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Abstract

In a wide variety of scientific and technological fields, such as public health, actu-

arial science, biomedical studies, demography, and industrial reliability, modeling

and analysis of lifetimes is an important aspect of statistical work. For modeling

of such survival data, variety of probability distributions have been proposed in

the literature based on failure rate types. Besides a long list of probability dis-

tributions developed in last two decades or so, exponential, gamma, Weibull and

lognormal are still considered as important probability distributions for modeling

real world phenomena, especially in modeling lifetime (or time-to-event) of any

system or unit.

In one way or other, none of the distributions, so far developed and studied, pro-

vides universal adequacy (in the light of the adequacy of fit or goodness of fit

criteria) in modeling data coming from diverse field of applications and the use-

fulness of statistical distributions remains a need of time altogether. Hence, newer

probability distributions are been developed, their theory and applications are

widely studied. The interest, as well as need, in developing more flexible statis-

tical distributions than the existing ones remains a strong focus of this research

work.

The entire research work presented in this dissertation can broadly be classified

into three important and interlinked segments.
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Abstract viii

A new non-negative continuous probability distribution, named as the xgamma

distribution, is been introduced and studied initially. The distribution is syn-

thesized as a special finite mixture of exponential distribution with parameter

θ and gamma distribution with shape parameter 3 and scale parameter θ (i.e.,

gamma(3, θ)), with mixing proportions θ/(1 + θ) and 1/(1 + θ), respectively, and

hence the name xgamma proposed.

The one parameter xgamma distribution, thus obtained, is unimodal and the

shape is regulated by different values of the parameter. The xgamma distribu-

tion is initially DFR and then IFR and is found to have added flexibility over

the constant hazard rate of exponential distribution. Moreover, mean residual life

(MRL) function is decreasing, i.e., DMRL, for entire range. The xgamma random

variables are ordered with strongest likelihood ratio ordering and thereby other

stochastic orderings and xgamma random variable is found to be stochastically

larger than those of Lindley and exponential for similar parametric set up. It

is seen that the moment estimator of the parameter in xgamma distribution is

positively biased. Comprehensive sample generation algorithms are proposed for

complete and censored situations and Monte-Carlo simulation studies ensure that

estimates of the parameter behave satisfactorily for larger samples. It is recom-

mended to use Bayesian estimate for parameter provided a prior information is

available; otherwise the method of maximum likelihood would be a better choice

under progressively type-II right censored situation. Real lifetime data analyses

confirm that xgamma lifetime model provides better fit as compared to exponen-

tial, gamma, Weibull, log-normal and Lindley distributions and the distribution

has potential of a competent life distribution for modeling time-to-event data sets.

At the second segment of the work, main concentration is given in introducing and

studying two different versions of xgamma distribution, namely, truncated (lower,

upper and double) xgamma distributions and weighted xgamma distribution (in-

cluding length biased version as special case).

The truncated versions are been introduced owing the fact that designed lifetimes

of equipment are usually finite and hence, the truncated versions of xgamma dis-

tribution are been proposed. Different properties of the upper truncated xgamma

distribution are been studied in details and is found thath the upper truncated

xgamma distribution is unimodal. Moreover, the distribution is sometimes IFR
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and sometimes DFR depending on the particular range of the concerned random

variable. Maximum likelihood method of estimation provides satisfactory result

in estimating unknown parameters in the proposed truncated version. Real data

illustration shows that upper truncated version of xgamma distribution can be bet-

ter alternative in modeling lifetime data sets compared to the some other popular

lifetime models.

The weighted versions of popular life distributions available in literature mainly

have been utilized on the areas like cell kinetics, early detection of diseases, en-

countered data analysis, equilibrium population analysis subject to harvesting and

predation, etc. The aim in proposing and studying weighted version is to find an

application in lifetime data and expectation is been fulfilled when the length bi-

ased xgamma distribution, studied as a special case of weighted xgamma version,

provides satisfactory fit to a lifetime data set and shows superiority over exponen-

tial, gamma, Weibull and recently introduced length biased weighted exponential

models. It is observed that the length biased xgamma is a special case of weighted

xgamma distribution, is a special finite mixture of gamma(2, θ) and gamma(4, θ),

is unimodal; and it holds IFR and DMRL property. The length biased xgamma

random variable possesses strong hazard rate, mean residual life and stochastic

ordering for certain restriction on parameter. Moreover, method of maximum

likelihood estimation works nicely without having much sacrifice on the procedure

and simulation study confirms the fact for different sample sizes.

Adding extra parameters to an existing probability distribution is a popular tech-

nique for generalization and the resultant family of distributions, thus obtained,

can provide additional flexibility in distributional and/or survival properties and in

modeling real life data sets. Hence, at the last segment of this research, two exten-

sions (or generalizations) of xgamma distribution are been proposed and studied

for modeling survival (or time-to event) data sets. The extensions (or generaliza-

tions) are named as the quasi xgamma (QXG) distribution and the two-parameter

xgamma (TPXG) distribution. Both the proposed distributions are special finite

mixtures of exp(θ) and gamma(3, θ) distributions with different mixing propor-

tions.
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Both the distributions proposed provide additional flexibility over xgamma distri-

bution in view of their distributional and survival properties and possess strong

likelihood ratio ordering. Moreover, TPXG random variables are stochastically

smaller than those of QXG in likelihood ratio and other orderings. Classical meth-

ods (method of moments and method of maximum likelihood) of estimation are

been suggested for parameter estimation in complete sample cases and simulation

studies confirm the behavior for larger sample sizes. Real data analyses revealed

that both the proposed distributions are quite competent in modeling time-to-

event data sets.
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Chapter 1

Introduction

With the advances in science and technology, a wealth of information has gifted the

statistician and data modeler to think in a broader way in the process of gather-

ing knowledge. For making inference about the population of interest, statisticians

gather and analyze these information keeping the responsibility of accurate infer-

ence. In recent years, it has been observed that many well-known probability

distributions used to model data sets do not offer enough flexibility to provide

an adequate fit. It is, therefore, the need of time that guides the statisticians to

model the real life scenario by introducing newer probability distributions that are

more suitable and flexible.

The present chapter of this thesis dissertation deals with general descriptions on

the notion of life distributions in section 1.1, basic distributional (section 1.2)

and survival properties (section 1.3) of probability distributions, lifetime data and

censoring (section 1.4), methods of estimating unknown parameters in a distribu-

tion (section 1.5), review of literature (section 1.6) related to genesis of the thesis

(section 1.7).

1
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1.1 Notion of life distributions

The probability distributions that are effectively used for modeling lifetime data

sets are termed as “lifetime probability distributions” or simply “life distributions”.

Usually, life is defined by a non-negative random variable in statistical literature

owing the fact that life can not be negative. Although “lifetime” literally means

the duration of a thing’s existence or usefulness, in statistical point of view the

term “lifetime” (or simply “life”) has a broader meaning.

By notation, a non-negative random variable, X, which denotes time to occurrence

of an intended event (or expected event), can be termed as a “lifetime random

variable”.

The probability distribution of X is usually continuous, however, sometime lives

are viewed as discrete where clock time is not the best scale to describe life-

time, more details can be seen in Xekalaki (1983), Adams and Watson (1989),

Bain (1991) and Shaked et al. (1995). Thus, life distributions, thought suitably,

come under the purview of parametric lifetime models or parametric life distri-

butions for modeling time-to-event data sets. In general, lifetimes of biological

organisms and of human made devices are the focus of survival and reliability

analysis, respectively.

However, non-negative random variables, depending on continuous set up or dis-

crete, arise in a wide variety of applications. These can be waiting times for delays

in traffic, intervals between floods or earthquakes, or required time for a task learn-

ing. In magnitudes related to physical objects also non-negative random variables

arise, for example, measurements on atmospheric characteristics, lengths of cracks,

diameters or heights of trees, speed of wind, strengths of materials, stream flows,

rainfall, tire wear, or composition in different types of chemicals. The another area

where non-negative random variables arise is economics. Some examples may be,

income, size of firms, prices and losses encountered in actuarial science.
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1.2 Basic measures of probability distributions

The following set of basic distributional properties and measures will be used

throughout the thesis. Most of these basic properties can be found in Hogg et

al. (2005).

Let X be a non-negative continuous random variable having probability density

function (pdf), f(x), and cumulative distribution function (cdf), F (x) = Pr(X ≤

x). For very obvious reason, the range of the random variable is taken as (0,∞)

here.

The following sub-sections presenting the notions of various statistical measures

that characterize any probability distribution. These measures are also called

sometimes as distributional properties.

1.2.1 Non-central and central moments

The symbol, µ′r, refers to the rth order non-central moment (or moments about the

origin) of a continuous random variable X having a distribution function F (x).

For r ≥ 1. The rth non-central moment is given by

µ′r = E(Xr) =

∫ ∞
0

xrf(x)dx, (1.1)

where µ′1, the first moment about zero, is called the mean and it is a measure of

central tendency denoted by µ.

On the other hand, the symbol, µr, refers to the rth order central moment (or

the rth moment about the mean) of a non-negative continuous random variable X

having a distribution function F (x). For r ≥ 1. the rth order central moment is

given by µr = E[(X − µ)r] such that

E[(X − µ)r] =

∫ ∞
0

(x− µ)rf(x)dx. (1.2)
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The following recurrence relation between central and non-central moments are

well known.

µj = E[(X − µ)j] =

j∑
r=0

(
j

r

)
µ′r(−µ)j−r, (1.3)

where µj denotes jth order central moment.

1.2.2 Characteristic and generating functions

The characteristic function of a probability distribution completely specifies the

distribution and it is denoted by φX(t) for t ∈ <, and is defined as

φX(t) = E[eitX ] =

∫ ∞
0

eitxf(x)dx, (1.4)

where i =
√
−1.

The moment generating function is denoted by MX(t) for t ∈ <, and is defined as

MX(t) = E[etX ] =

∫ ∞
0

etxf(x)dx. (1.5)

The cumulant generating function is denoted by KX(t), for t ∈ <, and can be

obtained by taking natural logarithm of MX(t). Hence, it is defined as

KX(t) = ln[MX(t)]. (1.6)

1.2.3 Order statistics

Let us denote X1, X2, . . . , Xn as a random sample of size n drawn from an arbitrary

pdf f(x) and cdf F (x). Then, X1:n = Min{X1, X2, . . . , Xn} denotes the smallest

order statistics (or the first order statistic) and Xn:n = Max{X1, X2, . . . , Xn}

denotes the largest order statistic (or the nth order statistic). In general, Xj:n
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denotes the jth order statistic.

The pdf of Xj:n is given by

fXj:n(x) =
n!

(j − 1)!(n− j)!
[F (x)]j−1[1− F (x)]n−jf(x), 0 < x <∞, (1.7)

for j = 1, 2, . . . , n.

In particular, the pdf of X1:n is given by

fX1:n(x) = n[1− F (x)]n−1f(x), 0 < x <∞, (1.8)

and, that of Xn:n is given by

fXn:n(x) = n[F (x)]n−1f(x), 0 < x <∞. (1.9)

The extreme order statistics, X1:n and Xn:n represent the life of series and parallel

systems and important applications of them can be found in system reliability

analysis.

For a complete theory and methods on order statistics one could refer to Balakr-

ishnan and Rao (1998) and Arnold et al. (2008).

1.2.4 Measures of entropy

The idea of information is too extensive to be captured completely by a single

definition. However, for any probability distribution, a quantity known as the

entropy, that has several properties that accept as true with the intuitive notion

of what a measure of information ought to be. Mutual entropy is measure defined

as an extended version of this notion and represents amount of information one

random variable contains about the other. Hence, the self-information of a ran-

dom variable is then explained by entropy. A more general quantity, termed as
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relative entropy, which contains mutual entropy as special case, describes a dis-

tance measure between two probability distributions, see for more details Cover

and Thomas (2012).

The concept of entropy was introduced in thermodynamics to dispense an asser-

tion of the second law of thermodynamics, see Bein-Naim (2008) for complete

insight of statistical thermodynamic based on information. A connection between

thermodynamic entropy and the logarithm of the number of micro-states in a

macro state of the system is provided by statistical mechanics, see Jaynes (1957),

Wilson (1970) and Chandler (1987) for more details.

Therefore, for a random variable X, entropy is viewed as a measure of variation

or uncertainty. A popular measure of entropy is Rényi entropy, see Rényi (1961).

If a non-negative random variable X has the pdf f(x), then the Rényi entropy is

defined as

HR(γ) =
1

1− γ
ln

[∫ ∞
0

fγ(x)dx

]
for γ > 0(6= 1). (1.10)

Shannon measure of entropy (Shannon, 1948), which is a special case of Rényi

entropy, is defined as

H(f) = E[− ln f(x)] = −
∫ ∞

0

ln f(x)f(x)dx. (1.11)

In physics, Tsallis entropy or q-entropy (see Tsallis, 1988) is a generalization of

the standard Boltzmann–Gibbs entropy. It is defined as

Sq(X) =
1

q − 1
ln

[
1−

∫ ∞
0

f q(x)dx

]
for q > 0 (6= 1). (1.12)

1.3 Survival properties

Every life distribution possesses certain basic properties related to its survival or

reliability characteristics through some functions. Various alternative functions
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are in common use that can be thought as survival properties related to the corre-

sponding density function or distribution function to describe the distribution of

a non-negative random variable mathematically. Some basic of these functions in-

clude survival function, hazard rate or failure rate, reversed hazard rate and mean

residual life. If these functions exist, any one of them can be obtained from the any

other, at least theoretically. Although none of these functions is uniformly best,

there are some beneficial reasons for interest of studying all of these functions.

Moreover, it might be easier to estimate some of these functions than others.

The following basic survival properties (or survival characteristics) along with their

respective definitions and notations have been utilized throughout the thesis.

1.3.1 Survival function

The survival function (or the reliability function) is defined as the probability

of performing, without failure, a specific function under given conditions for a

specified period of time. The term survival function is used in an extensive range of

applications, whereas, reliability function is common in engineering, see Finkelstein

(2008) for more.

Mathematically, survival function is the complementary probability statement of

the distribution function and is denoted by S(x) throughout the thesis. However,

it is also denoted by F̄ (x) or R(x) in reliability context. So,

S(x) = 1− F (x) = Pr(X > x) =

∫ ∞
x

f(z)dz. (1.13)

1.3.2 Hazard rate or failure rate function

Hazard rate or failure rate, also called force of mortality or the mortality rate or

intensity rate or instantaneous force of mortality in actuarial and demographic

literature, is a function of time or a constant. The interpretation of this function
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plays a pivotal role in survival analysis, reliability analysis and other fields, see

Lee and Wang (2003), Colett (2015) and references therein.

For an absolutely continuous non-negative random variable, X, with pdf f(x)

and cdf F (x), hazard rate function (or failure rate function) can be defined as the

limiting value of the ratio of the conditional probability of failure in a small interval

(x, x + ∆x] to ∆x. Therefore, hazard rate function (or failure rate function),

denoted by h(x), is given by

h(x) = lim
∆x→0

Pr(x < X < x+ ∆x|X > x)

∆x
, (1.14)

= lim
∆x→0

F (x+ ∆x)− F (x)

∆x
× 1

S(x)
=
f(x)

S(x)
. (1.15)

When ∆x is sufficiently small, h(x)∆x is popularly interpreted as an approximate

conditional probability of failure in (x, x + ∆x] and f(x)∆x is defined as the

corresponding approximate unconditional probability of failure in (x, x+ ∆x]. the

survival function and hazard rate function maintain an useful identity,

S(x) = exp

[
−
∫ x

0

h(z)dz

]
= exp[−H(x)], (1.16)

where H(x) =
∫ x

0
h(z)dz is called cumulative hazard rate.

A life distribution is very well characterized by hazard rate or failure rate function

and, in turn, it led to the concepts of a class of life distributions corresponding

to the notion of adverse aging, see Barlow and Proschan (1975). The cdf F (x)

is called increasing (decreasing) failure rate distribution or IFR (DFR) if h(x)

increases (decreases) in x.

1.3.3 Mean residual life function

An another way to describe a distribution is the mean residual life function or MRL

function. The study of the failure rate function is difficult without considering

other measures. The MRL function is probably foremost among these. These
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functions complement each other nicely, see Finkelstein (2008).

Let X(x) denotes residual or remaining life at age “x”, i.e., X(x) = (X −x|X > x).

The MRL function, denoted by m(x), is defined as

m(x) = E[X − x|X > x] =
1

S(x)

∫ ∞
x

S(z)dz. (1.17)

The survival function can be represented in term of MRL function, given by

Cox (1962), Muth (1977) and Gupta (1979), as

S(x) =
µ

m(x)
exp

[
−
∫ x

0

dz

m(z)

]
. (1.18)

The MRL function has a tremendous range of applications, such as, in studying

burn in, setting rates of benefits for life insurance, the duration of wars and strikes

or of jobs. Guess and Proschan (1988), Hall and Wellner (1981), Kupka and

Loo (1989), and Ghai and Mi (1999) have provided an excellent review of the

theory and applications of the MRL function.

1.3.4 Reversed hazard rate function

The reversed hazard rate was introduced by von Mises (1936), however, Keilson

and Sumita (1982) were among the first to define reversed hazard rate function

and called it the “dual failure function”. The name reversed hazard rate was first

used by Lagakos et al. (1988). It extends the concept of hazard rate to a reverse

time direction. This function is denoted by r(x) and is defined as

r(x) = lim
∆x→0

Pr(x−∆x < X < x|X ≤ x)

∆x
, (1.19)

= lim
∆x→0

F (x)− F (x−∆x)

∆x
× 1

F (x)
=
f(x)

F (x)
. (1.20)

Hence, the reversed hazard rate function can be interpreted as the instantaneous

conditional probability that the life has survived the instant (x − ∆x), given
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that it fails before time x. Properties and other related characterizations of re-

versed hazard rate functions can be found in Chandra and Roy (2001), Nanda and

Shaked (2001) and Shaked and Shanthikumar (1994).

1.3.5 Stochastic orderings

For a non-negative continuous random variable, X, stochastic ordering is an im-

portant tool for judging the comparative behavior.

Definition 1.1. A random variable X is said to be smaller than a random variable

Y in the

(i) stochastic order (X ≤ST Y ) if FX(x) ≥ FY (x) for all x.

(ii) hazard rate order (X ≤HR Y ) if hX(x) ≥ hY (x) for all x.

(iii) mean residual life order (X ≤MRL Y ) if mX(x) ≤ mY (x) for all x.

(iv) likelihood ratio order (X ≤LR Y ) if fX(x)
fY (x)

decreases in x.

The following implications (see Shaked and Shanthikumar, 1994) are well known.

X ≤LR Y ⇒X ≤HR Y ⇒ X ≤MRL Y and X ≤HR Y ⇒ X ≤ST Y. (1.21)

In the next section, we describe time-to-event (or lifetime) data and notions of

censoring that are very frequently encountered in survival and reliability analyses.

1.4 Time-to-event data and censoring

Lifetime or time-to-event data is a term utilized for describing data that measure

time to occurrence of some event. The event could be different depending on the
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variable of interest. It could be death, occurrence or outset of some disease, re-

lapse or recurrence of a disease, equipment breakdown etc., see Kalbfleisch and

Prentice (2002) and Lawless (2011) for more examples on time-to-event data ap-

pearing in the fields of survival and reliability analysis.

Time-to-event data present themselves in various ways that create distinctive prob-

lems in analyzing and inferring such data. Often, one peculiar feature observed in

time-to-event data, known as censoring, which, in a broader description, is realized

when some lifetimes are known to have occurred within certain time intervals and

the remaining of the lifetimes are only known exactly. There are various categories

or schemes of censoring. Censoring schemes can be broadly classified as conven-

tional censoring, such as, right censoring, left censoring, interval censoring, and

progressive censoring.

1.4.1 Conventional censoring

1.4.1.1 Right censoring

Right censoring is the most common form of censoring with lifetime data in both

engineering and medical applications. In right censoring, just lower limits on

lifetime are accessible for a few individuals. Right censoring arises only in cer-

tain situations because some individuals survive at the time of termination of the

study. In other instances, individual might move away from the study area for

reasons that are directly unrelated with the study and hence, contacts for those

individuals are lost eventually. In some other situations, individuals might be

withdrawn or might decide to withdraw from the study on account of improving

and/or worsening prognosis. Two types of right censoring are constructed into the

experimental design for reducing the time taken for completion of the study.

Type-I censoring: Sometimes experiments are continued upto a fixed time pe-

riod in such a fashion that lifetime of an individual will be known to the researcher
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exactly only if it is lesser than a predetermined time. In such situations, the data

are termed as Type-I or time censored. For example, suppose in a life testing

experiment n items are simultaneously put into operation and the study is termi-

nated at a predetermined or predefined time point t0. Suppose that r items gets

failed by this time and the remaining n− r items become operative till t0. Then,

it is said that n− r items are censored and the data consist of lifetimes of r failed

items and for the remaining n− r items the censoring time is t0. Type-I censoring

occurs frequently in medical research when a decision is taken to terminate a study

at a particular fixed date on which all individual’s lifetime will not will be known.

Type-II censoring: The term Type-II censoring refers to the situation where

n individuals start on study at the same time and the study terminates as soon

as the k (a pre-specified number between 1 to n) lifetimes have been observed.

Thus, only the smallest k lifetimes in a random sample of n are observed in such

situation. This type of censoring is also sometimes known as order censoring or

failure censoring.

1.4.1.2 Left censoring

In life testing applications, left censoring occurs when a unit has failed at the

time of its first inspection and we realize only that the unit has failed before the

inspection time. In other situations, left censored observations might arise when

the exact value of a response has not been observed, rather we know only an

upper limit on that response. As an example, consider a measuring instrument

that possess a lack of sensitivity needed to measure observations below a known

threshold level. When the measurement is used, if the indication comes below the

instrument threshold, we know only that the measurement taken by it is less than

the threshold.

A data set may contain both left and right censored observations and in that case

lifetimes are termed as doubly censored. As an example, suppose a psychiatrist
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has collected data for determining the age at which children might have learned

to execute a particular task. In such situation, lifetime must be the time the child

has taken to learn to perform the task from date of birth. Hence, those children

who already knew how to perform the task at the start of the study, were left

censored and those who could not learn the task even at the end of the study were

eventually right censored observations.

1.4.1.3 Interval censoring

Interval censoring, an another type of censoring, occurs when the lifetime is

only known to occur within a time interval. Such pattern might be observed

in a clinical trial where study participants (patients) are followed up periodically

and an intended event time of a participant is only known to fall in an inter-

val. For more details on conventional censoring schemes, one can see Klein and

Moeschberger (2005).

1.4.2 Progressive censoring

There are many situations in life testing or reliability experimentation in which

units are lost or removed from experiment before failure takes place and we loss

information about certain lifetimes. The loss might occur unintentionally, or it

might be intentional as per the design of the study. Unintentional loss might hap-

pen, for example, in the case of accidental breakage of an experimental unit or if

an individual under study drops out or if the experimentation itself must cease

on account of some unanticipated circumstances such as, unavailability of testing

facilities and depletion of funds.

Sometimes, the removal of experimental units from experimentation is pre-designed

and intentional and is planned to be done so in order to free up testing facilities

to save cost and time or for other experimentation purposes. In some situations,
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intentional removal of items or termination of the experiment might be due to

ethical considerations when there are live units on test.

If an experimenter intends to remove live experimental units at different time

points other than the final termination point of the experiment then the con-

ventional schemes described above will not be of use. None of the conventional

censoring schemes allows for the units to be lost or removed from the test at dif-

ferent time points other than the final termination point. This allowance shall be

desirable, as happens in the situation of studies of wear, in which the actual ag-

ing process requires items to be disassembled at the maximum extent at different

stages in the experiment.

Intermediate removal might also be desirable is cases when a trade-off between

reduced time of experimentation and the observation of at least some extreme

lifetimes is pursued, or when some of the surviving items under experiment that

are removed early on (such as, items under test are arduous to acquire or highly

expensive) can be used for some other tests. Sometimes, the loss of items at points

other than the final termination point might also be unavoidable, as in the case of

loss of contact with individuals under study or accidental breakage of experimental

units. These reasons and motivations lead practitioners and theoreticians directly

into the area called progressive censoring or progressively censoring. There are

different types of progressive censoring schemes described in literature. For ex-

ample, progressively type-II right censoring is more generalized than conventional

type-II censoring and so on. For more detailed insight on progressive censoring

schemes, one could refer to Balakrishnan and Aggarwala (2000), Balakrishnan and

Cramer (2014).

In the next section we describe some important methods of estimating unknown

parameters involved in any probability distribution or any life distribution.
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1.5 Parameter estimation

The important segment of modeling time-to-event data sets is to estimate the un-

known parameter of the assumed probability distribution, at least assumed to be

approximately appropriate in modeling, through the light of real life observations.

Important purpose of estimating model parameters is to understand the complete

form of the probability distribution by estimated parameter values and to evaluate

its goodness of fit, that is, how well it fits the observed data. Goodness of fit is

assessed by finding parameter values of a model that best fits the data-a procedure

called parameter estimation, see Lehmann and Casella (2006).

The methods of estimating unknown parameter(s) of a life distribution can be

broadly classified into two segments, namely, classical methods and Bayesian meth-

ods. In this thesis, the following methods of estimation are been adopted.

1.5.1 Method of moments

The method of moments estimation is a classical parameter estimation technique,

introduced by Karl Pearson in 1894, based on the assumption that the sample

moments (about the origin) are good estimators of the population moments (about

the origin) because of the unbiasedness and consistency criteria of estimators, see

Casella and Berger (2002) for more details. The method works as follows.

Let X = (X1, X2, . . . , Xn) denote the vector of sample observations. It is well

known that the population moments are functions of unknown parameters, say

θ, of the probability distribution. If there are k parameters in the population

probability distribution, i.e., θ is a k × 1 vector, then first k raw moments for the

population probability distribution, viz. µ′r, r = 1, 2, . . . , k, are obtained and they

are equated to the corresponding sample raw moments, viz., m′r, r = 1, 2, . . . , k,
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which gives the following k equations

E[Xr] = µ′r = m′r =
n∑
i=1

Xr
i

n
r = 1, 2, . . . , k. (1.22)

These k equations are called moment equations and the solutions obtained by

solving these equations for θ are called moment estimators of the k parameters.

This method can be used only if the moments of the distribution exist.

1.5.2 Method of maximum likelihood

This is an important and widely used classical parameter estimation method, in-

troduced by R. A. Fisher in 1912.

Let X1, X2, . . . , Xn be an independent and identically distributed (i.i.d) sample

from a pdf f(x; θ), θ ∈ Θ (parameter space). Let x = (x1, x2, . . . , xn) be a partic-

ular realization on X1, X2, . . . , Xn. For given x, the function, L(θ|x), called the

likelihood function of the sample, is considered as a function of the parameter θ.

By notation,

L(θ|x) =
n∏
i=1

f(xi; θ).

It should be noted that there is a conceptual distinction between the joint pdf of

sample data and the likelihood function of the sample, the domain of the former

is sample space whereas the domain of the latter is the parameter space Θ, see

Lehmann and Casella (2006) for more insights.

Definition 1.2. The maximum likelihood estimator (MLE) of the parameter θ is

defined as the value θ̂ ∈ Θ, such that

L(θ̂|x) = sup
θ∈Θ

L(θ|x). (1.23)



Introduction 17

Generally, maximization techniques based on differential calculus are used to

obtain MLEs. For simplicity of calculation, MLEs are obtained by maximiz-

ing l(θ) = lnL(θ|x). Optimal properties of MLEs, viz., asymptotic and non-

asymptotic, are useful to understand the quality of the estimators. One impor-

tant property of MLEs is the consistency of the estimators, see Lehmann and

Casella (2006), Rajagopalan and Dhanavanthan (2012).

1.5.3 Bayesian method

This is an alternative approach in statistical inference, called Bayesian approach,

which views probability of an event as a measure of degree of one’s personal belief

in the occurrence of the event. In Bayesian approach, before drawing the sam-

ple, the information is collected about the parameter involved in the population

distribution-called prior information about the population.

If θ is the unknown parameter of the population, then in Bayesian approach θ is

treated as a random variable. The prior distribution of θ, say, π(θ), is a probability

distribution defined on the parameter space Θ based on prior information that has

been closely scrutinized and processed. Owing that the joint pdf of sample, f(x; θ)

is actually the conditional distribution of the observations given the parameter,

the conditional pdf of θ given the sample observations x, denoted by π(θ|x) is

obtained by applying Bayes’ theorem, see Berger (2013). So,

π(θ|x) =
π(θ)f(x; θ)∫
π(θ)f(x; θ)dθ

, θ ∈ Θ, (1.24)

where π(θ|x) is called posterior distribution of θ.

Definition 1.3. The Bayes estimator of θ is the value θ̂ ∈ Θ, such that

π(θ̂|x) ≥ π(θ|x) ∀ θ ∈ Θ. (1.25)
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However, under the decision theory approach, Bayes estimator of θ is obtained

by minimizing Bayes Risk considering suitable loss function, see Zacks (1971) and

Ghosh et al. (2007).

Now, in the next section, we represent a comprehensive review of literature on

exponential and gamma life distributions and finite mixture of probability distri-

butions along with application areas and recent developments that build the base

of the main research work presented in the thesis.

1.6 Review of literature

Among many useful life distributions only few viz., exponential, gamma, Weibull,

Rayleigh and lognormal, have been considered as (standard) life distributions in

statistical literature. To describe only important (standard) life distributions and

keeping the genesis of this thesis in mind, two relevant (standard) life distributions,

namely, exponential and gamma have been reviewed and been briefly discussed

respectively in sub-sections 1.6.1 and 1.6.2 below. In sub-section 1.6.3, a thorough

review of finite mixtures of distributions, considered as main technique and base of

the present research work, has been accomplished along with fields of applications

and recent developments on the topic.

1.6.1 Exponential distribution

Among a lengthy list of life distributions, exponential distribution is the most

important one parameter family of life distribution. The importance is partly be-

cause of the fact that many of the most commonly used families of life distributions

are actually two or three parameter extensions of the exponential distributions,

and hence, it is standard among other families of life distributions. Moreover, the

exponential distribution, with its constant hazard rate property, form a base for
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evaluating other families of life distributions. The exponential distribution is quite

simple to describe and is uncommonly tractable in statistical analyses since it has

only one parameter.

If X is a non-negative continuous random variable following an exponential dis-

tribution with parameter θ(> 0) or mean 1/θ, then the pdf of X is given by

f(x) = θe−θx, x > 0. (1.26)

let us denote it by X ∼ exp(θ). The corresponding cdf is given by

F (x) = 1− e−θx, x > 0. (1.27)

It is easy to verify that the residual life distribution at t(> 0) is independent of t

for exponential distribution. In fact, this characterizes exponential distributions.

As a result, an another characterizing property asserts that the mean residual

life of exponential life is independent of the age its age. Singpurwalla (2003) has

made extensive use of the fact that for any life distribution G with the cumulative

hazard rate function H,

G(x) = e−H(x) = Pr[X > H(x)], (1.28)

where X has an exponential distribution with parameter 1.

From this point of view, it is to be expected that the exponential distribution will

play a central role. Because of its remarkable properties, exponential distribu-

tion arise naturally in theoretical settings. It has many characterizations of both

theoretical and practical importance. It is not surprising, then, that exponential

distribution has been overused in applications; but that does not reduce its im-

portance. There are many reasons why exponential distribution plays a central

role within the class of lifetime probability distributions, more insight can be seen

in Mann et al. (1974), Johnson et al. (1994), Balakrishnan and Basu (1995) and
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Nelson (2004).

The best known characterization, perhaps, of the exponential distribution is its so

called “lack of memory” property. Moreover, a distribution has a constant hazard

rate if and only if it is an exponential distribution and a distribution F has a

mean residual life independent of age if and only if it is an exponential distribu-

tion. More characterizations of the exponential distribution related to reliability

and survival can be found in Basu (1965), Cowford (1966), Desu (1971), Galambos

and Kotz (1978) and Azlarov and Volodin (1986) .

1.6.2 Gamma distribution

The single parameter involved in the exponential distribution serves both as a scale

and as a frailty parameter. Moreover, if an age parameter or a Laplace transform

parameter is introduced, the distribution remains an exponential distribution and

only the parameter is changed. It is well observed that introduction of moment

and convolution parameters to an exponential distribution both lead to a family

called family of gamma distributions. Gamma distribution also plays an impor-

tant role in areas of survival and reliability analysis, see Cox and Oakes (1984),

Aalen (1988, 1994), Miller (2011), Elsayed (2012) and Chandra and Sen (2014).

A non-negative continuous random variable, X, is said to follow a gamma distri-

bution with scale parameter θ(> 0) and shape parameter λ(> 0) if its pdf is of

the form

f(x) =
θλ

Γ(λ)
xλ−1e−θx, x > 0, (1.29)

where Γ(a) =
∫∞

0
za−1e−zdz is the gamma function.

Let us denote it by X ∼ gamma(λ, θ).
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Typically, gamma distributions with shape parameter as positive integers are

termed as Erlang distributions and the Erlang distribution with shape parame-

ter 1 simplifies to the exponential distribution. When λ is a half integer and

θ = 1/2, the gamma distribution is known as a chi-square distribution.

