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Abstract

Large scale optimization (LSO) is non-linear, high complex, multi-modal in nature

that consist of large number of decision variables. Traditional optimization algo-

rithms fail to solve these problems because of serious local optima. In this study,

LSO problems are chosen as the major concern and to provide efficient algorithm

for handling the same. Most of the research work are contributed on traditional

algorithms by refining its superior global search ability and efficient technique on

handling scaling-up problems.

Grey Wolf Optimization (GWO) is a recently proposed optimization algorithm

which mimics the behavior of grey wolves. This algorithm has superior search

mechanism into two parts viz., leadership and hunting strategies. This algorithm

proves its efficiency on various small scale optimization problems. However, it

degrades its performance in handling the large scale optimization problems. As like

as, all conventional algorithm GWO also face the same problems such as premature

convergence and local optima stagnation. These issues degrade the performance

of the GWO in case of handling the large scale optimization problems.

The work presented in this thesis mainly focuses on the qualitative study of

Large scale optimization using modified Grey Wolf Optimization algorithm. Mod-

ified GWO is proposed with the name Self-Adaptive Grey Wolf Optimization

(SAGWO). In the proposed work, three phases are introduced into classical GWO;

first phase exploits the search space by enhancing the learning behavior while sec-

ond phase enhance the diversity to explore the global search space and final phase

global best oscillation scheme performed to oscillate the search region in order to

eradicate the local optima.

In similar work, the performance study of the SAGWO algorithm is carried out

on large scale benchmark functions over varying dimensionality (i.e. 100- 1000

Dimensions). The performance result of the SAGWO using statistical analysis

is used to measure the robustness of the best proposed method. In addition to

that, other state-of-the-art meta-heuristics algorithms are used to determine the

efficiency of the algorithm.

Furthermore, large scale real-time applications viz., Economic Load Dispatch

(ELD) and Localization problem are chosen to analyse the performance of the

SAGWO algorithm. In Economic Load Dispatch problem, the number of gen-

i



erating units are varied from 10-640 units to notify the efficacy of the proposed

algorithm by varying dimensionality. In Localization problem, the number of un-

known nodes with respect of anchor nodes and transmission range are utilized to

determine the robustness of the algorithm. The result analysis especially success

rate will help the researchers to determine the repetition of the best solution for

different independent runs.

Keywords: Large Scale Optimization, Grey Wolf Optimization, Self-Adaptive

Grey Wolf Optimization, Premature Convergence, Local optima, Economic Load

Dispatch, Localization Problem.

ii



 

iii 

 

ACKNOWLEDGEMENT 
 

 

First of all, I thank the Almighty for blessing, wisdom and everything 
 

At   first,   I  express  my   deepest  sense of  gratitude  towards  my   supervisor 

Dr. T. Vengattaraman, for his guidance, constant encouragement, inspiring 

suggestions and critical discussions throughout my doctoral studies. 

Throughout my thesis writing period, he provided encouragement, sound 

advice, good teaching, and lots of good ideas. I also thank his for his patience 

and kindness. His dedication to work and perfectionism will have a far-

reaching impact on my life, academic and beyond.  

 

I must express my heartfelt gratitude and thanks to my Doctoral Committee 

members Prof. P. Dhavachelvan, Department of Computer Science, 

Pondicherry University and Dr. S. Janakiraman, Department of Banking 

Technology, School of Management, Pondicherry University for their valuable 

suggestions and support throughout my research work.  

 

I would like to express my gratitude to Prof. R. Subramanian for his constant 

motivation   and   encouragement.  I   would   like  to thanks  to Dr. P. Sujatha  

for their support. I also wish to thank the Dr. T. Chithralekha, Associate 

Professor  &  Head (i/c) and Prof. P. Dhanavanthan, Professor & Dean (i/c) 

for their moral support.  

 

I also wish to thank my fellow research scholars and all the teaching & non-

teaching members of the Department of Computer Science, Pondicherry 

University for their cooperation and moral support throughout my research.  

 

I    would   like    to   thank    my    beloved    Parents,   Mr. R. Ramalingam   

and Mrs. R. Allimuthu and Sister, Mrs. R. Rajalakshmi and brother-in-law                      

Mr. D. Manivannan and to my lovable one for their unconditional love, 

support and eager to know about every advancement in my work.  

 

 

 

[R. RAJAKUMAR] 



Table of Contents

Title Page

No.

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Metaheuristics on LSO Problems . . . . . . . . . . . . . . . . . . . 2

1.3 Techniques on Large Scale Optimization . . . . . . . . . . . . . . . 4

1.4 Characteristics of LSO Problems . . . . . . . . . . . . . . . . . . . 6

1.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Organization of Chapters . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Decomposition Based Approaches . . . . . . . . . . . . . . . . . . . 16

2.2.1 Static Grouping Based Decomposition Approaches . . . . . . 17

2.2.2 Dynamic Grouping Based Decomposition Methods . . . . . 18

2.3 Non-Decomposition Methods . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Evolutionary Computing . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter3 Goals and Research Methodology . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



3.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Experimental Framework . . . . . . . . . . . . . . . . . . . . 34

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter4 Proposed Methodology-I . . . . . . . . . . . . . . . . . . . . 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Self Adaptive Background of Strategies . . . . . . . . . . . . . . . 40

4.3 Multi-Swarm Approach . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Determining the Role of Sub Swarm . . . . . . . . . . . . . . . . . . 45

4.5 Guided Neighborhood Search Mechanism . . . . . . . . . . . . . . . 46

4.5.1 Measuring Learning Rate Probability . . . . . . . . . . . . . 47

4.5.2 Position Update using Neighborhood Search . . . . . . . . . 48

4.5.3 Position Update using Guided Search Mechanism . . . . . . 50

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter5 Proposed Methodology-II . . . . . . . . . . . . . . . . . . . . 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Position Repulsion Mechanism . . . . . . . . . . . . . . . . . . . . . 55

5.3 Global Best Oscillation Scheme . . . . . . . . . . . . . . . . . . . . 59

5.4 Swarm Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Description of SAGWO Algorithm . . . . . . . . . . . . . . . . . . . 62

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter6 SAGWO for Large Scale Benchmark Functions . . . . . . 66

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1 Test-Bed Design . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Large Scale Benchmark Functions . . . . . . . . . . . . . . . . . . . 67

6.3.1 Benchmark functions . . . . . . . . . . . . . . . . . . . . . . 68

6.3.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 72

6.3.3 Performance Scalability Study . . . . . . . . . . . . . . . . . 73

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter7 SAGWO for Real Time Applications . . . . . . . . . . . . .102

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Economic Load Dispatch (ELD) Problem . . . . . . . . . . . . . . . 103

7.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 104

v



7.2.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 105

7.2.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . 105

7.3 Localization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 124

7.3.4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . 125

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter8 Conclusions and Future Works . . . . . . . . . . . . . . . .134

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.2 Scope for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

vi



List of Figures

Figure No. Title Page No.

