootkit is a technique which is designed with the intent of allowing the

remote attacker to maintain highest privilege over the resources in the victim

operating system.

2.2.1 Malware Motivations

 Except kiddies, advanced malware writers designed their code for performing

many illegal activities such as monetary gain, ideologies, and politics. One such malware

family is, advanced persistent threats which were written against politics and ideologies

[33]. Advanced persistent threats such as Stuxnet used different delivery techniques to

gain sufficient access privileges over the victim computer. Malicious malwares are

intentionally designed to harvest money illegally. For example, Zeus bot is sold in the

black market as crimeware kit which is used for producing customized malware variants.

A Botnet is an interconnected collection of compromised computers under remotely

controlled by BotMaster. A Botnet can be used for massive Distributed-Denial-of-Service

(DDoS) attacks, installing key-logging that can steal victim’s password and data, and

compromising computers to prepare them for infection by future attacks. Certain malwares

are purposefully designed to steal sensitive information such as financial information and

user credentials which can later sold in the black market. Ransomeware averts service to

legitimate users by hampering or stopping customary services, or hiding data. This type of

malwares is used to harvest money forcefully from tainted computer users [34].

2.2.2 Malware Deliverance Mechanism

 Malwares are designed with the intention of infecting hosts by exploitation of

unknown vulnerabilities, social engineering, and negligent security practices. Security

vulnerabilities permit malware authors to freely run their code with necessary privileges.

These comprise include code injection, input validation, privilege escalation, cross-

scripting vulnerabilities, and input validation. During the release a software, designers

unintentionally left some of the uncertain vulnerabilities and patches, the malware authors

make use of these openings before they are known. For example, zero-day vulnerabilities

are mainly troublesome for many software, because they allow malware writers to

profitably taint several susceptible hosts. In addition, malware utilizing zero-day

vulnerabilities can compromise many hosts freely until such vulnerabilities are ascertained

and patched.

24

 Malware usually targeting hosts with slipshod security policies seek computers

with weak passwords. These include scanning an entire network for discovering hosts

which are running common network services. Once succeed the malware cracks the

discovered network services by attempting dictionary attacks. Another tricky technique

which support remote attacker in exploiting a host is by convincing an end-user through

social engineering. For example, Trojan horses may trick end-user to download and

execute malware. One such malware family is Zeus or Zbot which has been sent to

targeted email crusades, in turn sent to targeted victim computers as electronic greeting

card from shipping invoice or white house. Of these three delivery mechanisms, the use of

exploiting security vulnerabilities is very rarely used. This is because, the effort required

to exploit such security breaches. Rather than discovering security vulnerabilities, remote

attackers typically buy them on the black market [33]. However, exploits are only possible

as when the targeted vulnerabilities remain open.

2.2.3 Malware Trend with Hook Techniques

More than 50 million of new malware counts were discovered in the fourth quarter

of 2014. Typically, an average of six new malware samples discovered every second. By

the end of 2015 [35], the McAfee Labs project has collected more than 500 million

malware samples. Malwares primarily infect computers through social engineering via

exploitation of lack of security policies. Malware authors make use of such security

vulnerabilities to enable privileged execution. Today, most recent malwares are designed

with advanced techniques depending on the operations which they try to execute. To

evade detection, most malwares often embed some of the operations at the time of

executing their code. First, they inject their malicious code into legitimate processes of an

application to initialize and carry out its illicit operations. Second, they disable all

currently running security software applications to evade its detection. Thirdly, they can

hide its existence by accessing hidden file features illegitimately. There are many forms of

malicious software that can constantly affect a user’s computer. Today, more advanced

malicious software is incorporated with rootkit techniques to make detection more

difficult. It has been in the wild for more than 15 years [26]. Different malware adopts the

different masquerading method to avoid its detection [36]. As a result, rootkits can

dynamically defy detection either by hiding from view or messing AV software. Because

of these characteristics, rootkits are potentially dangerous to the integrity of user data.

25

Rootkits can be used for either legitimate purpose, such as debugging or malicious

purpose when combined with malicious software. In order to execute different pre-coded

tasks, malicious software needs to perform some initial operations such as enumerating

processes and services, opening a port, or establishing a network connection on the victim

computer. A malicious rootkit can use either user-space API hooking or kernel-space API

hooks in order to remain hidden. Hooking is a set of code which alters the normal behavior

of the operating system by intercepting the system API functions or information exchange

passed between different system resources. Hooking can be used for either legal purpose,

such as debugging and extending functionality or to host many illegal activities with the

use of rootkit technique. Hooking can be used by malicious code such as rootkits, which

try to hide themselves. As mentioned earlier, rootkits use different types of hooking

techniques in order to remain hidden.

In order to bypass malware preventive measures such as AV software, advanced

malware writers create a new type of malware by encrypting, signing, reordering, padding,

compression, or otherwise simply changing its code without modifying its functionalities.

Such changes can be applied easily by using software tools such as packers and

encrypters. Few malware variant modify them automatically at the time of propagation.

For example, metamorphic viruses modify their code structures when they disseminate

[37]. The computing environment continues to evolve both in complexity and size as

illustrated by emergence trends such as ultra large scale systems. This certain increase in

complexity might introduce new and unknown security vulnerabilities which also

increases the complexity of its detection. All these points motivate the defenders

community to find a solution which is capable of discovering all malwares that avoid

traditional defense systems.

2.2.4 User Mode Malware

User-mode rootkits work in Ring 3 mode, which infects the operating system

outside the kernel level. They replace drivers, dynamic linked-library files and various

processes with their own versions, which don’t show the rootkits’ presence. They also

intercept system calls between the kernel and software programs, making sure the

forwarded information doesn’t include any evidence of the rootkits. User-mode malicious

rootkit can able to hook user-mode applications, data structures and system library files

through API functions to evade its footprints.

26

2.2.5 Kernel Mode Malware

Unlike user-mode malware, kernel-mode malware tries to manipulate either kernel

level APIs or other system resources. Sometimes an attacker may inject malicious code

into kernel and misuse control data structures and non-control data structures to obtain

appropriate access rights over the system objects. Furthermore, a remote attacker may

target vulnerable software to tricky end-user to download and execute malicious code into

the victim computer. Such attacks might use rootkit technique to compromise a single

operation on the victim computer, thus it becomes sufficient to compromise the entire

system. Therefore by monitoring or inspecting the behavior of each API function call, it is

possible to discover bot like malicious software. An attacker usually look for single

vulnerable point on the victim computer but the defender needs to monitor thousands of

both user-mode and kernel-mode resources.

2.3 Analysis of Malware Detection and Prevention Techniques

Traditional defense systems against malware attacks include the adaptation of

security related automated tools, the design of trusted computing environment, and the

awareness of secure computing practices. Making cognizance about safe computing

practices to computer users is essentially important in avoiding intrusions, offering less

chance to phishing attempts, and preventing other intrusive attempts.

Techniques such as trusted computing ensures protecting sensitive data through

signing code which permits users to verify that whether it came from trusted party.

Different anti-malware software is designed uniquely with specific detection time to be

spent for each stage in the malware life cycle. Each anti-malware technique has its own

advantages and challenges. Figure 2.1 shows various techniques to be applied during the

life cycle of a malware to detect malware attacks, it limitations and challenges. Malware

defense techniques can be classified into three types such as static malware analysis,

dynamic malware analysis techniques and automatic malware analysis.

27

Techniques

Challenges

Limitations

Figure 2.1 Malware Life cycle versus malware Detection Techniques

2.3.1 Static Malware analysis

Static malware analysis technique is mainly focused on understanding the internal

structure of its executable part or analyzing it to discover its functionalities without

executing them. Methods such as AV scanning, string analysis, identification of scripts,

reverse compilation, and hashing falls under this category. The AV software is no longer a

match for today's threats. Because it alone does not provide complete protection and does

not offer enough protection. It cannot be designed to detect, defend and remove all kind of

malware attacks at any given time. As a result, current anti-malware defense software is

not completely sufficient.

Though Antivirus software can detect only known malware types, one of its noted

advantages is that they generate low false positives. However, such signature-based

malware detection software’s are suffered from several weaknesses. First, AV software is

inherently reactive i.e., it finds malware attacks only after a computer has been infected. It

also requires signatures of unknown malware to be analyzed and discovered prior to

detection. Second, AV software fails to locate a malware variant which has been modified

from its predecessor. Thirdly, such security software uses heuristic techniques to discover

as many common set of malware variants as possible. Recent AV software designers

focused on reducing the required number of signatures of malware variants and reforming

its analysis [38] but not against detecting, preventing, and removing zero-day attacks.

Intrusion
Initialization

Execution
Illicit Activities

Signature based
Detection

Behavioral Monitoring State Monitoring

Obfuscation and
encryption

Human Assistance
Subverts

Undetected
Unknown malware

High False Positives Circumventable

28

2.3.1.1 Network Level Malware Analysis

The number of security vulnerabilities that target the Internet and computer

networks is increasing more and more over time. An IDS is a security application like

access control mechanism, antivirus software, and/or firewalls, which is developed to

prevent communication system and information against unusual pattern types.

These scarce are commonly referred to as peculiarities, exceptions, outliers or

anomalies in different application domains. The main reason for launching such patterns

by outside attackers is to purposefully disrupt the computer network, unauthorized access

to the network and/or steal sensitive information. Several IDS research has been developed

in the past to improve the detection precision rate and detection stability. As an intruder’s

exploit is conspicuously vary from the predefined system security policies, they can be

detected. There are many advantages of making intrusion detection as a component of the

all-inclusive defense system. However, various traditional computer system and its

associated applications were designed to situate in a location where security was not a

major concern. Therefore, such system and applications are targeted by malware writer

when mounted in the modern network scenario. Additionally, security design flaws or

bugs in computer system and application become targets by a malware developer to attack

them. As a result, many existing preventive solutions may not be work well as expected.

A Host based IDS (HIDS) can monitor a computer for discovering intrusive

activities, whereas a NIDS checks network related activities or events such as IP

addresses, network packet traffic, network protocol exercised in those packet, service

ports, etc. Depending on the type of acquired information to be analyzed, an IDS can be

further classified into either signature- based, behavior-based or hybrid-based. The

characteristics of various IDSs are listed in Table 2.1.

(i) Anomaly based NIDS Techniques

Network intrusion detection technique has been in the wild for more than few

decades. In a real time scenario, an intranet is connected to the outside world through the

Internet. Therefore, by installing the Network IDS (NIDS) in a suitable place, it can read

all network traffics to find out suspicious packets. Though signature-based NIDS are good

at detecting well-known vulnerabilities, they fail to detect new, unknown vulnerabilities,

even if they included minimal variants of its predecessor.

29

Table 2.1 Characteristics of various IDSs

Type of IDS Characteristics

Anomaly

Based

(i) Assumes that all intrusive events are inevitably anomalous.

(ii) It builds an activity profile for legitimate operations and validate

whether any system state deviates from the pre-established profile.

(iii) Threshold value need to be set precisely to avoid false positives

(iv) Computationally expensive, because a large number of profile

matrices need to updated to minimize system overhead.

Behavior

Based

(i) Detection capability of the underlying system depends on the set of

unique signature given to detection engine.

(ii) Capable of detecting only known attacks.

(iii) Specifying a unique signature for a malware sample that covers all

of its possible variations is a challenging issue.

Hybrid Based

(i) Aim to improve the detection accuracy of the IDS by combining

both Misuse – and Anomaly – Based techniques.

(ii) Capable of known and unknown malicious intrusive activities.

The other type of IDS, called, anomaly based NIDS often attempts to determine the

natural behavior of the system to be secured, and raise an alarm whenever the current

observation deviates a predefined acceptance threshold. The noted benefit of this method

is its potential to discover new and previous unfamiliar attack types. Anomaly detection

has been widely used by security applications such as monitoring enemies’ activities in

military, detection of cyber intrusions, and online credit card fraud detection.

In the recent past, researchers developed and presented many important and

effective anomaly-based intrusion detection techniques that might act as additional line of

defense in a computer network. There are many literature surveys exist in the field of

network anomaly detection which gives most useful information about its challenges and

issues to the defenders community [39-46]. Misuse based IDS types are commonly used to

explore known intrusive malicious samples but anomaly based IDSs try to discover

unknown malicious samples. Anomaly detection system is receiving more and more

consideration from both real time application implementation and theoretical point of

view.

30

Based on the type of techniques applied in the ‘behavioral’ classification of

different events of the underlying system, Anomaly based NIDS (ANIDS) methods can be

classified into four various classes such as statistical based, machine learning based,

knowledge based, and combination learners based.

Statistical based ANIDS

In the statistical based methods, the normal behavior of the given data is

determined whether an unseen sample is an anomaly or not using statistical inference test.

Few existing research papers of this scheme are discussed below.

Tong et al. [47] and his colleagues proposed an anomaly detection system which

can detect anomalous network packets using kernel component classifiers. For features

that are associated with some major component, the values are extreme large. The non-

linearity issue of network traffics was well addressed. Wattenburg et al. [48] presented a

model to detect computer network traffic that might contain anomalies. This model

importantly relies on statistical inference technique and first order alpha-stable model. The

alpha-stable modeling is mainly used to classify online network traffics to detect

anomalies that are associated with flooding and flash-crowd attacks. To achieve promising

detection accuracy, the model used the generalized likelihood ratio test. Lee at al. [49]

presented an anomaly detection method based on online over sampling principal

component analysis algorithm was presented. It attempts to detect the presence of outliers

from a huge data samples by updating through online. The process of oversampling the

victim fragment and extracting the direction of the fragment, the proposed approach

allows determine anomaly activities using the dominant eigenvector. Expert knowledge

system plays a vital role for handling uncertain pieces of information.

Though statistical ANIDS have many advantages, its limitation includes the

following: First, most statistical based techniques rely on the basic assumption of a quasi-

process being stationary which is not realistic in real time. Second, ANIDS can be

susceptible to blending attacks. Third, time taken to report a detection alarm is directly

propositional to the time requirement of building models. Finally, choosing the right

statistic for complex distribution is not straight forward.

31

Soft computing based ANIDS

Soft computing based ANIDS techniques rely on the construction of implicit or

explicit model which are capable of categorizing the patterns to be analyzed. Soft

computing system is thought of include techniques such as Artificial Neural Network,

Artificial Immune System, Fuzzy logic, Genetic Algorithm, Rough set and clustering &

Outlier because often no single technique can offer exact solution. Research works that

belong to different categorizes is presented below.

The outlier aspect of clusters might be sometimes used for quantifying the

deviance degree of a specific cluster [50] for the detection of cyber intrusions. The Nearest

neighbor method was applied for data classification. The complexity of proposed

unsupervised IDS is directly proportional to the size of test dataset and its attributes.

Zhuang et al. [51] proposed a system named PAIDS (Proximity-Assisted IDS) with the

goal of identifying the new and fast propagating worms. PAIDS has been trying to obtain

enhanced performance by working collaboratively with existing anomaly-based IDS.

Their approach assumes that during the worm-propagation starting phase, the infected

victim hosts can be grouped based on IP address and DNS used. Jabez et al. [52] proposed

an outlier based intrusion detection approach to detect cyber intrusions. A specific dataset

was taken to measure the presence of intrusions by using the neighborhood outlier factor

method. The use of limited dataset and training model are the two weakness of this

approach.

Liu et al. [53] presented an approach that monitors malicious activities at the

network to prevent known and first-hand attacks using unsupervised neural networks. This

real hierarchical intrusion time solution uses Principal Components Analysis neural nets to

avoid the limitations of sing lelevel structures. Conditional based anomaly detection is

presented in [54]. It relies on finding difference among data attributes which are classified

into environmental attributes and indicator attributes. This method detects anomalous if

any deviation in the predefined value of indicator attributes. However, it does not consider

environmental attributes in few cases. The precision of this method precisely depends on

its learning phase. Adetunmbi et al. [55] proposed a rough set theory and then a k-NN

classifier mechanism to determine network intrusions with the intention of increasing

detection rate of the system and minimal false alarm rate.

32

Classification based Network intrusive detection techniques can achieve better

results than clustering based mechanisms as they use labeled training instances. In

conventional classification methods, additional information can be integrated by retraining

the whole test dataset. But it is a time consuming process. Incremental type of

classification algorithms [56] make use of such retraining more powerfully. Although

these mechanisms are effective, they cannot identify known intrusions until sufficient

training data is supplied to retraining process. Tajbakhsh et al. [57] aimed at constructing a

model which produces fuzzy association rules with reference to classifiers and use them

for detecting general network intrusions.

The fuzzy sets theory provides an effective way to categorize different classes of

normal and/or anomalous. A training dataset that belongs to a particular type is validated

by using matching parameters produced by the proposed approach. If the compatibility of

a test sample falls the predefined threshold, then it is considered as anomalous. Geramitaz

et al. [58] presented a network intrusion detection system that rely on fuzzy rules to

recognize the occurrence of specific or general exceptional network patterns. However,

training instances play a vital role to decide the detection accuracy of the system. The

research paper [59] is devoted to the development of network intrusion detection system

that uses genetic algorithms to construct detection rules. A chromosome of individual

genes mapped to various aspects such as the root-user attempt, type of service attempt to

use, or logged in or not. The author concludes that malware attacks that are common can

be traced easily compared to unusual characteristics.

Visconti et al. [60] presented a performance based Artificial Immune System for

detecting specific anomalous behavior. This system monitors anomalous activities by

examining the detailed and different states of specific parameters. An intervaltype-2 fuzzy

sets hypothesis is applied to dynamically produce different system status. To deal with

issues of avoiding scale of a large network that can gather flow statistics information

collectively, Duffield et al. [61] presented a machine learning algorithm to transform

packet-specific measurement into measurements for discovering unusual anomalies.

Specifically, the authors make the relationship between network alarms and feature vector

which was built by extracting flow statistics on the same network traffic. And then a

unique set of rules to discover anomalous is generated.

33

Abbes et al. [62] presented a method an intrusion detection system that adopts

protocol analysis and the concept of decision trees. First, the proposed approach generates

a unique adaptive decision tree for various different application layer protocols. Then,

detecting either any data record contains anomalies or not. The anomalies record might

include a variety of footprints such as scans, Trojans, and botnets. However this type of

system requires precise datasets for exactly detecting anomalies and also not able to

pinpoint unknown intrusions. Muda et al. [63] presented a two phase prototype model for

detecting network intrusive activities. At first, k-means clustering algorithm is applied to

categorize test samples into three clusters that belongs different groups such as probing

attack data, DoS attack data, and authentic data.

Such data collection is achieved by setting the value of each cluster centers to the

mean values obtained by groping appropriate data points. Finally, the authors apply a

Naive Bayes classifier approach to classify sample data into five different accurate classes

such as Probing, remote to user, user to root, and normal. Palmieri et al. [64] developed a

two-phase anomaly detection scheme based on various distributed sensors which are

located throughout the local area network. With the help of Independent Component

Analysis, mechanism, the proposed scheme extracts the essential network traffic

components. These components later will be exercised to construct the standard traffic

profiles which act as vital role in the next phase to classify anomalous from normal

traffics. Though soft computing techniques are popular, some disadvantages of them are

pointed out below.

 Most techniques suffer from scalability problems and training.

 The insufficient availability of legitimate network traffic data makes the training of

these methods more difficult.

 Rule generation by rough set methods introduces proof-of-completion.

 Fuzzy association rule based methods, tasks such as dynamic rule update, and rule

subset identification to be performed at runtime becomes difficult task.

Combination Learners based ANIDS

 A combination learner system and method incorporates multiple techniques to

attain higher detection accuracy. Examples of such systems are Ensemble-based, Fusion-

based, and Hybrid-based methods. Each method has its own advantages and limitations.

34

Some of existing research works that apply combination learners’ techniques is

discussed below. Tong et al. [65] introduced a hybrid neural network secure prototype that

can be used to solve problems of either anomaly detection (or outlier detection) and

misuse detection. It is capable of detecting collaborative intrusive attacks using memory of

historical events. Folino et al. [66] presented the idea of ensemble paradigm that uses a

distributed data mining algorithm with the intention of improving detection accuracy rate

when discovering malicious or illicit network activities using genetic programming. The

presented framework rely on distributing data across various autonomous sites and some

useful knowledge is extracted in way from data and uses the pre-generated network

profiles to forecast anomalous behavior.

HMMPayl [67] is a fusion-based intrusion detection model where the sequence of

bytes identifies the payload part of a network packet and Hidden Markov Model (HMM)

can be used to analyze them. First, the algorithm is used to extract features of network

packets and then applies HMM assure the same sensitive power of n-gram analysis.

HMMPayl uses the idea of Multiple Classifiers System to produce better classification rate

and to avoid evasion of IDSs.

Knowledge – based ANIDS

 In knowledge-based ANIDS techniques, network events or host operations are

validated against predefined set of patterns or rules of attack. The objective for the design

of such systems is to discover each known attack uniquely, thus handling of occurrences

of intrusive activities become easier. Knowledge based methods can also be categorized

into different approaches such as expert systems, logic-based, and ontology-based.

Benferhat et al. [68] presented an intrusion detection method and alert correlation scheme

by combining the expert knowledge with probabilistic classifiers. Especially, the presented

approach uses three decision tree classifier algorithms, namely, Naive Bayes, Hidden

Naive Bayes, and Tree Augmented Naive Bayes. The authors claimed that their approach

achieves better results than existing benchmarking intrusion detection tools.

Ontology based model with soft computing technique for malware behavior

analysis is presented in [69]. The proposed system contains two main stages. During the

first stage, it collects information such as the event logs of network connections, registry

entries, and local memory activities from the victim system to extract more information

about unknown malware behavior.

35

Then the extracted information is used to build a unique ontology to discover

malicious executions. The important advantages of knowledge-based ANIDS are those of

flexibility and robustness. Their noted drawbacks are listed below.

 The design of high quality knowledge-based ANIDS is often time consuming and

difficult task.

 Such methods may not be able to discover unknown intrusions.

 Non-availability precise signature of legitimate and attack data increases the

overall false alarm rate of the system.

 Dynamic updating process of knowledge – base is very costly operation.

The taxonomy of existing network intrusion detection system for malware

detection with their type of strategy, nature of detection, type of attacks detected along

with the observations and limitations of the network level malware analysis are tabulated

in Table 2.2. Another suitable place to detect and prevent malware attacks is the end-

system. Compare to network analysis of malware detection, malware analysis at the

end-system permits the defenders to closely monitoring the behavior and functionalities of

a malware instance in a sandboxed environment. So that defenders can design an effective

malware prevention system. As this thesis work focused on end-system part, network

intrusion detection techniques have been reviewed but not considered for implementation

or comparison.

36

Table 2.2 Taxonomy of various existing NIDS techniques

E
xi

ti
n

g
S

tr
a

te
g

y

T
yp

e
o

f
st

ra
te

gy
 /

sy
st

em

N
at

u
re

 o
f

D
et

ec
ti

on

A
tt

ac
k

s
H

an
d

le
d

L
im

it
at

io
n

s
/

O
b

se
rv

at
io

n
s

Liu
et al. [53]

Centralized Non-real time All Attacks
Defining rules to detect
various types of malware is a
challenging problem

Tong
et al. [65]

Centralized Non-real time
DoS &
Probing

Suffer from false positives

Tajbakhsh
et al. [57]

Centralized Non-real time All Attacks
Training the system to
classify anomalous is needed

Su
et al. [56]

Distributed Non-real time All Attacks

Cannot identify known
intrusions until sufficient
training data is supplied to
retraining process

Folino
et al. [66]

Others Non-real time DoS
Used pre-generated network
profiles to forecast anomalous
behavior.

Wattenberg

et al. [48] Distributed Real time
Floods &

Flash Crowd
Fail to handle encrypted
packets.

Khan
et al. [59]

Distributed Non-real time
MS-SQL
overflow
attempt

Constructing rules to detect
all possible malwares is a
tedious task

Muda
et al. [63]

Others Non-real time All Attacks
Few malware pretend to be
legitimate which is hard to
identify

Ariu
et al. [67]

Others Non-real time
DoS &
Probing

The encrypted part of payload
pose a serious challenge

Geramitaz
et al. [58]

Centralized Non-real time Probing
Training instances play a vital
role to decide the detection
accuracy of the system

Lee
et al. [49]

Centralized Non-real time All Attacks

Expert knowledge system
plays a vital role for handling
uncertain pieces of
information.

Huang
et al. [69]

Centralized Real time
Advanced
Persistent

Threat

Not possible to detect all
malwares.
Inferred similarity level is not
sufficient when dealing
unknown malware

37

Challenging Issues of NIDS

However, despite the inaccurate specification of attack signatures tend to increase the

false positive rate of anomaly-based system than in signature-based method. The most

challenging issues of anomaly-based NIDS are:

 Despite the inaccurate specification of attack signatures tend to increase the false

positive rate of the system than in signature-based method.

 To reveal detrimental vulnerable attacks those impel to generate inconsiderable

traffic. Actually this type attacks initiated be an entity inside the secured network.

 Encryption can be used to prevent content based technique.

 Blending attacks may traffic to appear legitimate.

 It is difficult to identify malicious code that does not send or receive any traffic.

 Sheer packets/second reduce the NIDS ability to keep up and running effectively.

 It is required to have larger memory to analyze large amount of TCP connection

fields to discover a wide range of malware attacks.

 These systems may also be required to track IP fragments, ARP packets, and other

sensitive information.

2.3.1.2 Host Level Malware Analysis

In addition to network level malware analysis technique approach, another suitable

place to supervise and investigate the malware’s behavior is at the end-host. It is possible

to detect a malicious code attack even before it gets executed in the victim computer.