There are several ways to derive the gamma distribution from exponential distri-

bution, viz., from a Poisson process, by introduction of moment parameter, by

introduction of a convolution parameter and by mixtures; each is instructive in its

own way. All of these are based in some way upon the exponential distribution.

The gamma density (1.29) was obtained by Pearson (1895) and is known as a Type

III Pearson curve. Pearson derived the density from a differential equation; see

Johnson et al. (1994). If X has the gamma density (1.29), then it can be shown

that 1/X has the density g given by

g(x) =
θλ

Γ(λ)

1

xλ−1
e−θ/x, x > 0. (1.30)

This density was also obtained by Pearson (1895) and is known as a Type V Pear-

son curve. For further discussion of the Pearson curves, see also Elderton and

Johnson (1969).

In general, the distribution function and the survival function of the gamma dis-

tribution do not have simple expression; they can be expressed only in terms of

the incomplete gamma function when shape parameter is not an integer. However,

properties of these functions can be determined in other analytical ways. Because

the survival function of the gamma distribution can be given only in terms of the

incomplete gamma function when shape parameter is not an integer, neither the

hazard rate nor the reversed hazard rate can be expressed in closed form, more

details can be found in Barlow and Proschan (1975).

The survival function S corresponding to the gamma density (1.29) is log-concave

for λ ≥ 1 and is log-convex on [0,∞) for λ ≤ 1. The gamma cdf is log-concave for

all λ. The hazard rate function of gamma distribution is increasing or constant
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or decreasing depending on λ > 1 or λ = 1 or λ < 1, respectively. The reversed

hazard rate of gamma density is decreasing for all λ because of the log-concavity

of its cdf and residual life distribution converges in distribution to an exponential

distribution whenever the hazard rate has a finite positive limit, more characteri-

zations of gamma distribution can be found in Lukacs (1955), Gupta (1960), Engel

and Zijlstra (1980), Wang (1981) and Johnson et al. (1994).

1.6.3 Finite mixtures of distributions

A wide range of observed phenomena, which do not normally yield to modeling

through classical distributions because of their inherent complexity and heteroge-

neous nature, can be modeled with higher satisfaction by an important method

called finite mixtures of distributions. The main reason for successful applications

of finite mixture models in a vast range of fields in the biological, physical and

social sciences lies in their flexibility and high degree of accuracy. The distribu-

tion of random quantity of interest is modeled as a mixture of a finite number

of distributions, also called component distributions, with varying proportions in

finite mixture model. Thus, a mixture model is capable to model quite complex

situations incorporating an appropriate choice of its components to constitute ex-

plicitly the support of local areas of the true distribution. Moreover, It is quite

capable of handling situations where a single parametric family might not be able

to explain a satisfactory model for local variation in the observed data.

Newcomb (1886), can be named as pioneer, used the concept of finite mixture

distribution while modeling outliers. However, Pearson (1894) has the credit for

introduction of statistical modeling using finite mixtures of distributions when he

applied the technique in an analysis of data, provided by Weldon (1892, 1893),

related to crab morphometry. Finite mixtures of normal distributions in explaining

the crab data was suggested by Pearson. He obtained estimates based on moments

of the five parameters of the mixture of normal distributions as a solution of a



Introduction 23

ninth degree polynomial and it was a demanding task, computationally. Over the

ensuing years, various attempts were made to simplify Pearson’s (1894) moments-

based approach to fitting of a normal mixture model and, thus, the utilization of

mixture of normal distributions to model the different species of crab motivated

ample use of finite mixture distributions in other applied areas also. Below is given

a complete definition for mixture of probability distributions.

Definition 1.4. Let X be a random variable with family of probability distri-

butions {g(x; θ˜); θ˜ ∈ Θ}, where Θ is the parameter space and is a subset of mth

dimensional Eucledian space <m. Let G(θ˜) be a cdf of θ˜, the the pdf f(x) defined

by

f(x) =

∫
θ∈Θ

g(x; θ˜)dG(θ˜) (1.31)

is called a general mixture density function. In (1.31), G(·) is called the mixing

distribution.

When G(·) is discrete and assigns positive probability to a finite number of points

θi (i = 1, 2, . . . , k), the density in (1.31) can be written in the form

f(x) =
K∑
i=1

πifi(x; θi), (1.32)

where fi(x; θi) is the pdf with parameter θi of the ith component, π′is, i = 1, 2, . . . , K,

are the mixing proportions (or mixing weights or component priors). It is assumed

that π′is, i = 1, 2, . . . , K, are non-negative and
∑K

i=1 πi = 1.

The equation (1.32) represents the pdf of finite mixture of densities.

1.6.3.1 Identifiability

Identifiability is a concept which plays an important role in the analysis of the

finite mixture models. If there exists a one-to-one correspondence between the
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mixing distribution and the resulting mixture, then the mixture is called identifi-

able. Unidentifiable mixtures cannot be expressed uniquely as functions of mixing

distributions and component. For example. the finite mixture of uniform distri-

butions is not identifiable because the mixture density can be represented in two

different forms.

The concept of identifiability was introduced by Teicher (1960, 1961, 1963, and

1967) and he developed a theory to identify mixtures. He showed that a finite mix-

ture of Poisson distributions is identifiable but mixtures of binomial distributions

are not identifiable in certain cases. The identifiability of finite mixtures of negative

binomial component distributions was showed by Yakowitz and Spragins (1968).

An excellent and lucid account on the concept of identifiability of mixtures can

be found in the work by Titterington et.a1. (1985). They pointed out that finite

mixtures of continuous densities are mostly identifiable except uniform densities.

More discussions on identifiability of finite mixtures can be found in Patil and

Bildikar (1966), McLachlan and Basford (1988) and Maritz and Levin (1989).

A comprehensive review on the topic can be perceived in Prakasa Rao (1992)

and Lindsay (1995). Identifiability of a finite mixture of Gompertz densities was

showed by Al-Hussaini et.al. (2000), Sankaran and Maya (2004, 2005) investigated

the identifiability of beta finite mixtures and Pareto finite mixtures. Panteleeva

et al. (2015) addressed that the Weibull mixtures is identifiable.

1.6.3.2 Parameter estimation in finite mixture models

There are number of methods that have been suggested for estimating the param-

eters in a finite mixture model over the years, e.g., Pearson (1894) applied the

method of moments that requires to find the roots of a polynomial of ninth degree

to derive the estimates of the five parameters involved in his model. An iterative

method, developed subsequently by Cohen (1967), for solving the same problem

requires solving only cubic polynomials. Fryer and Robertson (1972) and Tan and

Chang (1972) showed that the method of moments is actually inferior to MLE in a
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mixture of two normal distributions. In fact, optimal solutions are not guaranteed

by method of moments but was initially useful owing certain situations in which

solutions by maximum likelihood method were unmanageable. However, with the

invention of modern digital computers and sophisticated software programming,

maximum likelihood method became prevalent for general mixture problems.

Another popular method for estimation of parameters of the mixture models

is Bayesian method. An advantage is obtained by using prior information in

Bayesian method over maximum likelihood because inference can be drawn even

with smaller number of data points. For models with many parameters, MLE

sometimes is ill-posed when the data set is not sufficiently large. However, in

certain situations, Bayesian estimation of the parameters of mixture distributions

demands lengthy computations. Further, the posterior inference can rarely be

sampled directly because of their complicated forms, simplifying conjugate priors

exist rarely, and there are no sufficient statistics available in many situations to

simplify the analysis.

1.6.3.3 Fields of applications and recent developments

In many real life situations, finite mixture models are being utilized considerably

for statistical analysis . A chronological survey on the field of applications is sough

below.

A representative cross-section of the field of applications include the study on

evening temperature distribution (Charlier and Wicksell, 1924), death times of

mice (Muench, 1936), frequencies of comet (Schilling, 1947), association of chromo-

somes (Skellam, 1948), lifetime related to valves (Davis, 1952; Everitt and Hand,

1981) frequencies of water plankton (Cassie, 1962), heights of plants (Tanaka,

1962). response times (Cox, 1966), frequencies of death notice (Hasselblad, 1969),

lengths of pike (Macdonald, 1971), traffic gaps (Ashton, 1971), Pollen grains

(Usinger, 1975), concentrations of crop (Peters and Coberly, 1976), test scores
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in clinical studies (Symons, 1981), frequencies of certain crimes (Harris, 1983),

fishery composition of mixed stocks (Miller, 1987), philatelic mixtures (Izenmann

and Sommer, 1988) and completion of a particular task (Desmond and Chapmall,

1993).

Along with the above applications, mixture models are helpful in robustness stud-

ies (Hyrenius, 1950 and Tan, 1980), latent structure models and cluster analysis

(Fielding, 1977; Symons, 1981 and McLachlan and Basford, 1988), approximation

of different distributions (Dala1, 1978), generation of random variables (Peter-

son and Kronmal, 1982), density estimation based on kernel (Titterington, 1983),

outlier analysis (Barnett and Lewis, 1984), prior density modeling (Diaconis and

Ylvisaker, 1985) and models based on artificial neural networking (Rip1ey, 1994).

Sankaran and Maya (2005) used properties of finite mixture of Pareto distributions

in the context of income analysis.

In medical research also finite mixture densities are useful in many applications.

Finite mixture densities are utilized to model age related to schizophrenia (Levine,

1981; McLachlan, 1987; McLachlan and Peel, 2000 and Everitt, 2003), to model

mortality rate variations between different geographical areas (Betemps and Buncher,

1993), in survival data modeling (McGiffin et al., 1993; McLachlan and McGiffin,

1994 and McLachlan and Peel, 2000) and to identify brain activation regions in

functional magnetic resonance imaging (Bullmore et al., 1996; Everitt and Bull-

more, 1999 and Everitt, 1998).

In lifetime data analysis, the population of lifetimes are sometime disintegrated

into sub-populations based on lifetimes of units under various periods of produc-

tion, design differences, different raw materials utilized etc. In such situations,

use of finite mixture of distributions is usual to model data. Accordingly, finite

mixture of two exponential distributions for the analysis of failure times trans-

mitter receivers of a single commercial airline was utilized by Mendenhall and

Hader (1958). Mixture of exponential models was used by Cox (1959) for anal-

ysis of data on failure times by classifying the data on failure times into two
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sub-populations on the basis of identified and unidentified cause. For life testing

of electron tubes, Kao (1959) utilized finite mixture of Weibull distributions. In

reliability analysis, finite mixtures of inverse Gaussian distributions were studied

by Ahmad (1982), Amoh (1983) and Al-Hussaini and Ahmad (1984). Different

Properties and characterizations of finite mixture of exponential distributions can

be found in Nassar and Mahmoud (1985) and Nassar (1988).

Characterizations of finite mixture of gamma distribution has been studied by

Gharib (1995) and characterizations using concepts of reliability of finite mixture

models have been addressed by Ahmad (1996). Al-Hussaini and Osman (1997)

obtained the median of finite mixture of k components. Al-Hussaini (1999) used

Bayesian method to predict observations under a mixture of two exponential com-

ponents. Later, Al-Hussaini et al. (2000) studied the finite mixture of Gompertz

densities as a lifetime model and order statistics based Bayesian predictive den-

sities for finite mixture models has been discussed by Al-Hussaini (2001). In

competing risk situation, finite mixture of distributions can be useful in modeling

time to failure of a system (Crowder, 2001). Gamma distribution mixture and

related applications can be found in Wiper et al. (2001). Behaviour of the hazard

rate of finite mixture of distributions has been studied by Block et al. (2003).

Jaheen (2003) has studied the aspects in Bayesian prediction under a mixture of

two-component Gompertz life distributions. Efficient tools has been developed by

Cross (2004) in reliability context using finite mixture of distributions. More appli-

cations and properties of finite mixture models in reliability theory can be found in

Al-Hussaini and Sultan (2001). Later, Sultan et al. (2007) has studied properties

and estimation aspects in the finite mixture of inverse Weibull distributions.

Afify (2011) studied classical estimation of mixed Rayleigh distribution. Kazmi et

al. (2012) investigated on the Bayesian estimation for two-component mixture of

Maxwell distributions. Mixture of Gamma distributions for Bayesian analysis in

queuing theory has been investigated by Mohammadi et al. (2013). Mixture of the

inverse Rayleigh distribution, its properties and estimation in Bayesian framework
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has been studied by Ali (2014). Ateya (2014) has investigated finite mixture of

generalized exponential distributions based on censored data and Bayesian pre-

diction under a finite mixture of generalized exponential lifetime model has been

investigated by Mohamed (2014). Mohammed et al. (2015) recently used finite

mixture model of exponential, gamma and Weibull distributions to analyze sur-

vival data in heterogeneous set up. For recent developments on finite mixtures

of distribution, one can see Zhang and Huang (2015), Tahir et al. (2016) and

Feroze (2016). Some results on information properties of mixture distributions is

very recently addressed by Toomaj and Zarei (2017) and a method to generate a

random sample from a finite mixture distribution has been proposed recently by

Ghorbanzadeh et al. (2017).

With the above search of literature, below is presented the genesis of the thesis

emphasizing on the motivation of the present research work, broader aims and

objectives and scope of the research.

1.7 Genesis of the thesis

1.7.1 Motivation

Finite mixture distributions arising from the standard life distributions play, in

most of the times, a better role in modeling real life phenomena as compared to

the standard ones (cf. discussion in sub-section 1.6.3.3 of section 1.6) and knowing

the importance of exponential and gamma distributions in lifetime modeling as

discussed in section 1.6, the research work presented in this thesis is motivated in

introducing newer probability distributions that might have added flexibility with

regards to their survival properties and distributional form. Finite mixtures are

used to derive new parametric families of distributions from old ones; this is done

by using mixing distributions that have a common parameter; the mixture retains
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that parameter so that it may yield a new parametric family.

In the present study, the role of finite mixture of exponential distribution with

parameter θ and gamma distribution with scale parameter θ and shape parameter

3 with special kind of mixing proportions in the context of time-to-event situations

has been examined.

1.7.2 Aims and objectives

The aim of this research work is to introduce and study more flexible probability

distributions that are having additional flexibility over some popular life distribu-

tions available in the literature. The objectives are four-fold.

(i) To investigate the basic distributional, structural and survival (or reliability)

properties of the newly proposed probability distributions.

(ii) To explore and study important survival and/or reliability properties that

could make the proposed models competitive among other popular lifetime

models.

(iii) To investigate the statistical inference procedures while estimating the un-

known parameters involved in the proposed distributions.

(iv) To find applicability of the proposed distributions in the area of survival

analysis and reliability studies.

1.7.3 Scope

• The study is confirmed in investigating newer probability distributions syn-

thesized from popular standard life distributions, viz., exponential and gamma,

and possible extensions or generalizations of them.
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• The scope of the study is limited to the probability distributions of univariate

random variables that are continuous and non-negative. The problems of

identifiability of the finite mixture of distributions, presented in this thesis,

are beyond the scope of the thesis.

• The application area of the study is restricted to time-to-event data sets

arising from the fields of survival and reliability analysis.

1.8 Organization of the thesis

Rest of the thesis dissertation is organized as below.

In Chapter 2, a new probability distribution, named as xgamma distribution,

is proposed, its different distributional properties, viz., shape, moments and re-

lated measures, and survival properties, viz., hazard rate function, MRL func-

tion, stochastic ordering are studied. Classical methods (method of moments and

method of maximum likelihood) of estimating parameter of xgamma distribution

are proposed for complete sample situation along with a simulation study and

with a real lifetime data illustration. The proposed distribution is compared with

exponential distribution with respect to certain properties and application.

Chapter 3 is dedicated in exploring and studying some additional distributional

properties (such as characteristic and generating functions, important entropy

measures, distributions of extreme order statistics) and additional survival prop-

erties (such as mean time to failure, ageing intensity, stress-strength reliability) of

xgamma distribution. Classical as well as Bayesian methods of estimating parame-

ter and important survival characteristics of xgamma distribution are investigated

under progressively type-II censoring scheme. Simulation study and real life data

illustration are presented to address the consequences of the methods described.
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Considering the role of truncated distributions in the area of lifetime modeling,

three truncated versions (double, lower and upper) of xgamma distribution is in-

troduced in Chapter 4. Main emphasis is given in studying properties of upper

truncated version of xgamma distribution. Different distributional properties, such

as, moments and associated measures, entropy measures, distributions of extreme

order statistics, and survival properties like, hazard rate function, reversed hazard

rate function, are studied for upper truncated xgamma distribution. Method of

maximum likelihood are proposed for the upper truncated version of xgamma dis-

tribution in complete sample situation. Real life data are analyzed to address the

applicability of truncated versions and compared with popular life distributions.

Weighted distributions are very frequently studied in diverse area of applications.

In Chapter 5, a weighted version of xgamma distribution is proposed taking a

special non-negative weight function and, as a special case, length biased version

of xgamma distribution is introduced and its different distributional and survival

properties are studied in details. The main aim of the chapter is to find an appli-

cation of weighted xgamma distribution in modeling lifetime data. Method of mo-

ments and method of maximum likelihood are proposed for estimating unknown

parameter in length biased xgamma distribution in complete sample situation.

Simulation study and real life data illustration are presented to understand the

applicability of the proposed distribution and some popular life distributions are

compared.

Chapter 6 deals with introducing and studying of two extensions or generaliza-

tions, viz., the quasi xgamma and the two-parameter xgamma distributions, of

xgamma distribution. Different distributional (such as shape, moments and re-

lated measures, important entropy measures, order statistics distributions) and

survival properties (such as hazard rate function, MRL function, stochastic or-

derings) are studied for both the extensions separately. Method of moments and

method of maximum likelihood are proposed for estimating unknown parameters

in each of the extension for complete sample situation supported with simulation
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studies, real lifetime data illustrations and comparisons with other life distribu-

tions.



Chapter 2

The xgamma distribution

The exponential and gamma are well known probability distributions used for

modeling lifetime data. Both the distributions possess some interesting structural

properties, for example, exponential distribution possesses memory less and con-

stant hazard rate properties, see section 1.6 of Chapter 1 for discussion. Moreover,

exponential distribution can be used in modeling time-to-event data or modeling

waiting times as a special case of gamma distribution. Various extensions of both

the distributions can be found in the literature for describing the uncertainty be-

hind real life phenomena arising in the area of survival analysis (see Johnson et

al., 1994; Lawless, 2002) and reliability engineering (see for more details Barlow

and Proschan, 1975).

In this chapter, a new probability distribution, namely, xgamma distribution, is

introduced and studied. A special finite mixture of exponential and gamma distri-

butions are been considered for obtaining the form of the distribution, and hence,

the name xgamma is proposed. The rest of the chapter is organized as follows.

The xgamma distribution is introduced in section 2.1. Shape of the distribution,

moments and measures are investigated in the section 2.2 and in its dedicated sub-

sections. Section 2.3 deals with the survival properties, such as, hazard rate and

MRL functions, of xgamma distribution. In section 2.4, two classical methods of

33
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estimation, viz., method of moments and method of maximum likelihood, are been

proposed for complete sample case. An algorithm for generating random samples

from xgamma distribution is described in section 2.6 along with a Monte-Carlo

simulation study for investigating the behaviour of estimates. In section 2.7, a

real data set on time-to-event is analyzed to address the possible application of

xgamma distribution and comparison is made with exponential distribution. Fi-

nally, section 2.8 concludes the chapter with important findings.

2.1 Methodology and synthesis

As indicated above, a special finite mixture of exponential and gamma distribu-

tions is used to obtain a new probability distribution, called as xgamma distribu-

tion. we present below the synthesis of the distribution.

By considering K = 2 in (1.32), the pdf of a non-negative continuous random

variable X can be re-written as

f(x) =
2∑
i=1

πifi(x). (2.1)

We consider f1(x) to follow an exponential distribution with parameter θ and f2(x)

to follow a gamma distribution with scale parameter θ and shape parameter 3 i.e.,

f1(x) ∼ exp(θ) and f1(x) ∼ gamma(3, θ) with π1 = θ
(1+θ)

and π2 = 1−π1 in (2.1).

So, we obtain the probability density function (pdf) of xgamma random variable,

X, as

f(x) =
θ

(1 + θ)
θe−θx +

1

(1 + θ)

θ3x3−1e−θx

Γ(3)
,

=
θ2

(1 + θ)

(
1 +

θ

2
x2

)
e−θx,
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where Γ(a) =
∫∞

0
za−1e−zdz is the gamma function.

Then, the following definition can be given for the xgamma distribution with one

parameter θ.

Definition 2.1. A non-negative continuous random variable, X, is said to follow

an xgamma (XG) distribution with parameter θ if its pdf is of the form

f(x) =
θ2

(1 + θ)

(
1 +

θ

2
x2

)
e−θx, x > 0, θ > 0. (2.2)

It is denoted by X ∼ xgamma(θ) or by X ∼ XG(θ).

Now, we find the cumulative distribution function (cdf) of xgamma(θ). For de-

riving cdf corresponding to (2.2), we consider

F (x) = 1− Pr(X > x) = 1−
∫ ∞
x

f(t)dt.

Now,

Pr(X > x) =

∫ ∞
x

θ2

(1 + θ)

(
1 +

θ

2
t2
)
e−θtdt,

=
θ2

(1 + θ)

[∫ ∞
x

e−θtdt+
θ

2

∫ ∞
x

t2e−θtdt

]
.

We calculate,

∫ ∞
x

e−θtdt =
e−θx

θ
, (2.3)∫ ∞

x

te−θtdt =
xe−θx

θ
+
e−θx

θ2
. (2.4)∫ ∞

x

t2e−θtdt =
x2e−θx

θ
+

2

θ

(
xe−θx

θ
+
e−θx

θ2

)
. (2.5)
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So, using (2.3) and (2.5) we have

Pr(X > x) =
θ2

(1 + θ)

[
e−θx

θ
+
θ

2

{
x2e−θx

θ
+

2

θ

(
xe−θx

θ
+
e−θx

θ2

)}]
,

=
θ2

(1 + θ)

[
e−θx

θ
+
x2e−θx

2
+
xe−θx

θ
+
e−θx

θ2

]
,

=
θ2

(1 + θ)

[
θe−θx + x2

2
θ2e−θx + θxe−θx + e−θx

θ2

]
,

=
e−θx

(1 + θ)

(
1 + θ + θx+

θ2x2

2

)
.

Hence, the cdf of X ∼ xgamma(θ) is given by

F (x) = 1−
(1 + θ + θx+ θ2x2

2
)

(1 + θ)
e−θx, x > 0. (2.6)

Figure 2.1 shows the pdf plots of xgamma distribution for some values of θ.

Figure 2.1: Probability density curves of xgamma distribution for some values
of θ.
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2.2 Shape, moments and related measures

This section is dedicated in studying shape, moments and other related measures

of xgamma(θ).

2.2.1 Mode

To find the shape of a probability distribution, mode is an important measure.

The first derivative of (2.2) with respect to x gives

d

dx
f(x) =

θ2

(1 + θ)

(
θx− θ − θ2

2
x2

)
e−θx. (2.7)

And, the second derivative of (2.2) with respect to x gives

d2

dx2
f(x) =

θ2

(1 + θ)

[
(θ − θ2x)e−θx −

(
θx− θ − θ2

2
x2

)
θe−θx

]
. (2.8)

Equating (2.7) to 0, we find that, for 0 < θ ≤ 1/2, (2.8) is negative if x = 1+
√

1−2θ
θ

.

This implies

(i) for θ ≤ 1/2, f(x) = 0 implies 1+
√

1−2θ
θ

is the unique critical point at which

the pdf f(x) is maximized,

(ii) for θ > 1/2, d
dx
f(x) ≤ 0, i.e., f(x) decreases in x.

Hence, the mode of xgamma distribution is given by

Mode(X) =


1+
√

1−2θ
θ

, if 0 < θ ≤ 1/2.

0 , otherwise.

(2.9)

It is noted that xgamma(θ) is unimodal.
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2.2.2 Non-central moments

Now, we find non-central moments for xgamma(θ).

The rth order moment about origin of xgamma distribution is obtained as

µ′r = E(Xr) =

∫ ∞
0

xr
θ2

(1 + θ)

(
1 +

θ

2
x2

)
e−θxdx,

=
θ2

(1 + θ)

[∫ ∞
0

xre−θxdx+
θ

2

∫ ∞
0

xr+2e−θxdx

]
,

=
θ2

(1 + θ)

[
Γ(r + 1)

θr
+
θ

2

Γ(r + 3)

θr+3

]
, ,

=
θ2

(1 + θ)

[
r!

θr+1
+

(r + 2)!

2θr+2

]
,

=
r![2θ + (r + 1)(r + 2)]

2θr(1 + θ)
.

Here Γ(a) =
∫∞

0
za−1e−zdz is the gamma function.

Hence, we have,

µ′r =
r![2θ + (r + 1)(r + 2)]

2θr(1 + θ)
for r = 1, 2, . . . . (2.10)

In particular, we get

µ′1 =
(θ + 3)

θ(1 + θ)
= Mean(X) = µ(say). (2.11)

µ′2 =
2(θ + 6)

θ2(1 + θ)
; µ3

′ =
6(θ + 10)

θ3(1 + θ)
; µ′4 =

24(θ + 15)

θ4(1 + θ)
.

It is noted that for exponential distribution with parameter θ, the rth order moment

about origin is µ′r = r!/θr.
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2.2.3 Central moments and related measures

In this sub-section, we study central moments, coefficient of variation, measures

of skewness and kurtosis for xgamma(θ).

The jth order central moment of xgamma distribution can be obtained from the

relation,

µj = E[(X − µ)j] =

j∑
r=0

(
j

r

)
µr
′(−µ)j−r. (2.12)

In particular, we calculate,

µ2 = µ′2 − µ2, µ is given in (2.11),

=
2(θ + 6)

θ2(1 + θ)
−
[

(θ + 3)

θ(1 + θ)

]2

,

=
2(θ + 6)(θ + 1)− (θ + 3)2

θ2(1 + θ)2
,

=
(θ2 + 8θ + 3)

θ2(1 + θ)2
,

= V ar(X) = σ2(say). (2.13)

The third order central moment is obtained by using

µ3 = µ′3 − 3µ′2µ+ 2µ3,

=
6(θ + 10)

θ3(1 + θ)
− 6(θ + 6)(θ + 3)

θ3(1 + θ)2
+

2(θ + 3)3

θ3(1 + θ)3

After simplification, we get,

µ3 =
2(θ3 + 15θ2 + 9θ + 3)

θ3(1 + θ)3
. (2.14)
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Similarly, the forth order central moment is obtained by using

µ4 = µ′4 − 4µ′3µ+ 6µ′2µ
2 − 3µ4,

=
24(θ + 15)

θ4(1 + θ)
− 24(θ + 10)(θ + 3)

θ4(1 + θ)2
+

12(θ + 6)(θ + 3)2

θ4(1 + θ)3
− 3(θ + 3)4

θ4(1 + θ)4
.

On simplification, we get,

µ4 =
3(5θ4 + 88θ3 + 310θ2 + 288θ + 177)

θ4(1 + θ)4
. (2.15)

The coefficients of variation (γ), skewness (
√
β1) and kurtosis (β2) for xgamma(θ)

are obtained as

γ =

√
(θ2 + 8θ + 3)

(θ + 3)
, (2.16)

√
β1 =

√
µ2

3

µ3
2

=
2(θ3 + 15θ2 + 9θ + 3)

(θ2 + 8θ + 3)3/2
(2.17)

and

β2 =
µ4

µ2
2

=
3(5θ4 + 88θ3 + 310θ2 + 288θ + 177)

(θ2 + 8θ + 3)2
, (2.18)

respectively.

The coefficients are increasing functions in θ (see Figure 2.2 for the graph of γ and
√
β1 for varying θ).

The following points are noted from the current section.

(i) The mode of exponential distribution is always at 0 while the mode of

xgamma can be varied as seen above. It is seen that if X ∼ xgamma(θ), then

Mode(X) < Median(X) < Mean(X) which also holds good for exponential

distribution.
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Figure 2.2: Plots for coefficients of variation and skewness

(ii) The values of γ,
√
β1 and β2 for exponential distribution are 1, 2 and 6,

respectively. Hence, the xgamma distribution is more flexible than the ex-

ponential distribution in these aspects.

2.3 Survival properties

Among survival properties, hazard rate function, MRL function and stochastic

order relations for xgamma(θ) are studied in this section.

For xgamma distribution, the survival function is given by

S(x) = Pr(X > x) =
(1 + θ + θx+ θ2x2

2
)

(1 + θ)
e−θx. (2.19)



The xgamma distribution 42

2.3.1 Hazard rate or failure rate function

The hazard rate function (or failure rate function) for a continuous probability

distribution with pdf f(x), cdf F (x) and survival function S(x) is defined by

h(x) = lim
4x→0

Pr(x < X < x+4x|X > x)

4x
==

f(x)

S(x)
. (2.20)

For xgamma distribution, the hazard rate (or failure rate) function is obtained as

h(x) =
θ2(1 + θ

2
x2)

(1 + θ + θx+ θ2

2
x2)

, x > 0. (2.21)

The hazard rate function in (2.21) possesses the following properties.

(i) h(0) = θ2

(1+θ)
= f(0)

(ii) h(x) is an increasing function in x >
√

2/θ with θ2/(1 + θ) < h(x) < θ.

Remark. For exponential distribution with parameter θ, h(x) = θ and so equation

(2.21) shows flexibility of xgamma distribution over exponential distribution.

Figure 2.3 shows the hazard rate function of xgamma distribution for selected

values of θ.

2.3.2 MRL function

As discussed in section 1.3.3 of Chapter 1, mean residual life (MRL) function is

an important survival characteristic of a life distribution.

Using the equation in (1.17), i.e.,

m(x) = E[X − x|X > x] =
1

S(x)

∫ ∞
x

S(t)dt,
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Figure 2.3: Hazard rate function plot of xgamma(θ) for some values of θ

for the xgamma distribution, the MRL function can be obtained as

m(x) =
1

(1 + θ)S(x)

∫ ∞
x

(
1 + θ + θt+

θ2t2

2

)
e−θtdt,

Using (2.3), (2.4) and (2.5), we have

=
1

(1 + θ)S(x)

[
(1 + θ)

∫ ∞
x

e−θtdt+ θ

∫ ∞
x

te−θtdt+
θ2

2

∫ ∞
x

t2e−θtdt

]
,

=
1

(1 + θ + θx+ θ2x2

2
)e−θx

[
3e−θx

θ
+ (2x+ 1)e−θx +

θx2e−θx

2

]
,

=
1

(1 + θ + θx+ θ2x2

2
)

(
3

θ
+ 2x+ 1 +

θx2

2

)
,

=

(
1 + θ + θx+ θ2x2

2

)
+ (2 + θx)

θ
(
1 + θ + θx+ θ2x2

2

) .

Hence, the MRL function of xgamma(θ) is given by

m(x) =
1

θ
+

(2 + θx)

θ(1 + θ + θx+ θ2

2
x2)

. (2.22)
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The MRL function in (2.22) has the following properties.

(i) m(0) = µ = (θ+3)
θ(1+θ)

.

(ii) m(x) in decreasing in x and θ with 1
θ
< m(x) < (θ+3)

θ(1+θ)
.

Note.

For the exponential distribution with parameter θ, MRL function is 1/θ and hence

equation (2.22) shows flexibility of xgamma distribution over the exponential dis-

tribution. Figure 2.4 shows the plot of MRL function of xgamma distribution for

some values of θ.

Figure 2.4: Plot for MRL function of xgamma(θ) for some values of θ

2.4 Stochastic ordering

Recall the basic definition on stochastic orderings given in the sub-section 1.3.5 of

Chapter 1.
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Definition 2.2. A continuous random variable X is said to be smaller than a

random variable Y in the

(i) stochastic order (X ≤ST Y ) if FX(x) ≥ FY (x) for all x.

(ii) hazard rate order (X ≤HR Y ) if hX(x) ≥ hY (x) for all x.

(iii) mean residual life order (X ≤MRL Y ) if mX(x) ≤ mY (x) for all x.

(iv) likelihood ratio order (X ≤LR Y ) if fX(x)
fY (x)

decreases in x.

The following theorem shows that the xgamma random variables are ordered with

respect to the strongest likelihood ratio ordering.

Theorem 2.3. Let X ∼ xgamma(θ1) and Y ∼ xgamma(θ2). If θ1 > θ2 then

X ≤LR Y and hence the other orderings.

Proof. Note that,

fX(x)

fY (x)
=
θ2

1(1 + θ2)(2 + θ1x
2)

θ2
2(1 + θ1)(2 + θ2x2)

e(θ2−θ1)x.

Differentiating with respect to x, we have

d

dx

(
fX(x)

fY (x)

)
= (θ2 − θ1)

θ2
1(1 + θ2)

θ2
2(1 + θ1)

e(θ2−θ1)x

[
(2 + θ1x

2)

(2 + θ2x2)
− 4x

(2 + θ2x2)2

]
,

which is negative for θ1 > θ2.

Hence,
fX(x)

fY (x)
decreases in x and X ≤LR Y.

Now, by Shaked and Shanthikumar (1994), we have

X ≤LR Y ⇒X ≤HR Y ⇒ X ≤MRL Y and X ≤HR Y ⇒ X ≤ST Y.