2.1 Classification of LSO techniques . . . . . . . . . . . . . . . . . . . . 15

3.1 Layered View of Experimentation Methodology . . . . . . . . . . . 35

4.1 Main process of the proposed SAGWO . . . . . . . . . . . . . . . . 42

4.2 Group behavior of Grey Wolves . . . . . . . . . . . . . . . . . . . . 43

4.3 Probability of learning curves for varying dimensionality from D100

to D = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Example of Information Exchange between the five sub swarms with

complete free form of neighborhood topology. . . . . . . . . . . . . 49

5.1 Grey wolf with different movements (a) Grey wolf stops moving or

stagnate in a position, (b) Grey wolf with slow movement, (c) Grey

wolf with fast movement . . . . . . . . . . . . . . . . . . . . . . . . 56
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Chapter 1

Introduction

1.1 Overview

Now-a-days optimization is a booming research topic due to its necessity on wide

range of application within the several problem domains. The goal of the op-

timization is to identify the system as effective as possible namely reducing the

total computation cost of a system. Mostly optimization works on the system

parameters to identify the best combination of the parameters in order to achieve

the optimal results. The computation system with its parameters is considered as

an optimization problem with its input parameters or decision variables. Based

on the decision variables, the optimization problems are categorized into two dif-

ferent categories viz. global optimization problem and combinatorial optimization

problems. The global optimization problems deal with the continuous real values

whereas combinatorial optimization problems hold discrete real values [Mani et al.

2016].

Further these problems are categorized into two division based on the size or vol-

ume of the decision variables. Firstly, the problems with the minimum number of

decision variables are considered as the Small Scale Optimization (SSO) problems

(i.e. the decision variables of a problem will holds less than 100 variables). At

the same time, SSO problems can be easily solved by various optimization algo-

rithms. Secondly, the problems which deal with more or huge or extreme number

of decision variables are considered as Large Scale Optimization (LSO) problems

(i.e. the problem with more than 100 decision variables). These kinds of problems

are quite difficult because of large number of decision variables which in result

increases the complexity of the search space. This thesis mainly contributes on

the LSO problems by providing an efficient optimization algorithm.

Most of the real-world science and engineering optimization problems deal with

many decision variables, known as Large Scale Optimization (LSO) problems. In
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general, LSO problem can be mathematically expressed as follows (without loss

of generality, minimization problem is considered here):

minf(x),−→x = [x1, x2, ..., xD] ∈ RD; [xLj , x
U
j ],∀j = 1, 2, ..., D (1.1)

where f is the fitness function, −→x is the decision vector RD space with D dimen-

sions, D is the dimension of a problem, i.e., the number of variables are large

(D > 100) to be optimized, and xUj and xLj are the upper and lower bound-

ary regions of each decision vectors, respectively. The problem with decision

vector which is greater than hundred makes crucial task to optimize [Mohamed

2017].

Most frequent LSO problems are large scale electronic system designing, handling

huge resources for scheduling problems, vehicle routing in large scale traffic net-

works [Mahmoudi and Zhou 2016], gene recognition in bio-informatics, reversible

problem in chemical kinetics, satellite layout design [Teng et al. 2010], seismic

waveform inversion [Wang and Gao 2012] etc. For example, economic load dispatch

(ELD) problem is a large-scale and highly complex optimization problem which

has high number of generating units with different cost function viz., value points

and multiple fuel options. Considering both, the constraints and cost functions

may change the characteristics of the ELD problem into complex optimization

problem with non-convexity, non-linearity and high dimensionality. The complex-

ities are due to the high decision space and constraints on operating the generating

units such as the spinning reserve, transmission losses, prohibited operation zones,

value point effects and multiple fuel options [Meng et al. 2015].

1.2 Metaheuristics on LSO Problems

Generally, meta-heuristic approaches provide a fruitful solution to optimization

problems because of its simplicity and flexibility. Traditional meta-heuristic algo-

rithms such as Simulated Annealing (SA) [Kirkpatrick et al. 1983], Genetic Algo-

rithm (GA) [Holland 1992], Ant Colony Optimization (ACO) [Dorigo and Di Caro

1999], Differential Evolution (DE) [Storn and Price 1997], Particle Swarm Opti-

mization (PSO) [Poli et al. 2007] and Artificial Bee Colony (ABC) [Karaboga and

Basturk 2007] have been applied in various fields of science and engineering. Dur-

ing the last few years, new algorithms such as Cuckoo search (CS) [Yang and Deb
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2010], Firefly Algorithm (FA) [Yang 2010], Grey wolf optimization (GWO) [Mir-

jalili et al. 2014] and etc., have become familiar and showed its performance on

various problems. All the meta-heuristic algorithms rely on two folds viz. diver-

sification and intensification. Diversification means the search space of a problem

is globally investigated, whereas intensification searches to a specific search region

instead of utilizing global search regions.

In addition to that, meta-heuristics algorithm are divided into two approaches viz.

Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms [BoussäıD

et al. 2013]. Evolutionary algorithm is inspired from the natural evolution. Among

the several variants of EAs, Differential Evolution is a more popular optimization

algorithm in solving various optimization problems. The differential evolution

algorithm is an efficient, powerful and straightforward optimization algorithm.

Based on the literature, we noticed that DE provides better performance than

several other variants of EAs in terms of convergence speed and robustness over

the several benchmark functions and real-time problems. However, DE was only

tested on functions of up to 100 dimensions. On the other side, Swarm Intelligence

(SI) is another category of meta-heuristic algorithms, which mimics from the group

of animal behavior (i.e. which observes a scientific study about everything animal

can perform). The foremost algorithm is Ant Colony Optimization (ACO), which

was inspired by the foraging behavior of ants. Another SI algorithm is particle

swarm optimization (PSO), which was inspired from the collective behavior of

birds flocking or fish schooling.