However, current host-based malicious code detection techniques do not use

effective models. As a result, these models cannot capture essential properties of a

malicious executable. Traditional AV software principally relies on either file hashing or

unique byte sequence of a malware [70]. But malwares with code polymorphism and

obfuscation can able to bypass these techniques without detouring the natural execution

flow of a system call. Static analysis based techniques mainly rely on using features of

malware to identify its attack. Few existing work based on static analysis concentrate on

byte code analysis using machine learning and data mining have been proposed as an

alternate to traditional signature based technique [4].

38

In addition, an entropy based unique byte-code analysis technique also exists to

detect encrypted, packed or embedded malware attacks [71]. Because, static analysis

based techniques, importantly, relying on features of each malware authors embedded

encryption or compression technique to obscure such analysis, graph matching, and

clustering techniques [72-73]. Although this kind of malware defense technique works

effectively against known malware samples but completely fails to deal unknown malware

executable. This is because, new malware variants can be easily crafted by integrating

techniques such as obfuscation, encryption, and self-modification into existing malware

[74-75].

There have been few ideas proposed to detect native API hooks in Windows.

Wang et al. [76] described an association mining based technique to analyze API

execution flow. By associating API sequence using Portable Executable (PE) parser, they

construct association rules and finally the malicious malware is identified. But this

approach did not focus on various characteristic of a stealthy rootkit. Liu et al. [77]

presented a review of rootkit detection techniques. Also, the authors developed X-Anti, a

multi-way based detection method to detect different rootkits. In order to maintain their

system, each node’s information needs to be updated frequently and timely. Yi et al. [78]

presented a review to analyze Windows rootkits and various stealth techniques to attack

the Windows system. They also discussed various detection techniques that have been

used by the detection tools today. Unfortunately, these techniques also bring new

challenges to the detection and defense against rootkits. White et. al. [79] developed a

plug-in to effectively identify the contents of all user allocations. But it will not describe

every possible allocation. Additionally paging issues, data structure invariant and some

undocumented APIs in Windows environment were not discussed.

Hejazi et al. [80] reviewed API calls on the stack to locate some data structure,

especially those which handles encryption. Their approach works without knowing the

structure of data which was in user space. This limits their ability to retrieve user data.

Deng et al. [81] developed IntroLib, a tool to reveal user-level library call and behaviors

which are generated by a malware based on hardware virtualization. In order to intercept

library calls made by malware, IntroLib used page-table mechanism at the hypervisor

level. This however fails to detect malware that could obfuscate its memory structure and

library calls directly invoked by malware.

39

Researchers have proposed different techniques to protect misuse of Windows

APIs functions. Because, malicious code can interact with Windows OS through Windows

APIs function calls. Wang et al. [76] presented a static analysis method to detect malicious

programs. This method collects the calling sequences of native APIs from legitimate

programs and sets up a data model using Support Vector Machine (SVM). Then, the

method proposed by Wang et al. detects malicious code by analyzing its calling sequences.

Unfortunately, this method is unable to stop malicious code in real time and malicious

code an easily mimic a legitimate calling sequence.

Rabek et al. [82] presented a static analysis approach to monitor system calls at run

time and to identify software executables. This approach is simple, practical and effective

for user land malware detection. But Rabek et al. approach failed to detect the malicious

code directly invokes the kernel level service request. Wagner et al. [83] proposed a

method to handle mimicry attacks in Linux environment. Their method records addresses

of system call services into Interrupt Address Table (IAT). Whenever a process is waiting

to get system service it was intercepted by their framework and checks whether the caller

address is in the IAT. This method was not tested over Windows systems. Method such as

the idea presented in [84] can also be used to understand the activities of a malware that

comes from untrusted outside network using Honeypot.

With an increasing amount of malware adopting rootkit techniques to evade AV

software, further research into defenses against rootkit attacks is absolutely essential. The

taxonomy of existing solutions for detecting malware using static analysis with their type

of malware to be detected, level of detection, performance overhead, along with the

observations and limitations of the static analysis of malware detection technique are

tabulated and given in Table 2.3.

Challenging Issues of Static Malware Analysis

 This method completely fails to deal unknown malware executable. This is

because, a new malware variants can be easily crafted by integrating techniques

such as obfuscation, encryption, and self-modification into existing malware.

 Malicious code can sometimes mimic a legitimate calling sequence.

 Because static analysis techniques rely on using features of malwares to identify

them, setting precise feature set is a difficult task.

40

Table 2.3 Taxonomy of various existing Host level static malware Analysis techniques

E
xi

ti
n

g
S

tr
at

eg
y

P
er

fo
rm

an
ce

O
ve

rh
ea

d

T
yp

e
of

 m
al

w
ar

e

d
et

ec
te

d

L
ev

el
 o

f
D

et
ec

ti
on

O
b

se
rv

at
io

n
s

Yi et al.
[78]

High Rootkit Network
Packets with encryption,
compression, etc pose a real
challenge

Park et al.
[73]

Acceptable Worm Host
Focused only on limited
behavior of malwares

Deng et al.
[81]

Acceptable Malware Host
Kernel level hooking is hard
to detect

Mansoori
et al. [84]

High
Intrusive
Activities

Host
Malwares that pretend to be
legitimate is difficult to
detect

Cesare et al.
[72]

High
Packed and

polymorphic
malware

Host
Unpacking such malware for
analysis will increase time.

Canzanese
et al. [74]

Acceptable Malware Host

Malwares with techniques
such as obfuscation and self-
modification is really
difficult

Graph Based Malware Analysis

To eliminate the shortcomings of signature-based approach, defenders have

utilized graph-based models [70] [85-86]. Graph based model is used to solve many

complicated problems in engineering and technology. Graph mainly reflects the

relationship between real world entities and attributes. A graph is an attractive method for

analyzing malware attacks efficiently [87]. In order to analyze malware attacks in the

Internet, Red team has been manually generating graphs. But their work has either error-

prone or complex for a malicious malware that adopts API hook technique. So researchers

are opting different technique such as code graph and call graph, control flow graph, data

flow graph to build and analyze malware attacks.

41

An API Call Graph (ACG) is a candidate solution which is a suitable data

illustration of the data and control flood of software programs. Additionally, it offers

information about local data usage of a procedure and global data that can be exchanged

between different procedures. Call graph acts as a suitable model either to study the

behavior of a program or for tracking the flow values between different components of a

program. ACG can also be used to recognize programs that are never invoked. The API

function calls of an malicious executable can be extracted either through static analysis

using binary code disassemble tools such as IDAPro [88] or by executing the malicious

executable in a sandboxed environment and monitoring them using tools such as

APIMonitor [89].

Graph Construction and Graph Matching Algorithms

A potential solution for constructing an ACG is through using static tools which

can generate a multipath graph automatically. However, such tools fail to consider the

actual API function calls being invoked by a malicious executable program.

This is because, recent malware authors use techniques such as obfuscation and packing to

evade detoured malware function calls. An ACG for a program can be easily constructed

without considering the parameters associated with the calls. This can be achieved by

constructing a table containing all function calls to be raised which represent nodes of the

call graph and the reference between calls showing that represent all the edges of the

graph. An API function call analysis must only do once and the order in which it is

analyzed is not important. However, the construction of the call graph depends on the

order of each function call to be analyzed when presenting the OS resources i.e.,

parameters of the function call. In programs, it is possible to discover invocation of many

distinct API call references from single API call that contains OS resources. It is therefore,

important to ascertain all API function call from such a reference API call to construct a

complete ACG. In order to use ACG to detect the presence of a malware in a computer, it

is important to compare call graphs that were generated based on malware samples against

the ones representing legitimate programs. To compare two graphs, it is required to have a

graph matching algorithm which is basically classified into two types such as exact and

inexact. The exact graph matching algorithms have been used only when both given

graphs have same number of vertices, whereas inexact graph matching is useful even

when the number of vertices is different in both graphs.

42

There are three classes of graph matching techniques; namely, graph isomorphism,

Longest Common Subgraph (LCS) matching, and graph edit distance. Both graph

isomorphism and LCS are proven to be NP-complete [90] and computationally expensive

to calculate edge weight. As a result, the research community has focused to devise fast

approximation algorithm to avoid such issues. The graph edit distance matching algorithm

is the best solution to solve inexact problems, but its complexity increases its overall

execution time. There are many different techniques that could be used to generate an

ACG and compare two given call graphs.

Guo et al. [91] proposed a binary translation approach to analyze and detect

malware execution. The authors generated control flow graph based on malware’s

behavior and then another API sub-graph was generated to compare its activities.

Lee et. al. [85] generated a call graph using malware’s Portable Executable (PE) file

format in which each node represents a system call and each edge represents a call

sequence. The call graph is then converted into a code graph to analyze them. Li. et al.

[92] presented a compiler based rootkit prevention technique which cannot permit the

kernel level control data with arbitrary points. They prevented rootkit attacks by

transforming kernel control data into indexes of jump tables in which only legitimate jump

targets are allowed by the kernel’s control flow graph. Since rootkit can inject jump

instruction in any table, scanning them is a tedious and time consuming process.

Zander et al. [93] presented a graph theoretic framework for detecting one of the

dangerous malware known as botnet. A graph portioning algorithm is used to separate

botnets in a tainted network. But processing encrypted network packets pose a serious

challenge. Karbalaie et al. [94] presented a malware detection system based on API

functions call analysis. Every API call is depicted as a graph and then the Longest

Common Subsequence (LCS) algorithm is applied to compare two graphs to determine the

similarity between them. This method can able to confine system calls in execution and

then generates behavioral graph. The graph which had highest similarity value is

concluded as malicious. But LCS algorithm can be solved in NP-complete time which

increases its computational time. Riesen et al. [95] proposed a framework for malware

detection that rely on hybrid signature using API call graph. The proposed method solves

the disadvantages of both signature and behavior based methods. This method can able to

detect both known and unknown malwares with low false positive rate.

43

Few existing research works [90] [96-97] used different techniques such as

signature matching, pattern matching, packet sampling approach for malware detection but

such techniques suffer from computational complexity. However, this method generates

more false alarms. Bai et al. [98] discussed a call graph clustering approach for malware

detection. The authors represented malware sample as a call graph and compare these call

graphs based on graph edit distance. Afterwards similarity score to cluster these malware

samples is calculated. K-medoids and density based clustering algorithm DBSCAN

techniques are also proposed for clustering malware samples. The authors stated that

K-medoids clustering technique is not able to address to all malware families whereas

DBSCAN technique can able to address almost all the malware families.

The investigations of existing research works have been shown to adopt different

approaches to generate API call graphs. A major issue of the precise generation of an API

call graph is its incomplete construction. This is because of the exclusion of API call and

its associated resources during the construction of the API call graph which may result

into inaccurate. Jaikumar et al. [99] presented a graph theoretic approach for the detection

of different kind botnets present in a computer network. For graph generation, the nodes

which represent an infected computer can be added into the set V if a new computer which

is not in V exhibit malicious activity. A noted point this approach is the representation of

weighted edge which is derived from the exploit co-occurrence of malevolent operations

across the entire network.

The cost involved in the bipartition process is the weights of each edge that move

towards from node in set P to the node in set Q. To make bipartition optimal, the cost

involved with P and Q is minimized using normalized cut algorithm. The graph bipartition

is a recursive procedure. The complexity of the graph construction algorithm is O(|V||E|).

The pseudo code of the graph construction and graph partitioning algorithms are given

below:

/* Graph Construction Algorithm */

1. begin

2. for (each compromised computer) do

a. add compromised computer into V

b. edge (e) ← assign edge weight that ranges from 0 to 1

c. if (new infected computer found) then

44

begin

i. increase weight of new ‘e’

ii. goto step 2

3. end

4. else

 begin

i. remove a node from V when infected computer postpone

 its malicious activities

ii. create a new ‘V’

5. end

6. end

/* Graph Partitioning Algorithm */

Step 1. Estimate |V| dimensional vector to bipartition the given graph

Step 2. Determine if the bipartite graph can be further bi-partitioned

Step 3. If step 2 is true then goto step 1.

Elhahi et al. [100] proposed an API call graph technique for the detection of

malware attacks. First, the function calls to be executed by a malicious executable and its

dependency parameters will be extracted to model an API call graph. The constructed

graph is then compared with a database of malware call graph samples using a graph

matching algorithm. However, the runtime complexity of the graph matching algorithm

depends on the number of nodes in the query graph. The graph matching algorithm that

relies on graph isomorphism is given below:

/* Finding Optimal Subgraph Algorithm */

1. begin

2. Similarity ← 0

3. for (each subgraphs (a and b) of API call graphs (Q and G))

4. for (each edge in a)

5. for(two vertices in a)

6. best path ← if two nodes belong to the same dependence subgraph

 endfor

45

 endfor

 endfor

7. Similarity (a, b) ← maximum (similarity value)

8. Similarity = similarity + Similarity

9. end

Let Q be a query graph and G be a data graph. Let ‘e’ be an edge in Q and two

vertices x and y belong to G. In addition, x and y belong to the same subgraph in the API

call graph. Then a modified greedy algorithm namely, graph edit distance is applied to

find the best path (P) that involves e with x and y using Eqn. (2.1).

 Similarity(Q,G) = maxi 
)(QEe

maxj Similarity(e,P) / |E(Q)| (2.1)

The complexity of the algorithm is O(|E(Q)||P|) where |E(Q)| is the number of edges in the

query graph and |P| is the number of best paths.

Zhao et al. [101] presented a graph based approach to detect known as well as

unknown malware. The function call graph of a malicious executable is extracted and

analyzed through machine learning technique to identify unknown executable files. But

representing the complete control flow of programs is a tedious task. Park et al. [73]

proposed an approach for the construction of a behavioral graph that represents the

execution behavior of a set of known malware instances. The behavioral graph is

generated by clustering or grouping a set of unique behavioral graphs that represent kernel

level objects and its features based on system call traces Even though this method

produces 0% false positives, malware writers obfuscate legitimate system calls by

rewriting the binaries or source code itself. Table 2.4 presents the taxonomy of graph

construction algorithms and graph comparison algorithms developed for detecting

malwares along with their complexity, observations and limitations.

46

Table 2.4 Taxonomy of various existing graph-based malware detection approaches

E
x
it

in
g

T
ec

h
n

iq
u

e

C
o
m

p
le

x
it

y

G

ra
p

h

co
n

st
ru

ct
io

n

L
im

it
a
ti

o
n

s
/

O
b

se
rv

a
ti

o
n

s

G
ra

p
h

C

o
m

p
a
ri

so
n

L
im

it
a
ti

o
n

s
/

O

b
se

rv
a
ti

o
n

s

Lee et. al. [85]

O(|V||E|)
V=system calls,
E=relationship between
system calls

Does not consider
information about call
graph parameters

Using graph union
and intersection

Few edges are omitted

Park et. al.
[73]

O(|V||E||µ|| |)
V=kernel objects,
E=Dependency between
two kernel objects

Discards potential
information such as
dependency between
system calls

Using weighted
common behavioral
graph

Few edges are omitted

Zhao et. al.
[101]

O(n × D(lg(|D|)))
V=system calls,
E=Dependency between
V

Do not consider parameter
information aspects of
system calls

Data mining and
Feature selection

Lacking of training

Elhadi et al.
[100]

O(|E(Q)||P|)

V=API calls and its
associated resources,
E=Dependency between
V

Take longer time to
construct a call graph

Graph Edit Distance
algorithm

Takes longer time to
compare call graph and
model graph

Jaikumar et al.
[99]

O(|V| |E|)

V=Infected computers
E=Liklihood of similar
activities between two
Computers

Takes longer time to
identify all infected
computers in a network

Graph partitioning is
applied. Graphs are
separated based on
the behavior of
infected computers

Fail to detect a bot is
which designed to
perform its pre-
programmed behavior
in random order.

47

Challenging Issues of Graph based Malware Detection

 The runtime overhead of graph based approach is usually NP-complete

 Graph based approach is more robust and evade detecting unknown attacks

 Some malware which pretend to be legitimate is a challenging issue

 An attack graph model provides only limited view of security of a network and for

a large network, analyzing a hug volume of attack scenarios is a tedious process

2.3.2 Behavioral Malware Analysis

One of the techniques proposed to address the weakness of traditional static

malware defense mechanisms are based on behavioral analysis or dynamic analysis. In

behavioral analysis method, the predefined properties of executing legitimate software are

used to discover the presence of malware. Behavioral monitoring of each system call

innovation made by processes of an executable is often utilized in recent anti-malware

software. This approach works effectively, as it terminates malicious actions when it

discovers such actions [6].

A complex problem which forces the anti-malware software to run longer time is

the huge quantity of data being generated by malware on a daily basis. The cross-view

validation technique for detecting hidden traces of stealthy malware have been learned and

implemented for testing user- applications [102], within the kernel of the OS [77], inside

the virtual machine [103] and using coprocessor hardware techniques [104].

2.3.2.1 User-Mode malware Detection and Prevention

 Malicious rootkits refer to a collection of software routines designed to hide their

presence and other malicious activities and enable the attacker to take control of the victim

computer. Moreover, rootkits can also be used as backdoor to spy user or system’s

activities. The attacker can then capture sensitive information about either end-user or

computer. As Windows is the one of the most popular and widely operating system, today

much malicious software is being developed with the intention of affecting Windows OS.

In order to launch malicious activities, Windows rootkits adopt a mechanism called

‘hooking’ which can modify the predefined execution path of a system call. However,

rootkits need to access native APIs to accomplish their tasks. There exist two different

rootkits such as user-mode rootkits and kernel-mode rootkits. The former types of rootkits

work in ring 3 i.e. infect the victim computer outside the kernel and try to the original

48

system related files with fake detoured code. Unlike user-mode rootkits, kernel-mode

rootkits affects the OS core and thus can permit the remote attacker to take complete

control of the victim computer. Both type of rootkits intercept the pre-installed anti-rootkit

software’s in the victim computer and make sure that they does not include any footprints

of its own. As mentioned earlier, rootkits use different types of hooking techniques to

misuse both user-mode and kernel-mode data structures such as IAT/EAT and SSDT to

remain hidden and evade anti-malware software.

Import address table hooking

The Import Address Table (IAT) is the most important call table of the user space

modules. The IAT keeps the references of all routines exported by a particular Dynamic

Link Library (DLL). And each DLL that an application is linked with, particularly at load

time, will have its own IAT. Many executable files have embedded one or more IATs in

their structure that are used to store the addresses of existing libraries that they import

from DLLs. Most of the user land rootkits use the IAT hooking technique to intercept the

API function calls. IAT entries are filled by the Windows loader at boot time. Thus, to

maneuver an IAT, it is mandatory to access the address space of the request. One way to

achieve this is by using DLL injection technique. Normally rootkits use DLL injection

techniques to modify the address of the specific function in the IAT to point to the address

of the rootkit function where it is presented. Therefore, when the application calls a

specific function, the rootkit function is called instead.

Inline Hooking

Detour patching is another technique to divert the predefined execution path to

malicious code without altering IAT call table entries. This technique is implemented by

inserting a JUMP statement into the target routine to divert the execution path. Therefore,

whenever the currently executing thread executes this jump instruction, the control is

transferred to a detour routine. The original portion of the code from the target function

which is deposited, in coincidence with the jump instruction returns back to the target

code, is known as ‘trampoline’. Therefore, the initial jump in the trampoline replaces a

certain code when it is inserted and at the end. Using this technique it is possible to

arbitrarily intercept the flow of execution. Intercepting every system service calls that use

native API is a tedious and time consuming process.

49

Forrest et al. [105] expressed the idea of using a profile for system calls of high

privileged processes. This approach offers many advantages compare to user-mode

behavior based detection techniques. First, kernel root processes are more vulnerable than

user-level processes onto a computer system. Second, they have predefined set of behavior

that is more firm over time. Ideally, each kernel service request is mapped to a predefined

set of system call chain of execution paths that it can spawned. Deng et al. [81] presented

IntroLib, a framework for tracing user-mode library function calls made by malicious

executables. IntroLib is enabled by hardware virtualization and residing outside the guest

OS. In order to monitor the control flow transitions between library functions and

malware, IntroLib utilized shadow page table technique in hypervisors. But IntroLib is

virtual machine based in nature and cannot detect system call reordered attacks.

Lutas et al. [106] proposed a hypervisor based method of protecting user-mode

processes against malware attacks in Windows. This method is also based on hardware

virtualization. In order to protect user-mode processes against malware attacks, page-fault

execution is injected in the guest OS to monitor all swap-in and swap-out memory

operations. However, signature of different functions must be extracted from each OS

separately to locate malware attacks. Aboughadareh et al. [107] presented a framework

named, SEMU that combines both user-mode and kernel-mode analysis outside the guest

OS to analyze malware attacks. The OS that runs on the virtual machine introspects all

kind of operations between the OS and malware. At user-mode, SEMU logs all kind of

activities such as system calls, input output controls, and information exported by DLLs.

Ahmed et al. [96] presented a runtime malware monitoring and detection system

that rely on API call arguments (spatial information) and its dependence sequences

(temporal information) information and machine learning algorithms i.e., malware

detection rely on spatial-temporal information available in the API function calls. This

malware detection approach requires to define the accurately and also cannot prevent

evasion attempts. Another malware detection approach that relies on anti-debugging

function which mainly used to prevent malware form analyzing a malicious program is

proposed by Yoshizaki et al. [108]. If the behavioral patterns of an application differ

from the behavioral patterns of legitimate application, then it is detected as malicious.

50

Table 2.5 presents the taxonomy of user-mode only malware detection by

monitoring few important user-mode data structures along with their type of detection,

samples taken, performance overhead, data structures monitored, observations and

limitations.

Challenging Issues of User-Mode only Malware Detection Approach

 Malware that target to evade detection cannot be detected by only monitoring user-

mode data structures

 The behavior of few malicious programs may behave and appears to be legitimate

programs.

 Malware that directly invoke API function calls through kernel level cannot be

detected.

 Advanced stealthy malware might duplicate its name and identities similar to

benign programs and try to forge the kernel of the OS to get service

51

Table 2.5 Taxonomy of various existing approaches for detecting and preventing User-mode malware attacks

E
x
it

in
g

T
ec

h
n

iq
u

e

S
a
m

p
le

s
T

a
k

en

T
y
p

e
o
f

D
et

ec
ti

o
n

P
er

fo
rm

a
n

ce

O
v
er

h
ea

d

D
a
ta

 S
tr

u
ct

u
re

s

F
o
cu

se
d

L
im

it
a
ti

o
n

s
/

O
b

se
rv

a
ti

o
n

s

Hejazi et al.
[80] 9 API functions API hook attacks Not validated

Sensitive API
functions

Tracing API function calls and its
flow is not resolved

Ahmed et al.
[96]

416 Malicious
samples

100 benign samples

Malware attacks 0 % API function calls Fail to encounter evasion attempts

Kumar et al.
[102]

Legitimate
applications

Memory resident
attacks

Not validated None
Scanning the code and data segment
of memory is a tedious process

Deng et al.[81] 93 Malicious
Samples

Hypervisor based
Library function calls

< 15 % None
Virtual machine based in nature and
System call reordered cannot be
detected

Aboughadareh
et al. [107]

3 Malicious
Samples

Hook Attacks > 20 % DLL files Virtual machine based technique

Yoshizaki etal.
[108] Ago bot Malware attacks 0 %

API call parameters
and its sequences

Did not tested in real time

52

2.3.2.2 Detection of Hidden Entries in User-mode

In order to execute different pre-coded tasks, malicious software needs to perform

some initial operations such as enumerating processes and services, opening a port, or

establishing a network connection on the victim computer. A malicious rootkit can use

either user-space Application Programming Interface (API) hooking or kernel-space API

hooks in order to remain hidden. All the detection methods found in the literature

implemented different techniques with the intention to assist the defenders in ascertaining

rootkit footprints. These techniques range from identifying for unique signature pattern in

the impending malware sample to supervising system behavior. The important issue with

live analysis is the authentic information such as files and functions returned by the OS.

The crosscheck-based comparison approach that aims to ascertain hidden processes and

services concealed by stealthy malicious executables by comparing two different list of

information. Blacklight, one of the Windows rootkit detection tools use cross-check based

approach for discovering hidden footprints of malware. Its pseudo-code given below.

/* Hidden Process Detection Algorithm using cross-check based Approach */

Step 1. Start looping from 0 to 0x41DC valid Process Identifier (PID)

Step 2. Call OpenProcess() function on every PID. The OpenProcess function calls

 NtOpenProcess () function.

Step 3. The NtOpenProcess function calls PsLookupProcessByProcessId to verify whether

the process exist in the list. PsLookupProcessByProcessId uses the PspCidTable to

verify the same.

Step 4. NtOpenProcess function calls ObOpenObjectByPointer to obtain the handle of the

 process being checked.

Step 5. If successful then store the information about the process in a list.

Step 6. Goto step 1

Step 7. Obtain another list of information by using CreateToolhelp32Snapshot which

 extract information about all currently running process.

Step 8. Compare the two different list of information. The discrepancy between them

 discovers the hidden entries.

53

From the introduction of VICE, the first rootkit detection tool, many researcher

proposed and implemented different cross-check based solution in the form of either

algorithm or tool. Few existing solution that talked about discovery of hidden entries in

Windows were discussed below.

In order to detect hidden processes, Kumar et al. [102] presented an approach to

crosscheck two different process lists generated by calling higher-level user-mode APIs

and lower-level APIs. The discrepancy between the two lists shows hidden processes.