Hence the proof.
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2.5 Parameter estimation

In this section method of moments and method of maximum likelihood are pro-

posed for complete sample situation to estimate the unknown parameter θ in

xgamma distribution.

2.5.1 Method of moments

Given a random sample X1, X2, . . . , Xn of size n from the xgamma distribution,

the moment estimator for the parameter θ of xgamma distribution is obtained as

follows.

We equate sample mean, X̄ = 1
n

∑n
i=1 Xi with first order moment about origin

and we get

X̄ =
(θ + 3)

θ(1 + θ)
,

which provides a quadratic equation in θ as

X̄θ2 + (X̄ − 1)θ − 3 = 0.

Solving it, we get the moment estimator, θ̂M (say), of θ as

θ̂M =
−(X̄ − 1) +

√
(X̄ − 1)2 + 12X̄

2X̄
for X̄ > 0. (2.23)

The following theorem shows that the moment estimator of θ is positively biased.

Theorem 2.4. The moment estimator of xgamma distribution is positively biased,

i.e., E(θ̂M)− θ > 0.

Proof. Let θ̂M = g(X̄) and g(t) =
−(t−1)+

√
(t−1)2+12t

2t
. For t > 0, g

′′
(t) > 0 and

hence g(t) is strictly convex.
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Thus by the Jensen’s inequality, we have

g[E(X̄)] < E[g(X̄)].

Now since

g[E(X̄)] = g(µ) = g

[
(θ + 3)

θ(1 + θ)

]
= θ,

we have E(θ̂M)− θ > 0, and hence the proof.

It is noted that the sample raw moments are unbiased and consistent estimators

of the corresponding population raw moments. They are also asymptotically nor-

mally distributed (CAN estimators) by the virtue of central limit theorem. Thus

the moment estimator, θ̂M , of θ for xgamma distribution is consistent, see Casella

and Berger (2002).

2.5.2 Method of maximum likelihood

Let x = (x1, x2, . . . , xn) be n observations on a random sample X1, X2, · · · , Xn of

size n drawn from xgamma(θ). Then, the likelihood function is given by

L(θ|x) =
n∏
i=1

θ2

(1 + θ)

(
1 +

θ

2
x2
i

)
e−θxi . (2.24)

The log-likelihood function is obtained as

l(θ) = lnL(θ|x) = 2n ln θ − n ln(1 + θ) +
n∑
i=1

ln

(
1 +

θ

2
x2
i

)
− θ

n∑
i=1

xi. (2.25)

Taking the first (partial) derivative with respect to θ, we have the log-likelihood

equation as

∂ lnL(θ|x)

∂θ
= 0,
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which implies

n∑
i=1

x2
i /2

(1 + θ
2
x2
i )

+
2n

θ
− n

(1 + θ)
−

n∑
i=1

xi = 0. (2.26)

To obtain maximum likelihood estimator (MLE) of θ, θ̂(say), we can maximize

(2.25) directly with respect to θ or can solve the non-linear equation, ∂ lnL(θ|x)
∂θ

= 0.

It is seen that ∂ lnL(θ|x)
∂θ

= 0 cannot be solved analytically and hence numerical

iteration technique, such as, Newton-Raphson algorithm, is applied to solve (2.26)

for which (2.25) is maximized. The initial solution for such an iteration can be

taken as θ0 = n∑n
i=1 xi

. Using this initial solution, we have,

θ(i) = θ(i−1) − l(θ(i−1)|x)

l′(θ(i−1)|x)
for the ith iteration.

We choose θ(i) such that θ(i) ∼= θ(i−1).

Remark. Both the moment estimator and maximum likelihood estimator of ex-

ponential distribution is 1
X̄

which is also biased and consistent.

2.6 Simulation study

The inversion method for generating random data from the xgamma distribution

fails because the equation F (x) = u, where u is an observation from the uniform

distribution on (0, 1), cannot be explicitly solved in x. However, the fact that the

xgamma distribution is a special finite mixture of exp(θ) and gamma(3, θ) distri-

butions can be used to construct a simulation algorithm.

To generate random data Xi; i = 1, 2, . . . , n, from xgamma distribution with pa-

rameter θ, the following algorithm is proposed.

1. Generate Ui ∼ uniform(0, 1), i = 1, 2, . . . , n.

2. Generate Vi ∼ exp(θ), i = 1, 2, . . . , n.
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3. Generate Wi ∼ gamma(3, θ), i = 1, 2, . . . , n.

4. If Ui ≤ θ/(1 + θ), then set Xi = Vi, otherwise, set Xi = Wi.

A Monte-Carlo simulation study is carried out by considering N = 10, 000 times

for selected values of n and θ. Samples of sizes 20, 40 and 100 are considered

and values of θ are taken as 0.1, 0.5, 1.0, 1.5, 3 and 6. The required numerical

evaluations are carried out using R software. The following two measures are

computed.

(i) Bias of the simulated estimates θ̂i, i = 1, 2, . . . , N :

1

N

N∑
i=1

(θ̂i − θ).

(ii) Mean Square Error (MSE) of the simulated estimates θ̂i, i = 1, 2, . . . , N :

1

N

N∑
i=1

(θ̂i − θ)2.

The results of the simulation study are shown in Table 2.1. In Table 2.1, for each

selected value of θ, the corresponding values relating to xgamma distribution are

presented in first row and that relating to exponential distribution in second row.

The following important observations are made from the simulation study.

(i) The bias is positive in case of xgamma distribution (as shown in the The-

orem 2.4). Moreover, bias and MSE decreases as n increases and increases

when θ increases.

(ii) In terms of bias and MSE, the parameter θ under the xgamma distribution

is efficiently estimated compared to that of the exponential distribution.
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Table 2.1: Simulation table showing average bias and MSE of the estimators

θ Model
n = 20 n = 40 n = 100

Bias MSE Bias MSE Bias MSE

0.1
Xgamma 0.00193 0.00020 0.00078 0.00009 0.00034 0.00004
Exponential -0.06375 0.00409 -0.06420 0.00414 -0.06438 0.00415

0.5
Xgamma 0.01182 0.00595 0.00539 0.00275 0.00199 0.00106
Exponential -0.27887 0.07934 -0.28258 0.08057 -0.28455 0.08125

1.0
Xgamma 0.02655 0.02750 0.01347 0.01290 0.00517 0.00499
Exponential -0.48093 0.24223 -0.49040 0.24558 -0.49631 0.24828

1.5
Xgamma 0.04411 0.07234 0.02804 0.03395 0.00871 0.01221
Exponential -0.63116 0.43490 -0.64478 0.43260 -0.65975 0.44133

3.0
Xgamma 0.12181 0.36497 0.05765 0.15694 0.02204 0.05985
Exponential -0.88938 1.04281 -0.94784 1.00708 -0.98001 1.0019

6.0
Xgamma 0.27864 1.75155 0.14144 0.78423 0.05511 0.28684
Exponential -1.06299 2.59379 -1.19641 2.09340 -1.28001 1.88262

2.7 Application

In this section, a real data set is analyzed as an illustration to show that the

xgamma distribution can be a better model than one based on the exponential

distribution.

Data on relief times (in hours) of 20 patients receiving an analgesic (Gross and

Clark, 1975) are used for the purpose. Both the xgamma and exponential dis-

tributions are fitted to this data set. Maximum likelihood estimates (MLEs) for

both the cases are calculated for the data. For model selection, negative log-

likelihood value, Akaike information criterion (AIC), see Akaike (1974), consistent

Akaike information criteria (cAIC) and Bayesian information criterion (BIC), see

Schwarz (1978), are considered. We note,

AIC = −2 lnL+ 2k, (2.27)

cAIC = AIC + 2k(k + 1)/(n− k − 1), (2.28)

BIC = k ln(n)− 2 lnL, (2.29)

where lnL denotes the log-likelihood function evaluated at the maximum likelihood

estimate, k is the number of parameters and n is the sample size.
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Lower the values of negative log-likelihood value, AIC, cAIC and BIC, better is

the model. The required numerical evaluations are carried out using R software.

Table 2.3 provides the MLEs with corresponding standard errors of estimates in

parentheses and model selection criteria for the model parameters.

From Table 2.3, it is clear that the values of the AIC, cAIC and BIC are smaller for

the xgamma distribution as compared to the exponential model and it follows that

the xgamma distribution provides better fit to the data. So the new distribution

seems to be a competitive model in describing time-to-event data set.

Table 2.2: Data on relief times of 20 patients receiving an analgesic.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4 3.0 1.7 2.3 1.6 2.0

Table 2.3: Estimates of parameters and model selection criteria for relief times
data

Model Estimate(Std. Error) -Log-likelihood AIC cAIC BIC

Exponential(θ) θ̂=0.52632(0.11769) 32.84 67.67 67.90 68.67

Xgamma(θ) θ̂=1.10747(0.16943) 31.51 65.02 65.24 66.01

2.8 Conclusion

The xgamma distribution, a special finite mixture of exponential distribution with

parameter θ and gamma distribution with scale θ and shape 3, is introduced and

studied in this chapter. Various mathematical and structural properties of the

distribution are been studied including the shape, moments, measures of skewness

and kurtosis. Important survival properties like, hazard rate function and MRL

function are derived and their properties are been discussed.

The method of moments and method of maximum likelihood are been proposed for

estimating the unknown parameter of xgamma distribution. In order to illustrate
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the applicability of the xgamma distribution, a real lifetime data is analyzed and

xgamma distribution is compared with exponential distribution.

The following important findings are observed in this chapter.

1. The one parameter xgamma distribution is unimodal and different values of

the parameter regulates the shape of the distribution.

2. The hazard rate function is initially decreasing and then increasing and hav-

ing added flexibility over the constant hazard rate of exponential distribu-

tion. Moreover, MRL function is decreasing for entire range of xgamma

random variable.

3. xgamma random variables are ordered with strongest likelihood ratio order-

ing and thereby other stochastic orderings.

4. It is seen that the moment estimator of the parameter in xgamma distribu-

tion is positively biased.

5. Comprehensive algorithm for generating random samples from xgamma dis-

tribution is proposed. A simulation study confirms that estimates of the

parameter behave satisfactorily for larger sample sizes.

6. Real lifetime data illustration shows that xgamma provides better fit to a

lifetime data set as compared to the exponential distribution and has the

potential as a competent life distribution for modeling time-to-event data

sets.



Chapter 3

Survival estimation in xgamma

distribution

In the Chapter 2, we have introduced the xgmma distribution and have studied

some distributional and survival properties of it. We have also found that xgmma

distribution has certain flexibility over exponential distribution and could be uti-

lized as a potential life distribution in describing time-to-even data set.

There are many scenarios in life-testing and reliability experiments in which units

are lost or removed from experimentation before failure. The loss may occur un-

intentionally, or it may have been designed so in the study. More often, however,

the removal of units from experimentation is pre-planned and intentional, and is

done so in order to free up testing facilities for other experimentation, to save time

and cost, or to exploit the straightforward analysis that is termed as progressive

censoring of the experimental units (see section 1.4 of Chapter 1 for discussion).

In the present chapter, the objective is two-fold.

(i) Firstly, some further essential distributional properties, such as, character-

istic and generating functions, important entropy measures, distributions of

order statistics; and some additional survival and/or reliability properties,

53
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such as, mean time to failure, ageing intensity and stress-strength reliability,

are studied for xgamma distribution.

(ii) Secondly, since progressively type-II right censored sampling scheme is more

generalized and it includes complete sample and conventional type-II samples

as special cases, the problem of classical as well as Bayesian estimation for the

parameter of xgamma distribution and its important survival characteristics

under progressively type-II right censoring scheme are been considered.

The rest of the chapter is organized as follows:

Some additional distributional and survival/reliability properties of xgamma(θ)

are studied in section 3.1 and in its delegate subsections. Section 3.2 describes pro-

gressively type-II right censoring scheme and sample generation algorithm from

such scheme. Maximum likelihood (ML) method of estimation and method of

Bayesian estimation, considering progressively type-II right censoring scheme, of

the parameter of xgamma and important survival characteristics are been de-

scribed in section 3.3 and section 3.4, respectively. In section 3.5, a Monte-Carlo

simulation study is carried out to compare the estimates described in the previous

sections and results of the simulation study are depicted. Section 3.6 deals with

a real data analysis for illustration of the methods and to establish the suitability

of xgamma model among some standard lifetime models. Finally, the section 3.7

concludes by mentioning overall chapter findings and noting some open research

problems for future study.

3.1 Additional properties of xgamma(θ)

In this section some additional distributional and survival/reliability properties of

xgamma distribution are been investigated.

It is noted that in a very close fashion with the construction of Lindley distribution
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(Lindley, 1958), the xgamma distribution is a special finite mixture of the exponen-

tial distribution with mean 1/θ and gamma distribution having scale parameter θ

and shape=3, with mixing proportions θ/(1 + θ) and 1/(1 + θ), respectively.

The following theorem shows that xgamma random variate is stochastically larger

than those of exponential and Lindley.

Theorem 3.1. Let XE, XL and XXG denote the exponential, the Lindley and the

xgamma random variables with parameter θ, respectively. Then, XE <ST XL <ST

XXG.

Proof. For two random variables X and Y , X <ST Y if SX(x) < SY (x) for all

x(> 0).

Here SX(t) = 1− P (X ≤ x) = 1− FX(x), the corresponding survival function.

Now, SXE(x) = e−θx, SXL(x) = (1+θ+θx)
(1+θ)

e−θx and SXXG(x) =

(
1+θ+θx+ θ2

2
x2
)

(1+θ)
e−θx.

For given θ, SXE(x) < SXL(x) < SXXG(x) for all x(> 0). Hence the proof.

3.1.1 Characteristic and generating functions

In this sub-section, we derive the characteristic function, moment generating func-

tion and cumulant generating function for xgamma distribution with parameter θ.

The characteristic function of X ∼ xgamma(θ) is derived as

φX(t) = E(eitX) =

∫ ∞
0

θ2

(1 + θ)

(
1 +

θ

2
x2

)
e−(θ−it)xdx,

=
θ2

(1 + θ)

[∫ ∞
0

e−(θ−it)xdx+
θ

2

∫ ∞
0

x2e−(θ−it)xdx

]
,

=
θ2

(1 + θ)

[
1

(θ − it)
+

θΓ(3)

2(θ − it)3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ2

(1 + θ)

[
1

(θ − it)
+

θ

(θ − it)3

]
; t ∈ <, i =

√
−1. (3.1)
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Next, we derive the moment generating function of xgamma(θ).

The moment generating function of X can be obtained as

MX(t) = E(etX) =

∫ ∞
0

θ2

(1 + θ)

(
1 +

θ

2
x2

)
e−(θ−t)xdx,

=
θ2

(1 + θ)

[∫ ∞
0

e−(θ−t)xdx+
θ

2

∫ ∞
0

x2e−(θ−t)xdx

]
,

=
θ2

(1 + θ)

[
1

(θ − t)
+

θΓ(3)

2(θ − t)3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ2

(1 + θ)

[
1

(θ − t)
+

θ

(θ − t)3

]
; t ∈ <. (3.2)

The cumulant generating function of X is obtained by taking natural logarithm

on MX(t) and is given by

KX(t) = ln[MX(t)],

= ln
θ2

(1 + θ)(θ − t)
+ ln

[
1 +

θ

(θ − t)2

]
; t ∈ <. (3.3)

3.1.2 Entropy measures

An entropy of a random variable X is a measure of variation of the uncertainty. A

popular entropy measure is Rényi entropy, see 1.2.4 for more discussion on entropy

measures. Now, if X ∼ xgamma(θ), using (1.10) then we calculate,

∫ ∞
0

fγ(x)dx =
θ2γ

(1 + θ)γ

∫ ∞
0

(
1 +

θ

2
x2

)γ
e−γθxdx for γ > 0(6= 1).

Now, by power series expansion, we have,

(
1 +

θ

2
x2

)γ
=

γ∑
j=0

(
γ

j

)(
θx2

2

)j
.
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Hence,

∫ ∞
0

fγ(x)dx =
θ2γ

(1 + θ)γ

γ∑
j=0

(
γ

j

)(
θ

2

)j ∫ ∞
0

x2je−γθxdx,

=
θ2γ

(1 + θ)γ

γ∑
j=0

(
γ

j

)
θjΓ(2j + 1)

2j(γθ)2j+1
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ2γ

(1 + θ)γ

γ∑
j=0

(
γ

j

)
Γ(2j + 1)

2jθj+1γ2j+1
for γ > 0(6= 1)

So, the final form of Rényi entropy is obtained as

HR(γ) =
1

1− γ
ln

[∫ ∞
0

fγ(x)dx

]
,

=
1

1− γ
[2γ ln θ − γ ln(1 + θ)] +

1

1− γ
ln

[
γ∑
j=0

(
γ

j

)
Γ(2j + 1)

2jθj+1γ2j+1

]
. (3.4)

Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy. Us-

ing (1.12), i.e.,

Sq(X) =
1

q − 1
ln

[
1−

∫ ∞
0

f q(x)dx

]
for q > 0 (6= 1),

when X ∼ xgamma(θ), we find
∫∞

0
f q(x)dx. Hence,

∫ ∞
0

f q(x)dx =
θ2q

(1 + θ)q

∫ ∞
0

(
1 +

θ

2
x2

)q
e−qθxdx,

Using expansion

(
1 +

θ

2
x2

)q
=

q∑
j=0

(
q

j

)(
θx2

2

)j
,

=
θ2q

(1 + θ)q

q∑
j=0

(
q

j

)(
θ

2

)j ∫ ∞
0

x2je−qθxdx,

=
θ2q

(1 + θ)q

q∑
j=0

(
q

j

)
θjΓ(2j + 1)

2j(qθ)2j+1
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.
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So, the final form of Tsallis entropy is given by

Sq(X) =
1

q − 1
ln

[
1− θ2q

(1 + θ)q

q∑
j=0

(
q

j

)
Γ(2j + 1)

2jθj+1γ2j+1

]
for q > 0( 6= 1). (3.5)

Now, we find Shannon measure of entropy.

Using (1.11), i.e.,

H(f) = E[− ln f(x)] = −
∫ ∞

0

ln f(x)f(x)dx,

Shannon measure of entropy can be calculated. For xgamma(θ), Shannon measure

of entropy can be derived as below.

H(f) = −
∫ ∞

0

ln f(x)f(x)dx,

= −
∫ ∞

0

ln

[
θ2

(1 + θ)

(
1 +

θ

2
x2

)
e−θx

]
f(x)dx,

= −
[∫ ∞

0

ln
θ2

(1 + θ)
f(x)dx+

∫ ∞
0

ln

(
1 +

θ

2
x2

)
f(x)dx− θ

∫ ∞
0

xf(x)dx

]
,

= −
[
ln

θ2

(1 + θ)
+

θ2

(1 + θ)

∫ ∞
0

ln

(
1 +

θ

2
x2

)(
1 +

θ

2
x2

)
e−θxdx− (θ + 3)

(1 + θ)

]
.

(3.6)

Now,

θ2

(1 + θ)

∫ ∞
0

ln

(
1 +

θ

2
x2

)(
1 +

θ

2
x2

)
e−θxdx

=
θ2

(1 + θ)

∫ ∞
0

ln

(
1 +

θ

2
x2

)
e−θxdx+

θ2

(1 + θ)

θ

2

∫ ∞
0

ln

(
1 +

θ

2
x2

)
x2e−θxdx.

Putting the expansion,

ln

(
1 +

θ

2
x2

)
=
∞∑
j=1

(−1)j+1 ( θ
2
x2)j

j
,
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we have,

θ2

(1 + θ)

∫ ∞
0

ln

(
1 +

θ

2
x2

)(
1 +

θ

2
x2

)
e−θxdx

=
θ2

(1 + θ)

∞∑
j=1

(−1)j+1θj

j2j

∫ ∞
0

x2je−θxdx+
θ3

2(1 + θ)

∞∑
j=1

(−1)j+1θj

j2j

∫ ∞
0

x2j+2e−θxdx,

=
θ2

(1 + θ)

∞∑
j=1

(−1)j+1θj

j2j
Γ(2j + 1)

θ2j+1
+

θ3

2(1 + θ)

∞∑
j=1

(−1)j+1θj

j2j
Γ(2j + 3)

θ2j+3
.

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

Now, from (3.6), with small arrangement, the final form of Shannon entropy is

given by

H(f) =
(3 + θ)

(1 + θ)
− ln

θ2

(1 + θ)
− 1

(1 + θ)

∞∑
j=1

(−1)j+1

jθ2j2j

[
θΓ(2j + 1) +

1

2
Γ(2j + 3)

]
.

(3.7)

3.1.3 Distributions of order statistics

Let X1, X2, . . . , Xn be a random sample of size n drawn from xgamma(θ) and

X1:n, X2:n, . . . , Xn:n be the order statistics.

The extreme order statistics, X1:n and Xn:n represent the life of series and parallel

systems and have important applications in probability and statistics.

The pdf of smallest order statistic, X1:n = Min{X1, X2, . . . , Xn}, is obtained as

fX1:n(x) = n[1− F (x)]n−1f(x),

=
nθ2

(1 + θ)n

(
1 + θ + θx+

θ2

2
x2

)n−1(
1 +

θ

2
x2

)
e−nθx, x > 0. (3.8)
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The pdf of largest order statistic, Xn:n = Max{X1, X2, . . . , Xn}, is found as

fXn:n(x) = n[F (x)]n−1f(x),

=
nθ2

(1 + θ)

1−

(
1 + θ + θx+ θ2

2
x2
)

(1 + θ)
e−θx

n−1(
1 +

θ

2
x2

)
e−θx, x > 0.

(3.9)

3.1.4 Survival characteristics

An important phenomena in reliability theory is ‘ageing’ which is an inherent

property of a unit (be it a living organism or a mechanical system of components).

Ageing is usually characterized by the failure rate function, MRL function, mean

time to failure (MTTF), etc.

For any t(> 0), we recall the survival function (sf) of X ∼ xgamma(θ) is given by

S(t) = Pr(X > t) = 1− F (t) =

(
1 + θ + θt+ θ2

2
t2
)

(1 + θ)
e−θt. (3.10)

For any t(> 0), the failure rate function of xgamma(θ) is

h(t) =
θ2
(
1 + θ

2
t2
)(

1 + θ + θt+ θ2

2
t2
) . (3.11)

The MTTF is given as

MTTF =

∫ ∞
0

S(t)dt =
(θ + 3)

θ(1 + θ)
. (3.12)

The following theorem shows that xgamma distribution is decreasing failure rate

(DFR) in distribution for a particular range of t.
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Theorem 3.2. The cdf of xgamma distribution in (2.6) is DFR for t <
√

2/θ.

Proof. We state the Lemma 5.9 by Barlow and Proschan (1975).

Lemma 3.3. If f is a density on [0,∞) for which ln f(x) is convex on [0,∞), then

corresponding distribution function F is DFR.

Now, we show that the logarithm of the pdf in (2.2) is convex and try to find

out the range. For xgamma(θ), ln f(t) is defined and is twice differentiable with

respect to t in (0,∞). We have,

ln f(t) = 2 ln θ − ln(1 + θ) + ln

(
1 +

θ

2
t2
)
− θt. (3.13)

The second derivative of (t) with respect to t is given by

d2

dt2
ln f(t) =

θ
(
1− θ

2
t2
)(

1 + θ
2
t2
)2 ,

which is positive when t <
√

2/θ and so, ln f(t) is convex for t <
√

2/θ and

thereby, corresponding cdf is DFR for t <
√

2/θ. Hence the proof.

It is noted that the xgamma distribution is increasing failure rate (IFR) in distri-

bution for t >
√

2/θ.

3.1.5 Ageing intensity

It is clear that a unimodal failure rate can be effectively viewed as either approxi-

mately decreasing or approximately increasing or approximately constant. So, the

representation of ageing of a system by failure rate is qualitative and, therefore, a

new notion, called ageing intensity (AI) has been developed by Jiang et al. (2003).
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Ageing intensity of a random variable X, denoted by LX(t), quantitatively evalu-

ates the ageing property of a system. It is defined as

LX(t) =
h(t)

Z(t)
,where defined, (3.14)

=
−tf(t)

S(t) lnS(t)
for t > 0, (3.15)

where f(·) and S(·) are respectively the pdf and survival function of the random

variable X. Z(t) is the failure rate average, i.e., Z(t) = 1
t

∫ t
0
h(u)du.

The larger the value of AI function, stronger the tendency of ageing of the associ-

ated random variable. Also, the failure rate function uniquely determines the AI

function, but not conversely.

Different properties of AI function are extensively studied by Nanda et al. (2007)

and reliability analysis using AI function is studied by Bhattacharjee et al. (2013).

The following definition on ageing intensity is noted.

Definition 3.4. A random variable X is said to be increasing (decreasing) in

ageing intensity or IAI (DAI) if the corresponding AI function LX(t) is increasing

(decreasing) in t(> 0).

When X ∼ xgamma(θ), we derive the AI function as given below.

We have,

lnS(t) = ln

(
1 + θ + θt+

θ2

2
t2
)
− θt− ln(1 + θ).

From (3.15), we have then,

LX(t) =
−t θ2

(1+θ)

(
1 + θ

2
t2
)
e−θt[(

1+θ+θt+ θ2

2
t2
)

(1+θ)
e−θt

]
lnS(t)

,

=
−tθ2

(
1 + θ

2
t2
)(

1 + θ + θt+ θ2

2
t2
) [

ln
(
1 + θ + θt+ θ2

2
t2
)
− θt− ln(1 + θ)

] .
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Hence, the AI function for xgamma(θ) is given by

LX(t) =
θ2t(1 + θ

2
t2)

(1 + θ + θt+ θ2t2

2
)[ln(1 + θ) + θt− ln(1 + θ + θt+ θ2t2

2
)]
, t > 0. (3.16)

It is been observed that, for t > 0, LX(t) in (3.16) is initially decreasing then

increasing and again decreasing (see Figure 3.1) depending on the values of θ. The

optimum value (a maximum or a minimum) of the AI function for xgamma(θ) is

inversely proportional with θ.

Figure 3.1: Plot of AI function of xgamma distribution for different θ.

3.1.6 Stress-strength reliability

The stress-strength model describes the life of a component which has a random

strength Y that is subjected to a random stress X. The component fails at the

instant that the stress applied to it exceeds the strength, and the component will
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function satisfactorily whenever Y > X. So, stress-strength reliability is defined

as

R = Pr(Y > X) =

∫ ∞
0

SY (x)fX(x)dx. (3.17)

Let X ∼ xgamma(θ1) and Y ∼ xgamma(θ2) be independent random variables.

Then stress-strength reliability is obtained as below.

∫ ∞
0

SY (x)fX(x)dx,

=
θ2

1

(1 + θ1)(1 + θ2)

∫ ∞
0

(
1 +

θ1

2
x2

)(
1 + θ + θx+

θ2

2
x2

)
e−(θ1+θ2)xdx,

=
θ2

1

(1 + θ1)(1 + θ2)

∫ ∞
0

(
1 + θ + θx+

θ2

2
x2

)
e−(θ1+θ2)xdx

+
θ3

1

2(1 + θ1)(1 + θ2)

∫ ∞
0

x2

(
1 + θ + θx+

θ2

2
x2

)
e−(θ1+θ2)xdx. (3.18)

We have the expressions for the integrals,

∫ ∞
0

(
1 + θ + θx+

θ2

2
x2

)
e−(θ1+θ2)xdx =

(1 + θ2)

(θ1 + θ2)
+

θ2

(θ1 + θ2)2
+

θ2
2

(θ1 + θ2)3
.

(3.19)∫ ∞
0

x2

(
1 + θ + θx+

θ2

2
x2

)
e−(θ1+θ2)xdx =

2(1 + θ2)

(θ1 + θ2)3
+

6θ2

(θ1 + θ2)4
+

12θ2
2

(θ1 + θ2)5
.

(3.20)

Hence, using (3.19) and (3.20), from (3.18), we get on simplification,

R =
θ2

1

(1 + θ1)(1 + θ2)

[
1 + θ2

θ1 + θ2

+
θ2

(θ1 + θ2)2
+
θ2

2 + θ1(1 + θ2)

(θ1 + θ2)3
+

3θ1θ2

(θ1 + θ2)4

]
+

6θ3
1θ

2
2

(1 + θ1)(1 + θ2)(θ1 + θ2)5
. (3.21)

We note that, when θ1 = θ2 = θ, i.e., when stress and strength are i.i.d xgamma(θ),

then R = 1
2
.
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Now, estimation aspects (classical as well as Bayesian) of the unknown parameter

and survival characteristics (vide subsection 3.1.4) of xgamma distribution under

progressively type-II censored scheme are studied in the consecutive sections below.

3.2 Progressively type-II right censored scheme

As discussed in section 1.4 in Chapter 1, progressive type-II right censoring scheme

is more generalized censoring scheme that includes conventional type-II censoring

and complete sample (non-censored) as special cases. We describe below the op-

erational process of progressively type-II censored scheme.

Suppose, n identical items/units/subjects are put on a life testing experiment and

progressively type-II censoring scheme R = (R1, R2, . . . , Rm) is pre-fixed such that

after the first failure R1 surviving units are removed from the remaining (n−1) live

units and after second failure R2 surviving units are removed from the remaining

(n− R1 − 2) live units, and so on. This procedure is continued all Rm remaining

items are removed after the mth failure.

It is clear that
∑m

i=1Ri+m = n. It is to be noted that, if R1 = R2 = · · · = Rm = 0

then the progressive censoring scheme is reduced to complete sampling scheme

and if R1 = R2 = · · · = Rm−1 = 0 and Rm = n −m then the scheme reduces to

conventional type-II censoring.

Next, an algorithm is described on generating random sample from xgamma dis-

tribution under progressively type-II right censoring scheme.

3.2.1 Generation of random sample

To generate a progressive type-II right censored sample from xgamma distribution,

the algorithm given in Balakrishnan and Sandhu (1995) is utilized. The following

steps are followed for sample generation.
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(i) Generate m independent uniform(0, 1) observations w1, w2, . . . , wm.

(ii) Set vi = w
1/(1+

∑m
j=m−i+1Rj)

i for i = 1, 2, . . . ,m.

(iii) Set ui = 1 − vm.vm−1. . . . .vm−i+1 for i = 1, 2, . . . ,m. Then u1, u2, . . . , um is

progressively type-II sample from the uniform(0, 1) distribution.

(iv) Now, setting xi = F−1(ui), where F (·) is the cdf of xgamma(θ) given in

equation (2.6), where xi can be obtained by solving the non-linear equation

1− ui −
(

1+θ+θxi+
θ2

2
x2i

)
(1+θ)

e−θxi = 0.

Then we have, (x1, x2, . . . , xm) as a required progressively type-II right cen-

sored sample from xgamma(θ) with censoring scheme R = (R1, R2, . . . , Rm).

3.3 Maximum likelihood estimation

In this section we obtain the maximum likelihood estimators of the parameter

and survival characteristics of the xgamma distribution considering progressively

type-II censoring scheme.

Let x̃ = (x1, x2, . . . , xm) be a progressively type-II right censoring sample from

xgamma(θ) with progressive censoring scheme R. On the basis of progressively

type-II right censored sample, using (2.2) and (2.19), the likelihood function can

be obtained as

L(θ, x̃) = C
m∏
i=1

f(xi){S(xi)}Ri ,

= C

m∏
i=1

 θ2

(1 + θ)

(
1 +

θ

2
x2
i

)
e−θxi


(

1 + θ + θxi + θ2

2
x2
i

)
(1 + θ)

e−θxi


Ri
,

(3.22)

where C = n(n−R1 − 1)(n−R1 −R2 − 2) . . . (n−R1 −R2 − · · · −Rm −m+ 1).
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3.3.1 Procedure of estimation

The likelihood equation in (3.22) can be written as

L(θ, x̃) = C
θ2m

(1 + θ)m

m∏
i=1

(
1 +

θ

2
x2
i

)
e−θ(1+Ri)xi


(

1 + θ + θxi + θ2

2
x2
i

)
(1 + θ)

Ri .
(3.23)

hence, the log-likelihood function becomes

lnL(θ, x̃) = lnC + 2m ln θ −m ln (1 + θ)− θ
m∑
i=1

(1 +Ri)xi +
m∑
i=1

ln

(
1 +

θ

2
x2
i

)

+
m∑
i=1

Ri ln

(
1 + θ + θxi + θ2

2
x2
i

)
(1 + θ)

.

(3.24)

The first derivative of (3.24) with respect to θ gives

∂

∂θ
lnL(θ, x̃) =

2m

θ
− m

(1 + θ)
+

m∑
i=1

x2
i /2(

1 + θ
2
x2
i

) − m∑
i=1

(1 +Ri)xi

+
m∑
i=1

Rixi
(1 + θxi + θ2

2
xi)

(1 + θ)(1 + θ + θxi + θ2

2
x2
i )
. (3.25)

The second derivative of (3.24) with respect to θ gives

∂2

∂θ2
lnL(θ, x̃) =− 2m

θ2
+

m

(1 + θ)2
−

m∑
i=1

x4
i /4(

1 + θ
2
x2
i

)2

−
m∑
i=1

Rixi
(1 + 2θ + θ2/2)

x3i θ
2

2
+ (2θ + 1)(1 + θx2

i ) + (1 + θxi)

(1 + θ)2(1 + θ + θxi + θ2

2
x2
i )

2
.