The major hindrance of traditional meta-heuristics approaches is suffers from main

scarcity due to curse of dimensionality [Omidvar et al. 2017]; i.e., the performance

of these algorithms deteriorates when handling the large number of dimensional

problems because of the neighborhood search space becomes so narrow that it

becomes very difficult to locate the global optimal solutions. Moreover, these

approaches require large number of function evaluations and quite difficult to

solve problems with interaction variables and complex search spaces [Sun et al.

2017; Salomon 1996].

On the other hand, various design and development of new techniques are inte-

grated with meta-heuristic algorithms to tackle LSO problems viz. local search

ability, population reduction, surrogate modeling to handle the large scale opti-

mization problems [Antonio Latorre et al 2015]. In local search ability, dynamic

multi swarm concept is proposed and integrated with the particle swarm opti-

mizer in addition to that randomized neighborhood topologies cooperatively work
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to solve the LSO problems. In addition to that simplex mathematical search

model is utilized to enhance the stochastic nature of the optimization algorithms.

In population reduction approach, the size of the swarm is reduced by dynam-

ically changing its size based on the dimensionality of the problem whereas in

surrogate modeling determines the promising regions of optimal point within the

considerable budgets.

1.3 Techniques on Large Scale Optimization

Broadly speaking, several techniques are addressed for solving the large-scale prob-

lems viz. reduction in dimensionality [Jolliffe 1986; Schölkopf et al. 1998] and

function approximation approaches [Timan 2014]. Another alternative approach

is decomposing methodology which splits the large-scale problem into a group of

smaller subsets which can be easier to manage and solve. After the decomposition

is processed the whole large-scale problem can be solved separately by optimiz-

ing the individual subproblems. This decomposition method also determined as

the divide-and-conquer method [Descartes 1993] which states that ”[the division

of] each of the problems is examined into as many parts as possible, and as quite

adequate to obtain the saddle point or appropriate solution”.

The efficacy of problem decomposition method has been utilized in many standard

optimization algorithms [Bertsekas 1999]. In order to split up the decision vectors

different models are used namely static grouping and dynamic grouping. Static

grouping divides the decision space into fixed size for all the sub components but

delivers poor performance on non separable problems where as dynamic group-

ing (DG) determines the interaction variables in a high dimensional vector based

on the variable interaction learning. In particular DG has the following major

hindrance.

1. Requires large number of function evolutions which in results depict the

high computational cost on fully independent variable problems (i.e. fully

separable).

2. Inefficacy to identify objective functions with overlapping decision vectors,

i.e. some decision vectors are mutually connected with other decision vectors.

3. Sensitivity to computational roundoff error and a threshold parameter is

needed from the user without knowledge of the problems.
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Non-decomposition based approaches are considered as an alternative approach

of decomposition based approaches. This approach avoids the divide-and-conquer

strategy and rather it applies different strategies to enhance the performance of

the algorithms. At the same time, this approach best suit for solving both sep-

arable and non-separable problems with the help of the enriched search mecha-

nisms. [Prabhujit Mohapatra] addressed that these approach has been classified

into three different process thus they are as local search based, evolutionary based

and swarm intelligence based approaches. Firstly, Local search based method raise

the different methodologies to solve the optimization problems which includes tabu

search, simulated annealing, variable neighborhood search, and Greedy Random-

ized Adaptive Search Procedure (GRASP) and so on.

Secondly, Evolutionary based approaches is inspired by the biological evolution

with different process such as reproduction, crossover, mutation, and selection.

Brest and Maučec 2011 performed to reduce the population size with three dif-

ferent mutation strategies to solve the large scale optimization problems. Yang

et al. 2011 introduced Scalability of generalized adaptive differential evolution for

large-scale continuous optimization in which parameter adaptation is performed

to improve the performance of the algorithm.

Thirdly, Swarm Intelligence (SI) algorithm which observes the intelligent behaviors

such as searching, flocking, feeding, schooling, attacking of animals such as ant,

birds, honey bees, grey wolves and so on. Generically, SI holds unique features to

solve optimization problems thus they maintain previous search space information

for course of iterations, it stores the iterative best solution, holds few adjustable

parameters and easy to implement. Though, SI holds intelligence behavior, it

lags in efficient exploration and exploitation search mechanisms and balancing

the same for scaling problems. Tri-competitive mechanism has been addressed in

[Mohapatra et al. 2017] to explore the search space and speedup the convergence

rate. [Zhao et al. 2008] provided dynamic multi-swarm technique with local search

to improve particle swarm optimization approach.

With these perspectives, the work presented in this thesis is aimed at proposing a

swarm intelligence based non-decomposition approach with efficient search capa-

bilities, diversity and also to introduce an efficient self-adaptive property to obtain

the potential solution for high dimensional complex optimization problems with

faster convergence rate.
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1.4 Characteristics of LSO Problems

Large scale optimization problem deals with the large number of decision variables

makes the problem quite complex. In reality, based on the dimensionality of the

problem the number of objective assessment increases. The properties of optimiza-

tion process in low dimensional problems might vary in case of high dimensional

problems.

The problems with increase in dimensional vector may change its characteristics.

Thus the characteristics of LSO problems are commonly seen in the real world

problems such as variable dependent and variable independent [R Cheng et al

2016]. Furthermore, they are categorized into four major divisions namely sepa-

rable, partially separable, fully non-separable and partially additively separable.

For all the description of properties we have considered minimization problems.

In order to provide an example for each characteristic we have used CEC 2010

benchmark functions [Tang et al. 2009].

Fully Separable

The variables in separable problems does not interact with any of the other vari-

ables (i.e. all the decision variables are independent to each other). These variables

are easily divided into several subcomponents and can be optimized separately.