However, if the application runs under limited privilege rights then it would fail to

manipulate system related resources and also cannot access protected memory areas. Saur

et al. [109] discussed an algorithm to locate paging structures of impending processes

which are concealed by malicious software. Schuster et al. [110] developed a search

prototype to scan an entire memory dump to reveal hidden or terminated processes and

threads. Burdach et al. [111] described an approach to enumerate unseen processes. This

approach is actually implemented in the Windows memory forensics toolkit.

Betz et al. [112] developed a tool, called MemParser to enumerate the active

running processes of the underlying operating system. Their tool can also dump the

process memory. George et al. [113] programmed Kntlist to analyze and evaluate kernel’s

internal data structures such as list and table to extract important processes, threads, and

other data. The Windows kernel keeps many tables and list to manage all of its resources.

By inspecting them, it is possible to catalog all items which can help for detecting for

malware footprints. However, this approach cannot detect kernel objects that are

influenced by the OS and processes have already been terminated but not entirely erased

from the memory.

As many rootkits adopt a hooking technique to hide their traces, Yin et al. [114]

programmed HookFinder, a tool to find hooked activities of unfaithful binaries using fine-

grained crash analysis approach. But, it has not been revised since 2008. Another similar

tool, HookMap [115] has utilized backward data segmentation technique to trace address

of memory pages which can be abused by malicious rootkits to embed hooks. The

crosscheck view approach was used in GhostBuster [116] to detect rootkits by comparing

two different sets of information, inside-the-box and outside-the-box. However, rebooting

the OS during an external scan would produce a complexity overhead.

54

Microsoft’s Rootkit Revealer [117] is a rootkit detection tool which generates two

different lists of information in the same underlying system to reveal the presence of

rootkits. However, it can detect persistent rootkits that can only hide files and registry-

related settings in Windows operating systems. But it does not detect hidden processes and

services. To detect hidden processes, they compare the process scheduling list to the list of

all processes within the kernel. Though their discussion is on Linux, the same concept can

be applied to Windows.

Rootkit detection systems require inspection from outside the potentially

compromised operating system. For example, virtual machine introspection [118] runs a

security service within a privileged domain and uses memory introspection APIs exposed

by the hypervisor to analyze the state of a guest system. Most existing anti-rootkit

detection tools crosscheck information generated by tainted system calls against system

information generated by its own for identifying rootkit traces. A stealthy malware

conceals its footprints by controlling OS function calls which cannot be hidden. But, using

offline investigation to reveal hidden traces of a malware is very difficult. In short, most

existing techniques suffer from issues such as lack of integration, high false positive rate,

overhead produced by complex configurations and scalability and performance issues.

Jones et al. [119] described and implemented a tool named, Lycosid, a virtual

machine monitoring method for the detection of hidden processes and services. Lycosid

uses cross-view validation approach to compare the information obtained about processes

in a guest OS and information obtained at lower - level using Ant farm VMM component.

However, Lycosid obtained both information from virtual machine which is not always

produces trusted output. In addition, guest level component is vulnerable to malware

corruption.

Richer et al. [120] presented a system named, Linebreaker which can able to detect

hidden rootkit footprints by comparing hypervisor level information and OS level

information obtained from guest OS. Similar work presented in [121] also used cross-view

comparison approach for detecting hidden entries of rootkits. This approach compares the

VM extracted states and hypervisor extracted VM’s execution states. The taxonomy of

detecting hidden processes and services of malicious programs in user mode for

optimizing or improving the a malware detection approach samples taken for testing,

performance overhead, platform implementation, type of detection, and observations and

limitations is presented in Table 2.6.

55

Table 2.6 Taxonomy of various existing approaches for detecting hidden entries of a malware

E
x
it

in
g

T
ec

h
n

iq
u

e

S
a
m

p
le

s
T

a
k

en

P
er

fo
rm

a
n

ce

O
v
er

h
ea

d

Im
p

le
m

en
ta

ti
o
n

P
la

tf
o
rm

T
y
p

e
o
f

T
ec

h
n

iq
u

e

L
im

it
a
ti

o
n

s
/

O
b

se
rv

a
ti

o
n

s

Wang et al.
[116]

10 File hidden
malwares and
120 spyware

< 10 % Windows

Cross-view for
detecting ghostware
programs that hide
files

It cannot detect malware that hide
processes in user-mode

Jones et al.
[119]

50 Processes 0.7 – 5.3 % Linux
Cross-check based
approach

It obtained both information about
processes from the VMM and guest

Kumar et al.
[102]

50 Samples < 10 % Windows Scanning memory Malware affected memory pages are used

Fu et al. [122] 2 rootkit malwares Nil Windows Cross-view
Few malware can bypass the anti-rootkit
detection tools used in the experiment

Xie et al.
[121]

3 applications 2.5 Linux
Cross-check based
approach

Trust hypervisor level information

Richer et al.
[120]

13 Rootkit samples 9.5 % Windows
Cross-check based
approach

Rely on hypervisor level information

56

2.3.2.3 Combination of User-mode and Kernel-mode Protection

Attackers may also tricky end-users through drive-by-download attacks to

compromise a vulnerable computer or network. For launching drive-by-download attacks,

remote attackers might use vulnerable browser or its plug-in. Hsu et al. [123] presented a

scheme namely, BrowserGuard to detect and prevent drive-by-download attacks by analyzing

each and every downloaded objects. Based on the outcome of the analysis phase,

BrowserGuard either permit or block the object being downloaded without user’s consent.

Without analyzing the runtime state of the malicious object being downloaded and its source

file, the BrowserGuard can able to block the execution of a malicious application. However,

BrowserGuard was designed to support only IE 7.0 browser that runs in a Windows platform.

Malware that incorporates rootkit technique may also become a serious threat to system

security. Baliga et al. [124] developed an anomaly based prototype namely, Gibraltar for

automatically discovering kernel level rootkits that target modifying kernel level data

structures. Gibraltar mainly applied the concept of data structure invariants to identify kernel

level malicious rootkits. Though Gibraltar was effective against kernel-mode malware attacks,

it was designed to identify only 23 rootkits.

 Remote attacks might also use vulnerable software to inject malicious code

with the intention of hooking and compromising system services. Sun et al. [125] proposed a

behaviour-based method for analyzing the behaviour of an API function call both in Windows

and Linux platform. This approach only blocked malicious API function calls and permit all

legitimate system services being directly serviced by the kernel. But identifying malicious

operations that directly calling lower level API functions pose a serious challenge. Similar to

remote attacks, insider attacks is also a serious threat to system security. Rajagopalan et a.

[19] presented a policy-based mechanism namely, Authenticated System Call for the purpose

of discovering compromised applications in Windows. The authenticated system call

mechanism used an extra argument in addition to system call arguments to check whether an

application is malicious or not. However, such authenticated system call mechanism required

to incorporate precise set of policies to locate malicious operations.

57

The system proposed by Nguyen et al. [128] captures malicious code attacks by

hooking kiSystemService Dispatch Table (SSDT) in the kernel mode. Therefore, any

malicious code which does not follow the predefined route execution will be detected as

unauthentic code. The idea was implemented without modifying the kernel of the Windows

OS, which results ease implementation. However, such proposed approach had certain

limitations. First, invocation of a system service request with incorrect dispatch ID results into

system crash. Second, implementation difficulty was neglected which weaken their system’s

security strength. Third, guessing attack can easily compromise their solution. As an API call

indicates how a particular task is executed, the values that are supplied to it may also

important to detect malware attacks. The behavioral operations of binary files are extracted by

executing them in a controlled environment. The feature sets are defined through API calls

and its parameters which may then used to create vectors. The feature that deviates from

legitimate executable is detected as malicious.

Wang et al. [115] proposed a scheme namely, HookMap with the aim to monitor and

analyze flow of execution of an application to discover the kernel level hooks that could be

possibly hijacked by malware for evasion. However, HookMap had challenges such as

accurately identifying the kernel level hooking with relevant run time context information. In

addition, dissimilarity in the kernel-mode is also a serious problem. A similar approach was

proposed [126] to protect SSDT through monitoring user-mode data structures. The taxonomy

of detecting hidden processes and services of malicious programs in user mode for optimizing

or improving the a malware detection approach samples taken for testing, performance

overhead, platform implementation, type of detection, and observations and limitations is

presented in Table 2.7.

58

Table 2.7 Taxonomy of various existing approaches for detecting and preventing malicious code attacks at Kernel-mode

E
x
it

in
g
 S

tr
a
te

g
y

T
es

t
S

a
m

p
le

s

ta
k

en

A
cc

u
ra

cy
 R

a
te

P
er

fo
rm

a
n

ce

O
v
er

h
ea

d
 /

F
a
ls

e
P

o
si

ti
v
es

T
y
p

e
o
f

M
a
lw

a
re

D
et

ec
te

d

L
ev

el
 o

f

D
et

ec
ti

o
n

L
im

it
a
ti

o
n

s
/

O
b

se
rv

a
ti

o
n

s

Rajagopalan
et al. [19]

3 samples

 96 %
0.73 – 7.92 %

Compromised
applications

User-mode and
kernel-mode

Vulnerable to frankestin
attacks

Nguyen
et al. [128]

5 applications

 95 %
3 – 9 %

Code injection
attacks

User-mode and
kernel-mode

Supply of incorrect PID lead to
system crash

Wang et al.
[116] 8 Rootkit malwares 98 % 5 – 7 % Kernel hook attacks Kernel-level It fails to detect kernel non-

control data hooks

Sun et al.
[125]

8 applications 97 % 8.8 – 9.10 %
Malicious code
attacks

User-mode and
kernel-mode

Malwares that target higher
level APIs cannot be detected

Hsu et al.
[123]

7 – 18 antivirus
terminators

98 % 0.42 – 1.77 %
Drive-by-download
attacks

User-mode and
kernel-mode

It can support IE 7.0 on a
Windows System

Salehi et al.
[127]

385 benign samples
100 malware
samples

98.40 % 3 % Malware attacks Kernel – mode It cannot detect unknown
malwares effectively

59

Challenging Issues of Behavioral Malware Analysis

 The increase in computational overhead and false positive rate limit its real-time

applicability

 Recent malwares can mimic as benign and react later which is very difficult to

handle

 System call based dynamic analysis technique rely on the assumption that the

predefined execution flow of an executable can be coarsely

 Attacks such as mimicry attack and shadow attack etc. can succeed against process

level signature based system call detectors.

2.4 Extract of the Literature Survey

Even though advanced anomaly detection approaches can detect unseen type of

intrusions in real time, it is still relatively immature in the field of network security. The

computer network traffic seems to be a complicated dynamical system, triggered by many

factors. Though there were various different schemes have been discussed in the past to

detect exceptions, they are mostly based only upon traditional statistical results. In these

schemes, all network factors are combined to examine the dissimilar network traffics.

Additionally, detection approaches based on deep packets analysis have reached their

limits. If attackers implement packet-encryption, then network level malware detection

becomes a very challenging problem and therefore, network based malware analysis

technique has not been focused in this research work but surveyed to understand exiting

techniques and to understand the functionalities of different malware variants.

In addition to network level malware detection technique, another appropriate spot

to detect and prevent malware attacks is at the end-system. Though static malware analysis

technique is effectively applied to detect malwares, it is well suited for detecting malwares

with known signatures. Because such technique relies on signatures or properties of

malwares, malware writers embedded techniques such as encryption and compression to

complicate its detection. Many existing graph based approaches were effectively only to

detect certain malware activities at the end-system. Such approach needs human assistance

and suffers from false positives when dealing a huge amount of attack scenarios.

Additionally solving graph based problem falls under NP-complete problem.

60

Also, malware analysis technique such as AV software mainly relies on using

features of existing malwares to discover its malicious activities. Therefore static

malwares techniques are not suited preventing stealthy unknown malicious code attacks.

Many different malware defense mechanisms were proposed based on dynamic

analysis in the past to detect malware attacks at user-mode in Windows. Although these

techniques were proposed to address the weakness of static malware analysis techniques,

attacks such as lower level API hook attacks and malwares that incorporate rootkit

techniques to evade AV software and can bypass them.

In order to discover the hidden entries of a malicious executable to optimize the

user-mode malware detection approaches, many different cross-check based algorithms

have been developed and proposed by the research community. In addition, much familiar

and widely used anti-rootkit detections are also available. But optimizing the detection

rate, accuracy rate, and false positive is a challenging problem.

Though many existing policy based solutions overcome some of the problems of

dynamic malware analysis technique, setting exact policy set for each and newer malware

variant is a difficult task. In addition, the existing process authorization techniques are not

sufficient to prevent kernel level malicious code attacks. As a solution, combining user-

mode information and kernel-mode information can provide stringer security against

stealthy malicious code attacks.

Hence, to overcome the limitations of the existing malicious code detection

approaches and algorithm and to provide best detection rate, the following approaches are

to be devised.

(i) Devising new graph-based malware detection approach using two new

algorithms to model API function call as a graph and comparing two given

graphs respectively to rid of the drawbacks of the existing graph-based static

malware detection approaches and provide better results than existing

approaches reported in this thesis.

(ii) Devising a new user-mode malware detection approach for detecting and

preventing malicious code API hook attacks.

61

(iii) Devising a new cross-check based algorithm to discover the hidden entries of a

malicious executable. The proposed algorithm can also be used to optimize the

user-mode malware detection approach.

(iv) Devising a new security enhancement mechanism using both user-level

information and kernel-level authentication to detect and prevent malicious

code attacks that target hooking system services in Windows platform.

2.5 Summary

In this chapter, various categories of malware detection and prevention techniques

such as intrusion detection systems, graph based approaches, static malware analysis,

behavioral malware analysis, and security policy enforcement techniques have been

reviewed. The advantages and limitations and challenging issues of well-known and

widely applied malicious code defense techniques in each category are pointed out.

Further, the need for mandatory runtime authentication on all suspicious system call

invocations made be processes of an executable which improves the security strength of

the kernel is pointed out. Finally, this chapter is concluded extract of the literature survey

and challenging issues in the current research of a literature survey.

62

CHAPTER 3

PROPOSED GRAPH-BASED APPROACH TO DETECT MALICIOUS CODE

ATTACKS

Today, many modern malware developers is taking the advantage of API hook

technique to take the control of the victim computer which making it difficult to detect

their presence. Because of the sophistication of rootkit tools, a remote attacker can use

native API to compromise any computer which can later be used for many illegal activities

such as sniffing network lines, capturing passwords, sending spam and DDoS attack, etc.

Thus to protect end-system by identifying and preventing native API malicious code

hooking is a challenging problem to the defenders. Today, many different malware-

analysis tools incur specific features against malwares but manual and error-prone.

Therefore, a behavior-based monitoring detection system has been proposed to effectively

detect native API hooks in user-mode. Unlike other malware identification techniques, this

approach involved dynamically analyzing the behavior of native API call hooking

malwares. A brief preamble about the significance of graph based malware detection is

discussed in the subsequent section.

3.1 Preamble

Though malicious computer software can be referred to with different names such

as virus, worm, Trojan, spam, botnet, etc., their ultimate goal is to cause damage either to

the end-computer or end-user. The advancement in computer technology allows the

malware writer to integrate obfuscation technique to evade detection specifically API

hooking. Unfortunately, signature-based detection approach such as anti-virus software on

the end-computer is not effective against attacks such as system call reordering. To

overcome this shortcoming, many different behavior-based approaches have been offered.

However, these approaches bear limitations such as higher false positives; fail to detect

zero-day attacks, fails to improving the accuracy rate from past experience, etc. In this

chapter, an API call graph approach has been proposed to capture detouring activities to be

performed during malicious software execution.

63

As graph based approach can be effectively applied to replica complicated relation

between entities, it is opted to visualize malicious rootkit behavioral activities by

monitoring system API calls during runtime. This will help the defender to optimally

capture malicious system calls from benign calls.

3.2 Proposed Graph-based Approach

It is assumed that most malicious malwares are developed by inheriting

characteristics from its previous version. For example, the various versions of TDSS

rootkit are: TDL1 which was designed to load and run at the time of booting the operating

system which was designed with the intention of infecting system drivers. TDL2 appears

to be same as TDL1. However, it includes different names with random string and also

imports new technique to avoid detection and removal. In order to obtain control over the

victim computer, TDL3 patches the disk controller driver. Some features of TDL2 were

updated to make detection and removal more difficult. The aim of TDL4 variant is the

same as that of TDL3, but patched master boot record to make infection of computers with

64-bit processor. The overall flow diagram of the GraMD approach is given in Figure. 3.1.

Figure 3.1 Flow diagram of the proposed GraMD approach

Pre-Processing
Stage

Post-Processing

Stage

Malware Samples

Graph Database

Read Malware Sample

API Call Identification

Construction of API call Graph

Graph Comparison & Similarity
value calculation

Is similarity value >
Threshold value

Benign Malware

64

API call Graph Generation

The proposed GraMD consists of two important stages which are referred as pre-

processing stage and post-processing stage. The pre-processing stage is responsible to

collecting necessary resources of an API function call and integrating them as a graph. The

API call graph is generated using the proposed call graph construction algorithm using the

extracted API resources. Which act as graph nodes. The edge in a graph represents the

relationship between two nodes. A directed graph G=(V, E) is visualized as a call graph in

which V is a set of vertices that represent a function call of an executable program and E is

a set of edges which depicts the relationship between two system calls. A directed edge

(u,v) in E represents a function call of the program, u→v. GraMD attempts to discover the

malicious code attacks which integrate API detouring technique to launch their illegal

activities using an API call graph approach. As API function call is a finite set of sequence

of invocations with ordered parameters and also they communicate with the use of handles

(Unique identifier), GraMD can identify all necessary resources to construct an API call

graph for a corresponding function call. For example, Figure 3.2 shows the OpenProcess

API function call that visually approached as a call graph. The graph shows all internal

function of the OpenProcess function and all its subsequent calls.

Figure 3.2 API call-graph

OpenProcess

NtOpenProcess

VirtualAllocEx CreateRemoteThread

NtOpenProcess

File_C:\Qakexe

File_C:\Windows\Qakexe

65

Algorithm for computing Graph Edit Distance

For given a large set of graphs, the difficulty for the computation of the exact

subgraph of the call graph is to determine exact edit distance that best matches to the

approach graph. Because new malware can be created from its predecessor and by

approaching the malware sample as a call graph, the difficulty of categorizing malware

variants is to discover subgraphs that best match with high similarity. If the call graph has

more than one edge in common with the approach graph then measuring the similarity of

best neighbor matching edges is chosen. For two graphs Call Graph (CG) and Approach

Graph (MG), the problem of determining approximate subgraph is to discover the best

match subgraph Sa using Equations 3.1 and 3.2

Sa = Gpara max . sim(MG,CG) (3.1)

Sa = Maximize {Simval(CG,MG) = 1} then CG is isomorphic to MG. (3.2)

where CG G and sim(CG,MG) represents the level of matching between CG and MG.

Pre – Processing stage

The pre-processing stage starts by identifying and gathering all API calls of a

running executable along with all its associated identities such as registry enumeration,

process manipulation, network resources, memory management, etc. This phase is

indented to identify all the nodes and edges of an API call graph. And then, a data

dependent edge of a pair of nodes is generated using the parameters connected with two

API calls. A malicious program is executed in an isolated environment and instructed to

identify the resources of a function being executed. Based on the function call traces,

GraMD identified the relationships between two function calls. An API call and all its

associated parameters are used to generate a graph using ACA algorithm which is given in

Figure 3.3.

To construct an API call graph, all the functions associated with an executable will

be identified by referring the Import Address Table (IAT) and Export Address Table

(EAT). If an API function call is raised then its corresponding name and its parameters are

extracted to construct an API call graph in which each node contains the function name

and an edge is established using its parameters list. If two parameters in the parameter list

are same, then it reflects the dependence between the current and previous API call.

Finally, all the API call graphs are kept in a database.

66

/* Algorithm for Generating API call dependent graph */

1 begin

2 Extract all function calls of an executable

3 Select a function

4 if (Native API call)

5 {

6 s.node ← function_name;

7 Get parameters(function_name);

8 d.node ← recursive(pointer call analysis);

9 // Recursive function call

10 Anynode.generategraph();

11 }

12 endif

13 Store it in database

14 end

Figure 3.3 Pseudo code for ACA algorithm

Post – Processing stage

Today, a malware writer can develop a malware by updating new features and

techniques with its predecessor rather than coding from scratch. This information can help

the defender to reduce the complexity of considering all kinds of addiction while inquiry

the approach graph. The objective of the post-processing stage is to generate a subgraph of

the data graph by referring the approach graph. The intricacy of a graph comparison

approach has increased when all kinds of dependencies between the edges and nodes in

Call Graph (CG) and Approach Graph (MG) are accounted. In order to avoid this issue,

each graph is simplified by finding the best matching subgraph (SG) that can be used to

exactly identify a malicious API hook attack. The idea of graph comparison is to generate

a subgraph of CG by best matching the MG. The GED technique [95] is applied to

determine the similarity between CG and MG. The value of each edge is normalized

between 0 and 1.

67

The modified graph matching algorithm given in Figure 3.4 mainly used two

compare two given graphs and to compute the similarity value. Since both the CG and the

subgraph of MG contain only limited number of edges, the graph matching algorithm

performs better. This will also help us to prove its correctness.

/* Algorithm for matching two graphs */

1 begin
2 simval← 0;

3 Get the paths of (P1, P2)

4 if (Paths P1 and P2 has same label for all edges) then

5 for each path find similarity using GED do

6 simval ← simval+simGED(P1, P2)

7 s.node ← function_name;

8 endfor

9 p← number of paths in Q

10 simval(Q, G) ← simval|P|;

11 if (simval(P1) = = simval(P2))

12 Msg “malicious API call found”;

13 Alert();

14 endif

15 end

Figure 3.4 Pseudo code for GMA algorithm

3.3 Experimental Setup

All experiments are carried out on ACER Core Duo with 2.93 GHz processor with

4 GB RAM and the host machine runs windows 7 operating system. For each system call,

a corresponding CG is generated and the same is compared with MG. By analyzing many

root malware attacks, the threshold value of 97% is set to determine whether a generated

call graph imitates malicious activity or not. If the calculated similarity value of any

malware exceeds the predefined threshold similarity value, then it can be suspected as a

malicious malware.

68

By and large, researchers have opted a graph based approach for comparing two

graphs that aims to detect a malware attack with their own malware datasets against

various assessment techniques such as LCSA, N-gram, etc. In order to evaluate the

robustness and effectiveness of the GraMD, a malware dataset that includes different

families of attacks is collected from some reputed websites [129-130]. Table 3.1 lists the

malware samples along with the technique integrated used for testing and training against

various existing techniques. Each malware sample is run in an isolated environment to

identify and extract API calls and its parameters using the API Monitor tool [89].

Table 3.1 Various Malware Families used for evaluation of GraMD

Malware Family Hook Type Hook Technique

Rootkit.win32.Agent. Kernel DKOM

Rustock.A. User Hook

Rustock.B. User and kernel Hook

Rustock.C. User and Kernel Hook

AFX rootkit User Hook

FU rootkit Kernel DKOM

HideProcessHook Kernel Hook

Phide User DKOM

Shadow walker Kernel DKOM

YYT rootkit User Hook

The API calls of an executable are identified by analyzing binary files statistically

using tool like IDA Pro [88] or by executing the binary files dynamically in an isolated

environment using a tool like API monitor. To dynamically analyze a malicious

executable files the following three operations are performed. First, the obfuscation cover

is removed. Secondly, unpacking and decryption are performed over the executable.

Finally, functions are extracted with all its parameters. Finally, the call graph is generated

for each API function call using the algorithm given in Figure 3.3. In order to utilize call

graphs to exactly locate API hook attacks, it is necessary to compare a call graph that

reflects the API hook behavior against those that reflect benign behavior. To compare two

call graphs, a modified GED algorithm i.e., GMA algorithm is applied to determine its

similarity by matching CG with MG. When two graphs have the similarity value either

greater than or equal to the predefined threshold value, then it is said to be exact matching

or suspicious malicious call.

69

3.4 Experimental Results and Discussions

The evaluation results are obtained by conducting simulation experiments for

comparing the proposed GraMD method against existing methods using some common

parameters such as true positive, false positive, detection rate, and accuracy rate. These

parameters are defined and calculated below.

 True Positive (TP) occurs when a malware is correctly detected as a malware.

 False Positive (FP) occurs when a legitimate sample is caught to be a malware.

 Detection Rate (DR) = (3.3)

 Accuracy Rate(AR) = (3.4)

 False Positive Rate (FPR) = (3.5)

 Receiver Operating Characteristic (ROC) curve – It is a two dimensional graph

used to visualize the performance of the proposed approach by plotting TPR on the

X axis against FPR on the Y axis.

The effectiveness of the proposed GraMD approach in detecting malware hook

attacks is evaluated using a dataset consists of 200 malware samples and 50 benign

applications. The benign applications are gathered by freshly installing application on a

computer that runs a fresh copy of Windows XP OS. The malware dataset is downloaded

from a publicly accessible website called ‘VX Heavens’ and divided into three groups

namely, Rootkits, Worms, and Trojans, which a group on the average contains 70

malwares and 15-17 benign programs. Then, 70 percent of the dataset is used to train

GraMD and 30 percent for testing it.

The accuracy and detection rate of the proposed GraMD approach is further

investigated by conducting the experiments twenty times and the averaged minimum and

maximum similarity value of all malware samples from each group is calculated and

averaged. Table 3.2 shows the averaged similarity values and detection capability of each

group of existing approaches including the proposed GraMD.