(3.26)
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3.3.2 MLEs of θ and survival characteristics

The maximum likelihood estimator (MLE) of θ is the solution of the likelihood

equation
∂

∂θ
lnL(θ, x̃) = 0,

which implies, using (3.25)

2m

θ
− m

(1 + θ)
+

m∑
i=1

x2
i /2(

1 + θ
2
x2
i

) − m∑
i=1

(1 +Ri)xi

+
m∑
i=1

Rixi
(1 + θxi + θ2

2
xi)

(1 + θ)(1 + θ + θxi + θ2

2
x2
i )

= 0 (3.27)

The MLE of θ can not be obtained from equation (3.27) by direct analytic solution,

so for any censoring scheme, we use numerical procedure, such as, Newton-Raphson

for given values of (n,m,R, x̃).

Let the MLE of θ thus obtained be θ̂. Once θ̂ is obtained, the MLEs of S(t),

h(t) and MTTF can be derived utilizing the invariance property of maximum

likelihood and are given by

Ŝ(t) =
(1 + θ̂ + θ̂t+ θ̂2

2
t2)

(1 + θ̂)
e−θ̂t, (3.28)

ĥ(t) =
θ̂2
(

1 + θ̂
2
t2
)

(
1 + θ̂ + θ̂t+ θ̂2

2
t2
) (3.29)

and

M̂TTF =
θ̂ + 3

θ̂(1 + θ̂)
, (3.30)

respectively.
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3.3.3 Observed Fisher’s information

The observed Fisher’s information is given by

I(θ̂) = − ∂2

∂θ2
lnL(θ, x̃)|(θ=θ̂). (3.31)

The asymptotic variance of θ̂ is

V ar(θ̂) =
1

I(θ̂)
.

We note that the xgamma(θ) belongs to one parameter exponential family of dis-

tributions. Hence, the sampling distribution of (θ− θ̂)/
√
V ar(θ̂) is approximately

N(0, 1).

Hence, for large sample, 100(1− α)% confidence interval for θ can be obtained as

θ̂ ± zα/2
√
V ar(θ̂). (3.32)

We also estimate the coverage probability as

Pr

∣∣∣∣∣∣ (θ − θ̂)√
V ar(θ̂)

∣∣∣∣∣∣ ≤ zα/2

 , (3.33)

where zp is such that p =

∫ ∞
zp

1√
2π
e−z

2/2dz.

3.4 Bayesian estimation

In this section we obtain and discuss about the Bayesian estimation for the param-

eter θ and survival characteristics, namely, survival function, hazard rate function

and HTTF, of xgamma(θ) considering progressively type-II censored sample.
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We suppose that the prior distribution of the unknown parameter θ is a two pa-

rameter gamma distribution with shape parameter β and scale parameter α. So,

the prior pdf of θ is given by

g(θ) =
αβ

Γ(β)
e−αθθβ−1, θ > 0, α > 0, β > 0. (3.34)

Observing progressively type-II right censoring data and using (3.22), the posterior

distribution of θ is given by

Π(θ|x̃) =
L(x̃, θ)g(θ)∫

θ

L(x̃, θ)g(θ)dθ
. (3.35)

Now, using (3.22) and (3.35), the posterior distribution of θ is obtained as

Π(θ|x̃) = C−1
1

θ2m+β−1

(1 + θ)m
e−θ[α+

∑m
i=1(1+Ri)xi]

m∏
i=1

(
1 +

θ

2
x2
i

)
m∏
i=1

{
(1 + θ + θxi + θ2x2

i /2)

1 + θ

}Ri
, (3.36)

where

C1 =

∫ ∞
0

θ2m+β−1

(1 + θ)m
e−θ[α+

∑m
i=1(1+Ri)xi]

m∏
i=1

(
1 +

θ

2
x2
i

) m∏
i=1

{
(1 + θ + θxi + θ2x2

i /2)

1 + θ

}Ri
dθ.

Although C1 is not in a closed form, we can evaluate it numerically for the given

values of (α, β, n,m,R, x̃).

We choose the squared error loss function (SELF) considering that the deci-

sions become gradually more damaging for large errors. So, we consider SELF,

L(θ∗, θ) = (θ∗ − θ)2, where θ∗ is the Bayes estimator of θ.



Survival estimation in xgamma distribution 71

The Bayes estimator of θ, θ∗, is the posterior mean and is given by

θ∗ = E(θ|x̃) = C−1
1

∫ ∞
0

θ2m+β

(1 + θ)m
e−θ[α+

∑m
i=1(1+Ri)xi]

m∏
i=1

(
1 +

θ

2
x2
i

)
m∏
i=1

{
(1 + θ + θxi + θ2x2

i /2)

1 + θ

}Ri
dθ. (3.37)

It is clear that the above estimator is not in closed form, but we can always

evaluate it numerically using given values of (α, β, n,m,R, x̃) and a given mission

time t(> 0).

The respective Bayes estimators, S∗(t), h∗(t) and MTTF ∗ can directly be obtained

by using (3.10), (3.11) and (3.12) and replacing θ by θ∗.

3.5 Simulation study

A Monte-Carlo simulation study is carried out to obtain the estimates of the

parameter and survival characteristics of xgamma(θ) developed in the previous

sections. Considering progressive type-II censored sample, MLEs and Bayes esti-

mates are obtained for two sets of values for θ, α and β.

Three different sample sizes are considered, i.e., n = 20, n = 30 and n = 50 are

taken for the simulation study.

The following steps are included in the simulation study.

1. Choose the values of (α, β, t, n,m) and the censoring scheme R.

2. Take θ = β/α (the mean of the prior distribution of θ).

3. Compute the actual values of S(t), h(t) and MTTF .

4. Generate a progressively type-II censored sample of size n with m failures us-

ing the algorithm in sub-section 3.2.1. For each n, 4 values of m is considered
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so that the percentage of failure information, (m/n)100, is 40%, 50%, 80%

and 100%.

The scheme with n = m and Ri = 0, ∀i = 1, 2, . . . ,m denotes complete

sample. The scheme with Ri = 0, ∀ i = 1, 2, . . . ,m− 1;Rm = n−m denotes

conventional type-II censored sample (i.e., n −m units are removed at the

mth failure).

5. Compute maximum likelihood and Bayes estimates of θ, S(t), h(t),MTTF

according to section 3.3.2 and section 3.4. Also, compute the confidence

interval and corresponding probabilities of coverage for θ as in section 3.3.3.

6. Repeat the above steps (1 to 4) for N = 10, 000 times for the values of of

(θ, α, β, t) with each censoring scheme.

Compute the expected value (EV) and expected risk (ER) of the estimates

obtained in the above step 4 using the formulas

EV =
1

N

∑
φ̂(θ) and ER =

1

N

∑
(φ̂(θ)− φ(θ))2,

where φ̂(θ) is an estimate of φ(θ). ER is the mean square error (MSE) in

case of MLEs.

The results of the Monte-Carlo simulation study are reported in Tables 3.1-3.4.

Table 3.1 represents MLEs, mean square errors (MSE) of the parameter and sur-

vival characteristics for different censoring schemes (CS), θ = 1 and a given mission

time t = 0.80; whereas the respective Bayes estimates along with expected risk

(ER) are presented in Table 3.2.

Table 3.3 represents MLEs, mean square errors (MSE) of the parameter and sur-

vival characteristics for different censoring schemes (CS), θ = 2 and a given mission

time t = 0.40; whereas the respective Bayes estimates along with expected risk

(ER) are presented in Table 3.4.
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Table 3.1: MLEs when θ = 1.0, t = 0.80, S(t) = 0.7010, h(t) =
0.4231,MTTF = 2.00, N = 10, 000.

n m CS
θ̂

CP
Ŝ(t) ĥ(t) ĤTTF

EV MSE EV MSE EV MSE EV MSE
20 8 (12,0*7) 1.0794 0.0882 0.97 0.6765 0.0097 0.4798 0.0384 1.9799 0.3586
20 8 (4*3,0*5) 1.0630 0.0972 0.96 0.6829 0.0100 0.4700 0.0438 2.0274 0.3665
20 8 (0*5,4*3) 0.9793 0.0830 0.89 0.7120 0.0095 0.4180 0.0344 2.2606 0.5628
20 8 (0*7,12) 0.9866 0.0789 0.91 0.7093 0.0088 0.4220 0.0333 2.2239 0.4954
20 10 (10,0*9) 1.0700 0.0743 0.95 0.6792 0.0081 0.4728 0.0325 1.9725 0.2891
20 10 (5*2,0*8) 1.0649 0.0767 0.94 0.6812 0.0084 0.4698 0.0335 1.9918 0.3070
20 10 (0*8,5*2) 0.9723 0.0574 0.89 0.7132 0.0071 0.4116 0.0227 2.2282 0.4359
20 10 (0*9,10) 0.9531 0.0533 0.89 0.7110 0.0067 0.3995 0.0207 2.2741 0.4518
20 16 (4,0*15) 1.0327 0.0365 0.95 0.6907 0.0044 0.4467 0.0150 2.0041 0.1835
20 16 (2*2,0*14) 1.0449 0.0375 0.95 0.6864 0.0045 0.4543 0.0154 1.9741 0.1787
20 16 (0*14,2*2) 0.9801 0.0324 0.92 0.7095 0.0041 0.4140 0.0127 2.1376 0.2199
20 16 (0*15,4) 0.9831 0.0318 0.93 0.7084 0.0040 0.4158 0.0126 2.1285 0.2196
20 20 (0*20) 1.0340 0.0361 0.95 0.6902 0.0044 0.4475 0.0147 2.0009 0.1885
30 12 (18,0*11) 1.0502 0.0560 0.95 0.6854 0.0065 0.4591 0.0236 1.9963 0.2518
30 12 (6*3,0*9) 1.0518 0.0584 0.95 0.6849 0.0069 0.4605 0.0244 2.0006 0.2728
30 12 (0*9,6*3) 0.9580 0.0482 0.88 0.7181 0.0060 0.4020 0.0188 2.2439 0.3866
30 12 (0*11,18) 0.9598 0.0497 0.89 0.7175 0.0060 0.4031 0.0199 2.2348 0.3633
30 15 (15,0*14) 1.0432 0.0410 0.96 0.6871 0.0050 0.4536 0.0167 1.9886 0.2076
30 15 (5*3,0*12) 1.0425 0.0434 0.95 0.6875 0.0052 0.4533 0.0180 1.9918 0.2048
30 15 (0*12,5*3) 0.9430 0.0343 0.89 0.7228 0.0044 0.3915 0.0129 2.2483 0.3013
30 15 (0*14,15) 0.9464 0.0358 0.89 0.7217 0.0046 0.3936 0.0136 2.2408 0.2954
30 24 (6,0*23) 1.0229 0.0222 0.95 0.6936 0.0028 0.4394 0.0088 1.9981 0.1220
30 24 (2*3,0*21) 1.0233 0.0231 0.95 0.6935 0.0029 0.4397 0.0092 2.0004 0.1313
30 24 (0*21,2*3) 0.9735 0.0209 0.92 0.7114 0.0027 0.4089 0.0080 2.1259 0.1519
30 24 (0*23,6) 0.9679 0.0201 0.91 0.7133 0.0026 0.4053 0.0076 2.1394 0.1545
30 30 (0*30) 1.0148 0.0165 0.96 0.6963 0.0021 0.4338 0.0065 2.0058 0.0960
50 20 (30,0*19) 1.0287 0.0281 0.95 0.6918 0.0035 0.4435 0.0113 1.9969 0.1490
50 20 (5*6,0*14) 1.0253 0.0298 0.94 0.6931 0.0037 0.4415 0.0120 2.0093 0.1591
50 20 (0*14,5*6) 0.9313 0.0267 0.87 0.7268 0.0035 0.3835 0.0099 2.2566 0.2408
50 20 (0*19,30) 0.9203 0.0286 0.86 0.7308 0.0038 0.3770 0.0104 2.2945 0.2834
50 25 (25,0*24) 1.0224 0.0191 0.96 0.6936 0.0024 0.4388 0.0075 1.9925 0.1081
50 25 (5*5,0*20) 1.0162 0.0204 0.95 0.6959 0.0026 0.4351 0.0081 2.0115 0.1168
50 25 (0*20,5*5) 0.9309 0.0221 0.87 0.7268 0.0030 0.3827 0.0080 2.2451 0.2059
50 25 (0*24,25) 0.9195 0.0231 0.86 0.7309 0.0031 0.3759 0.0083 2.2787 0.2272
50 40 (10,0*39) 1.0142 0.0138 0.94 0.6964 0.0018 0.4332 0.0054 2.0002 0.0794
50 40 (5*2,0*38) 1.0157 0.0132 0.95 0.6958 0.0017 0.4341 0.0052 1.9950 0.0753
50 40 (0*38,5*2) 0.9605 0.0129 0.90 0.7158 0.0017 0.4000 0.0048 2.1378 0.1019
50 40 (0*39,10) 0.9631 0.0124 0.92 0.7148 0.0016 0.4016 0.0046 2.1295 0.0974
50 50 (0*50) 1.0163 0.0111 0.95 0.6955 0.0014 0.4343 0.0044 1.9875 0.0620
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Table 3.2: Bayes Estimates when θ = 1.0, t = 0.80, α = 2, β = 2, S(t) =
0.7010, h(t) = 0.4231,MTTF = 2.00, N = 10, 000.

n m CS
θ∗ S∗(t) h∗(t) HTTF ∗

EV ER EV ER EV ER EV ER
20 8 (12,0*7) 1.0646 0.0624 0.6835 0.0067 0.4743 0.0272 2.1268 0.3332
20 8 (4*3,0*5) 1.0599 0.0665 0.6854 0.0070 0.4717 0.0295 2.1410 0.3298
20 8 (0*5,4*3) 1.0590 0.0680 0.6858 0.0072 0.4712 0.0299 2.1498 0.3562
20 8 (0*7,12) 1.0706 0.0652 0.6816 0.0068 0.4782 0.0289 2.1090 0.3073
20 10 (10,0*9) 1.0596 0.0553 0.6844 0.0060 0.4695 0.0242 2.0921 0.2695
20 10 (5*2,0*8) 1.0578 0.0577 0.6852 0.0062 0.4686 0.0252 2.1017 0.2843
20 10 (0*8,5*2) 1.0609 0.0545 0.6839 0.0061 0.4703 0.0235 2.0897 0.2765
20 10 (0*9,10) 1.0446 0.0487 0.6894 0.0055 0.4596 0.0207 2.1235 0.2782
20 16 (4,0*15) 1.0299 0.0316 0.6932 0.0038 0.4474 0.0131 2.0815 0.1801
20 16 (2*2,0*14) 1.0421 0.0325 0.6890 0.0038 0.4550 0.0135 2.0508 0.1703
20 16 (0*14,2*2) 1.0306 0.0321 0.6928 0.0038 0.4478 0.0133 2.0769 0.1751
20 16 (0*15,4) 1.0350 0.0321 0.6915 0.0037 0.4505 0.0134 2.0664 0.1746
20 20 (0*20) 1.0307 0.0312 0.6929 0.0037 0.4479 0.0129 2.0796 0.1849
30 12 (18,0*11) 1.0441 0.0450 0.6891 0.0051 0.4583 0.0192 2.0965 0.2416
30 12 (6*3,0*9) 1.0510 0.0482 0.6869 0.0055 0.4629 0.0204 2.0864 0.2544
30 12 (0*9,6*3) 1.0516 0.0456 0.6864 0.0052 0.4630 0.0195 2.0757 0.2309
30 12 (0*11,18) 1.0560 0.0464 0.6851 0.0051 0.4657 0.0201 2.0627 0.2154
30 15 (15,0*14) 1.0396 0.0351 0.6810 0.0042 0.4539 0.0145 2.0704 0.2005
30 15 (5*3,0*12) 1.0423 0.0372 0.6894 0.0043 0.4557 0.0157 2.0652 0.1943
30 15 (0*12,5*3) 1.0391 0.0330 0.6900 0.0039 0.4534 0.0137 2.0628 0.1762
30 15 (0*14,15) 1.0452 0.0349 0.6882 0.0041 0.4573 0.0147 2.0499 0.1727
30 24 (6,0*23) 1.0232 0.0207 0.6960 0.0028 0.4411 0.0083 2.0536 0.1255
30 24 (2*3,0*21) 1.0229 0.0212 0.6947 0.0027 0.4412 0.0085 2.0513 0.1305
30 24 (0*21,2*3) 1.0264 0.0218 0.6935 0.0026 0.4433 0.0088 2.0395 0.1178
30 24 (0*23,6) 1.0226 0.0206 0.6952 0.0026 0.4408 0.0082 2.0490 0.1196
30 30 (0*30) 1.0151 0.0156 0.6981 0.0025 0.4352 0.0061 2.0511 0.1049
50 20 (30,0*19) 1.0284 0.0256 0.6944 0.0032 0.4451 0.0104 2.0617 0.1490
50 20 (5*6,0*14) 1.0318 0.0271 0.6919 0.0033 0.4476 0.0111 2.0499 0.1503
50 20 (0*14,5*6) 1.0303 0.0234 0.6933 0.0031 0.4462 0.0096 2.0487 0.1322
50 20 (0*19,30) 1.0228 0.0236 0.6955 0.0031 0.4417 0.0095 2.0686 0.1458
50 25 (25,0*24) 1.0221 0.0176 0.6953 0.0025 0.4402 0.0070 2.0443 0.1107
50 25 (5*5,0*20) 1.0196 0.0192 0.6962 0.0025 0.4388 0.0077 2.0534 0.1159
50 25 (0*20,5*5) 1.0303 0.0199 0.6921 0.0026 0.4455 0.0081 2.0249 0.1103
50 25 (0*24,25) 1.0224 0.0195 0.6955 0.0025 0.4404 0.0077 2.0465 0.1131
50 40 (10,0*39) 1.0177 0.0200 0.6989 0.0026 0.4359 0.0068 2.0364 0.0820
50 40 (5*2,0*38) 1.0202 0.0199 0.6993 0.0037 0.4372 0.0067 2.0342 0.0929
50 40 (0*38,5*2) 1.0168 0.0149 0.6970 0.0019 0.4356 0.0055 2.0263 0.0738
50 40 (0*39,10) 1.0206 0.0142 0.6976 0.0043 0.4377 0.0051 2.0242 0.0682
50 50 (0*50) 1.0160 0.0107 0.6960 0.0014 0.4350 0.0042 2.0130 0.0609



Survival estimation in xgamma distribution 75

Table 3.3: MLEs when θ = 2.0, t = 0.40, S(t) = 0.6171, h(t) =
1.1262,MTTF = 0.8333, N = 10, 000.

n m CS
θ̂

CP
Ŝ(t) ĥ(t) ĤTTF

EV MSE EV MSE EV MSE EV MSE
20 8 (12,0*7) 2.2019 0.4974 0.97 0.5889 0.0132 1.2865 0.2913 0.8244 0.0751
20 8 (4*3,0*5) 2.1586 0.4352 0.96 0.5960 0.0122 1.2536 0.2521 0.8415 0.0767
20 8 (0*5,4*3) 2.0978 0.5119 0.92 0.6094 0.0141 1.2110 0.2970 0.8943 0.1065
20 8 (0*7,12) 2.0523 0.4909 0.92 0.6177 0.0136 1.1773 0.2845 0.9177 0.1132
20 10 (10,0*9) 2.1506 0.4057 0.94 0.5969 0.0116 1.2472 0.2341 0.8420 0.0757
20 10 (5*2,0*8) 2.1488 0.3567 0.96 0.5962 0.0101 1.2445 0.2064 0.8296 0.0510
20 10 (0*8,5*2) 2.0019 0.3391 0.94 0.6243 0.0106 1.1371 0.1911 0.9210 0.0942
20 10 (0*9,10) 1.9768 0.3135 0.92 0.6287 0.0101 1.1181 0.1755 0.9303 0.0914
20 16 (4,0*15) 2.0977 0.1861 0.96 0.6023 0.0061 1.2031 0.1041 0.8281 0.0399
20 16 (2*2,0*14) 2.0909 0.1942 0.95 0.6039 0.0063 1.1983 0.1090 0.8331 0.0411
20 16 (0*14,2*2) 1.9616 0.1645 0.92 0.6283 0.0058 1.1029 0.0899 0.9023 0.0512
20 16 (0*15,4) 1.9581 0.1585 0.93 0.6289 0.0055 1.1002 0.0870 0.9013 0.0476
20 20 (0*20) 2.1001 0.2033 0.95 0.6023 0.0064 1.2052 0.1149 0.8285 0.0398
30 12 (18,0*11) 2.1259 0.2682 0.95 0.5987 0.0084 1.2259 0.1518 0.8304 0.0550
30 12 (6*3,0*9) 2.1272 0.2809 0.95 0.5987 0.0085 1.2270 0.1601 0.8303 0.0537
30 12 (0*9,6*3) 1.9659 0.2362 0.90 0.6291 0.0082 1.1083 0.1293 0.9227 0.0821
30 12 (0*11,18) 1.9747 0.2376 0.93 0.6274 0.0081 1.1146 0.1313 0.9137 0.0707
30 15 (15,0*14) 2.1145 0.2023 0.96 0.5991 0.0066 1.2159 0.1132 0.8230 0.0427
30 15 (5*3,0*12) 2.0885 0.1896 0.96 0.6042 0.0063 1.1965 0.1058 0.8350 0.0435
30 15 (0*12,5*3) 1.9568 0.1902 0.91 0.6298 0.0067 1.1003 0.1040 0.9131 0.0628
30 15 (0*14,15) 1.9261 0.1874 0.90 0.6357 0.0067 1.0777 0.1018 0.9306 0.0659
30 24 (6,0*23) 2.0538 0.1137 0.95 0.6092 0.0039 1.1689 0.0630 0.8345 0.0257
30 24 (2*3,0*21) 2.0593 0.1153 0.96 0.6082 0.0039 1.1730 0.0639 0.8323 0.0266
30 24 (0*21,2*3) 1.9514 0.1105 0.90 0.6291 0.0040 1.0940 0.0599 0.8929 0.0362
30 24 (0*23,6) 1.9427 0.0921 0.93 0.6303 0.0035 1.0871 0.0495 0.8926 0.0309
30 30 (0*30) 2.0624 0.1231 0.96 0.6078 0.0042 1.1755 0.0683 0.8322 0.0276
50 20 (30,0*19) 2.0996 0.1536 0.95 0.6012 0.0050 1.2036 0.0861 0.8184 0.0311
50 20 (5*6,0*14) 2.0826 0.1580 0.94 0.6046 0.0052 1.1913 0.0885 0.8289 0.0336
50 20 (0*14,5*6) 1.9257 0.1496 0.89 0.6350 0.0055 1.0763 0.0809 0.9196 0.0523
50 20 (0*19,30) 1.9158 0.1257 0.90 0.6363 0.0047 1.0684 0.0673 0.9190 0.0463
50 25 (25,0*24) 2.0644 0.1113 0.96 0.6071 0.0038 1.1766 0.0617 0.8283 0.0250
50 25 (5*5,0*20) 2.0736 0.1140 0.95 0.6054 0.0040 1.1835 0.0632 0.8240 0.0253
50 25 (0*20,5*5) 1.9044 0.1093 0.89 0.6382 0.0042 1.0596 0.0583 0.9205 0.0417
50 25 (0*24,25) 1.9172 0.1191 0.88 0.6359 0.0044 1.0692 0.0642 0.9150 0.0419
50 40 (10,0*39) 2.0327 0.0616 0.95 0.6121 0.0022 1.1520 0.0337 0.8333 0.0155
50 40 (5*2,0*38) 2.0420 0.0662 0.96 0.6104 0.0023 1.1590 0.0364 0.8290 0.0155
50 40 (0*38,5*2) 1.9222 0.0575 0.92 0.6335 0.0022 1.0710 0.0306 0.8934 0.0206
50 40 (0*39,10) 1.9200 0.0592 0.90 0.6340 0.0023 1.0695 0.0315 0.8954 0.0216
50 50 (0*50) 2.0234 0.0612 0.95 0.6139 0.0022 1.1452 0.0335 0.8382 0.0157
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Table 3.4: Bayes Estimates when θ = 2.0, t = 0.40, α = 3, β = 3, S(t) =
0.6171, h(t) = 1.1262,MTTF = 0.8333, N = 10, 000.

n m CS
θ∗ S∗(t) h∗(t) HTTF ∗

EV ER EV ER EV ER EV ER
20 8 (12,0*7) 2.0930 0.1608 0.6079 0.0050 1.2054 0.09087 0.8886 0.0442
20 8 (4*3,0*5) 2.0780 0.1496 0.6105 0.0047 1.1941 0.0841 0.8952 0.0445
20 8 (0*5,4*3) 2.1119 0.1763 0.6047 0.0054 1.2198 0.1001 0.8818 0.0450
20 8 (0*7,12) 2.0853 0.1662 0.6095 0.0052 1.2000 0.0939 0.8955 0.0473
20 10 (10,0*9) 2.0751 0.1669 0.6109 0.0053 1.1915 0.0935 0.8925 0.0499
20 10 (5*2,0*8) 2.0814 0.1445 0.6091 0.0045 1.1954 0.0815 0.8810 0.0385
20 10 (0*8,5*2) 2.0823 0.1542 0.6093 0.0049 1.1965 0.0868 0.8846 0.0420
20 10 (0*9,10) 2.0681 0.1432 0.6117 0.0046 1.1857 0.0804 0.8897 0.0402
20 16 (4,0*15) 2.0679 0.1136 0.6098 0.0037 1.1829 0.0631 0.8646 0.0299
20 16 (2*2,0*14) 2.0628 0.1163 0.6113 0.0039 1.1791 0.0647 0.8690 0.0312
20 16 (0*14,2*2) 2.0435 0.1103 0.6141 0.0037 1.1651 0.0612 0.8770 0.0309
20 16 (0*15,4) 2.0446 0.1045 0.6141 0.0035 1.1655 0.0582 0.8750 0.0284
20 20 (0*20) 2.0682 0.1190 0.6100 0.0039 1.1832 0.0666 0.8654 0.0299
30 12 (18,0*11) 2.0754 0.1347 0.6095 0.0044 1.1901 0.0752 0.8762 0.0380
30 12 (6*3,0*9) 2.0808 0.1377 0.6086 0.0044 1.1941 0.0773 0.8731 0.0365
30 12 (0*9,6*3) 2.0657 0.1302 0.6114 0.0043 1.1829 0.0725 0.8819 0.0388
30 12 (0*11,18) 2.0731 0.1273 0.6098 0.0041 1.1883 0.0715 0.8749 0.0329
30 15 (15,0*14) 2.0790 0.1191 0.6081 0.0039 1.1914 0.0664 0.8623 0.0311
30 15 (5*3,0*12) 2.0622 0.1125 0.6112 0.0038 1.1789 0.0624 0.8707 0.0321
30 15 (0*12,5*3) 2.0790 0.1206 0.6086 0.0039 1.1914 0.0675 0.8636 0.0307
30 15 (0*14,15) 2.0561 0.1148 0.6123 0.0038 1.1745 0.0640 0.8742 0.0312
30 24 (6,0*23) 2.0425 0.0822 0.6133 0.0029 1.1622 0.0453 0.8597 0.0216
30 24 (2*3,0*21) 2.0472 0.0834 0.6121 0.0029 1.1658 0.0461 0.8570 0.0220
30 24 (0*21,2*3) 2.0498 0.0882 0.6130 0.0032 1.1674 0.0485 0.8593 0.0238
30 24 (0*23,6) 2.0462 0.0742 0.6130 0.0027 1.1645 0.0407 0.8568 0.0198
30 30 (0*30) 2.0486 0.0884 0.6120 0.0030 1.1670 0.0489 0.8575 0.0228
50 20 (30,0*19) 2.0787 0.1020 0.6080 0.0035 1.1894 0.0568 0.8506 0.0244
50 20 (5*6,0*14) 2.0716 0.1055 0.6093 0.0036 1.1844 0.0587 0.8553 0.0261
50 20 (0*14,5*6) 2.0550 0.1036 0.6123 0.0035 1.1723 0.0575 0.8643 0.0269
50 20 (0*19,30) 2.0505 0.0867 0.6125 0.0030 1.1686 0.0480 0.8621 0.0231
50 25 (25,0*24) 2.0535 0.0823 0.6116 0.0029 1.1700 0.0453 0.8536 0.0230
50 25 (5*5,0*20) 2.0659 0.0853 0.6098 0.0031 1.1790 0.0469 0.8484 0.0212
50 25 (0*20,5*5) 2.0557 0.0832 0.6124 0.0032 1.1713 0.0455 0.8552 0.0218
50 25 (0*24,25) 2.0681 0.0910 0.6091 0.0031 1.1810 0.0505 0.8477 0.0214
50 40 (10,0*39) 2.0394 0.0718 0.6176 0.0045 1.1564 0.0343 0.8540 0.0196
50 40 (5*2,0*38) 2.0475 0.0758 0.6159 0.0046 1.1625 0.0365 0.8497 0.0195
50 40 (0*38,5*2) 2.0492 0.0803 0.6192 0.0059 1.1623 0.0361 0.8545 0.0220
50 40 (0*39,10) 2.0368 0.0627 0.6158 0.0034 1.1552 0.0312 0.8505 0.0170
50 50 (0*50) 2.0330 0.0754 0.6199 0.0049 1.1513 0.0353 0.8596 0.0208
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The following observations are noted from the results of simulation study.

(i) The MLEs and Bayes estimates of θ are approximately unbiased and as

sample size n increases, the average bias and MSE decrease for complete

samples.

(ii) For all the censoring scheme, the bias and MSE of estimates are quite small,

though the bias increases as the failure information decreases.

(iii) The widths of the confidence intervals based on MLEs are getting sharper

with the increase of sample size n and failure information m. The coverage

probabilities are very close to the corresponding nominal levels.

(iv) In this case Bayes estimates are uniformly better than the MLEs showing

that additional prior information about θ provide an improvement.

3.6 Real data illustration

In this section, a real data set representing the survival times (in days) of 72 guinea

pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960)

is utilized to illustrate the methods described in the previous sections. The data

is presented in Table 3.5.

Table 3.5: Data on survival times of 72 guinea pigs infected with virulent
tubercle bacilli

10 33 44 56 59 72 74 77 92 93 96 100
100 102 105 107 107 108 108 108 109 112 113 115
116 120 121 122 122 124 130 134 136 139 144, 146
153 159 160 163 163 168 171 172 176 183 195 196
197 202 213 215 216 222 230 231 240 245 251 253
254 254 278 293 327 342 347 361 402 432 458 555
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The data set is positively skewed (skewness: 1.34), with mean survival time of

176.82 days, standard deviation of 103.45 days and is unimodal.

Here, six survival models, namely exponential, gamma, Weibull, lognormal, Lind-

ley (Lindley (1958)) and xgamma have been considered. Method of maximum

likelihood is used to estimate the parameters of the above six distributions. To

identify the best fit of above models, (i) negative log-likelihood, (ii) AIC (iii) BIC

are considered. Statistical software R is used for data analysis.

The maximum likelihood estimates (MLEs) of the model parameters with cor-

responding standard errors (Std. Error) of estimates in parentheses, negative

log-likelihood, AIC and BIC values are shown in Table 3.6.

It is clear from Table 3.6 that xgamma is fitting the above data quite satisfacto-

rily. According to model selection criterion, viz. AIC, we found that xgamma is

the best model followed by gamma, Weibull, Lindley, lognormal and exponential,

respectively.

In an almost similar fashion, according to BIC criteria, we can see that xgamma,

again, is the best choice followed by gamma, Lindley, Weibull, lognormal and ex-

ponential, respectively.

Moreover, another advantage of using xgamma instead of lognormal or gamma

or Weibull for modeling survival data is that xgamma distribution has only one

unknown parameter, like Lindley distribution, and hence estimation procedures

become more convenient in view of computational ease.

In Table 3.7, MLEs of θ along with corresponding 95% confidence intervals are

calculated for various progressively type-II censoring schemes based on the above

data. MLEs of survival functions, failure rates (for mission time t = 10) and the

mean time to failure are also tabulated correspondingly. The percentages of failure

information taken here as 28%, 42%, 56% and 100%.
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Table 3.6: The MLEs of parameter(s), negative log-likelihood, AIC and BIC
values for different survival models.