Without loss of generality, the problem may be considered as separable one if and

only if consists the following properties.

arg min
x
f(x) = (arg min

xi
f(x), arg min

∀xj ,j 6=i
f(x) (1.2)

where x is a decision vector of D dimensions in which x ∈ (x1, ...xD). The repre-

sentation of arg minxi denotes the optimum value of xi is determined while all the

other decision vectors are kept stable. In CEC 2010, sphere function is considered

as the fully separable function which has the high dimensional decision vectors of

1000 dimensions. The function is given as follows

FSphere(x) =
D∑
i=1

x2i (1.3)

where D is the dimension and x ∈ (x1, ...xD) is a D-dimensional decision vector.
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This function is very simple and is mainly used for demonstration. MLSoft algo-

rithm [Omidvar et al. 2014] based on reinforcement learning and CPSO algorithm

based on arbitrary pair wise competition mechanism [Cheng and Jin 2015] pro-

vides better result for this function.

Partially Separable

A Function f(x) with m variables of that small number of variables acts as de-

pendent variables and remaining variables act as independent variables. In opti-

mization process especially for decomposition approaches the dependent variables

are to be grouped in one subcomponent and independent variables can be divided

into several sub components where as non-decomposition approaches will utilize

the entire components of decision vectors without dividing it into several compo-

nents. Without loss of generality, the partial separable problem is mathematically

expressed as follows.

arg min
x
f(x) = (arg min

x1
f(x1, ...xn), arg min

xm
f(xn + 1, ...xm) (1.4)

where x is a decision vector of D dimensions in which x ∈ (x1, ...xD), x1, ...xm

are partially separable sub vectors of x, and n ≤ m ≤ D. The function D/2m

grouped shifted m-dimensional Rosenbrock from CEC 2010 has the characteristic

of partially separable in which DM-HDMR [Mahdavi et al. 2014] based on high

dimensional model representation technique and FT-DNPSO with dynamic neigh-

borhood topology [Fan et al. 2014] provides better result for this function.

Fully Non-Separable

A function f(x) with m decision vectors in which all the decision vectors in a

problem are to be optimized as single component. This type of problem cannot

be divided into sub components and every pair of its decision variables interact

with each other. This problem is entirely different from the separable problems

(i.e.m = D). The representation of fully non separable problem is given as

arg min
x
f(x) = (arg min

x
f(x1, ...xm) (1.5)

Where x ∈ (x1, ...xm) is the solution with m decision vectors m ∈ D. Shifted

Schwefels Problem 1.2 from CEC 2010 has the fully non separable properties in

which all the decision vectors are interact with each other. The mathematical
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representation of this function is given as follows:

FSchwefel(x) =
n∑
i=1

(
i∑

j=1

xi)
2 (1.6)

Where D is the dimension vector (i.e.n ∈ D) and x is the decision vector of

D−dimensional space. [Zhang et al 2017] proposed an efficient mechanism with

assisted Trust-Tech methodology provides better results for this function.

Partially Additively Separable

Partially additively separable is an extension characteristics of partially separable

in which decision vectors are mutually exclusive with each other. This function

holds multiple independent decision vectors and small number of non separable

vectors. The mathematical notation of this type is provided as follows

f(x) =
m∑
i=1

fi(xi) (1.7)

Where xi are mutually exclusive decision variables of fi, x is the global deci-

sion variables in which x ∈ (x1, ...xD) and m is the independent subcomponent.

The D/m group shifted and m rotated elliptic function is a type of CEC 2010

benchmark function which has the D/m-group m-rotated and D/m-group m-

nonseparable properties in which MMTS based on the modified version of multi-

ple strategy search [Ali et al. 2016] and RPSO-vm with velocity modulation and

restarting approach [Garćıa-Nieto and Alba 2011] used for the efficient searching

and solving the problems.

Apart from that, the achievement in obtaining the optimal solution for LSO prob-

lems using a meta-heuristic algorithm must have the inherent characteristics of

coordination, collaboration and cooperation among the individuals. These char-

acteristics serve the algorithm to maintain a tradeoff between the global diversifi-

cation and local intensification capabilities. [Wu et al. 2016; Yu and Zhang 2011;

Li et al. 2016; Chen et al. 2017a] multi-population based approach in differential

evolution algorithm realize an ensemble of multiple individuals interactions based

on the recombination and mutation strategies.

Multiple Offspring sampling (MOS) [de la Fuente and Sánchez 2009] and vector

generation strategy [C Segura et al 2015] provides the natural extension to avoid
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the huge reduction in the diversification for the individuals. Two stage variable in-

teraction mechanism [H Ge et al 2017] and differential grouping strategies [Omidva

et al 2014] allows decomposing the complex search space problem and collabora-

tively optimizing the decision vectors manageable of a complex problem.

In addition to these, the adequate nature derived multi agents interactions are

much efficient to handle the interactive variables problem in which sufficient learn-

ing and cooperation are exhibited from the nature. Incremental Social learning

has been adopted with increasing population size mechanism with PSO to observe

the collective information from various particles and also to exploit the current

search space [Lanzarini et al. 2008]. Segment-based predominant learning mech-

anism is one among in the series, in which variables from multiple segments are

updated by observing the characteristics of various exemplars.

With the advancements, opposition based learning [Mahdavi et al. 2017] and self

organizing migration algorithm [Zelinka 2004] provides the sufficient learning based

opposition over the search agents as well as the migration over the dynamic changes

on the surroundings and global environment. In addition to that, Joint operation

based approach [Sun et al. 2016] and predator prey model [Deb et al. 2005] favors

the competitive technique to survive in the environment. The search agents in

these approaches cooperatively work to achieve the appropriate position in the

competitive environment. Furthermore, reorganization strategy is included to

enhance the collaboration between the search agents.

In this view, meta-heuristics must have all the set of characteristics to solve the

LSO problems. This dissertation presented a new variant of meta-heuristic algo-

rithm with the enhanced mechanism of having all the capabilities to tackle the

LSO problems.

1.5 Challenges

LSO problems have different challenges thus they are listed as follows:

1. The search space of the problem may scale with respect to increase in num-

ber of decision variables. For example, in an optimization of binary problem,

when the decision variables increase from 10 to 20, then the size of the search

space increases from 210 = 1024 to 220 = 1048576. In the 10 decision vari-

ables the search space of the problem is low whereas in case of 20 decision

9



variables the search space of the problem grows suddenly and makes hin-

drance for optimization algorithms.

2. The characteristics of an optimization problem may change as the number

of decision vector increases. For example, Let us consider the Rosenbrock

function which acts as uni-modal function in two dimensions whereas the

same function converts into multimodal modal when the number of decision

vectors increases.