70

Table 3.2 Comparison between similarity value and detection capability

Technique Maximum SV Minimum SV
Number of malware
samples not detected

Family: Rootkits
Park et. al. [73] 87.74 31.28 4
Zhao et. al. [101] 92.68 40.56 2
Elhadi et al. [100] 97.73 58.62 1
Proposed GraMD 98.23 58.08 1
Family: Worms
Park et. al. [73] 82.21 12.18 2
Zhao et. al. [101] 88.10 19.23 2
Elhadi et al. [100] 81.69 12.01 1
Proposed GraMD 92.08 42.34 0
Family: Trojans
Park et. al. [73] 80.86 31.90 2
Zhao et. al. [101] 94.79 18.64 2
Elhadi et al. [100] 79.32 33.83 1
Proposed GraMD 90.29 43.56 0

Table 3.2 shows that the proposed GraMD method has achieved an average of

93.20 similarity value. Among all, the Park et al. method failed to detect 8 malware

samples in total produces lowest performance. Whereas Zhao et al. method undetected

only 6 malware samples. The Elhadi et al. method failed to detect an average of one

malware sample but GraMD undetected only one malware sample and surpasses the

method proposed by Elhadi et al. Another important consideration of GraMD approach is

to evaluate its effective against the detection rate benign samples.

Figure 3.5 shows that the methods proposed by Park et al., has achieved an average

of 15.9% of FPR, whereas, Zhao et al., with 11.9 %. In case of rootkits malware samples,

the method proposed by Elhadi et al., and GraMD failed to detect one instance. The reason

is, more advanced stealthy malware with rootkit technique intelligently evade its detection.

The proposed GraMD approach detected all instance of Worms groups and Trojans groups

correctly and surpasses the existing approaches.

71

Figure 3.5 False Positive Rate of the proposed GraMD and existing Approaches

 Figure 3.6 shows that the proposed GraMD approach achieved 100% detection

rate in the worm and Trojan groups but only 97.68 % in rootkit group. This is because,

before execution, few malware rootkit samples checks whether it is running in a

sandboxed environment. If so, then they postpone its near future activities. The method

proposed by Elhadi et al. achieved an average of 97.59% against the same dataset which is

the second highest in the list. Moreover, the method proposed by Park et al. has achieved

the lowest DR in all malware datasets.

Figure 3.6 Detection Rate of the proposed GraMD and existing Approaches

72

Figure 3.7 shows the overall accuracy rate of GraMD approach and other existing

techniques against all 250 malware samples. The GraMD approach achieved the highest

accuracy rate of 98 % against all 50 rootkit malware samples, but achieved an average of

100 % in the Trojans and worms groups. Elhadi et al. method has achieved next best result

than other comparable techniques with an average of 98.21% AR. Moreover, the methods

proposed by Park et al. and Zhao et al., have achieved an average accuracy rate of 95.09 %

and 96.53 % respectively.

 Figure 3.7 Accuracy Rate of the proposed GraMD and existing Approaches

From the above experimental results and discussion, it is clear that GraMD

approach outperforms than the rest of discussed existing approaches in all aspects. A

game-theoretic approach is also used to ensure the optimization of resources consumed by

the GraMD approach. The game theoretic model dynamically selects a specific API

targeted by stealthy rootkit malware based on the expected attack scenario.

3.4.1 Mathematical Verification

A two-player repeated non-cooperative game approach is selected, since malicious

code attacks are trying to compromise the victim computer repeatedly. More specifically

malicious code attacks that target hooking user-mode data structures during runtime is

considered. It is assumed that the game is played between the two players: the GraMD and

the Malicious Code (MC). The MC is the attacker and the GraMD is the defender. The

objective of MC is to use ‘n’ number of processes or APIs (e.g. in worst case) from the

73

victim computer with the intention of performing and launching some illegal activities. A

malicious rootkit attack is successful when atleast ‘m’ APIs out of ‘n’ APIs is utilized. It is

assumed that a malware attack will not be achieved in single step. Therefore, the GraMD

detects the initial infection and predict the next attack to be launched in the near future

based on past experience or historical information. Then, the GraMD immediately

monitors additional APIs for ‘t’ additional time period as the attack is expected to be

launched.

Game Strategies

Let (AS,CA,AR,T), where AS is the set of APIs equipped with PAM which is

referred to as defender, CA is the system cost for monitoring additional API, AR is the set

of attackers and T = {1, 2,…n} is the set of target computers. To minimize the

intermediate calculations, a two-player, non-cooperative game is selected in which the

number of repetition depends on the number of the attacking steps. Ait is also assumed

that both players are known about the strategies and utility function they have.

The possible strategies for GraMD are {no_attention, monitoring}. If the GraMD

detects an API hook attack, it can select either to ignore the current task or to monitor. In

case of monitor, the GraMD will select more additional important APIs to monitor. The

type of the API to be monitored and the length of the monitoring time highly depends on

the information base of GraMD. The monitoring time will be chosen from the information

base, based on the attack scenario. When GraMD detects initial rootkit attack which will

be carried out in multiple steps, it will be able to detect the next possible attack action. At

the same time, the GraMD will choose to increase additional important APIs being

monitored. After completing additional task, the GraMD resumes monitoring the standard

predefined number of APIs.

On the other hand, the available strategies for the rootkit attacker i.e. MC are

{end_process, proceed, waiting}. The strategy ‘end_process’ indicates to abandon the

attack in order not to be detected; strategy ‘proceeds’ means proceeding with the

predefined next step and strategy ‘wait’ indicates launching the next attack step after

certain period of time. Since predicting the delay time for every attack action is difficult,

the delay time to derive the approach is also considered.

74

Formulating the Game

The set of APIs to be monitored by GraMD is denoted as Ac = {a1, a2,…an}. The

APIs are continuously monitored by GraMD as long as it is in live state. Let Cm denotes

the additional computational system cost needed for monitoring single API at time ‘t’,

which is represented as: Cm=r × a, Where ‘a’ is a single API to be monitored and ‘r’ is

the number of clock pulse to monitor a single API and the time deviation is calculated

using two local timestamps of the two events.

Now the total increased system resource cost α is computed in case when the

GraMD choose ‘monitor’ strategy. This can be represented as:

α = Summation of drift in monitoring period of each additional API

 = Time taken to monitor all protected APIs

 =)(Cm tm
a A
 (3.6)

Where tm is the additional time to monitor single API. Then, converting these normal

functions into utility function will be easy for us to apply game theory concept and it is

given as:

((,)) ((,))R f t a t am m    (3.7)

Where  is the weight parameter to describe the system cost of GraMD. If GraMD detects

an API hook attack, it will have utility gain of , and - is the cost of damage to be

caused. Hence the utility function of GraMD with its possible outcomes is:

 Cm  detect and stop

U GraMD =  t tm d (3.8)

 Cm  0t where tm t dd
  

 0C t where tm m t md
     

Where tm is the increased monitoring time because of the additional APIs to be

monitored and td is the delay in launching the near future attack or current attack and 

is false alarm rate of the GraMD. On the other side, when the attack is successful, the

attacker will gain  and  otherwise. Let Ca is defined as the security APIs

consumed by the attacker to make the next step to be successful. This is represented as:

75

()C t r aa d   (3.9)

Where r is the number of clock pulse to monitor a single additional API and td is the delay

time. Then, the cost-Utility function for the attacker is defined as below:

(()) (())R f C t C ta d a d  
 (4)

Where   is the scale factor to define reward for a successful attack. Hence, the utility

function of RM is given by:

 0 stop

 t tm d  

UMC = 0C t t where ta d m m           (4.1)

 0C t where ta d t dm
       

Table 3.3 shows the increased system resources for both the GraMD and the MC in

general format. The Si indicates different strategies to be selected by the GraMD in which

the monitoring time and the API being monitor will vary.

Table 3.3 Utility Derivation

Players End_process Proceed

delaytime variation

td tm  t td m

no_attention ,0 ,   ,C Cmi ai    , Cai  

(,)S t ai d i ,0Cmi  ,Cmi   ,C Cmi ai    ,C Cmi ai   

Performance Evaluation

A case study is conducted to evaluate and simulate the game approach. Since delay

time in launching near future attack will vary from attack to attack, let’s set it from the

historical data. A dataset of 100 different rootkit samples is collected which adopt both

user-mode hook and analyzed them in windows XP virtual machine. By observation, most

of the rootkit samples affect common native API functions to perform illegal activities in

the victim computer. The GraMD’s information base contains most commonly affected

native API functions and their respective DLL file.

76

The evaluation describes the game after the initial attack action i.e., it is infecting

all executables in the victim computer which is being detected by the GraMD. Now, the

GraMD will take narrow action based on its intelligence about the impending attack

following the infecting executables in the attack scenario i.e. from (no attention, increasing

the additional APIs to be monitored by 50, and monitoring time duration by 400sec,

900sec, and 1500sec). Also, set  =2, d=0.020,  =3500, and
' =2500. Table 3.4

shows the manipulated results for the first round.

Table 3.4 General IAT Hook

 end_process Proceed 800 1200

no_attention 3500, 0 -3500, 2000 -3500, 900 -3500, 300

400 2700, 0 2700, -3000 -4300, 900 -4300, 300

900 1100, 0 1100, -3000 1100, -4100 -5900, 300

1500 500, 0 500, -3000 500, -4100 500, 4700

It is mentioned earlier that the players are rational and also the attacker knows defender

strategies and will try to maximize its gain. The optimized result for xP and yP is

calculated using Gambit tool. Table 3.5 and Table 3.6 contain the game result for Table

3.4.

Table 3.5 Optimal payoff for xP

payoff no_attention 20 30 50

300 ½ 4/35 0 27/70

Table 3.6 Optimal payoff for yP

payoff end_process proceed 30 50

0 13/20 7/50 0 21/100

Finally, a payoff matrix is constructed for general malware hook detection with three

different strategies as shown in Table 3.7. For simplicity only binary values are used to

represent the output from rootkit detection module i.e. value 1 represents success and

value 0 represents failure.

77

Table 3.7 General Rootkit detection payoff

 RegistryKey IAT Inline

No_attention 1,0 0,1 0,1

IAT 1,0 1,0 0,1

IAT, Inline 1,0 1,0 1,0

Simulation Result

 For every scenario, a game theory approach is simulated to calculate payoff matrix.

From the calculated payoff matrix, the Nash Equilibrium is generated using Gambit tool.

Each scenario is simulated 10 times in our approach to calculate its corresponding utility

resource. The average of every scenario is found and is plotted in a graph using MatLab

software. In addition, the same 10 different samples are simulated in traditional approach

and corresponding resource values are calculated to discover the difference. Figure 3.8

shows that GraMD approach takes less resource consumption than traditional approach.

Figure 3.8 Resource Consumption

78

3.4.2 Analysis of the proposed GraMD approach

As GraMD divides an API call graph into simple paths and does comparison based

on these paths instead of comparing the API call graph as a whole, it greatly reduces the

complexity problem and also avoids scalability problem. In nature, graph matching

algorithms belong to NP-complete problem and have a computational complexity due to

slowness. Additionally, many such algorithms do not efficiently solve scalability problem.

But all these issued are resolved in GraMD. Suppose the sum of the length of a path is ’n’

with size ’d’, then , the time complexity of GMA algorithm is O(n log p+ d2) which takes

less time with reduced space requirement compare to existing graph based malware

detection techniques.

3.5 Summary

Today, most malware authors have integrated API hooking technique with their

code to evade detection. In this chapter, a graph based GraMD method has been presented

to discover API hook attacks which are based on suspicious system call traces and the

relationship between these calls. In turn, these system calls are represented as a call graph

and then graph mapping technique is applied. Finally, the system determines the similarity

rate using GED technique. The experimental evaluation results conducted on the malware

samples prove that the proposed GraMD method incurs an average of 98-100 % detection

rate which replicates a significant optimization over the existing methods.

Though a graph based approach can be effectively detect known malware activities

but analyzing a hug volume of attack scenarios for a large network is a tedious process. In

addition, graph based static approach failed to detect and prevent stealthy unknown

malware. To overcome these limitations, a user-mode malware detection and prevention

technique using dynamic malware analysis has been proposed and implemented which is

described in Chapter 4.

79

CHAPTER 4

PROPOSED USER-MODE MALWARE DETECTION AND PREVENTION

APPROACH

It is conspicuous from Chapter 2 that the graph based methods are generally

preferred for detecting malwares based on the attack scenarios rather than preventing

malicious attacks. Therefore, a behavior-based malware defense technique, UMDetect has

been proposed for detection and prevention of malicious code attacks at user-mode. The

architecture of the proposed UMDetect approach, test-bed and dataset used for evaluation,

and comparison with the existing techniques are discussed in this chapter.

4.1. Preamble

Today, almost all modern malware writers have been incorporating hooking

technique into their code either to compromise an end-system or evade its footprints from

malware detection software and tools which make its detection more difficult. After the

victim computer has been compromised, it can be later used for launching many illicit

operations such as stealing important user information, sniffing network lines, sending

spam, etc,. Therefore, detecting and preventing advanced API hook attacks is a

challenging problem. Many existing solutions can be effective against API hook attacks

but error prone and manual. Therefore, a behavior-based monitoring detection method

namely, UMDetect has been proposed to effectively detect and prevent native API hooks

in user-mode. Compare to existing malware identification techniques, UMDetect has been

designed to dynamically monitoring and analyzing the behavior of API function call

hooking attacks. The experimental evaluation results show that the proposed UMDetect

approach produced better performance than the existing anti-hook detection tools and

approaches with no false positive.

As discussed in Chapter 1, WOW64 subsystem permits executing 32-bit

applications over 64-bit versions of Windows and thus malware writers are taking this

advantage to exploit 32-bit versions of processor through 64-bit versions. Figure 4.1

shows the flow of execution of a user-mode application that invokes WriteFile() system

service routine which is implemented in the kernel mode.

80

Figure 4.1 Execution flow of WriteFile() API function

The order of executing each step is explained below:

i. The user application calls the user mode WriteFile() function.

ii. The WriteFile() calls ZwWriteFile() native APIfunction which has a stub in

ntdll.dll.

iii. Then, ZwWriteFile() calls KiFastSystemCall function which in turn executes the

SYSENTER instruction.

iv. In response to SYSENTER, the program control is transferred to KiFastCallEntry()

which is located in ntoskrnl.exe as executive service.

v. This will cause the KiSystemService dispatcher to call NtWriteFile() function

using the dispatch ID.

Rootkits use several variations of hooking techniques during its lifetime. There

have been many anti-rootkit detection tools are available for the purpose of detecting

rootkit malwares. Each time such a tool is run, a log file is generated to keep a list of

detected hooks. The amount of data in these log files is overwhelming as they hold

information about each and every hook that had been detected on the system. On an

average, each of these log file contains several hundred lines of code and data.

81

In order to perform malicious operations over the victim computer, malicious

codes need to interact with the OS through Windows subsystem API libraries. The actual

implementation of the native API functions resides in ntoskrnl.exe which is located in the

kernel. Each native API has a reference inside ntdll.dll which is isolated in the user mode.

After the malicious instructions are deposited in a victim computer, code-injection attacks

must use native API calls to do further damage. Hooking various API functions into the

victim computer is an important attacking technique employed by sophisticated malware.

To defeat current hook detectors, modern malware writers maintain discovering new

hooking mechanisms. However, the existing malware analysis technique is typically

manual or error- prone. Therefore, UMDetect, a behavior based monitoring mechanism

that does not require prior information about hooking method to defeat user-mode hook

attacks has been proposed.

Import Address Table Hooking

The IAT is the most important call table in the user-mode which keeps references

of all routines exported by a particular DLL files. IAT entries are filled by the Window

automatically during load time. And each DLL that an application is linked with,

particularly at load time, will have its own IAT. Many executable files have embedded one

or more IATs in their structure that are used to store the addresses of existing libraries that

they import from DLLs. Most of the user land rootkits use the IAT hooking technique to

intercept the APIs at boot time. Thus, to maneuver an IAT, it is necessary to access the

address space of the request. Normally rootkits use DLL injection techniques to modify

the address of the specific function in the IAT to point to the address of the rootkit

function where it is presented. Therefore, whenever the application calls a specific

function, the rootkit function is called instead. Hooking a module’s IATs using DLL

injection can be accomplished by calling HookAPI () function as shown in Figure 4.2.

HookAPI (File *fptr, char* apiName)

{

DWORD bAddress;

bAddress = (DWORD) GetModuleHandle (NULL)

return (walkImportLists (fptr, bAddress, apiName))

}

Figure 4.2 HookAPI Function

82

Figure 4.3 shows IAT hook through CreateFile API function. The rootkits had

managed to create a hook by overwriting the address of the CreateFile function in the IAT

of the user application. If the entry point of CreateFile in the IAT is successfully modified

with the address of rootkit routine, all native API calls in the target process are rerouted to

rootkit routine.

Figure 4.3 IAT Hook by a Malicious Rootkit

The walkImportLists() function checks the module’s PE signature by adding a

Relative Virtual Address (RVA) to the base address. Then checking each import

descriptor will list all routines that are imported from the corresponding DLL. If Import

Lookup Table (ILT) and IAT contain entries, then the names in the descriptor’s IAT are

compared against the name of the function that needs to be restored. If there is a match,

substitute the address of the hooked function.

Inline hooking

Inline hooking or detour patching is another technique to divert the predefined

execution path to malicious code without altering IAT call table entries. This technique is

implemented by inserting a JUMP statement into the target routine to divert the execution

path. Therefore, whenever the currently executing thread executes this jump instruction,

the control is transferred to a detour routine. The original portion of the code from the

target function which needs to be redeposited, in coincidence with the jump instruction

returns back to the target code, is known as ‘trampoline’.

83

Therefore, the initial jump in the trampoline replaces a certain code when it is

inserted and at the end the necessary instructions might be executed which were replaced

and then bounce back to the target code as shown in Figure 4.4.

Figure 4.4 Hooking Inline Function

4.2 Architecture of the proposed UMDetect

To monitor and detect native API hooking in the user space, UMDetect intercepts

native API calls in user mode and looking the traces of IAT entry modification and inline

hooking. The proposed UMDetect approach is supposed to be installed in a clean system

and it seizes native API system calls in user mode before they get service from the kernel

of the OS. Figure 4.5 shows the proposed architecture of the UMDetect system.

Figure 4.5 Overall flow of the proposed UMDetect approach

84

DLL classification Algorithm

The proposed UMDetect approach consists of three important modules: DLL

classification, IAT hook detector and inline hook detector. Intercepting every system

service calls that use native API is a tedious and time consuming process. Therefore, in

order to allow legitimate system service calls to be serviced as normal, a new algorithm

namely, DLL Classification Algorithm (DCA) has been developed. The pseudo code of

the DCA algorithm is given in Figure 4.6.

/* Algorithm for DLL Classification*/

1. begin

2. Get DLL Name and handle using GetFileVersionInfo()

3. if ((szDllName, dwHandle, dwCount, pBuffer) != 0)

4. {

5. Extract DLL file information and Store it in a file;

6. }

7. else use VerQueryValue() extract VarFileInfo and ValueLen;

8. if (bVer && dwValueLen != 0)

9. {

10. Store DLL file informations;

11. }

12. if (extracred DLL informations are valid)

13. {

14. legitimate DLL;

15. }

16. malicious DLL and terminate application;

17. end

 Figure 4.6 Pseudo code for DCA Algorithm

Since most of the malicious code cannot include properties such as vendor name,

description and version details in its DLL file, the DCA algorithm verifies these

information to check whether the processes associated with the DLL file is malicious or

not.

85

To get the vendor name of the DLL file, the GetFileVersionInfo() API function is

called to get the file version information buffer which contains all the property values of a

DLL file. To get the specified property value of the DLL file, the VerQueryValue()

function is invoked. Finally VerQueryValue() function identifies whether the DLL file to

be imported into IAT is either legitimate or suspicious.

IAT Hook Detector

The IAT Hook Detector (IHD) is the first level of defense module against native API

hook in the user-mode. All processes that are associated with the suspicious DLL file are

are given as input to this module. To detect native API hooks in IAT, the IHD performs

the following steps:

a. The IHD obtains a list of currently running processes by calling the

EnumProcesses function.

b. For each process, the PrintProcessNameAndID function is called by passing it

to the process identifiers which in turn call functions OpenProcess to get the

process handle, EnumProcessModules to extract the module handles and

GetModuleBaseName to find the name of the executable file along with process id.

c. Then IHD compares each process with unknown processes. If legitimate, the

LoadLibrary function is invoked to load the process into memory. After reading

the MS-DOS header (MZ), PE, PE extended and section header from the

executable, IHD determines DLL of an application which has been loaded and also

the address range of each DLL in memory. Then IHD examines the IAT of the

executable to examine the entries in each IAT.

d. Finally, if any entry drops outside of the module’s address collection, the IHD stop

executing the DLL; otherwise it will be serviced as a legitimate system service

call.

Inline Hook Detector

As an alternative approach to IAT hooking, many malware writers keep call table

entries within the requested range and instead modify the code that it points to. Inline

Hook Detector (LHC) is another level of defense to strengthen the proposed UMDetect

approach. First, LHC reads the executable file to reach the Export Address Table (EAT).

86

And then LHC calls the ExportAddrTable API function to read the addresses of

each function in EAT which are responsible for invoking native API functions. To detect

the detour patches of each function in the DLL file, LHC uses the CheckForOutside

function to trap 0xE9 or 0xEA which will be opcode for the unconditional near and far

jump respectively, in the first five bytes of the DLL’s API function. Finally LHC

identified the address where the CPU will jump to the function and then checks the CPU

jump address to determine whether it lies outside the pre-allocated address range for the

DLL file. If any function which are not in the predetermined address range is considered

to be malicious.

Table 4.1 Malware Family with Hook Type

4.3 Experimental Test bed

A sandboxed experimental environment setup was arranged with a computer that

runs Microsoft Windows 7 SP3 OS, Core 2 Duo 2.93 GHz of processor and 2 GB of

memory and the guest machine runs Windows XP OS. In order to evaluate the

effectiveness and performance of the proposed UMDetect approach, a set of 20 user-mode

malware samples (two samples from each family) has been collected from some reputed

websites, in addition to 10 benign samples. Table 4.1 lists the test samples which are taken

for evaluating UMDetect.

Malware family name Type of Hook

Papras IAT

Bacalid/DetNat IAT

Haxdoor-B INLINE

Agent IAT

Feebs-A INLINE

Qukart INLINE

Virut INLINE

Alman-B IAT

ProAgent INLINE

Alman-A IAT

87

4.4 Experimental Results and Discussions

Each malware sample was run in a controlled environment to detect the hooks

generated by them in the victim machine. Few malware executable does not hook library

functions when it starts running, but, as time increases, the number of hooks also

increased. Figure 4.7 shows the result of the total number of hooks generated by each

malware sample.

Figure 4.7 Number of hooks generated by different malwares

To show the precision rate of the proposed UMDetect approach, each malware was

run separately against few standard hook detection tools such as BlackLight [131],

IceSword [132], VICE [133], R3 Hook scanner [134], and UMDetect. Figure 4.8 shows

the values of DR and FPR of various testing tools including UMDetect. Figure 4.8

indicated that the proposed UMDetect method outperforms than other existing with 95 %

DR. This is because, few malware behaves liked legitimate. When the testing platform

reboots again UMDetect detects those malware behavior correctly. Therefore the DR of

UMDetect falls between 95-100 %. In order to determine FPR of UMDetect, 10 legitimate

API hooks are implemented as a C++ file in Microsoft Visual studio. Every time a C++

file is executed, the proposed UMDetect method identifies all with no false positives.

88

Figure 4.8 Comparison between Detection Rate and False Positive Rate

However, IceSword and R3 Hook Scanner have achieved the same DR of 75 %

with different false positives. But, both IceSword and VICE has achieved 7 % of FPR. In

addition the CPU cycles taken by various existing techniques such as the methods

proposed by Deng et al., Abonghadareh et al., Yoghi et al., and the proposed UMDetect

have been determined to estimate the overhead to be caused. Figure 4.9 points out that the

proposed UMDetect approach has caused minimum overhead (2359 CPU cycles before

executing UMDetect and 3659 CPU cycles after executing UMDetect) than the existing

approaches.

Figure 4.9 Performance comparison with the existing Approaches

89

4.5 Summary

With an increasing amount of malware adopting rootkit techniques to evade AV

software, further research into defenses against malware that integrate rootkit technique to

evade its detection is absolutely essential. A behavior-based method to trace and prevent

user-mode malware that target hooking user-mode data structures has been implemented

on Windows. There are few existing works that aimed to detect and prevent user-mode

malware has been found in the literature. In addition, several user-mode hook detection

tools are also available which can be used to detect these types of hooks. The proposed

UMDetect has been evaluated using a dataset that consists of real-time malware that aims

to misuse user-mode data structures on Windows. The experimental evaluation results

indicated that the proposed UMDetect approach incurs 5% better detection rate than

existing techniques.

The proposed malicious code detection and prevention approach surpass the

existing approaches concerning the prevention of malicious code attacks in user-mode.

However, UMDetect failed to identify and prevent the foot prints of malicious rootkit

malware. Therefore, the task of discovering the hidden foot prints of malicious rootkit

malware can really improve and optimize the detection rate and performance of the entire

malware detection system which is resolved in Chapter 5.