Survival Model Estimate(Std. Error) -log-likelihood AIC BIC

Exponetial(θ) θ̂=0.0057(0.00064) 444.61 891.22 893.50

Gamma(α, β)
α̂=0.0174(0.00295)

β̂=3.0824(0.48259)
425.80 855.60 860.16

Weibull(α, λ)
α̂=199.5869(13.629)

λ̂=1.8252(0.15870)
427.36 858.72 863.28

Lognormal(µ, σ)
µ̂=5.0043(0.07413)
σ̂=0.6290(0.05242)

429.09 862.19 866.74

Lindley(θ) θ̂=0.0113(0.00093) 429.28 860.56 862.83

Xgamma(θ) θ̂=0.0168(0.00114) 425.59 853.18 855.46

Table 3.7: The MLEs of θ with 95% confidence intervals (CIs) and MLEs of
survival characteristics for selected censoring schemes.

n m CS θ̂ 95% CI Ŝ(t = 10) ĥ(t = 10) ĤTTF
72 20 (2*19,14) 0.01339 (0.01051,0.01628) 0.99799 0.00026 222.03
72 20 (14,2*19) 0.01753 (0.01366,0.02139) 0.99646 0.00048 169.19
72 20 (0*18,26*2) 0.01499 (0.01179,0.01819) 0.99745 0.00033 198.19
72 20 (26*2,0*18) 0.01632 (0.01290,0.01974) 0.99163 0.00044 178.03
72 20 (1*18,17*2) 0.01575 (0.01237,0.01913) 0.99717 0.00037 188.52
72 20 (17*2,1*18) 0.01932 (0.01491,0.02373) 0.99565 0.00060 153.29
72 30 (1*29,13) 0.01596 (0.01302,0.01889) 0.99701 0.00038 186.04
72 30 (13,1*29) 0.01734 (0.01405,0.02063) 0.99654 0.00046 171.05
72 30 (0*28,21*2) 0.01594 (0.01303,0.01884) 0.99710 0.00038 186.04
72 30 (21*2,0*28) 0.02072 (0.01647,0.02496) 0.99496 0.00070 142.82
72 30 (1*28,7*2)) 0.01526 (0.01244,0.01806) 0.99735 0.00035 194.63
72 30 (7*2,1*28) 0.01806 (0.01465,0.02146) 0.99623 0.00051 164.17
72 40 (0*39,32) 0.01573 (0.01317,0.01830) 0.99718 0.00037 188.70
72 40 (32,0*39) 0.01809 (0.01483,0.02134) 0.99622 0.00051 163.92
72 40 (1*32,0*8) 0.01034 (0.01002,0.01076) 0.99905 0.00032 189.14
72 40 (0*8,1*32) 0.01429 (0.01202,0.01657) 0.99769 0.00030 207.95
72 72 (0*72) 0.01678 (0.01453,0.01903) 0.99677 0.00043 176.81
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3.7 Conclusion

In this chapter, some additional distributional properties and properties related

to survival and/or reliability are been extensively addressed. Ageing intensity

function of the xgamma distribution is also studied so as to quantify the ageing

phenomena. The unknown parameter in xgamma distribution is estimated using

maximum likelihood method and Bayesian method under progressively type-II

right censoring scheme. Simulation study is been carried out to compare the

estimates described under the two estimation procedures and various progressively

type-II censoring schemes. The following important findings are found in this

chapter.

1. xgamma random variable is stochastically larger than those of Lindley and

exponential under the similar parameter.

2. The xgamma distribution do not possess single monotone ageing intensity

property for the entire range of the parameter, rather it depends highly on

the values of the unknown parameter.

3. Stress-strength reliability is 50% if stress and strength are identically and

independently distributed (i.i.d) xgamma distribution.

4. It is recommended to use Bayes estimate for parameter provided a prior

information is available; otherwise the method of maximum likelihood would

be a better choice.

5. Real data illustration shows that xgamma is a competent life distribution as

compared to exponential, gamma, Weibull, log-normal and Lindley distribu-

tions.

Apart from searching possible other areas of application for xgamma distribution,

below are pointed some open research problems for future investigation.
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Open research problems:

• Study of Bayesian estimation for the parameter in xgamma distribution un-

der different loss functions.

• System reliability models for xgamma lives could reveal some interesting

failure properties.



Chapter 4

Truncated xgamma distributions

In Chapter 2, we have introduced the xgamma distribution and some of its basic

distributional and survival properties have been studied. Further, some impor-

tant additional properties related to the distributional form and survival and/or

reliability have also been investigated and the xgamma distribution has been es-

tablished in the list of other standard and popular life distributions; and Bayesian

estimation of the parameter and other survival characteristics have also been in-

vestigated under progressively type-II censored situation in Chapter 3.

Sometimes it is necessary to assume the range of the random variable associated

with a life distribution as finite instead of having a range from 0 to ∞. This is

assumed or considered either that might be a necessity of designed life or it might

be required to do so from simply a mathematical point of view. In this chapter,

we therefore introduce the truncated versions of xgamma distribution. Below are

described some situations where truncated distributions have successfully been

applied in the literature.

In manufacturing industries, final products often pass through a screening inspec-

tion before being sent to the customers. It is, then, a normal practice that if

a product’s performance falls within certain tolerance limits, it is being judged

82
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as conforming and thereby sent to the customer. A product is usually rejected

and therefore scrapped or reworked if it fails to conform. In this case, the actual

distribution to the customer is truncated. As a standard practice, truncated distri-

butions are applied, in particular, for such industrial applications and settings (see

for more details Cho and Govindaluri, 2002; Kapur and Cho, 1994, 1996; Phillips

and Cho, 1998, 2000; Khasawneh et al., 2004, 2005, and references therein).

As an another example, truncated distributions are well applied in multistage

production process in which inspection is done at each stage and only conforming

items are sent to the next stage. Very useful application can also be found in accel-

erated life testing situations. In practice, the concept of a truncated distribution

plays an important role in analyzing a variety of production processes, process

optimization and quality improvement techniques.

To model intensity statistics in the study of atomic heterogeneity, truncated dis-

tributions are utilized, see Mukhopadhyay et al. (2000) for more insight. In an

another situation, measurements match well with a truncated distribution with

much better fit over smaller file or request sizes for high-performance Ethernet,

see for more details Field et al. (2004).

Truncated versions of several standard continuous probability distributions are

been studied by different authors and applied successfully to numerous real life

situations, see for example, Hegde and Dahiya (1989), Mittal and Dahiya (1989),

Nadarajah (2008), Zaninetti and Ferraro (2008) and, Zhang and Xie (2011).

The rest of the chapter is organized as follows.

In section 4.1, we introduce truncated versions (upper, lower and double) of

xgamma distribution and special attention is paid to the upper truncated ver-

sion. Section 4.2 deals with basic structural and distributional properties of upper

truncated xgamma distribution. Sections 4.4 and 4.5 deal with the studies of en-

tropy measures and distributions of order statistics, respectively. Different survival

and/or reliability properties are studied in section 4.6. The unknown parameters
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for upper truncated xgamma distributions are estimated by the method of max-

imum likelihood in section 4.7. In section 4.8, a real life data set is analyzed to

illustrate the application of the proposed distribution. Finally, section 4.9 presents

the overall conclusion of the chapter.

4.1 Truncated versions of xgamma distribution

If X is a non-negative continuous random variable, then for double truncated

version of X, we have the following definition.

Definition 4.1. A non-negative continuous random variable, X, is said to follow

a double truncated distribution (DTD) over the interval [α, β] if it has the cdf as

G(x) =
F (x)− F (α)

F (β)− F (α)
, α ≤ x ≤ β, (4.1)

where F (·) denote the cdf of the baseline distribution, α and β are points of

truncation.

The corresponding pdf is given by

g(x) =
f(x)

F (β)− F (α)
, α ≤ x ≤ β, (4.2)

where f(·) is the pdf of baseline distribution.

The following three cases are recognized from the above definition.

(i) When α → 0 and β → ∞, we have the baseline lifetime distribution with

support (0,∞).

(ii) When α → 0, we have upper truncated distribution (UTD) of the baseline

distribution.
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(iii) When β → ∞, we have lower truncated distribution (LTD) of the baseline

distribution.

Applying the above definition and taking the baseline distribution as xgamma

distribution with parameter θ(> 0), the following definitions for truncated versions

of xgamma distribution can be placed.

4.1.1 Double truncated xgamma distribution

Definition 4.2. A continuous random variable, X, is said to follow a double

truncated xgamma (DTXG) distribution with parameters α, β and θ if its pdf is

of the form

g(x;α, β, θ) =
θ2

(1 + θ)

(
1 + θ

2
x2
)
e−θx

[F (β)− F (α)]
, α ≤ x ≤ β, α > 0, β > 0, θ > 0, (4.3)

where F (α) and F (β) can be obtained from (2.6) by putting x = α and x = β,

respectively.

It is denoted by X ∼ DTXG(α, β, θ).

4.1.2 Lower truncated xgamma distribution

When β → ∞, from (4.3), the following definition for lower truncated xgamma

distribution is made.

Definition 4.3. A continuous random variable, X, is said to follow a lower trun-

cated xgamma (LTXG) distribution with parameters α and θ if its pdf is of the

form

g(x;α, θ) =
θ2
(
1 + θ

2
x2
)
e−θ(x−α)(

1 + θ + θα + θ2α2

2

) , x ≥ α, α > 0, θ > 0. (4.4)

It is denoted by X ∼ LTXG(α, θ).
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4.1.3 Upper truncated xgamma distribution

The upper truncated version of xgamma distribution has the following definition.

Definition 4.4. A continuous random variable, X, is said to follow an upper

truncated xgamma (UTXG) distribution with parameters β and θ if its pdf is of

the form

g(x; β, θ) = K(β, θ)

(
1 +

θ

2
x2

)
e−θx, 0 ≤ x ≤ β, β > 0, θ > 0, (4.5)

where K(β, θ) = θ2

(1+θ)(1−e−θβ)−θβ(1+ θβ
2 )e−θβ

, a function of β and θ.

It is denoted by X ∼ UTXG(β, θ).

The cdf of X ∼ UTXG(β, θ) is obtained from (4.1) by putting F (0) = 0 as α→ 0.

Hence the cdf is given by

G(x; β, θ) = Pr(X ≤ x) =
F (x)

F (β)
, 0 ≤ x ≤ β, (4.6)

where F (x) is the cdf of xgamma distribution in (2.6) and F (β) can be obtained

from (2.6) by putting x = β.

Hereafter, main concentration is given in studying different structural and survival

properties of UTXG(β, θ).

The properties of upper truncated xgamma is been studied owing the fact that

designed lifetimes of equipment or units are usually having finite upper limit and

it is, therefore, quite rational to think that upper range of the random variable,

describes life, is actually finite. Sometimes, the upper truncated version of the

base distribution can provide better fit to lifetime data.

The following theorem shows that UTXG(β, θ) is unimodal.
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Theorem 4.5. For 0 < θ ≤ 1
2
, the pdf of UTXG(β, θ) attains a maximum at

x = 1+
√

1−2θ
θ

and for θ > 1
2
, it decreases in x.

Proof. Taking first derivative of (4.5) with respect to x, we get

d

dx
g(x; β, θ) = K(β, θ)

[
θxe−θx − θ

(
1 +

θ

2
x2

)
e−θx

]
,

which is positive for 0 < θ ≤ 1/2 and g(x; β, θ) attains a maximum value at

x = 1+
√

1−2θ
θ

. For θ > 1
2
, d
dx
g(x; β, θ) is negative and hence g(x; β, θ) decreases in

x.

Hence the proof.

So, the mode of X ∼ UTXG(β, θ) is given by

Mode(X) =


1+
√

1−2θ
θ

, if 0 < θ ≤ 1/2.

0 , otherwise.

(4.7)

In the subsequent sections, we study different properties of UTXG(β, θ).

4.2 Moments and associated measures

In this section, we find the moments and related measures of UTXG(β, θ). First

we find the non-central moments.

The rth order non-central moment of X ∼ UTXG(β, θ) can be obtained as

µ′r = E(Xr) =

∫ β

0

xrg(x; β, θ)dx,

= K(β, θ)

∫ β

0

xr
(

1 +
θ

2
x2

)
e−θxdx,
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Hence, we have,

µ′r = K(β, θ)

[∫ β

0

xre−θxdx+
θ

2

∫ β

0

xr+2e−θxdx

]
,

=
K(β, θ)

θr+1

[
1

θr+1
γ(r + 1, θβ) +

1

2θr+2
γ(r + 3, θβ)

]
,

Here γ(a, x) =

∫ x

0

za−1e−zdz is the lower incomplete gamma function.

=
K(β, θ)

θr+1

[
γ(r + 1, θβ) +

1

2θ
γ(r + 3, θβ)

]
for r = 1, 2, . . . . (4.8)

In particular, we have,

µ′1 = E(X) =
K(β, θ)

θ2

[
γ(2, θβ) +

1

2θ
γ(4, θβ)

]
= µ (say). (4.9)

µ′2 = E(X2) =
K(β, θ)

θ3

[
γ(3, θβ) +

1

2θ
γ(5, θβ)

]
. (4.10)

So, we have the second order central moment as

V ar(X) = σ2 (say),

= µ′2 − µ2,

=
K(β, θ)

θ3

[
{γ(3, θβ) +

1

2θ
γ(5, θβ)} − K(β, θ)

θ
{γ(2, θβ) +

1

2θ
γ(4, θβ)}2

]
(4.11)

It is clear from the expressions of µ and σ2 that those are not in simple forms.

Hence, we compute the values of µ and σ2 for some selected values of β and θ to

understand the changing behaviour of them with varying values of the parameters.

Table 4.1 shows the values of µ and σ2 for selected values of β and θ.
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Table 4.1: Mean and variance values of UTXG(β, θ) for selected values of θ
and β.

θ
β ↓ 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

5
µ 2.6285 2.3682 2.0293 1.6935 1.3996 1.1606 0.9735 0.8288
σ2 2.1392 2.0934 1.9335 1.6620 1.3447 1.0473 0.8035 0.6175

10
µ 5.2821 3.9136 2.7518 1.9870 1.5097 1.1998 0.9870 0.8333
σ2 7.8938 6.8105 4.6456 2.8830 1.8275 1.2252 0.8661 0.6389

15
µ 7.3244 4.4884 2.8494 1.9997 1.5111 1.2000 0.9870 0.8333
σ2 12.3538 10.6627 5.4461 2.9961 1.8408 1.2267 0.8662 0.6389

20
µ 8.7030 4.6336 2.8567 1.9999 1.5111 1.2000 0.9870 0.8333
σ2 17.0923 12.3157 5.5432 2.9999 1.8410 1.2267 0.8663 0.6389

4.3 Characteristic and generating functions

In this section, we derive the characteristic, moment generating and cumulant

generating functions for X ∼ UTXG(β, θ).

For any t ∈ <, the characteristic function of X is derived as

φX(t) = E
[
eitX

]
,

= K(β, θ)

∫ β

0

eitx
(

1 +
θ

2
x2

)
e−θxdx,

= K(β, θ)

∫ β

0

(
1 +

θ

2
x2

)
e−(θ−it)xdx,

= K(β, θ)

[∫ β

0

e−(θ−it)xdx+
θ

2

∫ β

0

x2e−(θ−it)xdx

]
,

= K(β, θ)

[
1

(θ − it)
γ{1, (θ − it)β}+

θ

2(θ − it)3
γ{3, (θ − it)β}

]
,

where γ(a, x) =

∫ x

0

za−1e−zdz is the lower incomplete gamma function.

Hence the characteristic function of UTXG(β, θ) is given by

φX(t) = K(β, θ)

[
1

(θ − it)
γ{1, (θ − it)β}+

θ

2(θ − it)3
γ{3, (θ − it)β}

]
. (4.12)
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Now, we find the moment generating function for UTXG(β, θ).

The moment generating function can be obtained as

MX(t) = E
[
etX
]
,

= K(β, θ)

∫ β

0

etx
(

1 +
θ

2
x2

)
e−θxdx,

= K(β, θ)

∫ β

0

(
1 +

θ

2
x2

)
e−(θ−t)xdx,

= K(β, θ)

[∫ β

0

e−(θ−t)xdx+
θ

2

∫ β

0

x2e−(θ−t)xdx

]
,

= K(β, θ)

[
1

(θ − t)
γ{1, (θ − t)β}+

θ

2(θ − t)3
γ{3, (θ − t)β}

]
, (4.13)

where γ(a, x) =
∫ x

0
za−1e−zdz is the lower incomplete gamma function.

The cumulant generating function of X is obtained by taking natural logarithm

of MX(t) and is given by

KX(t) = lnK(β, θ) + ln

[
1

(θ − t)
γ{1, (θ − t)β}+

θ

2(θ − t)3
γ{3, (θ − t)β}

]
,

= ln

[
θ2

(1 + θ) (1− e−θβ)− θβ
(
1 + θβ

2

)
e−θβ

]

+ ln

[
1

(θ − t)
γ{1, (θ − t)β}+

θ

2(θ − t)3
γ{3, (θ − t)β}

]
, t ∈ <. (4.14)

4.4 Entropy measures

We first find the Rényi entropy. Rényi entropy is defined as

HR(δ) =
1

1− δ
ln

[∫ ∞
0

f δ(x)dx

]
for δ > 0(6= 1). (4.15)
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When X ∼ UTXG(β, θ), we derive,

∫ β

0

gδ(x; β, θ)dx = [K(β, θ)]δ
∫ β

0

(
1 +

θ

2
x2

)δ
e−δθx.

Now using the expansion,

(
1 +

θ

2
x2

)δ
=

δ∑
j=0

(
δ

j

)(
θx2

2

)j
,

we have,

∫ β

0

gδ(x; β, θ)dx

= [K(β, θ)]δ
∫ β

0

δ∑
j=0

(
δ

j

)(
θx2

2

)j
e−δθxdx,

= [K(β, θ)]δ
δ∑
j=0

(
δ

j

)(
θ

2

)j ∫ β

0

x2je−δθxdx,

= [K(β, θ)]δ
δ∑
j=0

(
δ

j

)(
θ

2

)j
1

(δθ)2j+1
γ(2j + 1, δθβ),

Here γ(a, x) =

∫ x

0

za−1e−zdz is the lower incomplete gamma function.

= [K(β, θ)]δ
δ∑
j=0

(
δ

j

)
1

2jδ2j+1θj+1
γ(2j + 1, δθβ). (4.16)

From (4.15), using (4.16), the final form of Rényi entropy is obtained as

HR(δ) =
δ

1− δ
K(β, θ) +

1

1− δ
ln

[
δ∑
j=0

(
δ

j

)
1

2jδ2j+1θj+1
γ(2j + 1, δθβ)

]
. (4.17)

Next, we calculate Tsallis entropy (also called q-entropy) when X ∼ UTXG(β, θ).

Tsallis entropy is defined as

Sq(X) =
1

q − 1
ln

[
1−

∫ ∞
0

f q(x)dx

]
for q > 0 (6= 1). (4.18)
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Now, when X ∼ UTXG(β, θ), to derive Tsallis entropy, we calculate

∫ β

0

gq(x; β, θ)dx

in a very similar fashion as in (4.16) by simply replacing δ with q.

So, we have

∫ β

0

gq(x; β, θ)dx = [K(β, θ)]q
q∑
j=0

(
q

j

)
1

2jq2j+1θj+1
γ(2j + 1, qθβ).

Hence, from (4.18), the final form of Tsallis entropy is given by

Sq(X) =
1

q − 1
ln

[
1− [K(β, θ)]q

q∑
j=0

(
q

j

)
1

2jq2j+1θj+1
γ(2j + 1, qθβ)

]
. (4.19)

Now, we derive Shannon entropy for UTXG(β, θ). Shannon measure of entropy

is defined as

H(f) = E[− ln f(x)] = −
∫ ∞

0

ln f(x)f(x)dx. (4.20)

When X ∼ UTXG(β, θ), we have,

E[− ln g(x; β, θ)]

= −
∫ β

0

ln g(x; β, θ)g(x; β, θ)dx,

Let us denote g(x; β, θ) as g(x) for simplicity.

= −
[∫ β

0

ln

{
K(β, θ)

(
1 +

θ

2
x2

)
e−θx

}
g(x; β, θ)dx

]
,

= −
[∫ β

0

lnK(β, θ)g(x)dx+

∫ β

0

ln

(
1 +

θ

2
x2

)
g(x)dx− θ

∫ β

0

xg(x)dx

]
,

Since,

∫ β

0

g(x)dx = 1 and

∫ β

0

xg(x)dx = E(X), we have

= −
[
lnK(β, θ) +

∫ β

0

ln

(
1 +

θ

2
x2

)
g(x)dx− θE(X)

]
. (4.21)
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Now we calculate
∫ β

0
ln
(
1 + θ

2
x2
)
g(x)dx.

∫ β

0

ln

(
1 +

θ

2
x2

)
g(x)dx,

= K(β, θ)

∫ β

0

ln

(
1 +

θ

2
x2

)(
1 +

θ

2
x2

)
e−θxdx,

= K(β, θ)

∫ β

0

ln

(
1 +

θ

2
x2

)
e−θxdx

+
θK(β, θ)

2

∫ β

0

ln

(
1 +

θ

2
x2

)
x2e−θxdx,

Using the expansion ln

(
1 +

θ

2
x2

)
=
∞∑
j=1

(−1)j+1

(
θx2

2

)j
j

, we have,

= K(β, θ)
∞∑
j=1

(−1)j+1

(
θ
2

)j
j

∫ β

0

x2je−θxdx

+
θK(β, θ)

2

∞∑
j=1

(−1)j+1

(
θ
2

)j
j

∫ β

0

x2j+2e−θxdx,

= K(β, θ)
∞∑
j=1

(−1)j+1 θj

j2jθ2j+1
γ(2j + 1, θβ)

+
θK(β, θ)

2

∞∑
j=1

(−1)j+1 θj

j2jθ2j+3
γ(2j + 3, θβ),

Here γ(a, x) =

∫ x

0

za−1e−zdz is the lower incomplete gamma function.

= K(β, θ)
∞∑
j=1

(−1)j+1 1

j2jθ2j+1

[
γ(2j + 1, θβ) +

1

2θ
γ(2j + 3, θβ)

]
.

Now, using (4.21) and substituting the value of E(X) from (4.9), the final form of

Shannon entropy is obtained as

H(g) =
K(β, θ)

θ

[
γ(2, θβ) +

1

2θ
γ(4, θβ)

]
− lnK(β, θ)

−K(β, θ)
∞∑
j=0

(−1)j+1 1

j2jθj+1

[
γ(2j + 1, θβ) +

1

2θ
γ(2j + 3, θβ)

]
. (4.22)
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4.5 Distributions of order statistics

The distributions of order statistics play important role in obtaining system re-

liabilities (be it biological or mechanical) when the components are connected in

series or parallel configurations.

Let X1, X2, . . . , Xn be a random sample of size n drawn from X ∼ UTXG(β, θ).

Denote Xj:n as the jth order statistic. Then X1:n and Xn:n denote respectively the

smallest and largest order statistics for a sample of size n drawn from UTXG(β, θ).

We use (4.5) and (4.6) for deriving the probability density functions of X1:n and

Xn:n.

The pdf of X1:n is derived as

fX1:n(x; β, θ) = n[1−G(x; β, θ)]n−1g(x; β, θ),

=
nθ2

(1 + θ){F (β)}n

(
1 +

θ

2
x2

)
e−θx{F (β)− F (x)}n−1, 0 ≤ x ≤ β.

(4.23)

The pdf of Xn:n is obtained as

fXn:n(x; β, θ) = n[G(x; β, θ)]n−1g(x; β, θ),

=
nθ2

(1 + θ){F (β)}n

(
1 +

θ

2
x2

)
e−θx{F (x)}n−1, 0 ≤ x ≤ β. (4.24)

Here F (x) is given in (2.6) and F (β) can be obtained by putting x = β in (2.6).

4.6 Survival properties

In this section we study important survival properties of a random variable X

following UTXG(β, θ).
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The survival or reliability function of X is given by

S(x; β, θ) = Pr(X > x) =
F (β)− F (x)

F (β)
, 0 ≤ x ≤ β, (4.25)

where F (x) is given in (2.6) and F (β) can be obtained by putting x = β in (2.6).

4.6.1 Hazard rate or failure rate function

The hazard rate (or failure rate) function is obtained as

h(x) =
g(x; β, θ)

S(x; β, θ)
=

θ2

(1 + θ)

(
1 + θ

2
x2
)
e−θx

[F (β)− F (x)]
, 0 ≤ x ≤ β, (4.26)

where F (x) is given in (2.6) and F (β) can be obtained by putting x = β in (2.6).

Now, we investigate aging property of the failure rate function in (4.26). The

distribution in (4.5) is increasing failure rate (IFR) or decreasing failure rate (DFR)

depending on a particular range of X. We have the following theorem.

Theorem 4.6. The distribution, UTXG(β, θ), is IFR (DFR) if x > (<)
√

2
θ

for

all θ > 0.

Proof. If a continuous non-negative random variable X has pdf f(x), we define

η(x) = − f(x)

f ′(x)
,

where f ′(x) is the first derivative of f(x) with respect to x.

Then, f(x) is IFR (DFR) according as η(x) is increasing (decreasing) in x (see

Gupta, 2001 for the characterization). When X ∼ UTXG(β, θ), let us consider

ηUTXG(x) = − g(x; β, θ)

g′(x; β, θ)
,



Truncated xgamma distributions 96

where g′(x; β, θ) is the first derivative of g(x; β, θ) with respect to x, and, when

X ∼ xgamma(θ), let us take

ηXG(x) = − f(x; θ)

f ′(x; θ)
,

where f(x; θ) is the pdf of xgamma distribution in (2.2) and f ′(x; θ) is the first

derivative of f(x; θ) with respect to x.

Then we have,

ηUTXG(x) = ηXG(x) = θ − θx(
1 + θ

2
x2
) ,

which gives after taking first derivative with respect to x,

η′XG(x) =
θ
(
θ
2
x2
)(

1 + θ
2
x2
)2

and is positive (negative) if x > (<)
√

2
θ

for all θ > 0. Hence the proof.

4.6.2 Reversed hazard rate function

The reversed hazard rate function of X is given by

r(x) =
g(x; β, θ)

G(x; β, θ)
=

θ2

(1 + θ)

(
1 + θ

2
x2
)
e−θx

F (x)
, 0 ≤ x ≤ β, (4.27)

where F (x) is given in (2.6).

We note that, if we calculate the reversed hazard rate function for xgamma(θ),

we get by using (2.2) and (2.6),

r(x) =
f(x)

F (x)
=

θ2

(1 + θ)

(
1 + θ

2
x2
)
e−θx

F (x)
, x > 0. (4.28)

Hence, the expression for reversed hazard rate function of xgamma(θ) in (4.28) is

almost same as that of UTXG(β, θ) obtained in (4.27) expect that the range of

the latter is restricted upto β.
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4.7 Parameter estimation

In this section, we propose maximum likelihood of estimation for the unknown

parameters the upper truncated xgamma distribution under complete sample sit-

uation.

Let us denote X1, X2, . . . , Xn be a random sample of size n and x = (x1, x2, . . . , xn)

be a particular realization on that.

4.7.1 Method of maximum likelihood

WhenX ∼ UTXG(β, θ), let us take, on a similar fashion as earlier, x = (x1, x2, . . . , xn)

to denote a particular realization on a random sample of size n from it.

The likelihood function, in this case, is given by

L(β, θ|x) =
n∏
i=1

K(β, θ)

(
1 +

θ

2
x2
i

)
e−θxi . (4.29)

The MLE of β is β̂ = max{X1, X2, . . . , Xn} = Xn:n, the largest order statistic.

Given β̂, the log-likelihood function is obtained using (4.29) as

lnL(β̂, θ|x) = 2n ln θ +
n∑
i=1

ln

(
1 +

θ

2
x2
i

)
− θ

n∑
i=1

xi

− n ln

[
(1 + θ)

(
1− e−θβ̂

)
− θβ̂

(
1 +

θβ̂

2

)
e−θβ̂

]
. (4.30)

The MLE of θ, θ̂ (say), is then the solution of the log-likelihood equation (taking

first derivative of (4.30) and equating with 0) given by

2n

θ
+

n∑
i=1

x2
i

2
(
1 + θ

2
x2
i

) − n∑
i=1

xi −
n
[(

1− e−θβ̂
)

+ θβ̂
(

1 + θβ̂2

2

)
e−θβ̂

]
[
(1 + θ)

(
1− e−θβ̂

)
− θβ̂

(
1 + θβ̂

2

)
e−θβ̂

] = 0,

(4.31)
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which is a non-linear equation in θ and can not be solved analytically. We adopt

numerical method like, Newton-Raphson, for solving (4.31) to obtain θ̂.

4.8 Application

In this section applicability of the truncated version of xgamma distribution is

illustrated by a real data analysis.

Strength data of glass of aircraft window reported by Fuller et al. (1994) are been

considered for the purpose. The data is presented in Table 4.2.

Table 4.2: Data on Glass strength of aircraft window.

18.83 20.80 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.80

26.69 26.770 26.78 27.05 27.67 29.90 31.11 33.20 33.73 33.76

33.890 34.76 35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29

45.381

The data are fitted with exponential distribution with rate λ, Lindley distribution

with parameter θ, xgamma(θ) and UTXG(β, θ) distributions. Maximum likelihood

estimates are obtained for the unknown parameters in each model. As model

comparison criteria, we have considered negative log-likelihood values, AIC and

BIC.

Lower the value of AIC and/or BIC, better is the model. The result of the data

analysis is shown in Table 4.3. Statistical software R is utilized for data analysis.

In Table 4.3, estimates along with the standard error (Std. Error) of estimation

in parentheses, model selection criteria are shown.

From Table 4.3, it is clear that UTXG(β, θ) distribution provides best fit for

the given data set and shows improved description over xgamma distribution in

application, as expected. Hence, we can conclude that the truncated version of

xgamma distribution can be a better way to justify real data modeling as compared

to xgamma and other popular life distributions in particular situations.
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Table 4.3: Estimates of the parameters and model selection criteria for glass
strength data.

Distributions Estimate(Std. Error) -Log-likelihood AIC BIC

Exponential(λ) λ̂=0.0324(0.0058) 137.26 276.53 277.96

Lindley(θ) θ̂=0.0629(0.0080) 126.99 255.99 257.42

Xgamma(θ) θ̂=0.0937(0.0098) 122.27 246.55 247.98

UTXG(β, θ)
β̂=45.381

θ̂=0.0349(0.0166)
109.66 221.33 222.76

4.9 Conclusion

In this chapter, truncated versions, called as upper truncated, lower truncated

and double truncated, of xgamma distribution are introduced. Particularly, the

different distributional and survival properties of the upper truncated xgamma dis-

tribution are been studied in details. The maximum likelihood method is suggested

for estimating the unknown parameters of upper truncated xgamma distribution.

The following important findings are observed in this chapter.

1. Upper truncated xgamma distribution is unimodal. Moreover, the distri-

bution is sometimes IFR and sometimes DFR depending on the particular

range of the concerned random variable.

2. Real data illustration shows that upper truncated version of xgamma distri-

bution can be better alternative in modeling lifetime data sets compared to

the some other popular lifetime models.

Although, the upper truncated xgamma distribution, studied in this chapter, has

showed added flexibility in modeling lifetime data, it shows certain restrictions

in the form of moment expressions and in the basic distributional form. The ap-

plicability of such truncated version of xgamma lives is also restricted to specific

situations where designed lifetime is deliberately finite in its upper range.
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Moreover, it is not straightforward to construct a simulation algorithm by ap-

plying available methods in literature for generating random samples from upper

truncated xgamma distribution, the expression for the MRL function of the dis-

tribution is difficult to derive in an user friendly form and hence studies of the

important properties in comparison to xgamma model are quite paralyzed in the

connection. However, the upper truncated xgamma distribution can be utilized

in real data analysis where lifetime is truncated for some specific purpose where

direct xgamma life is not appropriate.



Chapter 5

Weighted xgamma distribution

In the previous chapters, we have introduced and studied the xgamma distribu-

tion and its truncated versions mainly the upper truncated one. It is observed

in Chapter 4 that the upper truncated version of xgamma distribution provides

some flexibility over xgamma for modeling time-to-event data set. However, as

mentioned in the last paragraph of Chapter 4, the applicability of upper trun-

cated xgamma distribution is very specific. In this chapter, we study a weighted

version of xgamma model and try to find an application in lifetime data. The

study of weighted distributions is useful for two main purposes, it could provide a

new understanding of the baseline distribution on which weight is considered and

it might provide a method of extending the baseline distribution for added flexi-

bility in fitting data. We discuss below the concept and applicability of weighted

distributions.

The concept of weighted distributions can be traced back to Fisher (1934) in the

study of the effect of methods of ascertainment upon estimation of frequencies.

While extending the basic ideas of Fisher, Rao (1965, 1985) saw the need for a

unifying concept by identifying various sampling situations that can be modeled

by what he termed as weighted distributions. Zelen (1974) introduced weighted

101
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distributions to represent what he broadly perceived as length-biased sampling in

the context of cell kinetics and the early detection of disease.

In a series of articles with other co-authors, Patil has extensively pursued weighted

distributions for purposes of encountered data analysis, equilibrium population

analysis subject to harvesting and predation, meta-analysis incorporating publica-

tion bias and heterogeneity, modeling clustering and extraneous variation, etc., see

for more details on these applications Dennis and Patil (1984), Laird et al. (1988),

Patil (1981, 1991, 1996), Patil and Ord (1976), Patil and Rao (1978), Patil and

Taillie (1988), Patil et al. (1993), Taillie et al. (1995) and references therein. More

references can be seen in Patil (1997).

In this chapter, the weighted version of xgamma distribution as a generalization

of xgamma distribution (see Chapter 2 and Chapter 3) is studied, with special

reference study is made to its length biased version. The method of moments and

method of maximum likelihood estimation are proposed to estimate the unknown

parameter of the length biased xgamma distribution. The length biased xgamma

distribution is applied for modeling time-to-event data set and compared with

other life distributions for complete sample situation.