3. At the same time, solving LSO problems using meta-heuristics algorithm

requires more number of function evaluations in order to locate the global

optimal or near optimal solution thus in result it turns the algorithm into

computationally high cost.

4. Another measure of the complicate LSO problems is interactions between

the decision variables. For example, consider a function f(x) = 3x21 + 4x22,

the global optimum of each decision vector can be easily found independently

from the other decision vector. However, in function f(x) = 3x21 + 2x1x2 +

4x22, the expression 2x1x2 has variable interaction, which affects the optimizer

capability by picking the value from one decision vector in order to locate

the global optimum of other decision vector. Generally, the interaction of

the variables termed as non-separability problem.

1.6 Motivations

The challenges which are discussed in section 1.5 motivate us to design and develop

an efficient and effective optimization algorithm with betterment in providing high

quality solutions and high convergence performance with minimal computational

cost. The foremost attempt to solve large-scale optimization problems by using

enhanced feature of evolutionary programming was achieved by [Yao et al 1999], in

which 1000 decision vector has been utilized. Most of the large scale optimization

problems are quite complex, in which traditional meta-heuristics approaches fail

to find the appropriate solutions. The complexity of an optimization problem in-

creases based on the number of decision vectors. In literature various algorithm are

introduced to solve the LSO problems. In genetic algorithm, the non-separability

is considered as the gene interaction or epistasis. In most of the case, optimizing

the LSO problems with no interaction on variables are to be solved by optimizing

the variables independently. In another aspect, the LSO with variable interac-
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tion are to be optimized together. In that we notify that most of the real-world

problems reside in the both cases.

On the other hand, Grey wolf optimization (GWO) is a recently proposed opti-

mization algorithm belong to family of swarm intelligence [Mirjalili et al. 2014]

and widely used by various researchers because of the its simplicity and ease of

implementation. Naturally, Grey wolves have effective social and intelligent co-

operative behavior compared to other living organisms. They live in a pack and

follow very strict dominant hierarchy in addition to that it has excellent leadership

and hunting strategies to survive in a complex natural environment. Based on this

inspiration, we chosen the grey wolf optimization algorithm to handle large scale

optimization problems.

In many recent studies, GWO has been applied on various kind of real-world prob-

lems namely Economic load dispatch [Pradhan et al. 2016], Clustering problems

[Zhang and Zhou 2015], Wind Speed forecasting [Madhiarasan and Deepa 2016],

engineering design problems [Kohli and Arora 2017]. Most of the works and de-

velopments on the GWO are contributed to solve the low dimensional problems.

In addition to that, we noticed that GWO fails to handle to high dimensional

problems because of scalability issues and ineffective search mechanisms which

in result provide poor convergence and stagnation in local optimal point. Fur-

thermore, parameters in GWO are problem-dependent and it is difficult to adjust

them for different problems.

Hence, the co-operative behavior of grey wolves motivated us to choose the Grey

wolf optimization algorithm to handle both the separable and non-separable prob-

lems with high dimensional complex search space. In addition to this, it is

also aimed at improving the algorithm using efficient search mechanism and self-

adaptive properties to solve various kind of real-world large scale problems.

1.7 Our Contributions

As discussed earlier, Grey Wolf Optimization has intrinsic cooperative and group-

ing behavior which plays a vital role in determining the quality of searching to

obtain the optimal solution. In addition to that, though various searching mech-

anism is integrated with GWO only few modified algorithms provides potential

position for complex problems. Thus, the efficient searching and self adaptive

properties must be supplemented with GWO for effective search capability.
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In this perspective, an enhanced approach of self adaptive grey wolf optimization

algorithm with the combination of efficient searching strategies and self adaptive

properties is devised and experimental evaluation schemes are intended to validate

the significance of the proposed approach with respect to the existing best working

approaches of large scale meta-heuristic algorithms.

To accomplish the above, this experimental research is being organized into several

phases and the major contributions are listed as follows:

1. An extensive survey has been made over the recent related works and it has

been concluded with the necessity for having an improved model of GWO

with enhanced search mechanism and self adaptive properties.

2. Three layer experimental framework is being designed to practically prove

the asserts made in this research work.

3. Proposed an efficient grey wolf optimization based on self adaptive proper-

ties, with guided neighborhood search, position repulsion operator and global

best oscillation scheme has been incorporated for efficient search space ex-

ploration and solution exploitation characteristics.

4. Applied the statistical techniques to analyze the results obtained from ex-

periments in order to validate the outcomes of the research presented in this

dissertation.

1.8 Organization of Chapters

The remainder of this thesis is organized as follows:

� Chapter 2 presents a brief review on recent contributions related to the

work presented in this dissertation. The review is organized into two sections

based on the categorization of large scale optimization techniques. Discus-

sion in the first section is focused on the decomposition based approaches,

whereas the next section is focused on the non-decomposition based ap-

proaches.

� Chapter 3 defines the goal of this research and explains the line of research

to achieve the goals defined. This chapter also defines the layered framework

of experimentation methodology followed in this research.
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� Chapter 4 elucidates the formulation of self adaptive strategies with multi-

swarm approach. Further, an efficient guided neighborhood search mecha-

nism and its effects on generic GWO are presented.

� Chapter 5 provides the resting proposed work of the SAGWO with Position

repulsion mechanism to enrich the exploration. In addition to that, the

detailed flow of the proposed work and its algorithm are described.

� Chapter 6 describes about the experimentation and result analyses of pro-

posed self adaptive strategies on GWO. Here, the large scale benchmark

functions are considered and performances are measured based on the vary-

ing dimensionality of the functions. This chapter justifies the performance

improvement of proposed model over the best existing meta-heuristic algo-

rithms for the large scale benchmark functions.

� Chapter 7 illustrates the experimentation over Real-time applications viz.,

Economic Load Dispatch (ELD) and Localization problem in WSN. Problem

specific performance factors are considered to analyse the improvement in

performance proposed SAGWO than classical algorithms.