90

CHAPTER 5

PROPOSED HIDDEN PROCESS AND SERVICES DETECTION

ALGORITHM

It is manifest from the literature that the hidden process detection algorithms are

generally preferred for optimizing the malware detection system. A new algorithm namely,

Concealed Processes and services Discovery Algorithm (CoPDA) has been proposed and

developed for discovering the hidden entries of malicious rootkit malware. In the subsequent

sections a brief preamble about the hidden process detection algorithm is given and then the

proposed CoPDA algorithm is validated by conducting various experiments using a real time

dataset. The true positives, false positives, precision rate, detection through hindrance, and

detection rate of the algorithm are derived and presented. The effectiveness of the algorithm is

evaluated by comparing it to the widely used anti-rootkit detection tools and existing hidden

process detection algorithms using various performance metrics.

5.1 Preamble

There are many forms of malicious software that can constantly affect a computer.

Today, more advanced malicious software is incorporated with rootkit techniques to make

detection more difficult. A rootkit is a technique which is designed with the intent of allowing

the remote attacker to maintain highest privilege over the resources in the victim operating

system. It has been in the wild for more than few decades. Different malware adopts different

masquerading methods to avoid its detection. As a result, rootkits can dynamically defy

detection either by hiding from the view of AV software. Because of these characteristics,

rootkits are potentially dangerous to the integrity of user data.

Rootkits can be used for either legitimate purpose, such as debugging or malicious

purpose when combined with malicious software. There are two basic classes of rootkit which

are classified based on the mode of operation, such as user-mode rootkits and kernel-mode

rootkits. As the latter operates in the Windows kernel, they are more powerful than the

former.

91

In order to execute different pre-coded tasks, malicious software needs to perform

some initial operations such as enumerating processes and services, opening a port, or

establishing a network connection on the victim computer. A malicious rootkit can use either

user-mode API hooking or kernel-mode API hooks in order to remain hidden. Table 5.1 lists

some important API function names which are targeted by malicious rootkit families to

execute their operations.

Table 5.1 API functions hooked by malicious rootkits

Rootkit Malware Hooked Functions

Zbot ZwCreateThread

Win32/Cutwails

ZwOpenKey,
ZwEnumerateKey

ZwSetValueKey

WinNT/Omexo ZwReadFile

Win32/Ursnif
CreateProcessA

CreateProcessW

WinNT/Ramnit.gen!A
ZwOpenKey

ZwCreateKey

Win32/Dorkbot

CreateFileA/W

CopyFileA/W

ZwEnumerateValueKey

Win32/Eyestye ZwEnmerateValueKey

There are many different techniques [26] [135] which have already been proposed to reveal a

rootkit footprint.

i. Signature based – This approach uses unique signature, i.e., the byte sequence of

known rookits. Additionally, heuristics and behavior models based on certain actions

are used to identify a certain family of rootkits.

92

ii. Detecting detours – Windows operating systems are comprised of many important

data structures such as Import Address Table (IAT), Export Address Table (EAT), and

Interrupt Descriptor Table (IDT) in user-space and System Service Descriptor Table

(SSDT) in kernel-space which allows a programmer to carry out task execution.

Rootkits can either modify or alter these data structures to execute their own code. As

a result, when there is a request for system related activities, it will always be executed

by the detoured rootkit code.

iii. Crosscheck approach – In order to decept rootkit presence, they may alter particular

data when returned to the defender. Therefore, one of the common approaches to

detecting rootkit traces is by comparing the results returned from a high-level system

call and low-level system call.

iv. Integrity check – A digital signature is created using a cryptographic hash function

when the system is installed with a clean operating system. Then, each library call is

checked for code alternation.

v. Alternative trusted medium - A rootkit can dynamically conceal its existence only

when it is running. Therefore, the finest trustworthy technique for kernel-level rootkit

revealing is to shutdown the infected computer and then checks its storage space by

booting from an alternative trusted medium.

vi. Memory dumps – In order to capture a live rootkit, this method analyzes the virtual

memory of the underlying operating system in offline state using a debugging tool.

All the detection methods listed above implemented different techniques with the

intention to assist the defenders in ascertaining rootkit footprints. These techniques range

from identifying for unique signature pattern in the impending malware sample to supervising

system behavior. The important issue with live analysis is the authentic information such as

files and functions returned by the OS. Most existing anti-rootkit detection tools crosscheck

information generated by tainted system calls against system information generated by its

own for identifying rootkit traces. A stealthy malware conceals its footprints by controlling

OS function calls which cannot be hidden. But, using offline investigation to reveal hidden

traces of a malware is very difficult.

93

In short, most existing techniques suffer from issues such as lack of integration, high

false positive rate, overhead produced by complex configurations and scalability and

performance issues. Therefore, to overcome the drawbacks of the existing algorithms, a new

hidden processes and services detection algorithm is developed and presented in the

subsequent sections.

5.2 Concealed Processes and services Discovery Algorithm (CoPDA)

From the survey, it is identified that almost all malware hide their footprints such as

processes and services including the entries in registry, files, etc., to stay undetected and

perform their illegal activities for a longer time. Therefore, focusing on locating these

footprints to stop them before causing damage is important. This crucial point is mainly used

to develop CoPDA effectively. As many data guard programs might use techniques such as

encryption or access control to hide files locally, these issues are not considered. Rootkits

may hide their traces and activities either from the user or AV. This vital point is mainly used

to determine whether the underlying operating system includes hidden rootkit traces or not.

The hidden character of a rootkit can be formalized as follows.

Let)(tGa be the set of system-wide objects of type a at time t, and)(tVa be the set of

visible objects of type a at time t. Let o be an object of type a. At time t, if thereexist o such

that)()(tVotGo aa  , then o is caught as hidden at time t. Otherwise, if

))()(( tVtG aa then the underlying system is in a stable state (with respect to a at time t).

Let A represent all the available objects in the underlying system. Then,

)(t
a
G
Aa

UG



 and

)(t
a
V
Aa

UV



 where G and V are the global view and visible

view of objects in the underlying system, respectively. If any object is in the global view, but

not in the visible view, then it is caught as a hidden object. As a result, by comparing G and

V, the list hidden objects are discovered in the target computer. The proposed algorithm,

CoPDA, is a practical tool that point out the user-level hidden rootkit processes and services.

In order to produce hard evidence about the hidden processes and hidden services of a

malicious rootkit, it is mandatory to have a global view and visible view of objects in the core

system.

94

CoPDA is a crosscheck-based approach to discover and listing hidden processes and

services by comparing the global view and visible view. One of the methods user-mode

rootkits can use to hide their detection is to hook a native API function and filter its traces. A

Windows process will open many handles associated with a process which can be used to

detect hidden processes. One way to enumerate handles is to scroll through the process

handles of CSRSS.EXE which holds the handles to all running processes. A list of the global

view (G) is generated which contains the handles to all running processes by going through

the process handle of the CSRSS.EXE process of the physical operating system. As rootkits

hook normal process enumeration functions, the finest way to identify all processes is to make

use of the NtQuerySystemInformation function. The pseudo code of the global view of the

CoPDA algorithm is depicted in Figure 5.1.

/* Algorithm for GlobalView */

1. begin

2. Allocate necessary memory to handle table

3. Loop through the range of valid handles

4. begin

5. Pid←handles.UniqueProcessId

6. if Pid belongs to CSRSS.EXE

7. begin

8. Get Current ProcessId using OpenProcess and GetCurrentProcessId

9. end

10. end

11. repeat loop

12. begin

13. Enumerate all Processes using NtQuerySystemInformation function

14. Separate all child processes created by Services.exe

15. end

16. end

Figure 5.1 Global View of CoPDA algorithm

95

Furthermore, in Windows operating system, services can only run with highest

privilege mode. As a result, rootkits integrate services not only to keep control over the entire

system, but also to manage its tasks and to remain undiscovered. Since services are visible to

the end user, it is important for a rootkit to conceal its services to prevent itself from being

detected. CoPDA has the ability to locate all hidden services by extracting information from

Services.exe which is an important process in Windows operating systems for revealing

rootkit footprints.

In order to produce a list of the visible view (V), a list of all running processes is

generated by taking a snapshot of currently running processes in the system using

CreateToolhelp32Snapshot in the guest operating system with which is used to discover

hidden rootkit processes and services. Then the child processes that are manipulated by

Services.exe are separated. The pseudo code of the visible view of the CoPDA algorithm is

depicted in Figure 5.2. Finally, the entries in the global view are compared against the entries

in the visible view. Any difference in these two data lists reveal hidden traces of malware.

/* Algorithm for VisibleView */

1. begin

2. Take a snapshot of all processes in the system using Createhelp32Snapshot

3. Set the size of ProcessEntry32 structure

4. Loop through the range of valid process in Process32Entry

5. begin

6. Walk the snapshot of processes and retrieve the information about each process

 using OpenProcess, Process32First, and Process32Next functions

7. end

8. repeat loop

9. end

Figure 5.2 Visible View of CoPDA algorithm

96

5.3 Experimental Results and Discussions

 All the experiments are conducted on a physical machine built with an ACER Core

Duo machine with 2.93 GHz processor, 2 GB of memory and Microsoft Windows 7 as the

physical operating system. The guest operating system runs Microsoft Windows XP SP1 with

no service pack. CoPDA has been implemented using the Microsoft Visual Studio 2008

development environment. Different anti-rootkit detectors are opted for in to verify the

strengths of CoPDA algorithm using various metrics. Table 5.2 summarizes a description of

the version and revealing techniques of various anti-rootkit detection tools including CoPDA

which were used for the evaluation procedure.

 Table 5.2 Characteristics of testing tools including CoPDA Algorithm

Sl.

No
Tool Name Version Hooking Cross-View

1 GMER [136] 1.0.15.15281 Yes No

2 HeliosLite [137] 1.005 Yes Yes

3 IceSword [132] 1.22en Yes Yes

4 Rootkit Unhooker [138] 3.8.388.480 SR2 Yes Yes

5 HiddenFinder [139] 1.5.6 Yes Yes

6 BlackLight [131] 2.2.1046 Yes Yes

7 CoPDA -- Yes Yes

97

5.3.1 Performance Analysis of CoPDA

 A dataset consist of 1000 malware samples are obtained that belong to different

infecting technique such as virus, worms, Trojans, rootkits and backdoors from a publicly

available database [130] [141-142]. Then a carefully read, analyze and record the technical

details of each malware individually.

 Finally, a dataset which consists of 100 malware samples that mainly utilized API

hooking, registry hiding and process hiding technique has been selected for testing and

training CoPDA algorithm. This study helped to design the CoPDA to react against unknown

malware. In order to determine the effectiveness of CoPDA in detecting hidden rootkit

footprints, mainly, hidden processes and services, different samples with cross validation

technique is used. The dataset is divided into ten groups – a group on the average contains 10

malwares and 9-10 benign samples. Then the tools are trained on nine groups and the

remaining one group is used for testing them which is shown in Table 5.3. The computed

values of all the metrics considered are summarized in Table 5.4.

Table 5.4 Summary of computed values

Tool Name

Weighted Average (%)

TPR FPR PR Recall F-Measure DA

Hellioslite 88.14 5.93 93.67 88.14 90.76 91.03
GMER 85.53 6.00 94.33 85.53 89.45 89.42
HiddenFinder 85.52 8.13 91.98 85.52 86.82 86.83
RootkitRevealer 0.0 0.0 0.0 0.0 0.0 0.0
IceSword 96.18 3.82 96.18 96.18 96.08 96.12
BlackLight 96.0 3.0 97.27 96.0 96.47 96.50
Rootkit Unhooker 84.53 7.55 91.85 84.53 87.95 88.50
CoPDA 100 1.82 98.09 100 98.99 99.02

98

Table 5.3 A brief statistical report of the considered evaluation parameters

Tool Name Metrics Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10 Avg.

HelliosLite

TP 9 8 9 8 8 8 9 9 9 8 8.5

FP 1 0 0 1 0 1 0 1 1 1 0.6

TN 9 9 10 8 9 9 8 10 10 9 9.1

FN 2 1 0 1 0 2 1 2 1 2 1.2

FAR 10.00 0.00 0.00 11.11 0.00 10.00 0.00 9.09 9.09 10.00 5.93

PR 90.00 100.00 100.00 88.89 100.00 88.89 100.00 90.00 90.00 88.89 93.67

GMER

TP 9 10 9 9 9 9 10 9 9 9 9.2

FP 1 0 1 1 0 1 0 1 0 1 0.6

TN 9 10 9 9 8 9 10 9 9 9 9.1

FN 1 2 2 3 1 1 2 2 1 1 1.6

FAR 10 0 10 10 0 10 0 10 0 10 6.00

PR 90 100 90 90.00 100.00 90 100 90 100 90.00 94.00

HiddenFinder

TP 9 9 8 9 9 9 10 9 9 8 8.9

FP 1 1 0 1 1 1 1 0 1 1 0.8

TN 9 8 9 9 9 10 8 9 9 9 8.9

FN 2 2 3 2 2 1 2 2 1 2 1.9

FAR 10 11.11 0 10 10 9.09 11.11 0 10 10 8.13

PR 90.00 90.00 100.00 90.00 90.00 90.00 90.91 100.00 90.00 88.89 91.98

RootkitRevealer

TP 0 0 0 0 0 0 0 0 0 0 0

FP 0 0 1 0 0 0 0 0 0 1 0.2

TN 10 10 9 10 10 10 10 10 10 9 9.8

FN 0 0 0 0 0 1 0 0 0 0 0.1

FAR 0 0 10 0 0 0 0 0 0 10 2.00

PR 0 0 0 0 0 0 0 0 0 0 0.00

99

IceSword

TP 9 10 9 10 9 9 10 10 10 10 9.6

FP 0 1 1 0 1 0 0 0 1 0 0.4

TN 10 9 10 10 10 9 10 10 9 10 9.7

FN 1 0 1 0 0 0 0 1 1 0 0.4

FAR 0 10 9.09 0 9.09 0 0 0 10 0 3.82

PR 100 90.91 90 100 90 100 100 100 90.91 100 96.18

BlackLight

TP 10 10 9 9 10 10 10 9 9 10 9.6

FP 0 1 0 0 1 0 1 0 0 0 0.3

TN 10 9 10 10 9 10 9 10 10 10 9.7

FN 0 0 1 1 0 0 0 1 1 0 0.4

FAR 0 10 0 0 10 0 10 0 0 0 3

PR 100 90.91 100 100 90.91 100 90.91 100 100 100 97.27

Rootkit Unhooker

TP 9 8 9 8 9 9 9 8 8 9 8.6

FP 1 1 2 1 1 0 0 1 0 1 0.8

TN 9 9 9 10 9 9 10 10 10 10 9.50

FN 1 2 2 3 2 1 1 2 1 1 1.60

FAR 10 10 18.18 9.09 10 0 0 9.09 0.00 9.09 7.55

PR 90 88.89 81.82 88.89 90 100 100 88.89 100.00 90 91.85

Proposed CoPDA
Algorithm

TP 10 9 10 10 9 10 10 10 9 10 9.7

FP 0 1 0 0 0 0 1 0 0 0 0.2

TN 10 10 10 10 9 10 10 10 10 9 9.8

FN 0 0 0 0 0 0 0 0 0 0 0

FAR 0 9.09 0 0 0 0 9.09 0 0 0 1.82

PR 100 90.00 100 100 100 100 90.91 100 100 100 98.09

DA 100 95 100 100 100 100 95.24 100 100 100 99.02

100

5.3.2 Overall Detection Accuracy of CoPDA

 From the usability point of view, allowing CoPDA to generate a low false alarm

rate is an important issue; otherwise CoPDA will not be competitor against existing anti-

rootkit detection tools if it stopped legitimate applications frequently. CoPDA identifies

malicious hidden rootkit process and service by generating and matching two dissimilar

views. The creation of the visible view is manipulated in the user-space of the guest

operating system. Then, the production of the global view and the matching of the two

views are completed in the physical operating system. The performance metrics for

determining the effectiveness of CoPDA are described below.

 The Precision Rate (PR) and Overall Detection Accuracy (DA) are calculated as

follows.

 PR =
FPTP

TP


 (5.1)

 DA =
FNFPTNTP

TNTP




 (5.2)

 F-Measure – It denotes the measurement of a test’s accurateness by adding recall

value and precision value into a single measure of performance. Normally, the

result closer to 100% is good. F-Measure is computed as follows.

(

 (5.3)

 Table 5.4 shows that all anti-rootkit detection tools achieved different detection

accuracy rate, i.e. detecting hidden processes and services, with different FPR. It is

realized that CoPDA achieved an average of 98.09% PR with 99.02% DA of locating

hidden processes and services. As few benign applications imitate operations performed

by malicious software, CoPDA produced 1.82% FPR. When restarting the system,

CoPDA correctly identified all hidden processes and services with no false alarm. Overall,

CoPDA had outperformed all other anti-rootkit detection tools in all measures. The feature

supplied with Receiver Operating Characteristic (ROC) is commonly used to evaluate the

performance of malware detection tools in computer security.

callRePR

callRe*PR
*2MeasureF




101

Figure 5.3 depicts the generated ROC curve of eight anti-rootkit detection tools including

CoPDA. As the curve bypasses the upper-left region, CoPDA achieved 100% TPR,

indicated that CoPDA offers the best result among the other anti-rootkit detection tools.

Figure 5.3 Realization of ROC Curve (Averaged Values)

 From Figure 5.4 GMER scans for hidden processes, services, threads, files, as well

as the detection of several different types of hooks. In our test, it had a precision rate of

94.33%. One important downfall of GMER is that it cannot allow a user to perform any

other task while it is scanning the target systems. HeliosLite utilizes the cross-view

approach to detect rootkits and can be executed from a USB drive. Against the rootkit

samples that were taken for tests, it achieved a precision rate of 93.67%. IceSword scans

the entire system to categorize hidden processes and services, files, registry settings, ports

and startup items. IceSword spotted all the processes and services hidden of all the five

rootkit families. It produced 100% precision as it detected all the hidden processes and

services. However, while reacting to FU and FUTo rootkit malware, IceSword was unable

to discover the rootkit which was responsible for hiding them. One important limitation of

IceSword is that it only works effectively within the Windows XP OS, and fail to function

in another environment. By scanning the entire target system, the BlackLight anti-rootkit

tool identified hidden processes when executed against FU and FUTo rootkits. But fail to

discover the rootkit. However, BlackLight achieved good results, detecting all the rootkits

in our experiments.

102

Figure 5.4 Comparisons of PR and DA

 Rootkit Unhooker detects hidden processes, and files, but failed to discover hidden

services and registry key values. As a result, it produced an 88.5% detection rate.

HiddenFinder also uses cross-view technique to identify hidden processes, but only

attained a 91.85% of the precision rate although it has not been revised since 2008.

RootkitRevealer was the first rootkit detection application that used cross-view

mechanism to detect persistent rootkits that can only hide files and registry-related settings

in Windows operating systems although it does not detect hidden processes and services.

Therefore, it has not been taken as a test tool.

 CoPDA produces a total high detection precision rate of 98.09%. No other tested

anti-rootkit detection tools achieved better TPR, FAR, PR and DA than CoPDA. Finding

the mean for the other tools and compared with the proposed CoPDA produced higher

values compared to the other tools. Mean and confidence interval for the ten set of

samples are calculated against parameters such as true positive rate, false positive rate,

recall, precision rate, F-measure, and detection accuracy which is given in the Table 5.5.

103

Table 5.5 Computation of mean and Confidence Interval

Mean for 10 Groups(µ) 95 % CI

TPR 74.127 35.516 to 112.738

FAR 5.083 2.443 to 7.724

Recall 74.127 35.516 to 112.738

PR 78.548 38.100 to 118.994

F-Measure 76.1308 36.7545 to 104.876

DA 92.41 87.548 to 97.282

 The comparison between the mean of both CoPDA and other tools are given in

Table 5.6 which clearly shows that CoPDA outperforms than existing tools in terms of all

features listed.

Table 5.6 Comparing CoPDA with existing tools

TPR FAR Recall PR F-Measure DA

Other Tools 74.13 5.08 74.13 78.55 76.13 92.41

CoPDA 100 1.82 100 98.09 98.99 99.02

 Similarly, ROC curve is plotted using precision rate and detection accuracy to

confirm the effectiveness of CoPDA. To achieve the same, the values between 0 to 1.0 are

used. The calculated values are given in the Table 5.7. For the tabulated values, a graph is

plotted using TPR and FPR as shown in the Figure 5.5 to compare CoPDA with other

tools. The linear grid in the graph confirms that CoPDA achieves higher performance rate

over the other tools.

Figure 5.5 Comparisons of TPR and FPR

104

Table 5.7 Comparisons of CoPDA with existing tools (For ROC Plot between 0 to 1.0)

TPR FAR Recall PR F-Measure DA

Other Tools 0.74 0.51 0.74 0.78 0.76 0.92

CoPDA 1 0.0182 1 0.98 0.99 0.99

5.3.3 Detection through Hindrance

 The timeliness and precision of CoPDA is evaluated when spotting a single hidden

process. When the victim computer contained more than one hidden process, the

discrepancy between the global view list and visible view list is larger which leads to

much easier detection. Therefore, enabling CoPDA to detect a single hidden process

implies an unconditional detection state. The synthetic process creator which is a tool for

procreating processes randomly is utilized to determine the variation in detection against

different amount of process load. It is shown in Figure 5.6.

Figure 5.6 Variation in hidden process detection time depends on the process creation
activity in Windows

In [140], the authors point out that process appearances are exploding than

obsession. Hence, we select a Pareto distribution with k=1 (shape metric) for process

inter-landing time. By varying the Pareto locality metric, the average rate of process

creation is stabilized which is directed to sizable process creation. This dissemination

makes the detection process difficult. The process lifetime interval is set between 0 and 1

second based on uniform process distribution to keep the test system in a stable state.

105

To keep hiding processes in Windows, the rootkit malware fu.exe hides its traces

by directly modify a process token used by the OS. In addition, a guest process reporting

tool is opted to fabricate hidden processes in Linux operating systems. The process

creation time for different sets of process activity levels in Windows and Linux operating

system are measured, the same is given in Figure 5.7 where the X-axis represents different

process activity levels and the Y-axis represents the detection time. Figure 5.7 also states

that each process creation and depart action increases the detection time. When the

legitimate process consignment is reasonable, the presence of single malicious rootkit

process is spotted every time. However, there is a bigger discrepancy in detection time

under intense process creation that introduces false positives. However, CoPDA reduces

the result of false positive identification.

Figure 5.7 Variation in hidden process detection time depends on the process creation

activity in Linux.

5.3.4 Runtime Overhead of CoPDA

 While CoPDA runs continuously for detecting hidden processes, it is important to

ensure that it produces significant runtime overhead. In order to assess the runtime

overhead CoPDA algorithm, there are three benchmarks are executed in Windows and in

the Xen hypervisor including CoPDA. After executing all five test samples and its average

value is tabulated in Table 5.8.

106

Table 5.8 Detection of runtime overhead

Name of the
Benchmark

Runtime in
seconds % of

overhead CoPDA Xen

Compile 21.164 21.041 0.6

CreateProc 5.601 5.303 5.1

MemAlloc 5.523 5.220 3.5

 The CreateProc is capable of creating and destroying 1000 processes rapidly. The

MemAlloc allots a 200 MB fragment of memory and performs page table switching.

CoPDA generates a 5.1 % runtime overhead for CreateProc benchmark and a 3.5 %

runtime overhead for MemAlloc. For the Compile benchmark which includes the bash

shell source, CoPDA causes a tiny runtime overhead of 0.6%. The CoPDA was tested and

tweaked principally around 32-bit Windows and produced positive outcomes.

The proposed hidden process detection algorithm is compared with the existing

algorithms proposed by Desheng et al., Xie et al., Richer et al., based on detection

accuracy and performance overhead. Table 5.9 indicated that both the algorithm proposed

by Desheng et al. and CoPDA have achieved 100 % detection rate, but Desheng et al. has

selected only two malware samples for testing. However, in all aspects the proposed

CoPDA algorithm outperforms than other existing algorithms with 100 % detection

accuracy and true positives.

Table 5.9 Overall comparison with existing Approaches

Approaches
Overhead

(%)

Detection Accuracy

(%)

Richer et al. [120] 9.5 98

Xie et al. [121] 2.5 96

Desheng et al. [122] 0 100

Proposed CoPDA 0.6 100

107

5.4 Summary

 Cross-check based algorithms have been effectively applied to discover the hidden

foot prints of a malicious executable. The CoPDA algorithm, a cross-check based

approach has been developed and implemented which runs in the user-space in Windows

to discover hidden processes and services of a malicious executable. CoPDA maintains a

separate process list that contains all running processes and services by continuously

monitoring the victim computer. Then, another list is generated by dynamically analyzing

lower-level processes and services and then the two lists of data are cross-checked to

discover hidden processes and services. The experimental results show that CoPDA

outperforms the existing algorithms which are proposed by Desheng et al., Xie et al., and

Richer et al. The CoPDA algorithm gives considerable improvement over the algorithm

proposed by Richer et el., and surpasses the algorithms proposed by Desheng et al., and

Xie et al.

108

CHAPTER 6

PROPOSED KERNEL LEVEL AUTHENTICATION MECHANISM

The trustworthiness of the underlying computing environment is very important to

ensure total system security. The key issue in system security is verifying the originality of

an application to check whether the application is legitimate or malicious before being

serviced by the kernel of the OS. A novel kernel level process authentication mechanism

has been proposed for imposing mandatory authentication to validate the originality of all

suspicious processes of the executable rather than verifying all. PAM is evaluated using

different test-beds and datasets and compared with the existing techniques concerning the

prevention of unauthorized malicious process attacks before abusing system resources. In

the subsequent sections, a brief preamble about process authentication to prevent

malicious code attacks, the proposed system architecture of PAM mechanism and

experimental results are presented in this chapter.