5.1 Synthesis of weighted xgamma distribution

The form of the pdf of weighted distribution, by definition (see Patil, 1988), is

given by

f(x) =
w(x)f0(x)

E[w(X)]
, (5.1)

where w(x) is weight function which in non-negative and f0(x) is a probability

density function.
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To synthesize the weighted version of xgamma distribution, we take w(x) = xr for

r = 1, 2, 3, . . . , and f0(x) is taken as the pdf of xgamma distribution as in (2.2).

Note that, taking w(x) = xr for r = 1, 2, 3, . . ., E[w(X)] is nothing but the rth

order non-central (raw) moment of xgamma distribution given in (2.10), i.e.,

E(Xr) =
r!

θr(1 + θ)

[
θ +

(1 + r)(2 + r)

2

]
, for r = 1, 2, 3, . . . .

Now using (5.1) and putting the expressions for w(x), E[w(X)] and f0(x), the pdf

of rth order moment weighted version of xgamma distribution can be derived as

f(x) =
xr θ2

(1+θ)

(
1 + θ

2
x2
)
e−θx

r!
θr(1+θ)

[
θ + (1+r)(2+r)

2

] ,
=

2θr+2

r![2θ + (1 + r)(2 + r)]

(
xr +

θ

2
xr+2

)
e−θx.

We have the following definition for the weighted xgamma distribution.

Definition 5.1. A non-negative continuous random variable, X, is said to follow

weighted xgamma (WXG) distribution with parameters r and θ if its pdf is of the

form

f(x) =
2θr+2

r![2θ + (1 + r)(2 + r)]

(
xr +

θ

2
xr+2

)
e−θx, x > 0, θ > 0, r = 1, 2, 3, . . . .

(5.2)

It is denoted by X ∼ WXG(r, θ).

The Figure 5.1 shows the plot of density functions for weighted xgamma distribu-

tion for different values of r and θ.

Non-central moments

Now, we find the non-central moments for WXG(r, θ).
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Figure 5.1: Probability density curves of weighted xgamma distribution for
different values of θ and r

The kth, for k = 1, 2, 3, . . ., order non-central moment of WXG(r, θ) can be ob-

tained as

µ′k = E[Xk] =

∫ ∞
0

xkf(x)dx,

=
2θr+2

r![2θ + (1 + r)(2 + r)]

∫ ∞
0

xk
(
xr +

θ

2
xr+2

)
e−θxdx,

=
2θr+2

r![2θ + (1 + r)(2 + r)]

[∫ ∞
0

xr+ke−θxdx+
θ

2

∫ ∞
0

xr+k+2e−θxdx

]
.
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Hence, we have,

µ′k =
2θr+2

r![2θ + (1 + r)(2 + r)]

[
Γ(r + k + 1)

θr+k+1
+
θ

2

Γ(r + k + 3)

θr+k+3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
2θr+2

r![2θ + (1 + r)(2 + r)]

[
(r + k)!

θr+k+1
+

(r + k + 2)!

2θr+k+2

]
,

=
2θr+2(r + k)!

r![2θ + (1 + r)(2 + r)]θr+k+1

[
1 +

(r + k + 2)(r + k + 1)

2θ

]
,

=
(r + k)!

r![2θ + (1 + r)(2 + r)]θk−1

[
2θ + (r + k + 2)(r + k + 1)

θ

]
,

=
(r + k)!

r!θk
[2θ + (1 + r + k)(2 + r + k)]

[2θ + (r + 1)(r + 2)]
. (5.3)

In particular, by putting k = 1 in (5.3), the mean of WXG(r, θ) distribution is

obtained as

E(X) =
(r + 1)!

r!θ

[2θ + (r + 2)(r + 3)]

[2θ + (r + 1)(r + 2)]
,

=
(r + 1)

θ

[2θ + (r + 2)(r + 3)]

[2θ + (r + 1)(r + 2)]
. (5.4)

Similarly, putting k = 2 in (5.3), the second order raw moment for WXG(r, θ) is

obtained as

µ′2 = E(X2) =
(r + 1)(r + 2)

θ2

[2θ + (r + 3)(r + 4)]

[2θ + (r + 1)(r + 2)]
. (5.5)

Next, we find the expressions for cdf, survival function and hazard rate function

of WXG(r, θ).
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Cumulative distribution function

The cdf of WXG(r, θ) can be obtained as

F (x) = P (X ≤ x),

=

∫ x

0

2θr+2

r![2θ + (1 + r)(2 + r)]

(
tr +

θ

2
tr+2

)
e−θtdt,

Putting θt = u, we have,

=
2θr+2

r![2θ + (1 + r)(2 + r)]

[∫ θx

0

(u
θ

)r
e−u

du

θ
+
θ

2

∫ θx

0

(u
θ

)r+2

e−u
du

θ

]
,

=
2θr+2

r![2θ + (1 + r)(2 + r)]

[
1

θr+1

∫ θx

0

ure−udu+
1

2θr+2

∫ θx

0

ur+2e−udu

]
,

=
2θ

r![2θ + (1 + r)(2 + r)]

[∫ θx

0

ur+1−1e−udu+
1

2θ

∫ θx

0

ur+3−1e−udu

]
,

=
2θ

r![2θ + (1 + r)(2 + r)]

[
γ(r + 1, θx) +

1

2θ
γ(r + 3, θx)

]
, (5.6)

where γ(a, x) =
∫ x

0
ua−1e−udu is the lower incomplete gamma function.

Survival function

The survival function of WXG(r, θ) can be derived as

S(x) = Pr(X > x),

=

∫ ∞
x

2θr+2

r![2θ + (1 + r)(2 + r)]

(
ur +

θ

2
ur+2

)
e−θudu,

Putting θt = u, we have,

=
2θr+2

r![2θ + (1 + r)(2 + r)]

[∫ ∞
θx

(u
θ

)r
e−u

du

θ
+
θ

2

∫ ∞
θx

(u
θ

)r+2

e−u
du

θ

]
,

=
2θr+2

r![2θ + (1 + r)(2 + r)]

[
1

θr+1

∫ ∞
θx

ure−udu+
1

2θr+2

∫ ∞
θx

ur+2e−udu

]
,

=
2θ

r![2θ + (1 + r)(2 + r)]

[∫ ∞
θx

ur+1−1e−udu+
1

2θ

∫ ∞
θx

ur+3−1e−udu

]
,

=
2θ

r![2θ + (1 + r)(2 + r)]

[
Γ(r + 1, θx) +

1

2θ
Γ(r + 3, θx)

]
, (5.7)

where Γ(a, x) =
∫∞
x
ua−1e−udu is the upper incomplete gamma function.
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Hazard rate or failure rate function

The failure rate or hazard rate function of WXG(r, θ) is obtained as

h(x) =
f(x)

S(x)
=

θr+1
(
xr + θ

2
xr+2

)
e−θx[

Γ(r + 1, θx) + 1
2θ

Γ(r + 3, θx)
] ;x > 0, r = 1, 2, 3, . . . . (5.8)

The main emphasis is given in studying the length biased version of xgamma

distribution hereafter. The rest of the chapter is organized as follows.

The length biased version for xgamma distribution is described along with its

moments and related measures in section 5.2. Distributions of order statistics for

length biased xgamma distribution are derived in section 5.3. Important entropy

measures are described in section 5.4 and different survival properties are studied in

section 5.5 for length biased version of xgamma distribution. Section 5.6 deals with

the methods of estimation for the unknown parameter in length biased xgamma

model for complete sample case. An algorithm for generating random samples from

length biased xgamma along with a Monte-Carlo simulation study is presented in

section 5.7. Real data illustration is described in section 5.8 for studying the

application of length biased xgamma model. Finally, the section 5.9 summaries

the chapter mentioning important finding and some open research problems for

future investigation.

5.2 The length biased xgamma distribution

This section deals with the length biased version of xgamma distribution. The

length biased version of xgamma distribution is obtained as a special case of weight

xgamma distribution discussed in the previous section.

If we put r = 1 in (5.2), then we obtain so called length biased version of the

xgamma distribution. We have the following definition for the length biased

xgamma distribution.
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Definition 5.2. A non-negative continuous random variable, X, is said to follow

the length biased xgamma (LBXG) distribution with parameter θ if its pdf is of

the form

f(x) =
θ3

(θ + 3)

(
x+

θ

2
x3

)
e−θx, x > 0, θ > 0. (5.9)

It is denoted by X ∼ LBXG(θ).

We note that the length biased xgamma distribution is a special mixture of

gamma(2, θ) and gamma(4, θ) with mixing proportions θ/(3 + θ) and 3/(3 + θ),

respectively.

The probability density plots of LBXG(θ) for different values of θ is shown in

Figure 5.2.

Figure 5.2: Probability density function of length biased xgamma distribution
for different values of θ.
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Now, for finding cdf of LBXG(θ), we calculate the followings.

F (x) = Pr(X ≤ x) = 1− Pr(X > x).

Now, we find Pr(X > x).

Pr(X > x) =

∫ ∞
x

θ3

(θ + 3)

(
t+

θ

2
t3
)
e−θtdt,

=
θ3

(θ + 3)

[∫ ∞
x

te−θtdt+
θ

2

∫ ∞
x

t3e−θtdt

]
. (5.10)

Now, integrating by parts, we can have,

∫ ∞
x

t3e−θtdt =
x3e−θx

θ
+

3

θ

∫ ∞
x

t2e−θtdt,

=
x3e−θx

θ
+

3

θ

{
x2e−θx

θ
+

2

θ

(
xe−θx

θ
+
e−θx

θ2

)}
,

=
x3e−θx

θ
+

3x2e−θx

θ2
+

6xe−θx

θ3
+

6e−θx

θ4
. (5.11)

So, using (2.4) and (5.11), from (5.10), we have,

Pr(X > x)

=
θ3

(θ + 3)

[
xe−θx

θ
+
e−θx

θ2
+
θ

2

(
x3e−θx

θ
+

3x2e−θx

θ2
+

6xe−θx

θ3
+

6e−θx

θ4

)]
,

=
θ3

(θ + 3)

[
xe−θx

θ
+
e−θx

θ2
+
x3e−θx

2
+

3x2e−θx

2θ
+

3xe−θx

θ2
+

3e−θx

θ3

]
,

=
θ3e−θx

(θ + 3)

[
2θ2x+ 2θ + θ3x3 + 3θ2x2 + 6θx+ 6

2θ3

]
,

=
e−θx

(θ + 3)

[
(3 + θ) + (3 + θ)θx+

3

2
θ2x2 +

1

2
θ3x3

]
.

Hence, the cdf of X ∼ LBXG(θ) is given by

F (x) = 1−
[
(3 + θ) + (3 + θ)θx+ 3

2
θ2x2 + 1

2
θ3x3

]
(θ + 3)

e−θx, x > 0. (5.12)
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The characteristic function of LBXG(θ) is obtained as

φX(t) = E
[
eitX

]
,

=
θ3

(θ + 3)

∫ ∞
0

eitx
(
x+

θ

2
x3

)
e−θxdx,

=
θ3

(θ + 3)

[∫ ∞
0

xe−(θ−it)xdx+
θ

2

∫ ∞
0

x3e−(θ−it)xdx

]
,

=
θ3

(θ + 3)

[
Γ(2)

(θ − it)2
+

θΓ(4)

2(θ − it)4

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ3

(θ + 3)

[
1

(θ − it)2
+

3θ

(θ − it)4

]
,

=
θ3

(θ + 3)

[
(θ − it)−2 + 3θ(θ − it)−4

]
; i =

√
−1, t ∈ <. (5.13)

5.2.1 Moments and associated measures

Now, we find the moments and measures related to moments of LBXG(θ).

The kth order raw moment, µ′k for k = 1, 2, 3, . . ., of length-biased xgamma dis-

tribution can be obtained either directly using the pdf in (5.9) or by substituting

k = 1, 2, 3, . . . in (5.3) after putting r = 1.

Hence, we have

µ′k = E(Xk) =
(k + 1)! [2θ + (2 + k)(3 + k)]

2θk(θ + 3)
for k = 1, 2, 3, . . . . (5.14)

In particular,

E(X) =
2(θ + 6)

θ(θ + 3)
; E(X2) =

6(θ + 10)

θ2(θ + 3)
. (5.15)
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So, we have the expression for second order central moment or the population

variance for X as

V ar(X) = µ2 = µ′2 − µ′21 ,

=
6(θ + 10)

θ2(θ + 3)
−
[

2(θ + 6)

θ(θ + 3)

]2

,

=
6(θ + 10)(θ + 3)− 4(θ + 6)2

θ2(θ + 3)2
,

On simplification, we have,

=
2(θ2 + 15θ + 18)

θ2(θ + 3)2
(5.16)

so that the coefficient of variation (CV) becomes

γ =

√
V ar(X)

E(X)
=

√
2(θ2 + 15θ + 18)

2(θ + 6)
. (5.17)

The moment generating function of X is derived as

MX(t) = E
[
etX
]
,

=
θ3

(θ + 3)

∫ ∞
0

etx
(
x+

θ

2
x3

)
e−θxdx,

=
θ3

(θ + 3)

[∫ ∞
0

xe−(θ−t)xdx+
θ

2

∫ ∞
0

x3e−(θ−t)xdx

]
,

=
θ3

(θ + 3)

[
Γ(2)

(θ − t)2
+

θΓ(4)

2(θ − t)4

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ3

(θ + 3)

[
1

(θ − t)2
+

3θ

(θ − t)4

]
,

=
θ3

(θ + 3)

[
(θ − t)−2 + 3θ(θ − t)−4

]
; t ∈ <. (5.18)
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The cumulant generating function of X is obtained as

KX(t) = lnMX(t),

= ln
θ3

(θ + 3)

[
(θ − t)−2 + 3θ(θ − t)−4

]
,

= ln
θ3

(θ + 3)(θ − t)2
+ ln

[
1 + 3θ(θ − t)−2

]
; t ∈ <. (5.19)

5.3 Distributions of order statistics

In this section, we find the distributions of extreme order statistics for LBXG(θ).

Let X1, X2, . . . , Xn be a random sample of size n drawn from X ∼ LBXG(θ).

Denote Xj:n as the jth order statistic. Then X1:n and X2:n denote the smallest and

largest order statistics for a sample of size n drawn from length-biased xgamma

distribution with parameter θ, respectively.

For any x > 0, the pdf of X1:n is derived as

fX1:n(x) = n[1− F (x)]n−1f(x),

=
nθ3

(
x+ θ

2
x3
)

(θ + 3)n

[
(3 + θ) + (3 + θ)θx+

3

2
θ2x2 +

1

2
θ3x3

]n−1

e−nθx.

(5.20)

Similarly, for any x > 0, the pdf of Xn:n is obtained as

fXn:n(x) = n[F (x)]n−1f(x),

=
nθ3

(
x+ θ

2
x3
)

(θ + 3)

[
1−

(3 + θ) + (3 + θ)θx+ 3
2
θ2x2 + 1

2
θ3x3

(θ + 3)
e−θx

]n−1

e−θx,

after simple arrangements,

=
nθ3

(
x+ θ

2
x3
)

(θ + 3)n

[
(θ + 3){1− e−θx(1 + θx)} − 1

2
θ2x2e−θx(3 + θx)

]n−1

e−θx.

(5.21)
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5.4 Entropy measures

We first derive the Rényi entropy measure when X ∼ LBXG(θ). We derive,

∫ ∞
0

fγ(x)dx

=

∫ ∞
0

[
θ3

(θ + 3)

(
x+

θ

2
x3

)
e−θx

]γ
dx, for γ > 0(6= 1),

=
θ3γ

(θ + 3)γ

∫ ∞
0

(
x+

θ

2
x3

)γ
e−γθxdx,

=
θ3γ

(θ + 3)γ

∫ ∞
0

xγ
(

1 +
θ

2
x2

)γ
e−γθxdx,

Putting

(
1 +

θ

2
x2

)γ
=

γ∑
j=0

(
γ

j

)(
θx2

2

)j
,

=
θ3γ

(θ + 3)γ

γ∑
j=0

(
γ

j

)∫ ∞
0

(
θ

2

)j
x2j+γe−γθxdx,

=
θ3γ

(θ + 3)γ

γ∑
j=0

(
γ

j

)
Γ(2j + γ + 1)

2jθj+γ+1γ2j+γ+1
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ3γ

(θ + 3)γ

γ∑
j=0

(
γ

j

)
Γ(2j + γ + 1)

2jθj+γ+1γ2j+γ+1

to obtain Rényi entropy as

HR(γ) =
1

1− γ
ln

[∫ ∞
0

fγ(x)dx

]
,

=
1

1− γ
[3γ ln θ − γ ln(θ + 3)] +

1

1− γ
ln

[
γ∑
j=0

(
γ

j

)
Γ(2j + γ + 1)

2jθj+γ+1γ2j+γ+1

]
.

(5.22)

Now, when X ∼ LBXG(θ), to obtain Tallis measure of entropy, defined by

Sq(X) =
1

q − 1
ln

[
1−

∫ ∞
0

f q(x)dx

]
for q > 0 (6= 1),
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we calculate,

∫ ∞
0

f q(x)dx

=

∫ ∞
0

[
θ3

(θ + 3)

(
x+

θ

2
x3

)
e−θx

]q
dx,

=
θ3q

(θ + 3)q

∫ ∞
0

(
x+

θ

2
x3

)q
e−qθxdx,

=
θ3q

(θ + 3)q

∫ ∞
0

xq
(

1 +
θ

2
x2

)q
e−qθxdx,

Putting

(
1 +

θ

2
x2

)q
=

q∑
j=0

(
q

j

)(
θx2

2

)j
,

=
θ3q

(θ + 3)q

q∑
j=0

(
q

j

)∫ ∞
0

(
θ

2

)j
x2j+qe−qθxdx,

=
θ3q

(θ + 3)q

q∑
j=0

(
q

j

)
Γ(2j + q + 1)

2jθj+q+1q2j+q+1
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ3q

(θ + 3)q

q∑
j=0

(
q

j

)
Γ(2j + q + 1)

2jθj+q+1q2j+q+1
.

Hence, the final form of Tsallis entropy is given by

Sq(x) =
1

1− q

[
1− θ3q

(θ + 3)q

q∑
j=0

(
q

j

)
Γ(2j + q + 1)

2jθj+q+1q2j+q+1

]
. (5.23)

5.5 Survival properties

In this section we study survival properties of LBXG(θ).

The survival function of X ∼ LBXG(θ) is obtained as

S(x) = Pr(X > x) =

[
(3 + θ) + (3 + θ)θx+ 3

2
θ2x2 + 1

2
θ3x3

]
(θ + 3)

e−θx, x > 0. (5.24)
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5.5.1 Hazard rate or failure rate function

The hazard rate (or failure rate) function is obtained as

h(x) =
f(x)

S(x)
=

θ3
(
x+ θ

2
x3
)[

(3 + θ) + (3 + θ)θx+ 3
2
θ2x2 + 1

2
θ3x3

] , x > 0. (5.25)

The hazard rate plots for different values of θ is shown in the Figure 5.3. It is

observed that the hazard rate function in (5.25) is increasing in θ and x.

Figure 5.3: Hazard rate function of length biased xgamma distribution for
different values of θ.
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5.5.2 MRL function

When X ∼ LBXG(θ), the MRL function can be derived as below.

m(x) =
1

S(x)

∫ ∞
x

S(t)dt,

=
1

(θ + 3)S(x)

∫ ∞
x

[
(3 + θ) + (3 + θ)θt+

3

2
θ2t2 +

1

2
θ3t3

]
e−θtdt. (5.26)

Now,

∫ ∞
x

[
(3 + θ) + (3 + θ)θt+

3

2
θ2t2 +

1

2
θ3t3

]
e−θtdt

= (3 + θ)

∫ ∞
x

e−θtdt+ (3 + θ)θ

∫ ∞
x

te−θtdt+
3

2
θ2

∫ ∞
x

t2e−θtdt+
θ3

2

∫ ∞
x

t3e−θtdt,

Using the expressions of integration in (2.3), (2.4), (2.5) and (??), we have,

= (3 + θ)
e−θx

θ
+ (3 + θ)θ

(
xe−θx

θ
+
e−θx

θ2

)
+

3θ2

2

{
x2e−θx

θ
+

2

θ

(
xe−θx

θ
+
e−θx

θ2

)}
+
θ3

2

(
x3e−θx

θ
+

3x2e−θx

θ2
+

6xe−θx

θ3
+

6e−θx

θ4

)
,

= e−θx
[
θ + 3

θ
+

(θ + 3)(1 + θx)

θ
+

3(θ2x2 + 2θx+ 2)

2θ
+

(θ3x3 + 3θ2x2 + 6θx+ 6)

2θ

]
,

On simplification,

= e−θx
[

4θ + 24 + 2θ2x+ 18θx+ 6θ2x2 + θ3x3

2θ

]
,

=
e−θx

θ

[
2θ + 12 + θ2x+ 9θx+ 3θ2x2 +

1

2
θ3x3

]
.

Using (5.26), we have then,

m(x) =
1

(θ + 3)S(x)

e−θx

θ

[
2θ + 12 + θ2x+ 9θx+ 3θ2x2 +

1

2
θ3x3

]
,

=

[
2θ + 12 + θ2x+ 9θx+ 3θ2x2 + 1

2
θ3x3

]
θ
[
(3 + θ) + (3 + θ)θx+ 3

2
θ2x2 + 1

2
θ3x3

] .
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On adjustment of the numerator, we have,

m(x) =

[
(3 + θ) + (3 + θ)θx+ 3

2
θ2x2 + 1

2
θ3x3

]
+
(
θ + 9 + 6θx+ 3

2
θ2x2

)
θ
[
(3 + θ) + (3 + θ)θx+ 3

2
θ2x2 + 1

2
θ3x3

] ,

=
1

θ
+

θ + 9 + 6θx+ 3
2
θ2x2

θ
[
(3 + θ) + (3 + θ)θx+ 3

2
θ2x2 + 1

2
θ3x3

] .
Hence, the MRL function is given by

m(x) =
1

θ
+

(θ + 3) + 6(1 + θx) + 3
2
θ2x2

θ
[
(θ + 3) + (θ + 3)θx+ 3

2
θ2x2 + 1

2
θ3x3

] . (5.27)

The plots of MRL function for different values of θ is shown in the Figure 5.4.

Figure 5.4: Mean residual life function of length biased xgamma distribution
for different values of θ
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The following points are noted.

(i) It is clear that the hazard rate is increasing function in x (> 0). The fact

can easily be identified as the length biased distribution given in (5.9) is

log-concave.

(ii) The MRL function in (5.27) is bounded below by 1/θ and bounded above

by 2(θ+6)
θ(θ+3)

= E(X) and is decreasing in x.

(iii) Therefore, the distribution posses increasing failure rate (IFR) and decreas-

ing mean residual life (DMRL) property.

5.5.3 Reversed hazard rate function

The reversed hazard rate function of X ∼ LBXG(θ) is given by (see Figure 5.5

for the plots of reversed hazard rate function for selected values of θ)

r(x) =
f(x)

F (x)
,

=
θ3
(
x+ θ

2
x3
)
e−θx

(θ + 3)− {(θ + 3) + (θ + 3)θx+ 3
2
θ2x2 + 1

2
θ3x3}e−θx

,

=
θ3
(
x+ θ

2
x3
)
e−θx

(θ + 3){1− (1 + θx)e−θx} − 1
2
θ2x2(3 + θx)e−θx

, x > 0. (5.28)

5.5.4 Stochastic ordering

In this sub-section, we study stochastic order relationship of length biased xgamma

random variables.

The following theorem shows that length biased xgamma random variables possess

strong stochastic ordering depending the value of the parameter.
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Figure 5.5: Reversed hazard rate function of length biased xgamma distribu-
tion for different values of θ.

Theorem 5.3. If X ∼ LBXG(θ1) and Y ∼ LBXG(θ2), then for θ1 > θ2, X is

smaller than Y in hazard rate order (i.e.,X ≤HR Y ) and thereby in mean residual

life order (X ≤MRL Y ) and stochastic order (X ≤ST Y ), respectively.

Proof. For t > 0, we have the ratio of the hazard functions of X and Y as

hX(t)

hY (t)
=

(
θ1

θ2

)3(
2t+ θ1t

3

2t+ θ2t3

)[
(3 + θ2) + (3 + θ2)θ2t+ 3

2
θ2

2t
2 + 1

2
θ3

2t
3

(3 + θ1) + (3 + θ1)θ1t+ 3
2
θ2

1t
2 + 1

2
θ3

1t
3

]
,

which is more than unity if θ1 > θ2 (see Figure 5.6 for the plots of hX(t)
hY (t)

for selected

values of θ1 and θ2). Hence, hX(t) > hY (t) for θ1 > θ2 and t > 0. So, X ≤HR Y .

Again by Shaked and Shanthikumar (1994), X ≤HR Y ⇒ X ≤MRL Y and X ≤HR
Y ⇒ X ≤ST Y , and hence the proof.
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Figure 5.6: Plots for hX(t)
hY (t) for selected values of θ1 and θ2 (θ1 > θ2).

5.6 Parameter estimation

In this section, method of moments and method maximum likelihood are been

proposed for estimating θ when X ∼ LBXG(θ). Let X1, X2, . . . , Xn be a random

sample of size n drawn from LBXG(θ).

5.6.1 Method of moments

If X̄ denotes the sample mean, then by applying the method of moments, we have

X̄ =
2(θ + 6)

θ(θ + 3)
,
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which gives a quadratic equation in θ as

X̄θ2 + (3X̄ − 2)θ − 12 = 0. (5.29)

Denoting θ̂M as the method of moment estimator for θ. θ̂M is the solution of (5.29)

and is obtained as

θ̂M =
−(3X̄ − 2) +

√
(3X̄ − 2)2 + 48X̄

2X̄
for X̄ > 0. (5.30)

5.6.2 Method of maximum likelihood

Let x = (x1, x2, . . . , xn) be a particular realization on X1, X2, . . . , Xn. The likeli-

hood function of θ given x is then written as

L(θ|x) =
n∏
i=1

θ3

(θ + 3)

(
xi +

θ

2
x3
i

)
e−θxi =

θ3n

(θ + 3)n
e−θ

∑n
i=1 xi

n∏
i=1

(
xi +

θ

2
x3
i

)
.

The log-likelihood function is given by

lnL(θ|x) = 3n ln θ − n ln(θ + 3)− θ

(
n∑
i=1

xi

)
+

n∑
i=1

ln

(
xi +

θ

2
x3
i

)
. (5.31)

Differentiating (5.31) with respect to θ and equating with zero, the log-likelihood

equation is

∂

∂θ
lnL(θ|x) = 0

⇒ 3n

θ
− n

(θ + 3)
−

n∑
i=1

xi +
n∑
i=1

x2
i /2(

1 + θ
2
x2
i

) = 0. (5.32)

Differentiating (5.31) twice with respect to θ, we have

∂2

∂θ2
lnL(θ|x) =

n

(θ + 3)2
− 3n

θ2
−

n∑
i=1

(
x2
i /2

1 + θ
2
x2
i

)2

. (5.33)
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The equation (5.32) can not be solved analytically, hence for finding the maximum

likelihood estimator, say θ̂, of θ numerical method like Newton-Raphson is applied.

5.7 Simulation study

The procedure for simulating random sample of specific size from LBXG(θ) is

discussed in this section along with a simulation study.

The fact that length biased xgamma distribution is a special mixture of gamma(2, θ)

and gamma(4, θ) with mixing proportions θ/(3 + θ) and 3/(3 + θ), respectively, is

utilized for constructing the simulation algorithm from the distribution.

If X ∼ LBXG(θ), then for generating a random sample of size n we can have the

following algorithm.

1. Generate Ui ∼ uniform(0, 1); i = 1, 2, . . . , n.

2. Generate Vi ∼ gamma(2, θ); i = 1, 2, . . . , n.

3. Generate Wi ∼ gamma(4, θ); i = 1, 2, . . . , n.

4. If Ui ≤ θ
θ+3

, then set Xi = V i, otherwise set Xi = Wi.

A Monte-Carlo simulation study is carried out by considering N = 10, 000 times

for selected values of n and θ. Samples of sizes 20, 40, 60 and 100 are considered

and values of θ are taken as 0.1, 0.5, 1.0, 1.5, 3, 4.5 and 6. The required numerical

evaluations are carried out using R software. The following two measures are been

computed.

(i) Average estimate of θ:

θ̂ = 1
N

∑N
i=1 θ̂i, where θ̂i’s are simulated estimates.

(ii) Mean Square Error (MSE) of the simulated estimates θ̂i, i = 1, 2, . . . , N :

1
N

∑N
i=1 (θ̂i − θ)2.
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The results of the simulation study is presented in Table 5.1. The following ob-

servations are made from the simulation study.

1. For a given value of θ, the average mean square error (MSE) decreases as

sample size n increases.

2. For a larger given value of θ, MSE gets higher and follow the similar trends

as indicated in (i) above.

Table 5.1: Estimate and average MSE for different sample sizes

n = 20 n = 40

θ Estimate MSE Estimate MSE

0.1 0.09989 0.00013 0.09976 0.00006

0.5 0.48862 0.00326 0.48647 0.00171

1.0 0.95012 0.01445 0.94499 0.00884

1.5 1.39521 0.03706 1.38425 0.02610

3.0 2.64595 0.22346 2.62256 0.18895

4.5 3.80880 0.68941 3.78011 0.61890

6.0 4.91580 1.53158 4.88066 1.42160

n = 60 n = 100

θ Estimate MSE Estimate MSE

0.1 0.09963 0.00004 0.09935 0.00002

0.5 0.48404 0.00126 0.48376 0.00085

1.0 0.94193 0.00714 0.94072 0.00576

1.5 1.38165 0.02240 1.38010 0.01935

3.0 2.61816 0.17740 2.61517 0.16657

4.5 3.76977 0.59767 3.76117 0.58579

6.0 4.85885 1.41716 4.85344 1.38345

5.8 Application

In this section, a real life data set is analyzed to illustrate the applicability of

length biased xgamma distribution.
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Fatigue is an important factor in determining the service life of ball bearings.

Bearing manufacturers are therefore constantly engaged in fatigue-testing opera-

tions in order to obtain information relating fatigue life to load and other factors.

The data set of 23 fatigue life for deep-groove ball bearings, compiled by Amer-

ican Standards Association and reported in Lieblein and Zelen (1956) is used to

illustrate the applicability of the length biased xgamma model.

The data set (given in Table 5.2) is positively skewed (skewness=0.94 and kurtosis=0.49)

with mean value 72.22, median 67.80 and is unimodal (mode at 50).

Table 5.2: Data on fatigue lives of 23 deep-groove ball bearings

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12

55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84

127.92 128.04 173.40

For comparison purpose, besides length biased xgamma distribution with parame-

ter θ, five other different life distributions, namely, exponential with rate θ, gamma

distribution with shape α and rate θ, Weibull distribution with shape α and scale

β, xgamma distribution with parameter θ and length biased weighted exponential

distribution with parameters α and λ, i.e., LBWE(α, λ) (Das and Kundu, 2016),

are considered.

In order to compare lifetime models, criteria like, negative log-likelihood, AIC

and BIC are taken. The better fitted distribution corresponds to smaller negative

log-likelihood, AIC and BIC values. Maximum likelihood estimates (MLEs) are

obtained for the parameters involved in the distributions considered for the pur-

pose. Statistical software R is utilized for computation.

Table 5.3 shows the estimates of the model parameter(s) with standard error(s)

of estimates in parenthesis and different model selection criteria. From Table 5.3,

it is observed that LBXG(θ) better fits the data as compared to the other mod-

els. Moreover, added flexibility over xgamma distribution is observed in real data

application.
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Table 5.3: MLEs of model parameters and model selection criteria for fatigue
lives of ball bearing data.

Distributions Estimate(Std. Error) -Log-likelihood AIC BIC

Exponential(θ) θ̂=0.0138 (0.0029) 121.435 244.870 246.005

Gamma(α, θ)
α̂=4.0260 (1.1396)

θ̂=0.0557 (0.0168)
113.029 230.059 232.330

Weibull(α, β)
α̂=2.1021 (0.3286)

β̂=81.8683 (8.5986)
113.691 231.383 233.654

Xgamma(θ) θ̂=0.0407 (0.0049) 113.966 229.931 231.067

LBWE(α, λ)
α̂=0.0251 (0.8960)

λ̂=0.0410 (0.0182)
113.522 231.045 233.326

LBXG(θ) θ̂=0.0549 (0.0057) 113.086 228.171 229.307

The Figure 5.7 shows the plot of histogram and fitted exponential, gamma, Weibull,

xgamma, LBWE(α, λ) and LBXG(θ) curves for fatigue lives data.

Figure 5.7: Plot of histogram and fitted lifetime models for fatigue lives data.