� Chapter 8 provides the concluding remarks of the work presented in this

dissertation and the future enhancements of the proposed line of research.
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Chapter 2

Literature Survey

2.1 Introduction

In recent times, several researchers from various fields have contributed on de-

veloping a novel optimization approaches to solve the large scale problems due

to its necessity in the field of science and engineering. Various optimization al-

gorithms such as competitive swarm optimization, differential evolution, particle

swarm optimization, genetic algorithm, artificial bee colony algorithm and so on

are introduced to handle the low dimensional problems whereas these algorithms

degrades its performance when the scalability of problem increases [Song et al.

2016]. In order to improve these algorithms various modified approaches and

novel search techniques are proposed and integrated with the generic optimization

algorithm to handle the high dimensional problems [Mahdavi et al. 2014].

In this section, a detailed survey is provided based on the various techniques and

methodologies addressed so far to handle the large scale optimization problems.

This review helps to find the research gap in the recent approaches on considering

the scalability of the problems and also the effective methodologies to solve it

efficiently.

Generally, LSO techniques are classified into two major categories namely Decom-

position based approaches and non-decomposition based approaches. The classifi-

cation of LSO techniques is shown in figure 2.1. Decomposition based approaches

works as like divide and conquers mechanism which decomposes the LSO problems

into single-variable or n number of low dimensional subcomponents. However, non

decomposition based approaches utilize the entire decision vectors instead of di-

viding the decision vectors into n chunks. These approaches use different effective

search operators along with various optimization algorithms to enhance their per-

formance in handling large scale problems.
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Figure 2.1: Classification of LSO techniques
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2.2 Decomposition Based Approaches

Broadly speaking, decomposition based approach initially designed and proposed

by [Potter 1997; Potter and De Jong 1994], this approach firstly integrated with

generic GA to increase the performance in solving high dimensional problem.

These approaches are also termed as Cooperative Coevolution (CC) approach

which works based on the divide and conquer strategy. Generally, CC approaches

were single dimensional and also dividing-in-half method [Potter and Jong 2000].

The single dimension based approach splits an n-dimensional problem into n sub

dimensional problems whereas the dividing-in-half approach splits an n-dimensional

problem into two halves (i.e.n/2) sub components. The basic steps of CC approach

are as follows

� Problem decomposition: Large dimensional decision vector decomposes into

several small non-overlapping subcomponents.

� Subcomponent optimization: Each subcomponent separately executed in a

conventional optimization method for a certain number of iterations based

on round-robin methodology.

� Subcomponent combination: Combining the solutions of all subcomponents

to form an n-dimensional solution.

In subcomponent optimization step, n-dimensional decision vector are formed by

integrating the each subcomponent solution with the selected solution from the

other sub components. In order to merge the solution in each subcomponent

[Potter and De Jong 1994] suggested two collaboration techniques thus they are

best fitness based and random fitness based collaboration techniques. The best

fitness based collaboration technique addressed in CCGA-1 algorithm which cal-

culates the fitness of each solution by merging it with the present best solutions

of other components. The random collaboration technique is addressed in CCGA-

2 algorithm which calculates the fitness of each solution by merging it with the

arbitrarily chosen solutions of other subcomponents. The decomposition based

approach has been widely applied on enormous amount of real-world problems

[Barrière and Lutton 2009; Cao et al. 2008; Mingming et al. 2011]. This approach

splits the decision vector into n groups of variables and cooperatively solves them

for a certain number of iterations. Based on the several studies, these approaches

are further classified into two categories namely static and dynamic grouping tech-

niques.
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2.2.1 Static Grouping Based Decomposition Approaches

Potter and De Jong (1994) introduced a novel decomposition approaches for the

enhancement of generic GA with two algorithms namely CCGA-1 and CCGA-2 al-

gorithms which are executed on 30 dimensional problems. The results of CCGA-1

shows better performance on separable problems compare to generic GA, whereas

the same algorithm degrades its performance on non-separable problems. A prob-

lem with independent variables referred to as separable problems in which the

decision vectors are has no interaction between them whereas non separable prob-

lems refers to dependent variables which is also termed as epistasis problems.

Liu et al. (2001) introduced the CC approach with fast evolutionary programming

(FEP) namely FEPCC to optimize the real-valued benchmark functions with 100

to 1000 decision variables. The author in FEPCC approach states the inefficacy

of CCGA algorithm on dealing with non-separable problems. Van den Bergh and

Engelbrecht (2004) initially attempt to combine CC approach with PSO algo-

rithms in order to produce a two variants namely CPSO-HK and CPSO-SK. The

CPSO-SK observes the original CC approach proposed by [Potter and De Jong

1994] in which the decision vectors are divided into K s-dimensional sub groups

(i.e. n = k∗s). The best particles in all K swarms are referred as context vectors y

which guide to calculate the objective of a particle in a swarm. In CPSO-HK, the

original PSO and CPSO-SK are merged together that is the particles in CPSO-HK

perform CPSO-SK in one iteration and original PSO in next iterations. CPSO-

SK and original PSO cooperatively work for information exchange that is the best

particles in CPSO-SK which is obtained in certain iteration replaces the arbitrarily

chosen particles from the original PSO and in next iteration original PSO replaces

the arbitrarily chosen particles from the CPSO-SK. These algorithms were tested

on 30 dimensional problems.

El-Abd (2010) proposed CABC-S and CABC-H which is similar to Vanden Bergh

et al approaches. In addition to that, the static grouping based CC approach

is integrated with DE algorithm in which the search space was divided into two

halves of n/2 dimensional sub components. However, this static grouping based

CC approach is efficient on solving low dimensional (i.e. D > 100) problems.
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2.2.2 Dynamic Grouping Based Decomposition Methods

As the static grouping based CC approaches are inefficient in tackling depen-

dent variables problems, various researchers have been contributed to propose a

new approach to identify the dependent variables and these variables are collec-

tively grouped into one subcomponent. Dynamic grouping based CC approaches

predominately fluctuates the grouping structure whereas static grouping method

has predetermined size of grouping subcomponent. Further, these methods have

been classified into two categories namely random and learning based grouping

approaches.