6.1. Preamble

Today, hackers frequently integrate rootkit techniques into their code to

compromise and evade detection. A malicious rootkit is a software tool which is designed

with the intention of acquiring and maintaining privileged access rights over the resources

of the underlying OS while concealing its footprints by subverting legitimate OS behavior.

Most computers have included an ACL feature to prevent an authorized application for

obtaining access to confined resources. But rootkits might use the vulnerabilities in the

target computer or use social engineering attacks to get mounted. After successfully

installed, the rootkit does not want to be identified by an existing anti-rootkit tool so as to

prevent its access. One of the best ways to bypass this is to become invisible to all running

software applications on the target machine. Most software applications trust the OS to

provide authentic information about its environment in which it is running. The

application inquires the OS, for example, files and registry keys which are necessary for

configuring the application, using the API provided by the Windows subsystem. Windows

comprises of many sub-system DLLs to offer many different features to the programmers.

109

Among all, ntdll.dll is acting as an intermediate interface to the forward Native

API calls to kernel-mode and is located in user-mode. The implementation of each native

API calls is located in ntoskrnl.exe which resides in the kernel. Each native API call has a

stub in ntdll.dll. Figure 6.1 shows how the NtCreateFile() native API function call is

requested. The parameters for accessing a particular system service are kept in the stack in

advance. The system service number and the address of kiFastCallEntry stub are pushed to

EAX and EDX respectively. Then kiFastCallEntry stub moves its address to register ESP

and starts executing SYSENTER in ntdll.dll.

NtCreateFile:

mov eax, 0x17

mov edx, kiFastCallEntry_add

call edx

kiFastCallEntry:

mov edx, esp

mov SYSENTER

Figure 6.1. NtCreateFile API function call

Then kiSystemService, the service dispatcher in the kernel-mode use the system

service number which is stored in the register EAX to lookup in the System Service

Dispatch Table (SSDT) to forward the request to the actual routine which service the

incoming request. After completing the system service, the kernel switches to the user-

mode using the return address which is stored in ESP. In order to hide its existence and

stay for an extended period of time, rootkits hijack these undocumented APIs and observe

for any request an application may arise that might be incriminating.

Many advanced stealthy malware re-route the flow of a system call by modifying

their address in SSDT to point to the detoured code. Therefore, its detoured code runs

whenever the system call is invoked. The OS then executes the code at that address. The

combination of privileged rights and stealthy technique make malicious rootkits or codes a

particularly serious threat. In order to protect few important processes, Microsoft had

introduced protected process feature in Windows Vista. For example, in Windows Vista,

Protected Media Path (PMP) utilizes protected process mechanism to offer a high level of

protection for providing stronger protection of sensitive media content. Whenever a new

process is started, the system performs different level of checks as given in Figure 6.2.

110

Figure 6.2 Various levels of checks of a protected process

The same validation checks are pertained for all threads that belong to protected

processes. The protected process concept has evolved to strengthen the security and

protect end-user. By default, only certain processes will be started as protected. Microsoft

restricts third parties from accessing protected processes. Also, a protected process has

unconstrained privilege access over other protected processes. However, a custom

protected process, which integrates random code attack can bypass the complete system.

The main purpose of introducing protected process feature is to provide an environment

for protecting and enhance Digital Right Management (DRM) functionality in Windows

Vista x64. But open privileged access to system process would weaken kernel level

protection. Most Malware Detection System can either only detects either only detect

attacks before its execution or after the victim computer has been compromised.

111

The first method has only limited information to detect malware attacks. On the

other hand, the second method fails to prevent the damage to be caused which cannot

guarantee for system security. Therefore, recent security systems need to be strengthened

to ensure total system security or trusted computing environment. Developing a

mechanism for improving the security strength of an OS is very essential, because the

hackers target the most popular OS such as Windows rather than Linux environment. This

research work exhibits the need for re-examining the system’s fundamental process

identification system. Therefore, the idea of kernel level runtime authentication has been

developed to discover and prevent malicious code attacks that target hooking system

services during runtime.

If any process or application fails to supply the kernel generated credential

information at runtime, PAM labels it to be malicious and suspend or terminate their

future activities. To be accurate, after detecting a suspicious process or application, PAM

remarks it to be suspicious and validate its originality. PAM directly permits benign

processes to get kernel service so as to improve the overall performance of the prototype.

The innovation of PAM is that, it incorporates light-weight system call authentication

technique to verify the authenticity of suspicious processes at runtime which is not often

done by the OS kernel.

Additionally, PAM identifies the suspected processes and executable which can act

as agents of remote hackers and restricts them. PAM is designed to be implemented on

Windows and conduct various experiments to demonstrate its effectiveness and efficiency.

 PAM is a novel kernel level system call authentication mechanism which includes

malicious code tracing and authenticating their originality to prevent malicious

code attacks that directly invoking a system service call in the kernel mode on a

marketable OS in a friendly manner.

 PAM has been designed and implemented on Windows OS to prevent process

forging attacks at runtime without using their signature.

 The important reasons of incompatibility and low usability issues were

investigated of existing anti-rootkit detection tools.

In short, the runtime mechanism, PAM, can enrich the security strength of current

computing environment with the following properties:

112

 PAM cannot be compromised by malwares with kernel level privilege that target

system call runtime hooking in contrast to the traditional security systems

 PAM, as a runtime authenticator framework, exposes malware attacks which

execute data at user-mode, modifies code, and modify kernel mode data structures

illegitimately.

 The dynamic malware prevention method of PAM implements uncircumventable

more flexible better than that of current malware defense security systems.

Dynamic Detection and Prevention. PAM must prevent malicious executable at the

moment when they illegally attempts to hook kernel level data structures during runtime.

Preventing Kernel tampering. Recent stealthy malwares attempt to access kernel level

information and code to carry out its illicit activities on the victim computer. PAM must

ensure the trustworthiness of kernel level data and code by restricting the behavior of each

and every suspicious process. This access restriction helps to limit or completely control

the range of malicious activities.

Tamper Resistent. PAM must function acceptably even when the malicious executable

runs on the target computer and not offer any chance to the malware to subvert the preset

protection mechanism.

Low performance overhead. The additional functionalities to be incorporated into kernel

must guarantee the performance of the entire system.

Combat against recent stealthy malware attacks. PAM must detect and prevent unknown

malware attacks and advanced stealthy malware that target misusing kernel level

resources.

Target Malware

PAM monitors system wide process manipulation in user mode to discover and

prevent foot prints of malicious executables. However the primary goal of PAM is to

protect kernel data structure and the malware that attempt to hook system services at

runtime.

113

PAM Memory Protection

 PAM disables write operation on user-mode helper components and the kernel.

 When a malware attempts to alter a kernel protected memory area, the processor

identified the access breach and raises a page fault.

 PAM checks whether the address of the raised page fault is protected.

 PAM raises an alert and shuts down the computer, if it identified any access

breaches that are associated with its components.

6.1.1 Assumptions

An attacker’s target system is defined as a computer which permits malicious code

exploiting vulnerable processes. The intention of malicious software is causing damage to

the victim computer by invoking system services using either user-mode or kernel-mode

API functions. It is assumed that the attacker cracks PAM if it holds any one of the

following properties.

 Malicious code cannot call any system service using user-mode native API

invocation. If so, it will be caught by the CoPDA Algorithm.

 Malicious code cannot be allowed to read or write the memory from user-mode

stack.

 The malicious code will not be permitted to scan the code part of the legitimate

executable. Otherwise, the OS triggers general protection error message.

 Malicious code is prohibited to amend read-only pages in memory. Violation of

this property must call a native API which is disallowed.

 Malicious code cannot exchange their process ID and thread ID. Also, the shared

memory concept of modern OS disallows to search other process’s memory area.

In addition, it is assumed that the defender does not have any clue about the type of

resource an attack may utilize to achieve its ultimate goal.

6.1.2 Security Models

(i) The design goals of PAM – The goal towards PAM design is to guarantee that the

kernel of the OS appropriately authenticates each system service call to be raised by the

application during runtime and malicious code cannot pretend to be legitimate process.

114

PAM design trusted elements are the Process Identifier (PID), the kernel credential

information, the kernel loadable code, and the kernel’s protected area of memory. It is

assumed that the kernel of the OS does not include any malicious code, as it is hard to

design any protected computer without this. The kernel memory security properties such

as integrity and confidentiality are also preserved.

(ii) Malware Attack Type – Advanced stealthy malware code on the victim computer may

run without user intervention as a user-level process. A remote attacker can inject

malicious code into software and force them to abnormally execute the injected code.

During code injection phase, the malware attempts to perform a certain operations at the

user-space. The injected malicious code creates duplicate processes that are necessary for

execution in the user-space. Then, the malicious code may pretend to be a legitimate

process by spoofing process names. Hence, it is not possible to process names as unique

identifier for differentiating running processes.

There are many different requirements to generate inimitable secret data for

process authentication problem. Some of them are common that can be found in other

credential scheme, whereas few are uncommon and new.

(i) Confidentiality – A secret Process Credential (SPC) s shall not be known to

malicious user-mode processes.

(ii) Originality and reproduction – For each process, only one SPC must be

supplied. The SPC is updated during re-execution of the same process.

Additionally, valid SPC cannot be duplicated.

(iii) Anti-replay Attacks – As the authentication mechanism changes the credential for

 every system call invocation, reclaiming SPC for replay attack will be disallowed.

(iv) Runtime Supervising – Before processing each process request, the

authentication mechanism needs to ensure that if this request has been already

authenticated or not. This can be achieved by querying the information and status

of that process which is stored in the kernel helper processes.

115

6.2 Proposed System Architecture of PAM

PAM authenticates each suspected process system calls, whereas all legitimate

process will get kernel service directly. This actually improves the overall performance of

the PAM. PAM retains kernel issued credentials and knowledge of each suspected process

in the user-mode. This information is queried by the kernel during the authentication phase

to determine whether to allow the system call or not. The PAM acts as a sandbox that can

prevent malware from violating kernel’s predefined security policies. PAM comprises of

four important components, namely, the security monitor, the preservation function, the

Credential Information Generation Function and the runtime authenticator is given in

Figure 6.3.

6.2.1 Security Monitor

The Security Monitor (Mtr) component is responsible for monitoring process

manipulation on a system-wide basis. To prevent the installation and execution of

malicious programs, we control process creation in the user-mode on a system-wide basis

by hooking NtCreateSection() function which cannot be easily bypassed by any process to

launch a new process. Whenever a new process is created in the user-mode, it will be

monitored by the Mtr and is tested by the CoPDA algortihm. Intercepting processes and

verifying each and every incoming system service request during runtime is a tedious and

time consuming task. Therefore, the CoPDA algorithm allows each legitimate system

service call invocation to be serviced as normal and classifying the remaining as

suspicious. This is achieved by comparing the currently running processes and services

against the same information obtained kernel level.

 After loading and initialization necessary information, the Mtr suspends the

main thread of each suspected process. Next, the Mtr hooks each suspected process by

inserting guidehook.dll into it by allocating necessary space using VirtualAllocEx

function. Finally, the Mtr initialize the hooked dll by calling CreateRemoteThread and

resume the suspended thread. Therefore, whenever the hooked is called, execution

transfers to our detoured code, which is indirectly get executed, and after completion, the

control is transferred back to allow the original function routine for completion.

116

F
ig

u
re

 6
.3

 O
ve

ra
ll

 f
lo

w
 s

tr
uc

tu
re

 o
f

P
A

M

117

Operations of guidehook.dll. First, the memory is scanned to find the address of

ntdll.dll which contains stubs of kernel API functions. In Windows, the ntdll.dll is the first

module to be loaded, i.e., the first LDR_MODULE entry in

InInitializationOrderModuleList. Since, the register EAX = PEB → Ldr.

InInitializationOrderModuleList.FLink, then [EAX+0] ← List entry’s FLink and [EAX+4]

← List entry’s BLink. As a result, the base address value of ntdll.dll at [EAX+8] is

obtained. Then, the ntdll.dll is hooked by inserting, the Preservation Function and

Credential Information Generation Function into it by using WriteProcessMemory

function. Then, the entry point of each native APIs is located by inspecting ntdll.dll and

replaces sysenter command by jump preservation function.

Therefore, the detoured code will be executed first whenever a suspected process

requests a system service. Finally, a read-only page is created in the memory by setting

PAGE_READONLY protection flag of VirtualProtect function where the address of a

process authentication function is stored at M. The description of notations and complex

words is given in Table 6.1.

Table 6.1 Description of notations and complex words

Notation / word Description

Mtr Security Monitor

VirtualProtect It changes the access protection of a process

VirtualAllocEx This function initializes and allocates necessary memory

WriteProcessMemory
This function is used to write data to an area of memory in
a specified process

LDR
It is a pointer to a PEB_LDR_DATA structure which
actually contains information about the modules to be
loaded for the process

EAX Register

ESP Stack pointer register

FLink & Blink Forward Link and Backward Link

PEB Process Environment Block

In addition, the diagrammatic representation of the security monitor and

guidehook.dll is depicted in Figure 6.4 and Figure 6.5 repectively.

118

 Figure 6.4 Diagrammatic representation of Security Monitor

Figure 6.5 Diagrammatic representation of guidehook.dll

119

6.2.2 Preservation Function

The Preservation Function (PF) is one of the kernel helper processes which reside

in the user-mode. To avoid data integrity problems while processing PF and Credential

Information Generation Function, it is necessary to make a copy of their register values in

advance. All these values are kept in the stack which will be restored later when the

Credential Information Generation Function task is over. The EIP instruction pointer value

is restored when the Runtime Authenticator queries the Credential Information Generation

Function. To allow the Credential Information Generation Function to perform correctly,

we backup the stack pointer ESP at memory address, E. If any malicious

process/application tries to bypass this phase, it will fail to succeed in the authentication

stage.

6.2.3 Kernel Level Runtime Authenticator

The Runtime Authenticator (RA) is the kernel-mode component which is the heart

of our design. Its goal is to authenticate each suspected process at the kernel mode during

runtime before being serviced. When a system service request enters into the kernel for the

first time, the RA checks the Status list (S) which only maintains processes that have been

successfully authenticated previously. If any request has not been authenticated, the RA

queries the CGF by sending the query (Pid) to retrieve its HMAC value.

In response, the CGF reply with the h value of the corresponding Pid which is

retrieved from CIL. If the returned h value is null or the delay associated with received h

exceeds t value, the authentication check is disallowed. Otherwise, the RA recomputes

h’←hmac(Pid, p.srn) and compares both the values of h and h’. If matches, then the

authentication check is successful. Otherwise p is concluded as malicious. Finally,

information about serviced system call entries are removed from the list S and the same is

reflected in the CIL.

6.2.4 Process Authentication Protocol

The process authentication protocol runs between user-mode and the kernel for

ensuring secure communication. Let p represent a new user process with a unique Pid and

p.srn represent the copy of p’s secret information. We write hmac-req (p.Pid) for sending

p’s secret credential information retrieval request to RA and a secure hash code generation

function, HMAC.

120

1. For each suspected process, p, the CGF performs the following operations:

a. Generates a cryptographically Strong Random Nonce (srn) with a time frame, t and

forwards (p.Pid,p.srn) to RA. The time frame will expire some (short) time

afterward or if no response from p.

b. Computes h←HMAC(p.Pid, p.srn) and stores (p.Pid, h) in CIL.

2. When p enters the kernel for the first time, RA performs the following operations:

a. RA confirms whether p.Pid Є S. If so, it will be serviced by retrieving its Pid and

 dispatch identifier.

b. RA recalculates h’←HMAC(p.Pid, p.srn).

c. RA queries the CGF with p.Pid to send its h value. If there is such value is found in

the CIL, then p is reported as malicious.

d. If a delay in receiving the HMAC exceeds t, then the authentication request will

not be processed.

e. RA compares h with h’. If matches, the authentication request succeeds. Otherwise,

p is reported as malicious.

3. When p completes, all its corresponding entries in both S and CIL are about to be

 deleted.

The constraint of a process of an application in order for authentication protocol to

succeed, it requires the knowledge of the kernel generated credential. For example, if a

process which belongs to the Internet Explorer browser claims to be legitimate, then it

must succeed the authentication phase by supplying kernel generated credentials. The

process identifier which is used for generating credentials is maintained by the kernel and

assumed to be unforgeable and trustworthy.

6.3 Experimental Results and Discussions

 The effectiveness and performance of PAM is evaluated in using a dataset consists

of 350 malware samples [129-130] [142-143] has been obtained based on its attacking

techniques employed and execution environment. In addition, 50 benign samples are also

obtained from two reputed websites [144]. The computation of performance overhead, true

positives, and false positives of PAM are determined through conducting two test cases

namely, test case 1 and test case 2. Test case 1 is conducted on a single workstation with a

dataset consists of 50 malwares and Test case 2 is conducted on a client-server model

using a dataset consists of 300 malware samples.

121

Test case 1:

 The experiment is conducted on a computer with 2.8 GHz Intel Pentium 4

processor, 4 GB of memory and running Windows 7 OS and performed a series of tests on

Windows XP OS. This is because WOW64 intercepts all OS system calls made by a 32-bit

application. There are two important reasons for the selection of Windows operating

system for evaluating the proposed PAM. First, Windows is the most popularly used OS

and malware creators ensure that their creations will work in all types of OS from

Windows XP to mobile OS. Secondly, system calls and API functions of x32 bit

applications will work on x64 bit OS without requiring additional settings. The Microsoft

Windows Driver Development Kit [145] was used for implementing the kernel driver

module of PAM.

 In order to evaluate the efficiency of PAM, a standard micro benchmark namely,

KeQueryPerformanceCounter is used on a work station to determine the additional time to

be taken for executing the proposed PAM. The benchmark function returns the number of

ticks per second (ts) i.e. additional time taken for executing PAM, using

PerformanceFrequency function. The symbols used in test case 1 are given in Table 6.2.

Table 6.2 Description of Symbols

Symbol Description

ts Number of ticks per second

T1
First invocation time at which the
KeQueryPerformanceCounter function is called.

T2
Second invocation time at which the
KeQueryPerformanceCounter function is called.

Ti
i th invocation time at which the KeQueryPerformanceCounter
function is called.

T T2-T1

 T Overhead caused by KeQueryPerformanceCounter function׀

 Tnapi Overhead accounted by new native API׀

Tnapi Execution time of a native API

t Clock counter of KeQueryPerformanceCounter

122

 Let Ti is the ratio of the clock ticks counter per second (ti) to the

PerformanceFrequency and T represents the difference in execution time between the

first invocation (T1) and second invocation (T2) of KeQueryPerformanceCounter. On the

other hand, ׀T is the overhead incurred by KeQueryPerformanceCounter which is

measured by two consecutive calls of the same function. Similarly, ׀Tnapi is the

overhead caused by new native API which is computed by Equation 6.1.

) = Tnapi׀) - T2, napi׀ T (6.1)׀ - (T1, napi׀

 There are four important legitimate native API functions are considered in which

three of them namely, NtOpenFile, NtCreateFile, NtWriteFile and NtOpenProcess are

critical and other one, NtClose, is non-critical. Each native API is executed separately and

interrupted by the PAM and the same test is repeated 1000 number of times and obtained

its average value. Table 6.3 depicts the statistical result of execution of test case 1. In

order to estimate the impact of the PAM with respect to the core system, the execution

time of the genuine native API (gA) and the overhead caused by the corresponding native

API (oA) intercepted by PAM are computed and averaged.

Table 6.3 Performance overhead of PAM against Benign Samples

API being

examined

Average API execution

time (µsec)
Overhead

gA oA

NtOpenProcess 779 620 0.79

NtOpenFile 5234 1924 0.37

NtCreateFile 2353 2059 0.87

NtWriteFile 6127 5479 0.89

NtClose 658 527 0.80

 The results given in the Table 6.3 shows the overhead caused by four different

native APIs that are intercepted by the proposed PAM. The maximum overhead of 0.89

was caused by NtCreateFile API function and the minimum overhead of 0.37 introduced

when executing NtOpenFile function. This indicates that the overhead incurred by PAM

before malware set has been executed on the workstations is 0.52 which is acceptable in

real time.

123

 Also, PAM has identified all the legitimate applications correctly and thus

produces 0 false positives. Table 6.4 depicts the averaged value additional scores taken by

the proposed PAM against different malware samples.

Table 6.4 Benchmark Scores against Malware Samples – test case 1

Malware
samples

Generic
PAM

Enabled

1 – 10 1315 1347

11 – 20 1285 1315

21 – 30 1341 1356

31 – 40 1311.7 1322.7

1 – 50 1298 1327

Average 6550.7 6667.7

 In addition, assessing the efficiency of PAM is required to determine its impact on

the overall system performance and the overhead caused by PAM. The measurement of

PAM’s performance is measured using PCMark8 benchmark tool [147]. All tests were

conducted without user intervention except for executing the benchmark. The benchmark

results have taken an average of 10 iterations. PAM is tested by loading all its

components. PCMark8 is operated by simultaneously performing various different system

level operations such as I/O operations, process creation and system call invocations. The

benchmark provides the overall performance of the system relative to overall score.

 The Table 6.4 also shows that when evaluating PAM on a single work station (with

50 malware samples) incurred smaller overhead (117 Scores). While performing I/O

operations and system call operations in parallel, PAM incurred total score of 227 and 229

respectively. Figure 6.6 reports the false positives achieved by all kernel level anti-

malware detection tools against malware samples and benign samples taken for test case1.

Out of 4 tools, PAM closely shows superior results than all existing anti-malware

detection tools with no FPR. Actually, producing no false positive tuned the performance

of the PAM.

124

Figure 6.6 False Positive comparison (Test case1) with existing anti-malware detection
tools

Test case 2:

 The performance overhead incurred by PAM is computed by measuring the CPU

cycles to be taken for executing additional tasks such as intercepting each system call, API

function and authenticating their originality. To evaluate the additional overhead caused

by PAM, a client-server test bed that runs with 2.8 GHz Intel Pentium 4, 4 GB RAM and

running both Windows XP professional OS with SP3 as well as Windows 7 is arranged.

To validate the experimental results and confirm the adaptability of PAM in real time, a

client-server model as a test-bed has been setup as test case 2.

 The noteworthy servers such as an FTP server, and IIS server, and an IRC chat

server include all malicious samples. Another server runs the only web server in full trust

mode which only holds benign samples to examine trusted communications. The end

computer installed with Windows XP OS run different client programs such as FTP client

applications, email application such as Thunderbird, IRC clients, web browsers such as IE

and Firefox, newsgroups and eMule which are attractive targets of malware attacks.

Certain protocols such as FTP, ICMP, IRC, SMTP and eMule are defined as dangerous.

Then, few malicious samples are purposefully introduced into the host and carried out

different actions between the client and server. With this setup, the effectiveness of PAM

can be carefully evaluated with and without considering it.

125

 It is also confirmed whether the malicious samples are executed on the host

machine using the log files generated by the tools with and without setting security

protection. The same is manually verified in the log files of process, files and registry

entries. Except the file-copy operation, the behavior of few native API functions can be

monitored only by intercepting one system call, for example, NtCreateFile(), and

NtOpenFile(), etc. However, behaviors like code-injection into other processes consist of

invocation of multiple system calls such as OpenProcess(), VirtualAllocEx(),

WriteProcessMemory(), CreateRemoteThread(), etc. Therefore, it is planned to intercept

the first system call itself to prevent the execution of subsequent calls which would

disallow other subsequent calls. The outcome is confirmed using three popular anti-rootkit

detection techniques: GMER [136], IceSword [132], and Redline [146]. All these tools are

capable of detecting rootkit malware samples that target SSDT hook attacks.

 Each security tool is tested against all of the samples. For each kind of samples, the

total number of false positives and false negatives are computed after launching PAM. A

false positive is noted when a security tool incorrectly identifies a benign activity as

malicious. Figure 6.7 shows the False Positive Rate (FPR) obtained by testing all the four

malicious code detection tools including PAM.

Figure 6.7 False Positive comparison (Test case 2) with existing

anti-malware detection tools

GMER (FPR=24%)

IceSword (FPR=24%)

Redline (FPR=32%)

PAM (FPR=4%)

126

 Both GMER and IceSword anti-malware security tools incurred FPR about 24%,

but in case of Redline it was 32%, whereas PAM had FPR of 4%. When the PAM is re-

started againg, it identified all malware correctly, thus causes 0 % FPR. On the other hand,

the False Negative Rate (FNR) of GMER and IceSword was 20% and 15% respectively.

As Redline’s detection capability of SSDT hook attacks depends on the type of API

function to be hooked, it achieved FNR by 65%. However, the FNR of PAM was almost

zero. As a conclusion of this test, the PAM can effectively block any type of malware that

targets system call hooks. But none of the existing anti-malware security tools tested dealt

kernel level authentication mechanism to verify the originality of a system call invocation.

For all test cases, every system call and API function are invoked 100 times and their

averaged CPU cycles are given in Table 6.5 With PAM enabled, the malicious executable

incurred 1.3-38.1% performance overhead than native functions, while the benign

executable incurred only 0-1.9%.

Table 6.5 Measurement of performance overhead (CPU Cycles)
(The columns PAM-b and PAM-m illustrate the CPU cycles acquired by the benign

programs and malware programs).