Weighted xgamma distribution 126

5.9 Conclusion

Owing the importance of weighted distributions in statistical literature, the weighted

xgamma distribution, considering a special non-negative weight function, is pro-

posed and studied in this chapter as a generalization of xgamma distribution. As

a special case of weighted xgamma distribution, length biased version of xgamma

distribution is obtained and its different distributional and survival properties are

studied in detail. Method of moments and method of maximum likelihood are

proposed for estimating unknown parameter in the length biased xgamma distri-

bution. Real data are analyzed to show the applicability of the proposed model

and compared with other life distributions. The following important findings are

obtained in this chapter.

1. It is observed that the length biased xgamma is a special case of weighted

xgamma distribution and is a special finite mixture of gamma(2, θ) and

gamma(4, θ).

2. Length biased xgamma distribution is unimodal and holds IFR and DMRL

property.

3. Length biased xgamma random variable possesses strong hazard rate, mean

residual life and stochastic ordering for certain restriction on parameter.

4. Simulation study shows that the estimator of the unknown parameter in

length biased xgamma distribution behaves satisfactorily for larger sample.

Real data illustration shows that the length biased xgamma distribution is a

potential model in describing real life time-to-event data and can be utilized

as a flexible lifetime model against the standard lifetime models available in

the literature.

This chapter opens some further scope for future research on the distribution

proposed.
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Open research problems:

Listed below some future research problems one could be interested in.

• Investigation for a suitable method of discriminating between xgamma dis-

tribution and length biased xgamma distribution for a given sample data.

• Bayesian estimation aspects for length biased xgamma distribution for differ-

ent loss functions and under different censoring schemes could be potential

research interest.

• Bivariate and multivariate extensions of length biased xgamma distribution

could be interesting generalizations.



Chapter 6

Two extensions of xgamma

distribution

So far in Chapter 2 to Chapter 5, we have studied xgamma distribution, its up-

per truncated version and weighted version for investigating flexibility in data

analysis, mainly related to time-to-event set up. In Chapter 4, we have observed

that the upper truncated xgamma model although provides added flexibility over

xgamma model in analyzing real life data, the form of the distribution and its

certain properties are not much user friendly or sometimes difficult to apply in

terms of flexibility of their final forms.

However, the length biased xgamma distribution, studied in Chapter 5 as a spe-

cial case of weighted xgamma distribution, provides better flexibility in terms of

application as well as in its different properties. But, the length biased xgamma

distribution has only single parameter like xgamma distribution and hence, might

not be appropriate in modeling wide range of time-to-event data sets where two-

parameter life distributions provide better options. So, we search further for some

extensions or generalizations of xgamma distribution with two non-negative pa-

rameters involved in the density and intend to study different properties of such

128



Two extensions of xgamma distribution 129

forms that could possibly reveal additional flexibility and could provide possible

improvements over xgamma and other life distributions in data analysis as well.

Adding an extra parameter to an existing family of distributions is very common

in the statistical distribution theory. Often introducing an extra parameter brings

additional flexibility to a class of probability distributions, and, in turn, it can

be very useful for data analysis purposes. However, adding more parameters to

an existing family of distributions may create complications in its basic structural

properties and/or in methods of estimating the additional parameters, see for more

details Johnson et al. (1994).

Several authors in statistical literature have been proposed excellent methods in

adding extra parameter(s) to an existing distribution for added flexibility in terms

of distributional properties, computations, statistical inferences and in describing

uncertainties behind real world phenomena, see for more survey on methods of

adding parameters to standard models Azzalini (1985), Marshall and Olkin (1997),

Eugene et al. (2002), Lee et al. (2013), Mudholkar and Srivastava (2013), Alzaatreh

et al. (2013) and Jones (2014).

Therefore, introducing new probability distributions and/or extending (or gen-

eralizing) existing probability distributions by adding extra parameters into its

form has become a time-honored device for obtaining more flexible new families

of distributions.

The present chapter, which is the last chapter of this thesis, contemplates on in-

troducing two different extensions, viz. the quasi xgamma and the two-parameter

xgamma, of xgamma distribution, studying their essential distributional and sur-

vival properties, aspects of estimating unknown parameters for complete sample

situation and possible applications with real data illustrations.

The chapter is broadly classified into two major sections, section 6.1 along with its

delegate subsections deals with the study of the quasi xgamma distribution and

section 6.2 along with its subsections deals with the study of the two-parameter
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xgamma distribution. Finally section 6.3 summarizes the chapter with important

findings and points out some open research problems for future investigations.

6.1 The quasi xgamma distribution

An extra non-negative parameter is incorporated to the one parameter xgamma

distribution in (2.2) for more flexibility in describing data that might follow situa-

tions. The family of distributions, thus obtained, is named as quasi xgamma. The

name quasi xgamma is proposed not in view of any technical term, here the term

“quasi” stands for “similar form” as xgamma distribution. It is to be noted that

the quasi xgamma distribution such obtained includes xgamma distribution as a

special case.

For synthesizing the density form of quasi xgamma distribution, we consider f1(x)

to follow an exponential distribution with parameter θ and f2(x) to follow a gamma

distribution with scale parameter θ and shape parameter 3 i.e., f1(x) ∼ exp(θ)

and f1(x) ∼ gamma(3, θ) with π1 = α
(1+α)

and π2 = 1− π1 in (2.1).

We have the following definition for the quasi xgamma distribution.

Definition 6.1. A non-negative continuous random variable, X, is said to follow

a quasi xgamma (QXG) distribution with parameters α and θ if its pdf is of the

form

f(x) =
θ

(1 + α)

(
α +

θ2

2
x2

)
e−θx, x > 0, θ > 0 and α > 0, (6.1)

and is denoted by X ∼ QXG(α, θ).

Special cases:

For particular values of α, from (6.1) the following special cases are observed.
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1. When α = 0, gamma distribution with shape parameter 3 and scale param-

eter θ, i.e., X ∼ G(θ, 3) is obtained.

2. When α = 1, a new class of distributions can be obtained with pdf

f(x) =
θ

2

(
α +

θ2

2
x2

)
e−θx, x > 0 and θ > 0. (6.2)

3. When α = θ, the xgamma distribution is obtained with pdf given in (2.2).

The plot of the density functions of quasi xgamma distribution for different values

of α and θ is shown in Figure 6.1.

Figure 6.1: Probability density curves of QXG(α, θ) for different values of α
and θ.
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Now, we derive the cdf of QXG(α, θ) as below.

We have,

F (x) = 1− Pr(X > x) = 1−
∫ ∞
x

f(t)dt. (6.3)

Now,

Pr(X > x) =

∫ ∞
x

θ

(1 + α)

(
α +

θ2

2
t2
)
e−θtdt,

=
θ

(1 + α)

[
α

∫ ∞
x

e−θtdt+
θ2

2

∫ ∞
x

t2e−θtdt

]
.

Using the expressions of integration in (2.3) and (2.5), we have,

Pr(X > x) =
θ

(1 + α)

[
αe−θx

θ
+
θ2

2

{
x2e−θx

θ
+

2

θ

(
xe−θx

θ
+
e−θx

θ2

)}]
,

=
θ

(1 + α)

[
αe−θx

θ
+
θx2e−θx

2
+ xe−θx +

e−θx

θ

]
,

=
θe−θx

(1 + α)

[(
α

θ
+

1

θ

)
+ x+

θx2

2

]
,

=
θe−θx

(1 + α)

[(
1 + α

θ

)
+ x+

θx2

2

]
,

=
e−θx

(1 + α)

[
(1 + α) + θx+

θ2x2

2

]
.

Hence, the cdf of X is given by

F (x) = 1−

(
1 + α + θx+ θ2x2

2

)
(1 + α)

e−θx, x > 0. (6.4)

6.1.1 Moments and related measures

In this section we find moments and some related measures of QXG(α, θ).
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The rth order non-central moment of quasi xgamma distribution can be derived

as

µ′r = E(Xr),

=

∫ ∞
0

xr
θ

(1 + α)

(
α +

θ2

2
x2

)
e−θxdx,

=
θ

(1 + α)

[
α

∫ ∞
0

xre−θxdx+
θ2

2

∫ ∞
0

xr+2e−θxdx

]
,

=
θ

(1 + α)

[
αΓ(r + 1)

θr+1
+
θ2Γ(r + 3)

2θr+2

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
Γ(r + 1)

(1 + α)θr

[
α +

1

2
(r + 1)(r + 2)

]
.

Hence, The rth order non-central moment is given by

µ′r =
r!

θr(1 + α)

[
α +

1

2
(r + 1)(r + 2)

]
for r = 1, 2, . . . . (6.5)

In particular, we have

µ′1 = E(X) =
(3 + α)

θ(1 + α)
= µ(say) (6.6)

µ
′

2 = E(X2) =
2(6 + α)

θ2(1 + α)
; µ′3 = E(X3) =

6(10 + α)

θ3(1 + α)
(6.7)

µ′4 = E(X4) =
24(15 + α)

θ4(1 + α)
. (6.8)

The jth order central (about µ) moment can be obtained using the relationship

given in (1.3).

In particular, we have

µ2 = V ar(X) = µ′2 − µ2,

=
2(6 + α)

θ2(1 + α)
−
[

(3 + α)

θ(1 + α)

]2

.
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On simplification, we have,

µ2 = V ar(X) =
α2 + 8α + 3

θ2(1 + α)2
= σ2(say). (6.9)

Similarly, one can easily calculate

µ3 = µ′3 − 3µ′2µ+ 2µ3,

=
2(α3 + 15α2 + 9α + 3)

θ3(1 + α)3
. (6.10)

µ4 = µ′4 − 4µ′3µ+ 6µ′2µ
2 − 3µ4,

=
3(α4 + 88α3 + 310α2 + 288α + 177)

θ4(1 + α)4
. (6.11)

The coefficient of variation (γ), coefficient of skewness (
√
β1) and coefficient of

kurtosis (β2) are obtained by

γ =

√
V ar(X)

E(X)
=

√
(α2 + 8α + 3)

(3 + α)
, (6.12)√

β1 =
µ3

µ
3/2
2

=
2(α3 + 15α2 + 9α + 3)

(α2 + 8α + 3)3/2
(6.13)

and

β2 =
µ4

µ2
2

=
3(α4 + 88α3 + 310α2 + 288α + 177)

(α2 + 8α + 3)2
, (6.14)

respectively.

The following theorem shows that the pdf of QXG(α, θ) is decreasing in x for

α > 1/2.
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Theorem 6.2. For α > 1/2, the pdf in (6.1) is decreasing in x.

Proof. We have from (6.1) the first derivative of f(x) with respect to x as

f ′(x) =
θ2

(1 + α)

(
θx− α− 1

2
θ2x2

)
e−θx.

f ′(x) is negative in x if α > 1/2, and hence the proof.

So, from the above Theorem 6.2, for α ≤ 1/2, d
dx
f(x) = 0 implies that (1 +√

(1− 2α)/θ is the unique critical point at which f(x) is maximized.

Hence, the mode of quasi xgamma distribution is given by

Mode(X) =


1+
√

1−2α
θ

, if 0 < α ≤ 1/2.

0 , otherwise.

(6.15)

6.1.2 Characteristic and generating functions

In this sub-section, we derive the characteristic, moment generating and cumulant

generating functions of X ∼ QXG(α, θ).

The characteristic function of X is derived as

φX(t) = E(eitX),

=

∫ ∞
0

eitx
θ

(1 + α)

(
α +

θ2

2
x2

)
e−θxdx,

=
θ

(1 + α)

[
α

∫ ∞
0

e(θ−it)xdx+
θ2

2

∫ ∞
0

x2e(θ−it)xdx

]
,
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Hence,

φX(t) =
θ

(1 + α)

[
α

(θ − it)
+
θ2

2

Γ(3)

(θ − it)3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ

(1 + α)

[
α(θ − it)−1 + θ2(θ − it)−3

]
,

=
1

(1 + α)

[
α

(
1− i t

θ

)−1

+

(
1− i t

θ

)−3
]

; t ∈ <, i =
√
−1. (6.16)

Now, to find the moment generating function, we calculate

MX(t) = E(etX),

=

∫ ∞
0

etx
θ

(1 + α)

(
α +

θ2

2
x2

)
e−θxdx,

=
θ

(1 + α)

[
α

∫ ∞
0

e(θ−t)xdx+
θ2

2

∫ ∞
0

x2e(θ−t)xdx

]
,

=
θ

(1 + α)

[
α

(θ − t)
+
θ2

2

Γ(3)

(θ − t)3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
1

(1 + α)

[
α

(
1− t

θ

)−1

+

(
1− t

θ

)−3
]

; t ∈ <. (6.17)

The cumulant generating function is obtained by taking logarithm of MX(x) and

is given by

KX(t) = ln[MX(t)],

= ln
θ

(1 + α)(θ − t)
+ ln

[
α +

θ2

(θ − t)2

]
; t ∈ <, (6.18)



Two extensions of xgamma distribution 137

6.1.3 Entropy measures

We first find the Rényi entropy measure for QXG(α, θ).

We derive,

∫ ∞
0

fγ(x)dx

=
θγ

(1 + α)γ

∫ ∞
0

(
α +

θ2

2
x2

)γ
e−γθxdx,

=
(αθ)γ

(1 + α)γ

∫ ∞
0

(
1 +

θ2

2α
x2

)γ
e−γθxdx,

Using power series expansion

(
1 +

θ2

2α
x2

)γ
=

γ∑
j=0

(
γ

j

)(
θ2x2

2α

)j
, we have,

=
(αθ)γ

(1 + α)γ

∫ ∞
0

γ∑
j=0

(
γ

j

)(
θ2x2

2α

)j
e−γθxdx,

=
(αθ)γ

(1 + α)γ

γ∑
j=0

(
γ

j

)(
θ2

2α

)j ∫ ∞
0

x2je−γθxdx,

=
(αθ)γ

(1 + α)γ

γ∑
j=0

(
γ

j

)(
θ2

2α

)j
Γ(2j + 1)

(γθ)2j+1
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
αγθγ−1

(1 + α)γ

γ∑
j=0

(
γ

j

)
Γ(2j + 1)

2jαjγ2j+1
.

Hence, the Rényi entropy is given by

HR(γ) =
1

1− γ
[γ lnα + (γ − 1) ln θ − γ ln(1 + α)]

+
1

1− γ
ln

[
γ∑
j=0

(
γ

j

)
Γ(2j + 1)

2jαjγ2j+1

]
. (6.19)
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Shannon measure of entropy is a special case of Rényi entropy, see (1.11).

If X ∼ QXG(α, θ), the Shannon entropy is derived as

H(f) = E[− ln f(x)],

= −
∫ ∞

0

ln

{
θ

(1 + α)

(
α +

θ2

2
x2

)
e−θx

}
f(x)dx,

= −
∫ ∞

0

[
ln

(
θ

1 + α

)
+ ln

(
α +

θ2

2
x2

)
− θx

]
f(x)dx,

= −
[∫ ∞

0

ln

(
θ

1 + α

)
f(x)dx+

∫ ∞
0

ln

(
α +

θ2

2
x2

)
f(x)dx− θ

∫ ∞
0

xf(x)dx

]
,

Now, since

∫ ∞
0

xf(x)dx = E(X) and

∫ ∞
0

f(x)dx = 1, we have,

= −
[
ln

(
θ

1 + α

)
+

∫ ∞
0

ln

(
α +

θ2

2
x2

)
f(x)dx− θ(3 + α)

θ(1 + α)

]
. (6.20)

Now, we find, ∫ ∞
0

ln

(
α +

θ2

2
x2

)
f(x)dx.

∫ ∞
0

ln

(
α +

θ2

2
x2

)
f(x)dx

=
θ

(1 + α)

∫ ∞
0

(
α +

θ2

2
x2

)
ln

(
α +

θ2

2
x2

)
e−θxdx,

=
θ

(1 + α)

[
α

∫ ∞
0

ln

(
α +

θ2

2
x2

)
e−θxdx+

θ2

2
x2

∫ ∞
0

ln

(
α +

θ2

2
x2

)
e−θxdx

]
,

=
θ

(1 + α)

[
α

∫ ∞
0

{
ln

(
α + θ2x2

2

α

)
+ lnα

}
e−θxdx

]

+
θ3

2(1 + α)

∫ ∞
0

x2

{
ln

(
α + θ2x2

2

α

)
+ lnα

}
e−θxdx.
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So,

∫ ∞
0

ln

(
α +

θ2

2
x2

)
f(x)dx

=
θ

(1 + α)

[
α

∫ ∞
0

ln

(
1 +

θ2x2

2α

)
e−θxdx+ α lnα

∫ ∞
0

e−θxdx

]
+

θ3

2(1 + α)

∫ ∞
0

x2 ln

(
1 +

θ2x2

2α

)
e−θxdx+

θ3 lnα

2(1 + α)

∫ ∞
0

x2e−θxdx,

Using ln

(
1 +

θ2x2

2α

)
=
∞∑
j=1

(−1)j+1

(
θ2x2

2α

)j
j

, we have,

=
θ

(1 + α)

[
α
∞∑
j=1

(−1)j+1θ2j

j(2α)j

∫ ∞
0

x2je−θxdx+
α lnα

θ

]

+
θ3

2(1 + α)

∞∑
j=1

(−1)j+1θ2j

j(2α)j

∫ ∞
0

x2j+2e−θxdx+
θ3 lnα

2(1 + α)

Γ(3)

θ3
,

=
θ

(1 + α)

[
α
∞∑
j=1

(−1)j+1θ2j

j(2α)j
Γ(2j + 1)

θ2j+1
+
α lnα

θ

]
+

lnα

(1 + α)

+
θ3

2(1 + α)

∞∑
j=1

(−1)j+1θ2j

j(2α)j
Γ(2j + 3)

θ2j+3
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
α

(1 + α)

∞∑
j=1

(−1)j+1

j(2α)j
Γ(2j + 1) +

α

(1 + α)
lnα +

1

(1 + α)
lnα

+
1

2(1 + α)

∞∑
j=1

(−1)j+1

j(2α)j
Γ(2j + 3),

=
α

(1 + α)

∞∑
j=1

(−1)j+1

j(2α)j
Γ(2j + 1) + lnα +

1

2(1 + α)

∞∑
j=1

(−1)j+1

j(2α)j
Γ(2j + 3),

= lnα +
1

(1 + α)

∞∑
j=1

(−1)j+1

j(2α)j

[
αΓ(2j + 1) +

1

2
Γ(2j + 3)

]
. (6.21)

Using (6.21), from (6.20) we have the final expression for Shannon entropy.
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Hence, the Shannon entropy is given by

H(f) =

(
3 + α

1 + α

)
− ln

(
αθ

1 + α

)
− 1

(1 + α)

∞∑
j=1

(−1)j+1

j2jαj

[
αΓ(2j + 1) +

1

2
Γ(2j + 3)

]
. (6.22)

6.1.4 Distributions of order statistics

In this sub-section, we derive the distributions of extreme order statistics for

QXG(α, θ).

Let X1, X2, . . . , Xn be a random sample of size n drawn from QXG(α, θ). Denote

X1:n, X2:n, . . . , Xn:n be n order statistics.

Then for any x > 0, the pdf Xn:n, is obtained as

fXn:n(x) = n[F (x)]n−1f(x),

=
nθ

(1 + α)n

[
(1 + α)(1− e−θx)− θx

(
1 +

θx

2

)
e−θx

]n−1(
α +

θ2

2
x2

)
e−θx.

(6.23)

Similarly, for any x > 0, the pdf of the smallest order statistic, X1:n, is derived as

fX1:n(x) = n[1− F (x)]n−1f(x),

=
nθ

(1 + α)n

(
1 + α + θx+

θ2x2

2

)n−1(
α +

θ2

2
x2

)
e−θx. (6.24)

6.1.5 Survival properties

In this sub-section, some properties of quasi xgamma distribution are derived

and studied that are useful in the context of survival analysis and/or reliability
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analysis. If X ∼ QXG(α, θ), the survival function of X is given by

S(x) = Pr(X > x) =

(
1 + α + θx+ θ2

2
x2
)

(1 + α)
e−θx, x > 0. (6.25)

6.1.5.1 Hazard rate or failure rate function

For quasi xgamma distribution, the failure rate function is obtained as

h(x) =
f(x)

S(x)
=

θ
(
α + θ2

2
x2
)

(
1 + α + θx+ θ2

2
x2
) . (6.26)

Note. h(x) obtained in (6.26) is bounded, i.e.,

αθ

(1 + α)
< h(x) < θ, moreover, h(0) = f(0) =

αθ

(1 + α)
.

6.1.5.2 MRL and reversed hazard rate functions

For quasi xgamma distribution the MRL function is derived as

m(x) =
1

S(x)

∫ ∞
x

S(t)dt,

=
1

(1 + α)S(x)

∫ ∞
x

(
1 + α + θt+

θ2

2
t2
)
e−θtdt,

=
1

(1 + α)S(x)

[
(1 + α)

∫ ∞
x

e−θtdt+ θ

∫ ∞
x

te−θtdt+
θ2

2

∫ ∞
x

t2e−θtdt

]
,

Using the expressions for integration in (2.3), (2.4) and (2.5), we have,

=
1

(1 + α)S(x)

[
3e−θx

θ
+
αe−θx

θ
+ 2xe−θx +

θx2e−θx

2

]
.
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So, we have,

m(x) =
e−θx

(1 + α)S(x)

[
(3 + α)

θ
+ 2x+

θx2

2

]
,

=

(
3 + α + 2θx+ θ2x2

2

)
θ
(
1 + α + θx+ θ2

2
x2
) ,

=

(
1 + α + θx+ θ2

2
x2
)

+ (2 + θx)

θ
(
1 + α + θx+ θ2

2
x2
) .

Hence, the MRL function is given by

m(x) =
1

θ
+

(2 + θx)

θ
(
1 + α + θx+ θ2

2
x2
) . (6.27)

The MRL function of quasi xgamma distribution in (6.27) has the following prop-

erties

(i) m(0) = E(X) = (3+α)
θ(1+α)

.

(ii) m(x) is decreasing in x with bounds 1
θ
< m(x) < (3+α)

θ(1+α)
.

The reversed hazard rate function, as defined in (1.19), for QXG(α, θ) is obtained

as

r(x) =
f(x)

F (x)
=

θ
(
α + θ2

2
x2
)
e−θx

(1 + α)(1− e−θx)− θx
(
1 + θx

2

)
e−θx

. (6.28)

6.1.5.3 Stochastic ordering

Now, stochastic orderings of quasi xgamma random variables are studied. Recall

the basic definition described in sub-section1.3.5 of Chapter 1, the following theo-

rem states that quasi xgamma random variables follow strong likelihood ratio and

other orderings.
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Theorem 6.3. Let X ∼ QXG(α1, β1) and Y ∼ QXG(α2, β2). If α1 = α2 and

θ1 ≥ θ2 (or, if θ1 = θ2 and α1 ≥ α2), then X ≤LR Y and hence X ≤HR Y ,

X ≤MRL Y and X ≤ST Y .

Proof. Let us denote the pdf of X as fX(x) and that of Y be fY (x).

We have then the ratio

fX(x)

fY (x)
=
θ1(1 + α2) (2α1 + θ2

1x
2)

θ2(1 + α1) (2α2 + θ2
2x

2)
e−(θ1−θ2)x.

So,

ln

[
fX(x)

fY (x)

]
= ln

θ1(1 + α2)

θ2(1 + α1)
+ ln

(
2α1 + θ2

1x
2
)
− ln

(
2α2 + θ2

2x
2
)
− (θ1 − θ2)x.

The first derivative with respect to x gives

d

dx
ln

[
fX(x)

fY (x)

]
=

4x(θ1α2 − θ2α1)

(2α1 + θ2
1x

2) (2α2 + θ2
2x

2)
− (θ1 − θ2),

which is negative when α1 = α2 and θ1 ≥ θ2 (or, when θ1 = θ2 and α1 ≥ α2),

so X ≤LR Y , rest of the orderings are well justified by Shaked and Shanthiku-

mar (1994). Hence the proof.

6.1.6 Parameter estimation

Two classical methods of estimation, viz. method of moments and method of

maximum likelihood, are proposed in this sub-section for estimating the unknown

parameters of the quasi xgamma distribution under complete sample situation.

As usual, let x = (x1, x2, . . . , xn) be n observations or realizations on a random

sample X1, X2, . . . , Xn of size n drawn from QXG(α, θ).
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6.1.6.1 Method of moments

To obtain the moment estimators of the parameters, we equate

µ
′

1 =
(3 + α)

θ(1 + α)
= sample mean = m

′

1 = X̄

µ
′

2 =
2(6 + α)

θ2(1 + α)
= m

′

2 =
1

n

n∑
i=1

X2
i

Let

b =
µ′2
µ′21

=
2(6 + α)(1 + α)

(3 + α)2
,

which implies

(2− b)α2 + (14− 6b)α + (12− 9b) = 0. (6.29)

The equation (6.29) is a quadratic in α. The moment estimator, say α̂M , of α, can

be obtained by solving (6.29). It is to be noted that the value of b can be easily

estimated from the sample moments.

The moment estimator of θ, say θ̂M , is then obtained as

θ̂M =
(3 + α̂M)

X̄(1 + α̂M)
. (6.30)

6.1.6.2 Method of maximum likelihood

Now, we obtain the maximum Likelihood estimators (MLEs) of the parameters α

and θ. The likelihood function is

L(α, θ|x) =
n∏
i=1

θ

(1 + α)

(
α +

θ2

2
x2
i

)
e−θxi .



Two extensions of xgamma distribution 145

The log-likelihood function is given by

lnL(α, θ|x) = n ln(θ)− n ln(1 + α) +
n∑
i=1

ln

(
α +

θ2

2
x2
i

)
− θ

n∑
i=1

xi. (6.31)

To find out the MLEs of α and θ, we have two likelihood equations as

∂ lnL(α, θ|x)

∂α
=

n∑
i=1

1(
α + θ2

2
x2
i

) − n

(1 + α)
= 0 (6.32)

and

∂ lnL(α, θ|x)

∂θ
=
n

θ
+

n∑
i=1

θx2
i(

α + θ2

2
x2
i

) − n∑
i=1

xi = 0, (6.33)

respectively.

Though the values of α and θ cannot be obtained analytically, we can utilize any

numerical method, such as Newton-Raphson, for solving the non-linear equations

(6.32) and (6.33) to obtain those.

Moreover, we can apply Fisher’s scoring method for getting the MLEs of α and θ.

The second order derivatives are obtained as

∂2 lnL(α, θ|x)

∂α2
=

n

(1 + α)2
−

n∑
i=1

1(
α + θ2

2
x2
i

)2 (6.34)

∂2 lnL(α, θ|x)

∂θ2
=

n∑
i=1

αx2
i − θ2

2
x4
i(

α + θ2

2
x2
i

)2 −
n

θ2
(6.35)

∂2 lnL(α, θ|x)

∂α∂θ
=
∂2 lnL(α, θ|x)

∂θ∂α
= −

n∑
i=1

θx2
i(

α + θ2

2
x2
i

)2 . (6.36)

Letting α̂ and θ̂ as the MLEs of α and θ, respectively, the following equations are

solved. ∂2 lnL(α,θ|x)
∂θ2

∂2 lnL(α,θ|x)
∂θ∂α

∂2 lnL(α,θ|x)
∂α∂θ

∂2 lnL(α,θ|x)
∂α2


θ̂=θ0,α̂=α0

 θ̂ − θ0

α̂− α0

 =

∂ lnL(α,θ|x)
∂θ

∂ lnL(α,θ|x)
∂α

 (6.37)
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Method of successive iteration can be applied for initial values α0 and θ0 for α and

θ, respectively.

6.1.7 Simulation study

An algorithm for generating random samples of specific sizes from quasi xgamma

distribution is proposed in this sub-section. A Monte-Carlo simulation study is

also carried out to assess the nature of the estimates of the parameters.

The inversion method for generating random data from the quasi xgamma dis-

tribution fails because the equation F (x) = u, where u is an observation from

the uniform distribution on (0, 1), cannot be explicitly solved in x. However, as

already mentioned in a note in the section 6.1, we can make use of the fact that

QXG(α, θ) is a special mixture of exp(θ) and gamma(3, θ) distributions with mix-

ing proportions α/(1 + α) and 1/(1 + α), respectively, to construct a simulation

algorithm.

To generate random data Xi(i = 1, 2, . . . , n) from quasi xgamma distribution with

parameters α and θ, the following algorithm can be followed.

1. Generate Ui ∼ uniform(0, 1), i = 1, 2, . . . , n.

2. Generate Vi ∼ exp(θ), i = 1, 2, . . . , n.

3. Generate Wi ∼ gamma(3, θ), i = 1, 2, . . . , n.

4. If Ui ≤ α/(1 + α), then set Xi = Vi, otherwise, set Xi = Wi.

A Monte-Carlo simulation study is carried out by considering N = 10, 000 times

for selected values of n, α and θ. Samples of sizes 20, 30, 50, 80 and 100 are

considered and values of (α, θ) are taken as (0.5,0.5), (1.5, 2.0) and (3.0, 4.0). The

method of maximum likelihood is applied to obtain the estimates. The following

measures are computed.
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(i) Average mean square error (MSE) of the simulated estimates α̂i, i = 1, 2, . . . , N :

1

N

N∑
i=1

(α̂i − α)2

(ii) Average mean square error (MSE) of the simulated estimates θ̂i, i = 1, 2, . . . , N :

1

N

N∑
i=1

(θ̂i − θ)2

The results of the simulation study is shown in Table 6.1. Statistical software R

is used for the simulation study.

It is clear from Table 6.1 that the MSEs for the estimates of α decrease as the

sample size, n, increases and the estimate gets closer to the given value. The

similar trend is observed in case of the estimates of θ and its MSE values for

different sample sizes.

Table 6.1: Estimates of the parameters with corresponding MSE values.

α = 0.5, θ = 0.5

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 0.65563 0.64842 0.52574 0.01480
30 0.61249 0.41696 0.51593 0.00873
50 0.55139 0.24084 0.50952 0.00477
80 0.53788 0.14125 0.50112 0.00297
100 0.50544 0.12975 0.50135 0.00257

α = 1.5, θ = 2.0

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 1.88951 1.53364 2.07156 0.24302
30 1.73208 1.47211 2.04003 0.18286
50 1.61201 1.18401 2.02723 0.12595
80 1.55745 1.07344 2.00678 0.07996
100 1.51757 0.73089 2.00165 0.06368

α = 3.0, θ = 4.0

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 3.16671 1.27292 3.83684 0.13292
30 3.14370 1.02392 3.84705 0.12729
50 3.12033 0.96721 3.86446 0.09979
80 3.09858 0.78974 3.88473 0.08507
100 3.02271 0.72481 3.94853 0.07146
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6.1.8 Application

In this sub-section, a real data set is analyzed to show that the quasi xgamma

distribution can be a better model than some recently developed models where

the particular data are utilized. The data set, given in Table 6.2, represents an

uncensored data set corresponding to remission times (in months) of a random

sample of 128 bladder cancer patients reported in Lee and Wang (2003). The

data set is positively skewed (skewness = 3.38) with mean remission time of 8.57

months, standard deviation of 10.56 months and unimodal (mode at 5 months).

We consider here gamma, log-normal among standard lifetime models, in addition,

Lindley (Lindley, 1958), power Lindley (PL) (Ghitany et al., 2013), transmuted

Lindley (TL) (Merovci, 2013), exponentiated Lindley (EL) (Bakouch et al., 2012),

weighted Lindley (WL) (Ghitany et al., 2011) and new generalized power Lind-

ley (NGPL) (Mansour and Hamed, 2015) and xgamma models among recently

developed or popularized lifetime models, i.e., altogether nine lifetime models are

considered to compare with quasi xgamma model for suitability of fit or goodness

of fit for the data.

In order to compare the two lifetime models, we consider criteria like, negative log-

likelihood, AIC and BIC, for the data set. The better distribution corresponds to

smaller negative log-likelihood, AIC and BIC values. We use maximum likelihood

method of estimation for estimating the model parameters and statistical software

R is utilized for analysis. Table 6.3 shows the estimates of the model parameters

with standard error(Std. error) of estimates in parenthesis and model selection

criteria.

It is clear from Table 6.3 that the quasi xgamma distribution provides better fit to

the bladder cancer data and, hence, the model acts as a strong competitor among

the other models considered here for modeling such lifetime data.
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Table 6.2: Data on remission times (in months) of 128 bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23
0.26 0.31 0.73 0.52 4.98 6.97 9.02 13.29 0.40 2.26
3.57 5.06 7.09 11.98 4.51 2.07 0.22 13.8 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 19.13 6.54 3.36 0.82
0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 1.76
8.53 6.93 0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 3.25 12.03 8.65 0.39 10.34 14.83 34.26 0.90
2.69, 4.18 5.34 7.59 10.66 4.50 20.28 12.63 0.96, 36.66
1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 6.25 2.02
22.69 0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83
4.33 8.37 3.36 5.49 0.66 11.25 17.14 79.05 1.35 2.87
5.62 7.87 11.64 17.36 12.02 6.76 0.40 3.02 4.34 5.71
7.93 11.79 18.1 1.46 4.40 5.85 2.02 12.07

Table 6.3: Estimates of parameters and model selection criteria for bladder
cancer data.