2.2.2.1 Random Based Grouping Approaches

Yang et al. (2008a) proposed arbitrary grouping with DE-based CC approach

namely DECC-G to tackle non-separable LSO problems with decision vector of 500

and 1000. In this approach, n dimensional decision vector is divided arbitrarily into

multiple chunks of low dimensional decision vector with fixed sizes; each chunk is

optimized using neighborhood search based self-adaptive DE algorithm (SaNSDE)

[Yang et al. 2008b]. An adaptive weighting technique has been addressed in which

the each subcomponent have been allocated with the weight factor in order to

improve the solution quality. The subcomponent with minimum weight can be

easily optimized using optimization algorithm because of the subcomponent will

consists low dimension than n-dimensional problem. This algorithm degrades its

performance in case of increase in dependent variables.

Yang et al. (2008c) proposed a multilevel cooperative Co-evolution (MLCC) ap-

proach to enhance the DECC-G algorithm. This algorithm uses a decomposer pool

to split the decision vector into many sub vectors. In addition to that the selected

decomposer guides to determine the different group sizes based on the historical

performance of the decomposer. The decomposer pool in MLCC is updated it-

eratively based on the current performance records. The selection of decomposer

is measured using self-adaptive approach which uses the previous iterative perfor-

mance of the decomposer. Omidvar et al. (2010) introduced a strategy to enhance

DECC-G and MLCC. In this strategy, they expanded the predefined likelihood

of the arbitrary gathering to each number of collaborating factors. Addition-

ally, they demonstrated that the utilization of versatile weighting in the arbitrary

weighting gathering which is not much effective while more habitually arbitrary
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gathering is effective without expanding the quantity of objective assessments,

particularly when the number of dependent variables is more than two. Addition-

ally, a straightforward technique for picking a decomposer from the pool in MLCC

was presented. Yang et al. (2009) proposed an adaptive weighing process namely

JACC-G which improves the original DECC-G algorithm. This process minimizes

the computational time and number of function assessments.

Ren and Wu (2013) introduced a new orthogonal artificial bee colony approach

(CCOABC) which uses arbitrary crowding strategy to split up the decision vector

into different sub components. This approach improves the probability of crowding

dependent variables in one group. Each subcomponent is decomposed using the

orthogonal design based artificial bee colony to improve its solution quality. The

orthogonal design factors determines as a parameter which holds three hierarchy,

first hierarchy is the standard one and other two hierarchy are measured as

NewXij = Xij + rand× (Xij −Xkj)NewXij = Xij + rand× (Xij −Xkj) (2.1)

where NewXij denotes the new position, rand determines the random number

between [−1, 1], i ∈ 1, 2, ..., N, k ∈ 1, 2, ..., N (N denotes the varying food sources)

and k 6= i, j ∈ 1, 2, ..., D (D is the dimensionality of the problem). In cooperative

Co-evolution process, the arbitrary crowding mechanism uses to divide the decision

vector into several low dimensional sub groups and each sub groups optimized

using CCOABC to improve the solution quality.

2.2.2.2 Learning Based Grouping Approaches

Learning based grouping approaches deliberates an efficient strategy of grouping

which focus on prior knowledge of dependent variables in a problem. It gain the

experiences of grouping based on the earlier or at the time of optimization. These

approaches contribute to crowd the dependent variable in a single group even

though the size of the problem increases.

Ray and Yao (2009) proposed a correlation matrix with CC approach in which

the decision variables are optimized using standard evolutionary approach for cer-

tain iterations. Later the correlation matrix of two half of the populations best

are computed in order to split up the decision variables into several sub compo-
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nents. If the value of correlation coefficient of a decision variable is greater than

the specified threshold value then the decision variables are crowded in a same

subcomponent. Later, [Omidvar et al. 2011] addressed a contribution based coop-

erative co-evolution (CBCC) in which the subcomponents are chosen based on the

global fitness value. This approach eradicates the improper balance between the

separable and non-separable components and also improves the utilization of the

computation resources more effectively. In addition to that, round-robin based se-

lection approach is addressed to select the subcomponents for optimization process

which in results improves the global fitness. This method is suitable to consume

the significant quantity of computational instance.

Weicker and Weicker (1999) introduced a simple approach to determine the depen-

dent variables. In this approach, best is considered as the best individual obtained

so far, new determines the best solution and rand represents arbitrarily chosen

solution from the population. Two new solutions are produced based on these

three processes

Xk =

newi, ifk = i

bestk, otherwise
,X ′k =


newi, ifk = i

randj, ifk = j

bestj, otherwise

(2.2)

The fitness of new solution f(X ′) is improved than f(X), the probability of inter-

action between the solutions i and j gets increased. Based on this simple approach

[Chen et al. 2010] introduced a CC approach with interaction between variable

learning (CCVIL) in which the group sizes change iteratively. This approach holds

two processes i.e. learning and optimization. In learning process, the variable in-

teractions are determined based on the similarity among the variables whereas

in optimization process the variables are optimized in order to detect the global

optimum fitness.

2.3 Non-Decomposition Methods

Moreover standard operators and several strategies in the meta-heuristics ap-

proaches are addressed to tackle the small scale or low-dimensional problems and

approaches lack in handling the large-scale problems. Several modifications over

the classical operators are proposed to improve the meta-heuristics algorithm to

20



show its performance on the large scale problems. The non-decomposition ap-

proaches is an alternative approach of decomposition approaches which avoids the

divide and conquer mechanism rather it concentrates on improving some strategies

such as introducing new selection mechanism, crossover and mutation operators,

developing new local search strategies or utilizing existing local search strategies,

sampling approach and varying population size mechanism to improve the explo-

ration process to handle the LSO problems.

2.3.1 Evolutionary Computing

MacNish and Yao (2008) introduced an unbiased evolutionary programming (UEP)

which observes the directional bias for large dimension problems. In this study,

they analyzed the impact of directional bias as the dimensionality of the problem

increases. In addition to that, they analyzed the properties of the optimization

search space especially for the variable independent and modality problems and

also analyzed different parameters which improve the performance of algorithm.

Genetic algorithm with a population division approach was introduced by [(Hedar

and Ali, 2009)] in which the solution is generated in a single component and then

this component is divided into several subcomponents at every iteration. The

novel operators such as mutation and crossover are used to optimize the subcom-

ponents. In addition to that, a modified stopping criterion was addressed in [Hedar

et al. 2007]. A new evolutionary based search approach, namely SP-UCI was pro-

posed by [Chu et al. 2011a] in which four stages are addressed namely, shuffling

complex structure, screening and repairing population dimensionality, enhanced

competitive complex development, and different-normal resampling.