Function Native PAM-b PAM-m

NtOpenFile 167703 169721 (1.2%) 169823 (1.3%)

NtWriteFile 245201 249993 (1.9%) 338546 (38.1%)

NtCreateFile 334568 338579 (1.2%) 348579 (4.2%)

NtCreateProcess 206556 208945 (1.1%) 215326 (4.2%)

OpenService 6568202 6568423 (<0.1%) 6679899 (1.7%)

 The result of intercepting NtWriteFile() function produced the highest performance

overhead of 38.1% as an outcome of capturing file-copy operation. As each system is

designed to enforce different policies, it is hard to compare the overhead of authenticated

system call with other system call monitor. The generic performance overhead impact is

2% PAM as a result of intercepting the system call and API function to verify their

originality which is well below of other systems and also acceptable. Table 6.6 gives a

comparison of performance overhead PAM in terms of relative scores measured by

PCMark benchmark against malicious code detection and prevention using the

combination of user-mode information and kernel-mode information.

127

 The performance overhead of PAM is increased by 96 scores in total (almost 1%

increase compare to test case 1) when a client-server model with a largest dataset is used.

This is because of attempting to run PAM by executing multiple legitimate applications,

malwares samples, I/O operations and system call operations simultaneously. However,

such overhead is acceptable and does not affect the overall system performance but

ensures total security against malicious code attacks.

Table 6.6 Benchmark scores against Malware samples – test case 2

Malware
samples

Generic

PAM
Enabled

1 – 60 1442 1483

61 – 120 1401 1443

121 – 180 1399 1438

181 – 240 1438.5 1484.5

241 – 300 1421.6 1466.6

Average 7102.1 7315.1

6.4 Verification by Mathematical Model

Hypothesis Test. A statistical verification has been conducted to check whether there is a

significant deviation in the performance of the kernel/system before and after enabling the

PAM. To achieve this, two null and alternative hypothesis are defined as follows.

H0: Statistically, there is no significant difference in the kernel performance after enabling

PAM.

H1: Statistically, there is some association between before and after enabling PAM.

 The given data in Table 6.7 has shown the CPU cycles as obtained from the two

test cases. Hence the CPU cycles in the two tests can be regarded as correlated and

therefore, the t-test for paired values was opting to confirm the performance deviation

between these two cases. Let d = x1– x2 and
_

d = Σd / n, where x1 and x2 denote the CPU

cycles in the two tests and n is the number of functions tested.

128

Table 6.7 t-test computation

 Function
PAM-b PAM-m

d d2 d d2

NtOpenFile 2018 4072324 2120 4494400

NtWriteFile 4792 22963264 93345 8713289025

NtCreateFile 4011 16088121 14011 196308121

NtCreateProcess 2389 5707321 8770 76912900

OpenService 221 48841 111697 12476219809

 Σd=13431 Σd2=180391761 Σd=229943 Σd2=21467224255

 tcal = 0.912871 tcal = 1.970616

where


d represents the mean of the difference and S Applying t-test,

represents the standard deviation of the difference. From t-table, for γ=n-1=4 degrees of

freedom, t0.05=2.776. In both cases, i.e., PAM-b and PAM-m, tcal < t0.05, hypothesis H0

has been accepted and it is concluded that there is no significant change in the

kernel/system performance after enabling PAM framework.

Security Assurance

The strength of security protection guaranteed by PAM is verified by analyzing the

confidentiality of the credentials used on authentication stage and the integrity of PAM

components. Without using a strong pseudorandom number generator for generating secret

credentials, forging the existing credentials is impossible. Also, a malicious process’s

arbitrary code that might try to replace PAM generated credentials. It cannot successfully

bypass the authentication stage. This is because the arbitrary code which is not generated

by PAM does not appear in the record. To prevent another application, revealing the secret

information generated to perform a challenge-response attack to be launched by a

malware, PAM restricts read access. A malware may attempt to steal secret information

from PAM components or application’s memory at runtime. This issue is resolved by

using the typical process memory segregation feature offered in the OS itself. PAM

ensures confidentiality by disallowing the other applications that have direct access to the

secret credentials except PF and CGF which are kernel helper processes.

S

nd
t





129

PAM components span both the user-space and the kernel- space. The Runtime

Authenticator resides in the kernel. As we trust the integrity of kernel resources, this

component is trustworthy. However, the integrity of user-space components, the PF and

the process CGF need to be confirmed which may be the ideal targets of malware spoofing

and tampering. Only the kernel of the OS can access or modify the code segment of these

components.

(i) Forge – When the malicious code directly requests the kernel service, the authenticator

which resides in the kernel checks if it has already authenticated. For a given unique

process identifier which can never be forged to call a system service, the authenticator will

immediately asks the requests to reach the process validation function

(ii) Password Guess – The malicious code cannot bypass the process validation function.

The malicious code can evade the authentication check function, if and only if, it

successfully retrieve or guess the secret credential information. Recall that the secret

information is 23 or 55 bits in length and assigned randomly for a suspicious process at

load time which is very hard to retrieve.

As the value of this is hard-coded into the preservation function which is a kernel

helper process, learning it by scanning the code segment is not permitted. When a

legitimate process invokes a system service call, the secret information will be unavailable

in the stack and removed after successful check. However, malicious code cannot intercept

this request to learn the value of secret information. The process validation function

resides in the read-only page of the code segment. Only the kernel helper process

(i.e., process with highest privilege) can only access or modify the code segment of the

authentication function.

Compatibility and Usability

The good compatibility of PAM is ensured by achieving a significant reduction of

the false positives. PAM directly prevents malicious code attacks rather than detecting

illegitimate information flooding that may result in a false positive. Additionally, we

formulate different exception rules to prevent producing a large number of false positive

results. This actually helps to reduce the net FPR of PAM. Software usability mainly

concerns with the assessment of effectiveness and efficiency with which end-users can

perform tasks with a software tool.

130

Assessing usability now becomes an important element in the software

development process. As PAM does not include any configuration settings, it

automatically detects and prevents the potential malicious code API hook attacks.

Chance of Successful attack

PAM is capable of classifying interpreted software applications functioning as a

stand-alone process. However, PAM cannot reveal the malicious code that is already

injected into the authenticated process and runs as a stand-alone process. The strength of

PAM lies on accuracy of classification precision. The trustworthy classification of an

application is a challenging and difficult task, and it inexactness may permit a malware to

acquire the secret credentials of a legitimate process. In order to improve the detection

capability of PAM, many advanced static and dynamic monitoring and analyzing

techniques need to be combined. Figure 6.8 shows that PAM outperforms than existing

approaches proposed by Sun et al., Hau et al., and Salehi et al. in all aspects with improves

security level with 100 % detection rate.

Figure 6.8 Overall Detection Rate comparison of PAM

6.5 Overall Comparison of existing Approaches and PAM

 The notable strength of PAM is that it will directly prevent the malicious code

hook attacks rather than locating them that many results in a false positive. There are

various existing works have been proposed in the past by researchers to strengthen the

131

security of the kernel, but only few of them dealt kernel level authentication to prevent

malicious code attacks such as hooking kernel level data structures.

 Figure 6.9 depicts the overhead incurred by existing approaches while detecting

and preventing malicious code attacks at the kernel-mode including PAM. Almost all

existing approaches implemented for preventing malicious code attacks with the

combination of user-mode and kernel-mode information, but did not apply kernel level

process authentication mechanism. A few existing approaches obtained low performance

overhead using either real-time dataset or own dataset except the approach proposed by

Sun et al. with 36.7 % of overhead. This is because the proposed method by Sun et al. has

only tested legitimate API functions which involved few important additional function

calls. However, the proposed PAM mechanism outperforms than other existing

approaches listed in the literature with 2% runtime overhead and has the potential to be

customized or used in real-time. The PAM mechanism outperforms than the existing

mechanisms in all aspects and has the potential to be combined real-time malware defense

to provide stronger security for preventing different kind of malicious code attacks.

Figure 6.9 Overall runtime Overhead comparison of PAM

(Computed using additional time taken)

The performance overhead, false positives and sample set for test analysis of

existing techniques for the prevention of malicious code attacks that target kernel level

hooking attacks are compared and tabulated is shown in the Table 6.8.

132

Table 6.8 Comparison of existing malware detection and prevention Approaches with proposed PAM for Windows

Sl.No.
Existing
Solution

Kernel
Recompilation

Features

Protection
of User-

mode

Resist
hidden
process
attacks

Resist
Malicious

code attacks

Supply of
Incorrect

ID

Runtime
Overhead

Security
Level

Detection
Level

1
Rajagopalan
et al. [19]

Policy based
Detection

NO Neglected YES
Policy
Based

7.92% Minimal
Kernel-

Level(Linux)

2
Nguyen et al.
[126]

NO NO NO YES
System
Crash

9% LOW Kernel-Level

3 Yin et al. [114] NO Neglected Neglected NO NO 0 % Minimal Kernel-Level

4 Sun et al. [125] NO Neglected Neglected NO NO 36.70% Minimal Kernel-level

5 Hsu et al. [123] NO Neglected NO YES NO LOW Minimal Kernel-Level

6
Salehi et al.
[127]

NO NO NO YES NO (FP) 3% Minimal OS-Level

7 Proposed PAM NO YES YES YES NO 2% HIGH
User &

Kernel-Level

133

6.8 Summary

Kernel level authentication has been effectively applied to identify and prevent

malicious executable before the cause damage to the end-system. The PAM, a kernel level

process authentication mechanism has been developed and implemented with an objective

to detect and prevent unauthorized access through processes of a malicious application to a

greater extent. PAM is a security enhancement mechanism that incorporates an algorithm

for discovering hidden processes and services has been developed and implemented to

authenticate all suspicious system calls made by the processes during runtime before

getting services form the kernel of the OS.

To evaluate the performance overhead and suitability of the PAM, several

experiments have been conducted on Windows to study the effectiveness of the PAM in

terms of detection rate and performance overhead. According to simulation experimental

results PAM outperforms the existing approaches proposed by Sun et al., Hau et al., and

Salehi et al. with negligible performance overhead (2%) and 100 % detection rate. The

PAM mechanism gives considerable security improvement over the approached proposed

by Sun et al., Hau et al., and surpasses the security mechanism proposed by Salehi et al.

134

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This chapter concludes the dissertation with a brief discussion on the merits of the

developed algorithms and techniques developed for malicious code detection and

prevention. It also reveals a few open problems in the focused area of research.

7.1 Conclusions

The most ominous form of cyber attack is imperceptible. Such attacks may become

a targeted attack that mainly utilizes some sophisticated stealthy techniques, such as

defeating the OS, evading AV software, etc., Poor system configurations and security

policies may act as entry-point and permit a remote attacker to easily bypass the

predefined system security policies and execution of different attacks against vulnerable

workstations and servers. More advanced attacks on a large private network is only

possible with the existence of susceptible intermediate workstations in the network.

Remote attacker makes network malware analysis more difficult by encrypted packets and

end-to-end encryption. Therefore, another suitable place to detect and prevent malicious

code attacks is the end-system.

A stealthy attacking technique works silently, evading the footprints of an

attacker’s events. By masking evidence of the operations, the criminal had enough time to

perform any kind illegal activities. In order to stay ahead of the traditional security

measures and tools, many cyber criminals apply ingenuity in stealth plans. Because

Windows is the one of the most popular and widely used operating system in the

information communication environment for personal computers, it becomes most attract

target for malware writers. It is possible for a remote attacker to control a large network

even by compromising a server or workstation. Tampering the kernel of the operating

system would question the trustworthiness of the underlying computing environment.

Therefore, Kernel integrity is more important to ensure a secure computing environment.

For years, security experts have urged the requirement of extra layer of security measures

across workstations and networks.

135

Though many approaches have been suggested to detect and analyze malicious

code attacks, still they suffer the adaptation of ineffective approaches. In addition,

literature survey reveals that system call monitoring using policy based technique are not

sufficient to ensure trustworthiness of the computing environment by detecting and

preventing malicious code attacks. Alternatively, the process authorization mechanisms

can also an alternate mechanism but not sufficient to handle stealthy malicious code

attacks. In this research, graph-based malware detection approach, detection of malicious-

code attacks at User-mode, hidden processes and services detection algorithm, and kernel

level process authentication mechanisms have been proposed. The developed approaches

and algorithms were evaluated by conducting simulation experiments using different

datasets.

(i) A graph based static approach namely, GraMD has been developed for detecting

malware attacks. The graph-based approach classified malware attacks based on

monitoring and capturing the execution of system calls while interacting with the

kernel of the operating system. Two novel graph-based algorithms namely, ACA

and GMA have also been developed and incorporated into GraMD for API call

graph generation and comparing two graphs respectively. The proposed GraMD

approach each system call as a call graph using ACA algorithm. Then, the

generated call graph is compared against approach graphs using GMA algorithm

by determining the similarity value through means of graph isomorphism.

The experimental results show that GraMD outperforms the existing

approached proposed by Park et al., Zhao et al., and Elhadi et al. with 97.68-100

percent detection rate and 3.40-6 percent false positive rate. It is also verified

mathematically that the GraMD utilizes only minimum number of API function

calls using game theoretic approach and thus GraMD takes less time with reduced

space requirement compare to existing graph based malware detection approaches.

However, with an increasing amount of malware adopting rootkit techniques to

evade AV, further research into defenses against malicious code attacks is

absolutely essential.

(ii) A dynamic based user-mode malicious code detection and prevention approach

namely, UMDetect has been proposed. The proposed UMDetect traced and prevent

user-mode malware with native API hook functionality in Windows.

136

UMdetect make use a novel DLL classification algorithm namely, DCA

algorithm which has been proposed and implemented to determine whether the

exported / imported DLL file is malicious or legitimate. Experimental results

indicate that the UMDetect outperforms than existing anti-malware detection tools

such as BlackLight, IceSword, VICE, and R3 Hook Scanner with 100 percent

detection rate and negligible performance overhead. In addition, the overhead of

UMDetect (1300 CPU cycles for completion) is also compared with the methods

proposed by Deng et al., Abonghadareh et al., and Yoghi et al. Because, the DCA

used only countable API function for completion, the runtime complexity of DCA

is very negligible. In order to optimize the proposed UMDetect approach, a new

algorithm for detecting hidden entries of a malicious application has been proposed

which is explained next.

(iii) The problem of discovering hidden footprints of a malicious executable in

Windows has also been explored in this thesis work. Because, advanced malware

authors have taking the advantage of rootkit technique to evade the footprints of

their malicious code, detecting them is a challenging and can also be used for

optimizing performance overhead of a malware detection approach. A cross-view

based hidden processes and services detection algorithm namely, CoPDA has been

proposed. At runtime, the CoPDA algorithm discovers all hidden entries in

Windows and validates whether they are legitimate or suspicious.

Experimental results indicate that the CoPDA algorithm outperforms than

existing anti-rootkit detection tools such as Hellioslite, GMER, HiddenFinder,

IceSword, BlackLight, and Rootkit Unhooker with 100 percent accuracy rate and

1.82 percent of false positives. In addition, the performance overhead of CoPDA

algorithm has also been compared against existing techniques cross-view based

hidden process detection approaches proposed by Desheng et al., Xie et al., and

Richer et al. The CoPDA algorithm caused a tiny overhead of 0.6 percent (10.762

seconds taken for completion).

(iv) This thesis finally proposed a kernel level process authentication mechanism

namely, PAM to validate the originality of all suspicious processes of a malicious

executable during runtime.

137

PAM enhanced the security strength of the computing environment by the

combination of user-mode information through CoPDA algorithm for discovering

suspicious processes and services of a malicious executable and kernel mode

information by authenticating all identified suspicious processes and services

during run time. The proposed mechanism is an extension of process

authentication mechanism by incorporating strong security check. The impact of

how process authentication mechanism can effectively isolate and disallow

malicious processes from getting system services and preventing system resources

against malicious code attacks are also discussed. PAM ensure only authenticated

service request being serviced by the kernel, it blocks all malicious processes and

thwart subsequent attacks.

The effectiveness of PAM is evaluated using different datasets,

benchmarks, and test-beds. Experimental results show that PAM surpasses existing

anti-rootkit detection tools such as GMER, IceSword, and Redline with zero

percent false positives. The low overhead of 1 percent when evaluating PAM on a

single computer (with smaller number of malware and legitimate samples), is

because of the testbed with single computer and the variability present in malware

samples. But the overhead increased to 2 percent when a client-server scenario

with various malware samples is used. The proposed PAM outperformance than

the existing approaches proposed by Sun et al., Hsu et al., and Salehi et al. with

the generic overhead of 1-2 percent and does not significantly affect the overall

system performance. Mathematical verification can also be done to verify the

same. The authentication mechanism of PAM is portable and can be integrated

with other static or dynamic behavior based system call monitoring tools with

customization.

The essence of this research work lies in better detection and prevention of

unauthorized process of a malicious executable through authenticating its originality

during runtime which would significantly contribute to the better enhancement of this

research work.

138

7.2 Future Research Directions

 In this research, an attempt is made to provide solutions for detecting and

preventing malicious code attacks by developing and implementing a kernel level process

authentication mechanism. The various algorithms and techniques developed in this thesis

can be further extended in the following sections.

(i) The algorithms developed for graph-based malware detection approach applied

modified graph-edit distance isomorphism algorithm for comparing two graphs.

Because, graph matching algorithms plays a vital role in malware detection

process, GMA algorithm can be extended to optimize its complexity further to

some extent.

(ii) The algorithm developed for finding hidden suspicious entries can be extended

to use authentication mechanism to overcome the limitations of misusing

undocumented specifically, kernel level API functions.

(iii) As cyber criminals will make sure that their malicious software creations work

equally on Windows XP to Android OS, porting PAM to Android OS for

mobile devices to provide strong authentication to applications is very essential.

This will be considered as future work.

139

REFERENCES

[1] MacAfee Lab 2016 threat Report. Available at

http://www.mcafee.com/in/resources/reports/rp-quarterly-threats-mar-

2016.pdf

[2] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya

Debray, ”A semantics based approach to malware detection”, ACM

Transactions on Programming Languages and Systems (TOPLAS),

vol. 30, no. 5, Article 25, 2008.

[3] Yanfang, “IMDS: Intelligent malware detection system”, Proceeding of

the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 1043-1047, 2007.

[4] Jeremy Z. Kolter and Marcus A. Maloof, “Learning to detect malicious

executables in the wild”, Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining,

pp. 470–478, 2004.

[5] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and

Steven Hand, “Practical taint-based protection using demand

emulation”, Proceedings of the EuroSys conference, April 2006.

[6] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin

Kirda, “Panorama: Capturing system-wide information flow for malware

detection and analysis”, Proceedings of the 14th ACM conference on

Computer and communications security (CCS ’07), pp. 116-127,

October 2007.

[7] M. Bernaschi, E. Gabrielli, and L. Mancini, ”Operating System

Enhancements to prevent the Misuse of System Calls”, Proceedings of

the ACM Conference on Computer and Communication Security

(CCS’00), pp. 174-183, 2000.

140

[8] K.Jain and R.Sekar,”User-level Infrastructure for System Call

Interposition: A Platform for Intrusion Detection and Confinement”

Proceedings of the Network and Distributed Systems Security

Symposium, pp. 19-34, February 2000.

[9] T.Garfinkel, “Traps and pitfalls: Practical Problems in System Call

Interposition Based Security Tools”, Proceedings of the Network and

Distributed Systems Security Symposium, February 2003.

[10] C.Kruegel, D.Mutz, F.Valeur, and G.Vigna, ”On the Detection of

Autonomous System Call Arguments”, Proceedings of the Eighth

European Symposium Research in Computer Security (ESORICS ’03),

pp. 326-343, 2003.

[11] N.Provos, ”Implementing Host Security with System Call Policies”,

Proceedings of the 12th USENIX Security Symposium, pp. 257-272,

August 2003.

[12] R.Sekar, V.Venkatakrishnan, S.Basu, S.Bhatkar, and D.Duvarney,

”Model-Carrying Code: A Practical Approach for Safe Execution of

Untrusted Applications”, Proceedings of the nineteenth ACM symposium

on Operating systems principles (SOSP ’03), pp. 15-28, 2003.

[13] T.Garfinkel, B.Pfaff, and M.Rosenblum, ”Ostia: A Delegating

Architecture for Secure System Call Interposition”, Proceedings of the

Network and Distributed Systems Security Symposium, February 2004.

[14] P.Loscocco and S.Smalley, “Integrating Flexible Support for Security

policies into the Linux Operating System”, Proceedings of the USENIX

Annual Technical Conference, pp. 29-42, 2011.

[15] grsecurity. [Online] Avaiable : http://www.grsecurity.net/

[16] Saeed Parsa and Somaye Arabi Naree, “A New Semantic Kernel

Function for Online Anomaly Detection of Software”, ETRI Journal,

vol. 34, no. 2, pp. 288-291, April 2012.

141

[17] Nguyen Anh Quynh and Yoshiyasu Takefuji, ”Towards a tamper-

resistant kernel rootkit detector”, Proceedings of the ACM symposium on

Applied computing (SAC ’07), pp. 276–283, March 2007.

[18] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An

architecture for secure active monitoring using virtualization”,

Proceedings of the IEEE symposium on Security and Privacy (SP ’08),

pp. 233–247, May 2008.

[19] Mohan Rajagopalan, Matti A. Hiltunen, Trevor Jim, and Richard D.

Schlichting, “System Call Monitoring Using Authenticated System

Calls”, IEEE Transactions on Dependable and Secure Computing,

vol. 3, no. 3, pp. 216–229, July-September 2006.

[20] Battistoni, R., E. Gabrielli and L.V. Mancini, “A host intrusion

prevention system for Windows operating systems”, Proceeding of 9th

European Symposium on Research in Computer Security

(ESORICS ’04), pp. 352-368, 2004.

[21] Flavio Lombardi and Roberto Di Pietro., ”KVMSec: A security

extension for linux kernel virtual machines”, Proceedings of the ACM

symposium on Applied Computing, pp. 2029-2034, 2009.

[22] Nguyen Anh Quynh and Yoshiyasu Takefuji., ”Towards a tamper-

resistant kernel rootkit detector”, Proceedings of the ACM symposium on

Applied computing, pp. 276-283, March 2007.

[23] Koichi Onoue, Yoshihiro Oyama, and Akinori Yonezawa., ”Control of

system calls from outside of virtual machines”, Proceedings of the ACM

Symposium on Applied Computing, pp. 2116–2121, 2008.

[24] Trusted Computing Group, TCG Specification Architecture Overview,

2004.

142

[25] Symantec Advanced Threat Research. Technical Report, Security

implications of Microsoft Windows Vista, [Online] Available:

www.symantec.com/avcenter/reference/Security_Implications_

of_Windows_Vista.pdf, February 2007.

[26] J. Rutkowska. Subverting vista kernel for fun and profit, August 2006.

[27] Skywing. Bypassing patch guard on windows x64. Technical Report.

Available: http://www.uninformed.org/?v=3&a=3&t=sumry, December

2005.

[28] Fabrice Bellard. Qemu, ”A Fast and Portable Dynamic Translator”,

Proceedings of the 2005 USENIX Annual Technical Conference

(ATEC ’05), pp. 41-41, 2005.

[29] Keith Adams and Ole Agesen, “A comparison of software and hardware

techniques for x86 virtualization”, Proceedings of the 12th International

conference on Architectural support for programming languages and

operating systems, pp. 2-13, November 2006.

[30] K.Xu, H.Xiong, D.Stenfan, C.Wu, and D.Yao, ”Data-Provenance

verification for secure hosts”, IEEE Transaction on Dependable and

Secure Computing, vol. 9. no. 2, pp. 173-183, March-April 2012.

[31] W.Dai, T.P.Parker, H.Jin, and S,Xu, ”Enhancing data trustworthiness

via assured digital signing”, IEEE Transaction on Dependable and

Secure Computing, vol. 9, no. 6, pp. 838-851, 2012.

[32] Morris Worm Shut down ten percent of the Internet. [Online] Available:

http://www.atlasobscura.com/articles/

[33] A.K. Sood, R. Bansal, and R.J. Enbody, ”Cybercrime: Dissecting the

state of underground enterprise”, IEEE Internet Computing, vol. 17,

no. 1, pp. 60–68, 2013.

[34] Brett Stone-Gross, Ryan Abman, Richard A Kemmerer, Christopher

Kruegel, Douglas G Steigerwald, and Giovanni Vigna, ”The

Underground Economy of Fake Antivirus Software”, Proceedings of the

Workshop on Economics of Information Security and Privacy III,

pp. 55–78, July 2012.

143

[35] MacAfee labs threats report, Technical report, Intel security, 2015.

[36] G. Hoglund and J. Butler, Rootkits: Subverting the windows kernel,

Addison Wesley, 2006.

[37] Gregoire Jacob, Herve Debar, and Eric Filiol, “Behavioral detection of

malware: from a survey towards an established taxonomy”, Journal in

Computer Virology, vol. 4, pp. 251–266, 2008.

[38] Peter Szor, The Art of Computer Virus Research and Defense, Addison

Wesley Professional, 2005.

[39] A. Patcha and J. M. Park, “An overview of anomaly detection

techniques: Existing solutions and latest technological trends,”

Computer Networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[40] Kuo-Chen Lee, Jason Chang, Ming-Syan Chen, “PAID: packet analysis

for anomaly intrusion detection”, Proceedings of the 12th Pacific-Asia

conference on Advances in knowledge discovery and data mining

(PAKDD'08), pp. 626-633, 2008.

[41] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A

Survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58,

September 2009.

[42] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,

“An Overview of IP Flow-Based Intrusion Detection”, IEEE

Communication Surveys and Tutorials, vol. 12, no. 3, pp. 343–356,

2010.