Model Estimate(Std. Error) -Log-likelihood AIC BIC

Gamma(α, β)
α̂=0.9154 (0.0910)

β̂=0.1069 (0.0153)
402.624 809.249 814.953

Log-normal(µ, σ)
µ̂=1.5109 (0.1133)
σ̂=1.2819 (0.0801)

406.803 817.605 823.309

Lindley(θ) θ̂=0.2129(0.0134) 417.924 837.848 840.610

PL(θ, β)
θ̂=0.2943(0.0371)

β̂=0.8302(0.0472)
413.353 830.707 836.410

TL(λ, θ)
λ̂=0.6169(0.1688)

θ̂=0.1557(0.0150)
415.155 834.310 840.014

EL(α, θ)
α̂=0.1648(0.0166)

θ̂=0.7330(0.0912)
416.285 836.572 842.274

WL(α, θ)
α̂=0.1595(0.0172)

θ̂=0.6827(0.1115)
416.442 836.885 842.588

NGPL(λ, θ, β, δ, α)

λ̂=-0.858(0.0938)

θ̂=2.5044(1.6547)

β̂=0.3292(0.1341)

δ̂=6.6798(2.6466)
α̂=33.738(15.584)

408.966 827.932 842.192

Xgamma(θ) θ̂=0.2860(0.0159) 425.169 852.338 855.190

Quasi xgamma(α, θ)
α̂=16.827(2.0453)

θ̂=0.1298(0.0179)
402.320 808.640 814.344
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According to model selection criterion, viz., AIC, the following order of best fit is

observed.

The Quasi xgamma distribution comes out to be the best model followed by

gamma, lognormal, new generalized power Lindley power Lindley, transmuted

Lindley, exponentiated Lindley, weighted Lindley, Lindley and xgamma distribu-

tions, respectively.

On the other hand, according to model selection criterion, viz., BIC, the following

order of best fit is observed.

The quasi xgamma distribution comes out to be the best model followed by gamma,

lognormal, power Lindley, transmuted Lindley, Lindley, exponentiated Lindley,

new generalized power Lindley, weighted Lindley and xgamma distributions, re-

spectively.

6.2 A two-parameter xgamma distribution

The objective in this section is to introduce and study an another two-parameter

generalization of xgamma distribution by adding an additional parameter α (> 0)

to it. We name the distribution as two-parameter xgamma distribution. The

beauty of this two-parameter extension is that this extension or generalization

also, like quasi xgamma distribution, contains xgamma distribution as a special

case. Different distributional, survival and/or reliability properties are studied for

this two-parameter xgamma distribution and its applicability is demonstrated in

modeling lifetime data sets with potential flexibility over existing two-parameter

lifetime models.

6.2.1 The two-parameter xgamma distribution

In this subsection the two-parameter xgamma distribution is introduced by adding

one extra non-negative parameter α in (2.2).
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For synthesizing the density form of the two-parameter xgamma distribution, we

consider f1(x) to follow an exponential distribution with parameter θ and f2(x) to

follow a gamma distribution with scale parameter θ and shape parameter 3 i.e.,

f1(x) ∼ exp(θ) and f1(x) ∼ gamma(3, θ) with π1 = θ
(α+θ)

and π2 = 1−π1 in (2.1).

We have, then, the following definition for two-parameter xgamma distribution.

Definition 6.4. A non-negative continuous random variable, X, is said to follow

a two-parameter xgamma (TPXG) distribution with parameters α and θ if its pdf

is of the form

f(x) =
θ2

(α + θ)

(
1 +

αθ

2
x2

)
e−θx, x > 0, θ > 0, α > 0. (6.38)

It is denoted by X ∼ TPXG(α, θ).

Special case:

1. Putting α = 1 in (6.38), the xgamma distribution with parameter θ can be

obtained.

The plot of probability density curves with the form (6.38) for different values of

α and θ is shown in the Figure 6.2.

Alternative form:

An alternative form of the two-parameter xgamma distribution can be obtained

by putting β = 1/α in (6.38) and the form of the pdf can be expressed as

f(x) =
θ2

(1 + βθ)

(
β +

θ

2
x2

)
e−θx, x > 0, θ > 0, β > 0. (6.39)
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Figure 6.2: Probability density curves of TPXG(α, θ) for different values of
α and θ.

Now, for deriving the cdf of TPXG(α, θ), we calculate,

Pr(X > x) =

∫ ∞
x

θ2

(α + θ)

(
1 +

αθ

2
t2
)
e−θtdt,

=
θ2

(α + θ)

[∫ ∞
x

e−θtdt+
αθ

2

∫ ∞
x

t2e−θtdt

]
.

Using the expressions of integration in (2.3) and (2.5), we have,
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Pr(X > x) =
θ2

(α + θ)

[
e−θx

θ
+
αθ

2

{
x2e−θx

θ
+

2

θ

(
xe−θx

θ
+
e−θx

θ2

)}]
,

=
θ2

(α + θ)

[
e−θx

θ
+
αx2e−θx

2
+
αxe−θx

θ
+
αe−θx

θ2

]
,

=
θ2e−θx

(α + θ)

[
1

θ
+
αx2

2
+
αx

θ
+
α

θ2

]
,

=
θ2e−θx

(α + θ)

[
2α + 2θ + 2αθx+ αθ2x2

2θ2

]
.

Hence, the cdf corresponding to (6.38) is given by

F (x) = 1−
(
α + θ + αθx+ 1

2
αθ2x2

)
(α + θ)

e−θx, x > 0. (6.40)

6.2.2 Moments and related measures

In this sub-section we study the moments and other related measures for the

TPXG(α, θ).

The rth order raw moment for X ∼ TPXG(α, θ) is obtained as

µ′r = E(Xr),

=

∫ ∞
0

xr
θ2

(α + θ)

(
1 +

αθ

2
x2

)
e−θxdx,

=
θ2

(α + θ)

[∫ ∞
0

xre−θxdx+
αθ

2

∫ ∞
0

xr+2e−θxdx

]
,

=
θ2

(α + θ)

[
Γ(r + 1)

θr+1
+
αθΓ(r + 3)

2θr+2

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
Γ(r + 1)

(α + θ)θr−1

[
1 +

α

2θ
(r + 1)(r + 2)

]
.
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Hence, the rth order non-central moment for X ∼ TPXG(α, θ) is given by

µ′r =
r!

2θr(α + θ)
[2θ + α(1 + r)(2 + r)] for r = 1, 2, . . . . (6.41)

In particular, we have

µ′1 = E(X) =
(θ + 3α)

θ(α + θ)
= µ(say) ; µ′2 = E(X2) =

2(θ + 6α)

θ2(α + θ)
. (6.42)

Now, using (1.3), the expression for second order central (about mean) moment

or the population variance for X can be obtained as

V ar(X) = µ2 = µ′2 − µ2,

=
2(θ + 6α)

θ2(α + θ)
−
[

(θ + 3α)

θ(α + θ)

]2

,

=
2(θ2 + 8αθ + 3α2)

θ2(α + θ)2
(On simplification), (6.43)

so that the coefficient of variation becomes

γ =

√
2(θ2 + 8αθ + 3α2)

(θ + 3α)
. (6.44)

The following theorem shows that TPXG(α, θ) is unimodal.

Theorem 6.5. For θ > α/2, the pdf f(x) in (6.38) is decreasing in x.

Proof. We have from (6.38) the first derivative of f(x) with respect to x as

f
′
(x) =

θ2

(α + θ)

(
αθx− θ − 1

2
αθ2x2

)
e−θx

f
′
(x) is negative in x when θ > α/2, and hence the proof.

So, from the above theorem 6.5, for θ ≤ α/2, d
dx
f(x) = 0 implies that

(
1+
√

1−2 θ
α

)
θ

is the unique critical point at which f(x) is maximized.



Two extensions of xgamma distribution 155

Hence, the mode of TPXG(α, θ) is given by

Mode(X) =


1+
√

1− 2θ
α

θ
, if 0 < θ ≤ α/2.

0 , otherwise.

(6.45)

6.2.3 Characteristic and generating functions

In this sub-section, we derive the characteristic, moment generating and cumulant

generating functions for X ∼ TPXG(α, θ).

The characteristic function of X is derived as

φX(t) = E(eitX),

=

∫ ∞
0

eitx
θ2

(α + θ)

(
1 +

αθ

2
x2

)
e−θxdx,

=
θ2

(α + θ)

[∫ ∞
0

e(θ−it)xdx+
αθ

2

∫ ∞
0

x2e(θ−it)xdx

]
,

=
θ2

(α + θ)

[
1

(θ − it)
+
αθ

2

Γ(3)

(θ − it)3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ2

(α + θ)

[
(θ − it)−1 + αθ(θ − it)−3

]
; t ∈ <, i =

√
−1. (6.46)

In a very similar way, the moment generating function of X is derived as

MX(t) = E(etX),

=

∫ ∞
0

etx
θ2

(α + θ)

(
1 +

αθ

2
x2

)
e−θxdx,

=
θ2

(α + θ)

[∫ ∞
0

e(θ−t)xdx+
αθ

2

∫ ∞
0

x2e(θ−t)xdx

]
.
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Hence,

MX(t) =
θ2

(α + θ)

[
1

(θ − t)
+
αθ

2

Γ(3)

(θ − t)3

]
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ2

(α + θ)

[
(θ − t)−1 + αθ(θ − t)−3

]
; t ∈ <. (6.47)

The cumulant generating function of X is obtained as

KX(t) = lnMX(t),

= ln
θ2

(α + θ)(θ − t)
+ ln

[
1 +

αθ

(θ − t)2

]
; t ∈ <. (6.48)

6.2.4 Entropy measures

When X ∼ TPXG(α, θ), we derive the Rényi entropy. For γ > 0(6= 1), we have,

∫ ∞
0

fγ(x)dx

=
θ2γ

(α + θ)γ

∫ ∞
0

(
1 +

αθ

2
x2

)γ
e−γθxdx,

=
(θ)2γ

(α + θ)γ

∫ ∞
0

(
1 +

αθ

2
x2

)γ
e−γθxdx.

Using power series expansion

(
1 +

αθ

2
x2

)γ
=

γ∑
j=0

(
γ

j

)(
αθx2

2

)j
,
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we obtain,

∫ ∞
0

fγ(x)dx =
θ2γ

(α + θ)γ

∫ ∞
0

γ∑
j=0

(
γ

j

)(
αθx2

2

)j
e−γθxdx,

=
θ2γ

(α + θ)γ

γ∑
j=0

(
γ

j

)(
αθ

2

)j ∫ ∞
0

x2je−γθxdx,

=
θ2γ

(α + θ)γ

γ∑
j=0

(
γ

j

)(
αθ

2

)j
Γ(2j + 1)

(γθ)2j+1
,

Here Γ(a) =

∫ ∞
0

za−1e−zdz is the gamma function.

=
θ2γ

(α + θ)γ

γ∑
j=0

(
γ

j

)(α
2

)j Γ(2j + 1)

θj+1γ2j+1
. (6.49)

Hence, the Rényi entropy is given by

HR(γ) =
1

1− γ
ln

[∫ ∞
0

fγ(x)dx

]
,

=
1

1− γ
[2γ ln θ − γ ln(α + θ)] +

1

1− γ
ln

[
γ∑
j=0

(
γ

j

)(α
2

)j Γ(2j + 1)

θj+1γ2j+1

]
.

(6.50)

When X ∼ TPXG(α, θ), to find Tsallis measure of entropy, we derive
∫∞

0
f q(x)dx

in a very similar fashion by replacing γ with q in (6.49) to obtain

∫ ∞
0

f q(x)dx =
θ2q

(α + θ)q

q∑
j=0

(
q

j

)(α
2

)j Γ(2j + 1)

θj+1q2j+1
for q > 0(6= 1).

Hence, Tsallis measure of entropy is given by

Sq(X) =
1

q − 1
ln

[
1− θ2q

(α + θ)q

q∑
j=0

(
q

j

)(α
2

)j Γ(2j + 1)

θj+1q2j+1

]
. (6.51)

Next, we find Shannon measure of entropy for TPXG(α, θ).



Two extensions of xgamma distribution 158

We have, by definition of Shannon entropy,

H(f) = E[− ln f(x)],

= −
∫ ∞

0

ln

{
θ2

(α + θ)

(
1 +

αθ

2
x2

)
e−θx

}
f(x)dx,

= −
∫ ∞

0

[
ln

(
θ2

α + θ

)
+ ln

(
1 +

αθ

2
x2

)
− θx

]
f(x)dx,

= −
[∫ ∞

0

ln

(
θ2

α + θ

)
f(x)dx+

∫ ∞
0

ln

(
1 +

αθ

2
x2

)
f(x)dx− θ

∫ ∞
0

xf(x)dx

]
,

Since

∫ ∞
0

xf(x)dx = E(X) and

∫ ∞
0

f(x)dx = 1, we have,

= −
[
ln

(
θ2

α + θ

)
+

∫ ∞
0

ln

(
1 +

αθ

2
x2

)
f(x)dx− θ(θ + 3α)

θ(α + θ)

]
. (6.52)

Now, we find ∫ ∞
0

ln

(
1 +

αθ

2
x2

)
f(x)dx.

We have,

∫ ∞
0

ln

(
1 +

αθ

2
x2

)
f(x)dx

=
θ2

(α + θ)

∫ ∞
0

ln

(
1 +

αθ

2
x2

)(
1 +

αθ

2
x2

)
e−θxdx,

=
θ2

(α + θ)

[∫ ∞
0

ln

(
1 +

αθ

2
x2

)
e−θxdx+

αθ

2

∫ ∞
0

ln

(
1 +

αθ

2
x2

)
x2e−θxdx

]
.

Putting

ln

(
1 +

θ

2
x2

)
=
∞∑
j=1

(−1)j+1 (αθ
2
x2)j

j
,
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we have,

∫ ∞
0

ln

(
1 +

αθ

2
x2

)
f(x)dx

=
θ2

(α + θ)

∞∑
j=1

(−1)j+1(αθ)j

j2j

∫ ∞
0

x2je−θxdx

+
αθ3

2(α + θ)

∞∑
j=1

(−1)j+1(αθ)j

j2j

∫ ∞
0

x2j+2e−θxdx,

=
θ2

(α + θ)

∞∑
j=1

(−1)j+1αjθj

j2j
Γ(2j + 1)

θ2j+1
+

αθ3

2(α + θ)

∞∑
j=1

(−1)j+1αjθj

j2j
Γ(2j + 3)

θ2j+3
.

(6.53)

Here Γ(a) =
∫∞

0
za−1e−zdz is the gamma function.

Using (6.53), from (6.52) the final expression for Shannon entropy is given by

H(f) =

(
3α + θ

α + θ

)
− ln

θ2

(α + θ)
− θ2

(α + θ)

∞∑
j=1

(−1)j+1 (α/2)j

θj+1j[
Γ(2j + 1) +

α

2θ
Γ(2j + 3)

]
.

(6.54)

6.2.5 Distributions of order statistics

Let X1, X2, . . . , Xn be a random sample of size n drawn from TPXG(α, θ).

Denote Xj:n as the jth order statistic. Then X1:n and Xn:n denote the smallest

and largest order statistics, respectively.

For any x > 0, the pdf of X1:n can be derived as

fX1:n(x) = n[1− F (x)]n−1f(x),

=
nθ2

(α + θ)n

(
1 +

αθ

2
x2

)[
α + θ + αθx+

1

2
αθ2x2

]n−1

e−nθx. (6.55)
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Similarly, for any x > 0, the pdf of Xn:n is obtained as

fXn:n(x) = n[F (x)]n−1f(x),

=
nθ2

(α + θ)n

(
1 +

αθ

2
x2

)[
(α + θ)(1− e−θx)−

(
1 +

θx

2

)
αθxe−θx

]n−1

e−θx.

(6.56)

6.2.6 Survival properties

In this sub-section different properties related to survival and/or reliability for

TPXG(α, θ) are studied.

The survival function of X is given by

S(x) = (X > x) =

(
α + θ + αθx+ 1

2
αθ2x2

)
(α + θ)

e−θx, x > 0. (6.57)

6.2.6.1 Hazard rate or failure rate function

The hazard rate (or failure rate) function of X is obtained as

h(x) =
f(x)

S(x)
=

θ2
(
1 + αθ

2
x2
)(

α + θ + αθx+ 1
2
αθ2x2

) , x > 0. (6.58)

Note. The hazard rate function in (6.58) is increasing for x >
√

2
αθ

with the

bounds

f(0) =
θ2

(α + θ)
< h(x) < θ.

Figure 6.3 shows the plot of hazard rate function of TPXG(α, θ) for different

values of α and θ.

The following theorem shows that the failure rate function of TPXG(α, θ) is

sometimes IFR and sometimes DFR depending on values of x.
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Figure 6.3: Plot of hazard rate function of TPXG(α, θ) for different values of
α and θ.

Theorem 6.6. The failure rate h(x) given in (6.58) is increasing failure rate

(IFR) in distribution for x >
√

2
αθ

and is decreasing failure rate (DFR) in distri-

bution for x <
√

2
αθ

.

Proof. The proof comes immediately as the pdf given in (6.38) is log-concave for

x >
√

2
αθ

and log-convex for x <
√

2
αθ

.
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6.2.6.2 MRL and reversed hazard rate function

The MRL function of TPXG(α, θ) can be derived as

m(x) =
1

S(x)

∫ ∞
x

S(t)dt,

=
1

(α + θ)S(x)

∫ ∞
x

(
α + θ + αθt+

1

2
αθ2t2

)
e−θtdt,

=
1

(α + θ)S(x)

[
(α + θ)

∫ ∞
x

e−θtdt+ αθ

∫ ∞
x

te−θtdt+
αθ2

2

∫ ∞
x

t2e−θtdt

]
,

Using the expressions for integration in (2.3), (2.4) and (2.5), we have,

=
1

(α + θ)S(x)

[
e−θx +

3αe−θx

θ
+ 2αxe−θx +

αθx2e−θx

2

]
,

=
e−θx

(α + θ)S(x)

[
1 +

3α

θ
+ 2αx+

αθx2

2

]
,

=

(
θ + 3α + 2αθx+ 1

2
αθ2x2

)
θ
(
α + θ + αθx+ 1

2
αθ2x2

) ,
=

(
α + θ + αθx+ 1

2
αθ2x2

)
+ α(2 + θx)

θ
(
α + θ + αθx+ 1

2
αθ2x2

) .

Hence, the MRL function is given by

m(x) =
1

θ
+

α(2 + θx)

θ
(
α + θ + αθx+ 1

2
αθ2x2

) . (6.59)

Note. The MRL function in (6.59) is bounded with the following limits.

1

θ
< m(x) <

(θ + 3α)

θ(α + θ)
= E(X).

The reversed hazard rate function of TPXG(α, θ) is obtained as

r(x) =
f(x)

F (x)
=

θ2
(
1 + αθ

2
x2
)
e−θx

(α + θ)(1− e−θx)−
(
1 + θx

2

)
αθxe−θx

, x > 0. (6.60)
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6.2.6.3 Stochastic ordering

Here, the stochastic ordering relations for random variables following TPXG(α, θ)

are studied.

The following theorems shows that the two-parameter xgamma distribution is

ordered with respect to the strongest likelihood ratio ordering and thereby the

other orderings.

Theorem 6.7. Let X1 ∼ TPXG(α1, θ1) and X2 ∼ TPXG(α2, θ2). If α1 = α2

and θ1 ≥ θ2 (or, if θ1 = θ2 and α1 ≤ α2), then X1 ≤LR X2 and hence X1 ≤HR X2,

X1 ≤MRL X2 and X1 ≤ST X2.

Proof. Let us denote the pdf of X1 as fX1(x) and that of X2 be fX2(x) for x > 0.

We have then the ratio

fX1(x)

fX2(x)
=
θ2

1(α2 + θ2)

θ2
2(α1 + θ1)

(
1 + α1θ1

2
x2

1 + α2θ2
2
x2

)
e−(θ1−θ2)x

Taking logarithm both sides, we have

ln

[
fX1(x)

fX2(x)

]
= 2 ln

(
θ1

θ2

)
+ ln

(
α2 + θ2

α1 + θ1

)
+ ln

(
1 + α1θ1

2
x2

1 + α2θ2
2
x2

)
− (θ1 − θ2)x.

The first derivative with respect to x gives

d

dx
ln

[
fX1(x)

fX2(x)

]
=

(α1θ1 − α2θ2)x(
1 + α1θ1

2
x2
) (

1 + α2θ2
2
x2
) − (θ1 − θ2),

which is negative when α1 = α2 and θ1 ≥ θ2 (or, when θ1 = θ2 and α1 ≤ α2), i.e.,
fX1

(x)

fX2
(x)

decreases in x when α1 = α2 and θ1 ≥ θ2 (or, when θ1 = θ2 and α1 ≤ α2),

so X1 ≤LR X2 and the other orderings follow automatically by (1.21). Hence the

proof.
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Now, we establish stochastic order relationships between two random variables, X

and Y , when X ∼ TPXG(α1, θ1) and Y ∼ QXG(α2, θ2). We have the following

theorem.

Theorem 6.8. Let X ∼ TPXG(α1, θ1) and Y ∼ QXG(α2, θ2). If α1 = α2 =

α(say), then X ≤LR Y whenever
(θ1−θ2)+θ22

θ1
≥ α2 and θ1 > θ2. Again, if θ1 = θ2 =

θ(say), then X ≤LR Y whenever α1 ≤ θ
α2

.

Proof. The proof comes immediately following the similar arguments as followed

in the proof of the Theorem 6.7. Hence the proof.

6.2.7 Parameter estimation

In this sub-section method of moments and method of maximum likelihood are

proposed for estimating α and θ when X ∼ TPXG(α, θ) for complete sample sit-

uation.Let X1, X2, . . . , Xn be a random sample of size n drawn from TPXG(α, θ).

Denote X̄ as sample mean.

6.2.7.1 Method of moments

Using the first two raw moments given in (6.42), we have

µ′2
µ′21

=
2(θ + 6α)(α + θ)

(θ + 3α)2
= k(say) (6.61)

Taking θ = cα, we have

µ′2
µ′21

=
2(c+ 6)(c+ 1)

(c+ 3)2
= k

which gives a quadratic equation in c as

(2− k)c2 + (14− 6k)c+ (12− 9k) = 0. (6.62)
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An estimate of k is easily obtained by replacing µ
′
1 and µ

′
2 by sample moments

X̄ and m
′
2, respectively, in equation (6.61). This estimate can then be utilized to

solve (6.62) to obtain an estimate of c.

Again, from the first moment equation, we have

X̄ =
(c+ 3)

αc(c+ 1)

and thus moment estimator of α, α̂M (say), is given by

α̂M =

[
(c+ 3)

c(c+ 1)

]
1

X̄
. (6.63)

Finally, the moment estimator, θ̂M (say), of θ is obtained as

θ̂M =

(
c+ 3

c+ 1

)
1

X̄
. (6.64)

6.2.7.2 Method of maximum likelihood

Let x = (x1, x2, . . . , xn) be n observations or realizations on a random sample

X1, X2, . . . , Xn of size n drawn from X ∼ TPXG(α, θ). We have the likelihood

function as

L(α, θ|x) =
n∏
i=1

θ2

(α + θ)

(
1 +

αθ

2
x2
i

)
e−θxi =

θ2n

(α + θ)n
e−θ

∑n
i=1 xi

n∏
i=1

(
1 +

αθ

2
x2
i

)
.

(6.65)

The log-likelihood function is given by

lnL(α, θ|x) = 2n ln θ − n ln(α + θ)− θ

(
n∑
i=1

xi

)
+

n∑
i=1

ln

(
1 +

αθ

2
x2
i

)
. (6.66)
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To find out the maximum likelihood estimators (MLEs), α̂ and θ̂, of α and θ, we

have two log-likelihood equations as

∂ lnL(α, θ|x)

∂α
=

n∑
i=1

(
θ
2
x2
i

1 + αθ
2
x2
i

)
− n

(α + θ)
= 0 (6.67)

and

∂ lnL(α, θ|x)

∂θ
=

2n

θ
− n

(α + θ)
+

n∑
i=1

(
α
2
x2
i

1 + αθ
2
x2
i

)
−

n∑
i=1

xi = 0 (6.68)

respectively.

Though the log-likelihood equations cannot be solved analytically, one can utilize

numerical method, like, Newton-Raphson, for solving (6.67) and (6.68) to obtain

the maximum likelihood estimators, α̂ and θ̂, respectively.

6.2.8 Simulation study

This sub-section deals with the random sample generation algorithm for generat-

ing random samples of specific size from the TPXG(α, θ) distribution supported

by a Monte-Carlo simulation study to observe the behaviour of the estimates of

unknown parameters α and θ.

We make use of the fact that the distribution given in (6.38) is a special finite

mixture of exp(θ) and gamma(3, θ) for describing sample generation algorithm.

To generate a random sample of size n from TPXG(α, θ), we have the following

simulation algorithm.

(i) Generate Ui ∼ uniform(0, 1), i = 1, 2, . . . , n.

(ii) Generate Vi ∼ exp(θ), i = 1, 2, . . . , n.

(iii) Generate Wi ∼ gamma(3, θ), i = 1, 2, . . . , n.

(iv) If Ui ≤ θ
α+θ

, then set Xi = Vi, otherwise, set Xi = Wi.
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A Monte-Carlo simulation study is carried out by considering N = 10, 000 times

for selected values of n, α and θ. Samples of sizes 20, 30, 50, 80 and 100 are

considered and values of (α, θ) are taken as (0.5, 0.5), (1.5, 2.0) and (3.0, 4.0).

Table 6.4: Estimates and average MSEs of α and θ for different sample sizes.

α = 0.1, θ = 0.5

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 0.3621 1.3402 0.6597 0.8742
50 0.2106 1.2201 0.5892 0.6420
80 0.1976 1.1046 0.5108 0.5602
100 0.1691 1.0042 0.5032 0.4763

α = 0.1, θ = 1.5

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 0.3986 1.8756 1.6942 0.8966
50 0.2654 1.4320 1.5730 0.7021
80 0.1976 1.2205 1.5107 0.4503
100 0.1430 0.9986 1.5002 0.3064

α = 1.5, θ = 0.5

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 2.0166 2.3106 0.6879 0.9845
50 1.9822 1.9658 0.5983 0.6650
80 1.7043 1.4576 0.5127 0.4501
100 1.6503 1.1212 0.5026 0.3326

α = 1.5, θ = 2.5

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 2.1551 3.2249 2.6158 0.5344
50 1.9256 1.8867 2.5310 0.2776
80 1.8282 1.4404 2.5100 0.2047
100 1.7675 1.2444 2.5004 0.1753

α = 3.0, θ = 5.0

n α̂ MSE of α̂ θ̂ MSE of θ̂
20 4.6542 2.4328 5.7643 1.2376
50 4.1035 2.0122 5.3066 1.0544
80 3.6479 1.8768 5.1006 0.8790
100 3.4509 1.0256 5.0016 0.6504

The following measures are computed in simulation study.

(a) Average mean square error (MSE) of the simulated estimates α̂i, i = 1, 2, . . . , N :

α̂ =
1

N

N∑
i=1

(α̂i − α)2.
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(b) Average mean square error (MSE) of the simulated estimates θ̂i, i = 1, 2, . . . , N :

θ̂ =
1

N

N∑
i=1

(θ̂i − θ)2.

The results of the simulation study is shown in Table 6.4. Statistical software R is

utilized for computation. The following observations are made from the simulation

study.

(i) The estimates of α and θ get closer to the corresponding true values as the

sample size, n, increases.

(ii) The average mean square errors for estimates of α and estimates θ decrease

with increasing sample size.

6.2.9 Application

In this section two different time-to-event data sets are analyzed for illustrating

the applicability of two-parameter xgamma distribution. For comparison purpose,

besides two-parameter xgamma distribution, we consider five other two parameter

lifetime distributions, viz., gamma distribution with shape α and rate θ, Weibull

distribution with shape α and scale β, log-normal distribution with parameters

µ and σ, two-parameter Lindley distribution (TPLD) with parameters α and λ

(Shanker et al., 2013) and quasi xgamma distribution with parameters α and θ.

In order to compare the models, criteria like, negative log-likelihood, AIC and

BIC are considered. The better distribution corresponds to smaller negative log-

likelihood, AIC and BIC values. Method of maximum likelihood is used for es-

timating the model parameters for both the data sets. Statistical software R is

utilized for analysis.
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Illustration I: As a first illustration we consider a data set on the failure times

of an electronic device reported in Wang (2000). Table 6.5 represents the data of

18 failure times of an electronic device.

Illustration II: As a second illustration a data set on the lifetimes of a device re-

ported in Aarset (1987) is considered. Table 6.6 represents the data of 50 lifetimes

of a device.

Table 6.5: Data on time to failure of 18 electronic devices.

5 11 21 31 46 75 98 122 145 165 196 224

245 293 321 330 350 420

Table 6.6: Data on lifetimes of 50 devices.

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0 7.0 11

12 18 18 18 18 18 21 32 36 40 45 46

47 50 55 60 63 63 67 67 67 67 72 75

79 82 82 83 84 84 84 85 85 85 85 85

86 86

Table 6.7 shows the estimates of the model parameter(s) with standard error(s)

of estimates in parenthesis and model selection criteria for the first data set in

Table 6.5. Table 6.8 shows the estimates of the model parameter(s) with standard

error(s) of estimates in parenthesis and model selection criteria for the data set

represented in Table 6.6.

In each of the above illustrations, TPXG(α, θ) provides better fit (in view of -log-

likelihood, AIC and BIC values) as compared to the well-known lifetime models

for the considered data sets. Hence, the two-parameter extension of xgamma

distribution provides flexibility in modeling real life data sets in comparison with

other two-parameter life distributions in the literature.
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Table 6.7: Estimates of model parameters and model selection criteria for
failure times data of 18 electronic devices.

Distributions Estimate(Std. Error) -Log-likelihood AIC BIC

Gamma(α, θ)
α̂=1.1131 (0.3206)

θ̂=0.0064 (0.0022)
110.60 225.21 226.99

Weibull(α, β)
α̂=1.1458 (0.2287)

β̂=179.69 (38.6837)
110.45 224.89 226.67

Log-normal(µ, σ)
µ̂=4.6358 (0.2952)

σ̂=1.2523 (0.2087)
113.03 230.07 231.85

TPLD(α, λ)
α̂=0.0090 (0.0134)

λ̂=0.0087 (0.0024)
110.30 224.59 226.37

QXG(α, θ)
α̂=0.7251 (0.5740)

θ̂=0.0125 (0.0027)
110.24 224.48 226.26

TPXG(α, θ)
α̂=0.0173 (0.0158)

θ̂=0.0125 (0.0027)
109.62 223.25 225.03

Table 6.8: Estimates of model parameters and model selection criteria for
data on lifetimes of 50 devices.

Distributions Estimate(Std. Error) -Log-likelihood AIC BIC

Gamma(α, θ)
α̂=0.7990 (0.1375)

θ̂=0.0175 (0.0041)
240.19 484.38 488.20

Weibull(α, β)
α̂=0.9492 (0.1196)

β̂=44.9194 (6.9458)
241.00 486.00 489.83

Log-normal(µ, σ)
µ̂=3.0790 (0.2472)

σ̂=1.7481 (0.1748)
252.82 509.65 513.47

TPLD(α, λ)
α̂=0.0256 (0.0224)

λ̂=0.0317 (0.0053)
240.16 484.33 488.15

QXG(α, θ)
α̂=0.7022 (0.2984)

θ̂=0.0476 (0.0056)
237.12 478.24 482.06

TPXG(α, θ)
α̂=0.0677 (0.0330)

θ̂=0.0476 (0.0056)
236.73 477.47 481.29
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6.3 Conclusion

To facilitate better modeling of survival data sets there has been a great interest

among statisticians and applied researchers in constructing flexible lifetime models.

As a consequence, a significant progress has been made towards the generalization

and/or extension of some well-known lifetime models and their successful applica-

tion to data coming from diverse areas.

In this chapter, two extensions (or generalizations) of one parameter xgamma dis-

tribution, viz. quasi xgamma and two-parameter xgamma, are proposed, different

distributional and survival properties are studied, methods of estimating unknown

parameters are addressed for complete sample situations and their application in

the area of survival and/or reliability studies are accomplished with real data il-

lustrations and comparison with other life distributions. The following important

findings are made in this chapter.

(i) Both the proposed distributions are special finite mixtures of exp(θ) and

gamma(3, θ) distributions with different mixing proportions.

(ii) Both the distributions proposed provide additional flexibility over xgamma

distribution in view of their distributional and survival properties.

(iii) Both the distributions possess strong likelihood ratio ordering. Moreover,

Two-parameter xgamma random variables are stochastically smaller than

those of quasi xgamma in likelihood ratio and other orderings.

(iv) Real data analyses revealed that both the proposed distributions are quite

competent in modeling time-to-event data sets.

Open research problems:

The present chapter opens the following scopes for future research.
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• Besides the investigation for applications in other potential areas apart from

survival and reliability, the aspects of Bayesian estimations of the parame-

ters for both the distributions proposed in this chapter under different loss

functions and censoring schemes could be important investigation.

• Problem of discriminating between the quasi xgamma and the two-parameter

xgamma distributions for a given sample could be an important model se-

lection methodology building.

• Bivariate and multivatiate extensions of both the distributions could be in-

teresting generalizations.
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