[43] Jonathan J. Davis, Andrew J. Clark, ”Data preprocessing for anomaly

based network intrusion detection: A review”, Computers and Security,

vol. 30, no. 6-7, pp. 353-375, September 2011.

144

[44] Yingbing Yu, “A survey of anomaly intrusion detection techniques”,

Journal of Computer Science in Colleges, vol. 28, no. 1, pp. 9-17,

October 2012.

[45] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-ChihLin, “Intrusion

detection system: A comprehensive review“, Journal of Network and

Computer Applications, vol. 36, no. 1, pp. 16–24, January 2013.

[46] Bhuyan, M.H., Bhattacharyya, D.K.,Kalita, J.K., ”Network Anomaly

Detection: Methods, Systems and Tools”, IEEE Communications

Surveys & Tutorials, vol. 16, no. 1, pp. 303-336, 2014.

[47] Hanghang Tong, Chongrong Li, Jingrui He, Jiajian Chen, Quang-Anh

Tran, HaixinDuan, Xing Li, ”Anomaly Internet Network Traffic

Detection by Kernel Principle Component Classifier”, Proceedings of

the 2nd International Symposium on Neural Networks, pp. 476-481,

2005.

[48] F.S.Wattenberg, J.I.A.Perz, P.C.Higuera, M.M.Fernandez, and

I.A.Dimitriadis, “Anomaly Detection in Network Traffic Based on

Statistical Inference and alpha-Stable Modeling”, IEEE Transactions on

Dependable and Secure Computing, vol. 8, no. 4, pp. 494-509,

August 2011.

[49] Yuh-Jye Lee, Yi-Ren Yeh, and Yu-Chiang Frank Wang, “Anomaly

Detection via Online Oversampling Principal Component Analysis”,

IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 7,

pp. 1460 – 1470, July 2013.

[50] S.Jianga, X.Songb, H.Wangc, Jian-Jun Hand, Qing-Hua Li, ”A

clustering-based method for unsupervised intrusion detections”, Pattern

Recognition Letters, vol. 27, no. 7, pp. 802-810, May 2006.

[51] Z. Zhuang, Y. Li, and Z. Chen, “Enhancing Intrusion Detection System

with proximity information”, International Journal of Security and

Networks, vol. 5, no. 4, pp. 207–219, December 2010.

145

[52] Jabez.J, B.Muthukumar, “Intrusion Detection System (IDS): Anomaly

Detection using outlier Detection Approach”, Procedia Computer

Science, vol. 48, pp. 338-346, 2015.

[53] G. Liu, Z. Yi, and S. Yang, “A hierarchical intrusion detection model

based on the PCA neural networks,” Neuro computing, vol. 7, no. 7-9,

pp. 1561–1568, 2007.

[54] X.Song, M.Wu, C.Jermaine, and S.Ranka, ”Conditional Anomaly

Detection”, IEEE Transaction on Knowledge and Data Engineering,

vol. 19, pp. 631-645, May 2007.

[55] A.O.Adetunmbi, S.O, Falaki, O.S.Adewale, and B.K.Alese, “Network

Intrusion Detection based on Rough set and k-Nearest Neighbour”,

International Journal of Computing and ICT Research, vol. 2, no. 1,

pp. 60-66, 2008.

[56] M.Y.Su, G.J.Yu, and C.Y.Lin, “A real time network intrusion detection

system for large scale attacks based on an incremental mining

approach”, Computers & Security, vol. 28, no. 5, pp. 301-309, 2009.

[57] A. Tajbakhsh, M. Rahmati, and A. Mirzaei, “Intrusion detection using

fuzzy association rules”, Applied Soft Computing, vol. 9, no. 2,

pp. 462–469, March 2009.

[58] F.Geramitaz, A.S.Memaripour, and M.Abbaspour, “Adaptive Anomaly

Based Intrusion Detection System Using Fuzzy Controller”,

International Journal of Network Security, vol. 14, no. 6, pp. 352-361,

2012.

[59] M. S. A. Khan, “Rule based Network Intrusion Detection using Genetic

Algorithm”, International Journal of Computer Applications, vol. 18,

no. 8, pp. 26–29, March 2011.

[60] A. Visconti and H. Tahayori, “Artificial immune system based on

interval type-2 fuzzy set paradigm”, Applied Soft Computing, vol. 11,

no. 6, pp. 4055–4063, September 2011.

146

[61] N. G. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg, “Rule-

Based Anomaly Detection on IP Flows”, Proceedings of the 28th IEEE

International Conference on Computer Communications, pp. 424–432,

2009.

[62] T. Abbes, A. Bouhoula, and M. Rusinowitch, “Efficient decision tree for

protocol analysis in intrusion detection”, International Journal of

Security and Networks, vol. 5, no. 4, pp. 220–235, December 2010.

[63] Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir, “A K-meansand

naive bayes learning approach for better intrusion detection”,

Information Technology Journal, vol. 10, no. 3, pp. 648–655, 2011.

[64] Francesco Palmieri, Ugo Fiore, and AnielloCastiglione, ”A distributed

approach to network anomaly detection based on independent

component analysis”, Concurrency and Computation: Practice and

Experience, vol. 26, no. 5, pp. 1113–1129, April 2014.

[65] X. Tong, Z. Wang, and H. Yu, “A research using hybrid

RBF/Elmanneural networks for intrusion detection system secure

model”, Computer Physics Communications, vol. 180, no. 10,

pp. 1795–1801, 2009.

[66] G. Folino, C. Pizzuti, and G. Spezzano, “An ensemble-based

evolutionary framework for coping with distributed intrusion detection”,

Genetic Programming and Evolvable Machines, vol. 11, no. 2,

pp. 131–146, June 2010.

[67] D. Ariu, R. Tronci, and G. Giacinto, “HMMPayl: An intrusion

detectionsystem based on Hidden Markov Models”, Computers &

Security, vol. 30, no. 4, pp. 221–241, 2011.

[68] S.Benferhat, A.Boudjelida, K.Tabia, H.Drias, “An intrusion detection

and alert correlation approach basedon revising probabilistic classifiers

using expert knowledge”, Applied Intelligence, vol. 38, no. 4,

pp. 520-540, June 2013.

147

[69] Hsien-De Huang, Chang-Shing Lee, Mei-Hui Wang, Hung-Yu Kao,

“IT2FS-based ontology with soft-computing mechanism for malware

behavior analysis”, Soft Computing, vol. 18, no. 2, pp. 267-284 ,

February 2014.

[70] G.Bonfante, M.Kaczmarek and J.Y.Marion, “Control Flow Graphs as

Malware Signatures”, Proceedings of the Inter Regional workshop on

Rigorous System Development and Analysis, October 2007.

[71] M. Shafiq, Syed Khayam, and Muddassar Farooq, “Embedded malware

detection using markov n-grams”, Lecture Notes in Computer Science,

vol. 5137, pp. 88–107, 2008.

[72] Silvio Cesare, Yang Xiang, and Wanlei Zhou, “Malwise: An effective

and efficient classification system for packed and polymorphic

malware”, IEEE Transactions on Computers, vol. 62, no. 6,

pp. 1193–1206, 2013.

[73] Younghee Park and Douglas S. Reeves, Mark Stamp, “Deriving

common malware behavior through graph clustering”, Computers &

Security, vol. 39, pp. 419–430, 2013.

[74] Raymond Canzanese, Moshe Kam, and Spiros Mancoridis, “Multi-

channel change-point malware detection”, Proceedings of the 7th

International Conference on Software Security and Reliability (SERE),

2013.

[75] Edward Stehle, Kevin Lynch, Maxim Shevertalov, Chris Rorres, and

Spiros Mancoridis, ”On the use of computational geometry to detect

software faults at runtime”, Proceedings of the International conference

on autonomic computing (ICAC), pp. 109–118, 2010.

[76] Wang, M., C. Zhang and J. Yu, “Native API based windows

anomaly intrusion detection method using SVM”, Proceeding of

IEEE International Conference on Sensor Networks, Ubiquitous and

Trustworthy Computing (SUTC ’06), vol. 1, pp. 514-519, 2006.

148

[77] Leian Liu, Zuanxing Yin, Yuli Shen, Haitao Lin, Hongjiang Wang”,

Research and Design of Rootkit Detection Method”, Physics Procedia,

vo. 33, pp. 852-857, 2012.

[78] Yi, X., H. Da-Rong and S., “Analysis of windows rootkits stealth and

detection technologies”, Proceedings of the Second International

Conference on Applied Robotics for power Industry, 2010.

[79] White, A., B. Schatz and E. Foo, “Surveying the user space through user

allocations”, Digital Investigation, vol. 9, pp. S3-S12, August 2012.

[80] Hejazi, S.M., C. Talhi and M. Debbai, “Extraction of forensically

sensitive information from windows physical memory”, Digital

Investigation, vol. 6, pp. S121-S131, September 2009.

[81] Deng, Z., D. Xu, X. Zhang and X. Jiang, “IntroLib: Efficient and

transparent library calls introspection for malware forensics”, Digital

Investigation, vol. 9, pp. S13-S23, August 2012.

[82] Rabek, J.C. and R.I. Khazan, “Detection of Injected, dynamically and

obfuscated malicious code”, Proceedings of the 2003 ACM workshop on

Rapid malcode (WORM ’03), pp. 76-82, 2003.

[83] Wagner, D. and P. Soto, “Mimicry attacks on host-based intrusion

detection systems”, Proceeding of 9th ACM Conference on Computer

and Communication Security, pp. 255-264, 2002.

[84] Mansoori, M., O. Zakaria and A. Gani, “Improving exposure of

intrusion deception system through implementation of hybrid honeypot”,

International Arab Journal of Information Technology, vol. 9, no. 5,

pp. 436-444, 2012.

[85] J.Lee, K.Jeong, H.Lee, “Detecting metamorphic malwares using code

graphs”, Proceedings of the 2010 ACM symposium on Applied

Computing , pp. 1970-1977, 2010.

149

[86] J. Kinable,O.Kostakis, “Malware classification based on call graph

clustering”, Journal in Computer Virology, vol. 7, no. 4, pp. 233-245,

2011.

[87] Swiler L.P, Phillips.C. Ellis.D.,Chakerian.S, “Computer-attack graph

generation tool”, Proceedings of the DARPA Information Survivability

Conference & amp (DISCEX ’01), pp. 307-321, 2001.

[88] Pro Interactive DisAssembler, [Online] Available:

http://www.hex-rays.com/.

[89] Monitor A. Spy and display API calls made by Win32 applications,

[Online] Available: http://www.apimonitor.com.

.
[90] Michael R. Garey, David S. Johnson. Computers and intractability: a

guide to the theory of NP-completeness, WH Freeman & Co., 1979.

[91] H.Guo, J.Pang,Y.Zhang,F.Yue,R.Zhao, “HERO: A novel malware

detection framework based on binary translation”, Proceedings of the

IEEE International Conference on Intelligent Computing and Intelligent

Systems (ICIS), pp. 411-415, 2010.

[92] J.Li, Z.Wang, Bletsch.T, Srinivasan.D, Grace.M, X.Jiang,

“Comprehensive and Efficient Protection of Kernel Control Data”, IEEE

Transactions on Information Forensics and Security, vol. 6, no. 4,

pp. 1404-1417, December 2011.

[93] S. Zander, T. Nguyen and G. Armitage, “P2P Traffic Identification

Based on the Signature of Key Packets”, Proceedings of the 14th

International Workshop on Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD ’09), 2009.

[94] Fatemeh Karbalaie, Ashkan Sami and Mansour Ahmadi, “Semantic

Malware Detection by Deploying Graph Mining”, International Journal

of Computer Science Issues, vol. 9, no. 3, pp. 373-379, January 2012.

150

[95] Riesen, K. and H. Bunke, ”Approximate graph edit distance

computation by means of bipartite graph matching”, Image Vision

Compute, vol. 27, pp. 950-959, 2009.

[96] Faraz Ahmed, Haider Hameed, M. Zubair Shafiq, Muddassar Farooq,

“Using Spatio-Temporal Information in API Calls with Machine

Learning Algorithms for Malware Detection”, Proceedings of the 2nd

ACM workshop on Security and artificial intelligence (AISec '09),

pp. 55-62, November 2009.

[97] Younghee Park, Douglas Reeves, Vikram Mulukutla, Balaji Sundaravel,

“Fast Malware Classification by Automated Behavioral Graph

Matching”, Proceedings of the Sixth Annual Workshop on Cyber

Security and Information Intelligence Research (CSIIRW '10),

Article 45, 2010.

[98] Bai, L., J. Pang, Y. Zhang, W. Fu and J. Zhu “Detecting malicious

behavior using critical API calling graph matching”, Proceedings of the

1st International Conference on Information Science and Engineering,

pp. 1716-1719, 2009.

[99] Padmini Jaikumar and Avinash C.Kak, “A graph-theoretic framework

for isolating botnets in a network”, Security and Commination Networks,

vol. 8, no. 16, pp. 2605-2623, November 2015.

[100] Ammar Ahmed E. Elhadi, b,Mohd Aizaini Maarofa, Bazara I.A. Barryc,

Hentabli Hamzaa, “Enhancing the detection of metamorphic malware

using call graphs”, Computers & Security, vol. 46, pp. 62-80,

October 2014.

[101] Zhao Z, Wang J, Wang C., “An unknown malware detection scheme

based on the features of graph”, Security and Communication Networks,

vol. 6, no. 2, February 2013.

151

[102] Eric Uday Kumar, ”User-mode memory scanning on 32-bit & 64-bit

Windows”, Journal in Computer Virology, vol.6, pp. 123-142,

May 2010.

[103] Yan Wen, Jinjing Zhao, Huaimin Wang, ” Implicit Detection of Hidden

Processes with a Local-Booted Virtual Machine”, International Journal

of Security and Its Applications, vol. 2, no. 4, pp. 39-47, 2008.

[104] J.Nick L. Petroni, T.Fraser, J.Molina, W.A.Arbaugh, ”Capilot-a

Coprocessor-based Kernel Runtime Integrity Monitor”, Proceedings of

the 13th conference on USENIX Security Symposium (SSYM ’04),

vol. 13, pp. 13-13, 2004.

[105] S.Forrest,”A sense of self for Unix processes”, Proceedings of the IEEE

symposium on Computer Security and Privacy, pp. 1-20, 2012.

[106] Andrei Lutas Adrian Colesa, Sandor Lukacs Dan Lutas, “U-HIPE:

hypervisor-based protection of user-mode processes in Windows”,

Journal of Computer Virology and Hacking Techniques, vol. 12, no. 1,

pp. 23-36, 2016.

[107] Shabnam Aboughadareh, Christoph Csallner, Mehdi Azarmi, “Mixed-

Mode Malware and Its Analysis”, Proceedings of the 4th Program

Protection and Reverse Engineering Workshop (PPREW-4), pp. 1-12,

2014.

[108] Kota Yoshizaki, Toshihiro Yamauchi, “Malware Detection Method

Focusing on Anti-Debugging Functions”, Proceedings of the Second

International Symposium on Computing and Networking (CANDAR),

2014.

[109] Karla Saur, Julian B.Grizzard, ”Locating x86 paging structures in

memory images”, Digital Investigation, vol. 7, no. 1-2, pp. 28-37, 2010.

152

[110] Andreas Schuster, ”Searching for processes and threads in Microsoft

Windows memory dumps”, Digital Investigation, vol. 3, pp. 10-16,

2006.

[111] Burdach Mariusz, An introduction to Windows Memory Forensic, 2005.

[112] Betz Chris. MemParser, [Online] Available:

http://www.dfrws.org/2005/challenge/memparser.html

[113] Garner George M, Mora Robert-Jan. Kntlist, [Online] Available:

http://www.dfrws.org/2005/challenge/kntlist.html

[114] H.Yin, Z.Liang, D.Song, “HookFinder: Identifying and Understanding

Malware Hooking Behaviors”, Proceedings of the Annual Network and

Distributed System Security Symposium, 2008.

[115] Z.Wang, X.Jiang, W.Cui, X.Wang, “Countering persistent Kernel

Rootkits through Semantic Hook Discovery”, Proceedings of the 11th

international symposium on Recent Advances in Intrusion Detection,

pp. 21-38, 2008.

[116] Y.M.Wang, D.Beck, B.Vo, R.Roussev, C.Verbowski, ”Detecting Stealth

Software with Strider GhostBuster”, Proceedings of the International

conference on Dependable Systems and Networks, pp. 368-377, 2005.

[117] Windows Sysinternals RootkitRevealer. [Online] Available:

http://technet.microsoft.com/bb897445.aspx.

[118] Garfinkel, Tal, and Mendel Rosenblum, ”A Virtual Machine

Introspection Based Architecture for Intrusion Detection”, Proceedings

of the Network and Distributed Systems Security Symposium, 2003.

[119] Stephen T. Jones, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, “VMM-based hidden process detection and identification

using Lycosid”, Proceedings of the fourth ACM SIGPLAN/SIGOPS

International conference on Virtual execution environments, pp. 91-100,

2008.

153

[120] Toby J. Richer, Grant Neale, Grant Osborne, “On the Effectiveness of

Virtualization Assisted View Comparison for Rootkit Detection”,

Proceedings of the 13th Australian Information Security Conference

(AISC 2015), pp. 35-44, 2015.

[121] Xiongwei Xie, Weichao Wang, “Rootkit Detection on Virtual Machines

through Deep Information Extraction at Hypervisor-level”, Proceedings

of the 4th International Workshop on Security and Privacy in Cloud

Computing, pp. 498-503, 2013.

[122] Desheng Fu, Shu Zhou, Chenglong Cao, “A Windows Rootkit Detection

Method Based on Cross-View”, Proceedings of the 2010 International

Conference on E-Product E-Service and E-Entertainment (ICEEE),

pp. 1-3, 2010.

[123] Fu-Hau Hsu, Chang-Kuo Tso, Yi-Chun Yeh, Wei-Jen Wang, and Li-

Han Chen “BrowserGuard: A Behavior-based Solution to Drive-by-

Download Attacks”, IEEE Journal on Selected Areas in

Communications, vol. 29, no. 7, pp. 1461–1468, August 2011.

[124] Arati Baliga, Vinod Ganapathy, and LiviuIftode, ”Detecting Kernel-

Level Rootkits Using Data Structure Invariants”, IEEE Transactions on

Dependable and Secure Computing, vol. 8, no.5, pp. 670–684,

September-October 2011.

[125] Hung-Min Sun, Hsun Wang, King-Hang Wang, Chien-Ming Chen, ”A

Native APIs Protection Mechanism in the Kernel Mode against

malicious Code”, IEEE Transactions on Computers, vol. 60, no. 6,

pp. 813–823, June 2011.

[126] Jiayuan Zhang, Shufen Liu, Jun Peng, Aijie Guan, “Techniques of user-

mode detecting System Service Descriptor Table”, Proceedings of the

13th International Conference on Computer Supported Cooperative

Work in Design (CSCWD 2009), 2009.

154

[127] Zahra Salehi, Ashkan Sami, Mahboobe Ghiasi, “Using feature

generation from API calls for malware detection”, Computer Fraud &

Security, vol. 2014, no. 9, pp. 9-18, 2014.

[128] Lynette Qu Nguyen, Tufan Demir, Jeff Rowe, Francis Hsu, Karl Levitt,

“A framework for diversifying Windows native APIs to tolerate code

injection attacks". Proceedings of the 2nd ACM symposium on

Information, computer and communications security, pp. 392-394, 2007.

[129] Malware Samples [Online] Available:

http://www.offensivecomputing.net/

[130] Malware Samples [Online] Available http://vx.netlux.org/

[131] BlackLight, [Online] Available:

http://www.majorgeeks.com/mg/getmirror/icesword,2.html

[132] IceSword v 1.22. [Online] Available. https://icesword.jaleco.com

[133] VICE [Online] Available:

http://www.downloadcollection.com/freeware/vice-rootkit.htm

[134] R3 Hook Scanner 1.6 [Online] Available

http://www.pcadvisor.co.uk/download/security/ring3-api-hook-scanner-

16-3328574/

[135] J.Butle, S.Sparks,Windows rootkits of 2005, [Online] Available:

www.securityfocus.com/infocus/1854

[136] GMER V1.0.15.15087. [Online] Available: www.nonags.com/freeware-

gmer-3786.html

[137] HeliosLite [Online] Available: http://www.xfocus.net/

[138] Rootkit Unhooker [Online] Available: http://www.download.com

[139] HiddenFinder [Online] Available: https: http://hiddenfinder.jaleco.com/

[140] M.Harchol Balter and A.B.Downey, “Exploiting process lifetime

distribution for dynamic load balancing”, ACM Transactions on

Computer Systems, vol.15, no. 3, pp. 253-285, 1997.

[141] Malware Collection, [Online] Available: http://www.xfocus.net/

155

[142] Rookit malware Samples, [Onlne] Available: http://www.rootkit.com/

[143] Malware Collection, [Online] Available: www.download.com

[144] Benign Samples Collection, [Online] Available: technet.microsoft.com

[145] Windows Driver Developmet toolkit, [Online] Available:

http://www.microsoft.com/download/en/

[146] Redline, [Online] Available: www.mandiant.com/product/free-

software/redline/

[147] PcMark8 Bechmark tool [Online] Available: http://www.passmark.com/

156

LIST OF PUBLICATIONS

Journals

[1] K. Muthumanickam and E. Ilavarasan, “PAM: Process Authentication

Mechanism for Protecting System Services against Malicious Code Attacks”,

ETRI Journal. (Under Review)

[2] K. Muthumanickam and E. Ilavarasan, “CoPDA: Concealed Process and

Service Discovery Algorithm to Reveal Rootkit Footprints”, Malaysian

Journal of Computer Science, vol. 28, no. 1, pp. 1-15, March 2015.

[3] K. Muthumanickam and E. Ilavarasan, “An Effective method for protecting

native API hook attacks in User-mode”, Research Journal of Applied

Sciences, Engineering and Technology, vol. 9, no. 1, pp. 33-39, March 2015.

[4] K. Muthumanickam and E. Ilavarasan, “Optimization of Rootkit Revealing

System Resources - A Game theoretic Approach”, Journal of King Saud

University-Computer and Information Sciences, vol. 27, no. 4, pp. 386-392,

October 2015.

[5] K. Muthumanickam and E. Ilavarasan, “Demanding Requirement of Security

for Wireless Mobile Devices-A Survey”, Research Journal of Applied

Sciences, Engineering and Technology, vol. 8, no. 24, pp. 2381-2387,

December 2014.

[6] K. Muthumanickam and E. Ilavarasan, “Enhancing Malware Detection

Accuracy through Graph Based Model”, British Journal of Mathematics &

Computer Science, vol. 4, no. 15, August 2014.

[7] K. Muthumanickam, E. Ilavarasan and Sanjeev Kumar Dwivedi, ”A

Dynamic Botnet Detection Model Based on Behavior Analysis”,

International Journal on Recent Trends in Engineering & Technology,

vol. 10, no. 1, pp. 104-111, January 2014.

157

[8] K. Muthumanickam and E. Ilavarasan, ”Automatic Generation of P2P Botnet

Network Attack Graph”, Lecture Notes in Electrical Engineering , vol. 150,

pp. 367-374, 2013.

Internal Conference

[1] K. Muthumanickam and E. Ilavarasan, “Behavior based Authentication

Mechanism to Prevent Malicious Code Attacks in Windows”, Proceedings of

the 2015 International Conference on Innovations in Information Embedded

and Communication Systems (ICIIECS), March 2015.

[2] K. Muthumanickam and E. Ilavarasan, ”P2P Botnet detection: Combined host-

and network-level analysis”, Proceedings of the Third International

Conference on Computing Communication & Networking Technologies

(ICCCNT), pp. 1-5, July 2012.

[3] K. Muthumanickam and E. Ilavarasan, ”Automatic Generation of P2P Botnet

Network Attack Graph”, Proceedings of the Third International Conference on

Trends in Information, Telecommunication and Computing, vol. 150, pp. 367-

373, September 2013.

[4] K. Muthumanickam and E. Ilavarasan, ”A Survey on host-based Botnet

identification”, Proceedings of the International Conference on Radar,

Communication and Computing (ICRCC), pp. 166-170, December 2012.

National Conference

[1] K. Muthumanickam and E. Ilavarasan, “P2P Botnet Detection by Correlating

Network Behaviors and Host Behaviors: A Study”, Proceedings of the

National Conference on Internet and Webservice Computing (NCIWSC-12),

August 2012.

158

VITAE

 K.MUTHUMANICAKM, the author of this thesis is part time

research scholar in the Department of Computer Science and Engineering at

Pondicherry Engineering College, Puducherry, India. He was born in May

1975 at India. He received her Bachelor’s degree in Computer Science and

Engineering from the University of Madras in the year 1997. He started his

teaching life as a Lecturer in the Department of Computer Science and

Engineering at Vinayaka Missions Kirupanada Variyar Engineering College,

Tamilnadu, India. Later, he joined as a Lecturer in the Department of Computer

Science and Engineering in Arulmigu Meenakshi Amman College of

Engineering at Tamilnadu, India for more than three years. Presently he is

working as Assistant Professor in the Department of Computer Science and

Engineering at Arunai Engineering College, Tamilnadu, India. He completed

his Master’s degree in the same major in the year 2007 from the Anna

University. Subsequently he promoted as an Assistant Professor in the same

department for more than nine years. He has published more than twenty

papers in the International Journals and Conferences. His area of specialization

includes Computer Security, Information Security and Computer network.