Univariate assessment of distribution algorithm namely LSEDA-gl is proposed by

[Wang and Li 2008] for tackling LSO problems. In this approach three mechanisms

namely mixed Gaussian based sampling approach, Lévy distribution and restart

mechanism are utilized in order to improve the performance of EDA. They ad-

dress the covariance matrix for all variables in order to adapt a random Gaussian

and to avoid the non-diagonal elements in the matrix which in result it minimizes

the computation time especially for LSO problems. In [Dong et al. 2013], an

EDA approach was introduced with the combination of weakly dependent (WI)

decision vector and subspace modeling process to manage the difficulty of multi-

variate method on large dimensional problems. In WI process, the global correla-

tion component is measured and then decision vectors with minimum correlation
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value compared to specified threshold value are considered as weakly dependent

variables. In subspace modeling process, the high dimensional solution space is

divided into different subcomponents, and then a multivariate method for each

sub component is designed.

Wang et al. (2013a) and Wang and Li (2010) was proposed a two stage based en-

semble optimization evolutionary approach (EOEA) which holds two mechanism

namely, the global reduction and the local diversification. In global reduction

mechanism, Gaussian and Cauchy technique are included in EDA which guides to

reduce the searching scope and directs to the potential section. In the local diver-

sification mechanism, sizes of each subcomponent are adjusted adaptively in CC

based approach. Each sub component is developed via selected arbitrarily chosen

mechanisms. A new sub component is generated with the best fitness values of

solutions for certain iterations. Nesic et al. 2012 proposed a sequence parameters

for neighborhood search approach which holds three major methods namely gen-

eration, enhancement and shaking. These methods produce a Covariance Matrix

Adaptation Evolution Strategy (CMA-ES). In addition to that, a novel assorta-

tive crossover approach was introduced and integrated with the continuous local

EA. In assoratative crossover approach two parents are selected, first parent is

selected randomly and second parent is selected using two conditions one is based

on the best fitness and fitness closer to first parent. The performance of CMA-ES

is observed and compared with other CC approaches.

Mariani et al. (2011) proposed three shuffled complex procedures (namely SCE-

UA) with the help of simplex mechanism and it is integrated with PSO and DE

algorithms in order to tackle the large scale benchmark problems. Population

degeneration strategy is addressed after a certain number of iterations which helps

the population to attain the sub space and limits the search region into sub space

to determine the global best. Furthermore, Principal components Analysis (PCA)

is developed to identify the population degeneration and to eradicate the bad

influence on certain individuals.

2.3.1.1 DE Based Algorithm

Differential evolution algorithm attracts most of the researchers due to its sim-

plicity and easy implementation in order to solve the LSO problems. Enormous

amount of variants are introduced in DE in order to tackle the LSO problems.

Zhang and Sanderson (2009) introduced modified differential evolution namely
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JADE which improves the performance of generic algorithm by adopting new

mutation strategy ’DE/current-to-pbest’ which also holds external archive and

updating control parameters. De/current-to-best is the basic approach which uti-

lize the previous historical information of the search direction. The historical

data are gathered in an external archive to update the individuals and to improve

the diversification and global convergence rate. The control parameters are in an

adaptive manner which avoids the predefined setting of values from the users. The

parameter values are self determined using the individuals search region and then

it performs the mutation and crossover.

In mutation strategy, external archive is utilized to maintain the historical in-

formation which helps to intimate the success and failure ratio of an individual.

Let A determines the achieve set of inferior solutions and P denotes the current

population. In DE/current-to-pbest/1 without archive mechanism two solutions

Xr1,g and Xr2,g are randomly chosen from the population P (i.e P ∈ A ) the

current search individual updates its current location with the help of randomly

chosen solutions whereas in case of archive mechanism one random solution is

drawn from the population P and another solution is drawn from the archive set

A (i.e. P ∈ A). Additionally mutation factor Fj is computed for each solution Xj

based on the Cauchy distribution with the position parameter µF and weighing

parameter 0.1. These mutation factor dynamically changes for every iterations

when the individual search direction upgrades.

Takahama and Sakai (2012) introduced a modified differential evolution mecha-

nism in order to detect the modality of the problem. The modality of the search

space is identified using the fitness function values by setting the sample search

point on a direction which the point is computed using the median of search point

and the best search solution. When the fitness function varies in an ascending

order (i.e. from less to high) then there is one saddle point. If there is one saddle

point then the problem is uni-modal problem; or else the search space is multi-

modal. In this method the scaling factor is fixed using the search space modality

identification.

Wang and Gao (2014) introduced a novel selection mechanism based on the

strength of the solution and furthermore, global fitness evaluation is addressed

to measure all the decision vectors of a solution [Wang and Gao 2010]. For ex-

ample, Let us consider two individuals A and B then global fitness value is used

to identify the individuals. If individual A is better than individual B, then some

vectors in individual B holds high quality decision values. In order to maintain,
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the high quality decision vectors in an individual’s local fitness function is used

which observed from the inspiration of genetic engineering and modern medicine.

The local selection operator divides the high dimensional decision vectors into

several low dimensional decision vectors and then local fitness function is assigned

to compute each low dimensions. These two fitness based approaches works si-

multaneously to generate the population.

Fan and Yan (2015) introduced a self-adaptive DE algorithm which includes the

population deduction mechanism and a technique for the individual sign adjust-

ment of scale coefficient F. During the search process, the scale coefficient param-

eter F is determined with a probability based on the fitness values of arbitrarily

chosen solution for mutation strategy. Wang et al. (2012) introduced quantized

orthogonal crossover mechanism on differential evolution (OXDE) in which two

individuals are quantized and then the levels of each individuals search regions

are quantized. A problem holds with high dimensional decision vector compare

to the number of level then QOX technique is addressed to split up the vector

into few sub vectors. This QOX technique helps the algorithm to minimize the

computation cost.

Morley and Tricarico (2014) introduced multi-population based shuffled parallel

DE which uses two arbitrary methods. At the beginning of search process, the

population of the algorithm is scattered into different sub populations and each

sub population holds a scale factor. The first method uses shuffled strategies, that

is the population is again divided into different sub-populations with a specified

probability and the second method updates the scale factors of each sub population

by arbitrary sampled values which resides between 0.1 and 1. Yang et al. proposed

a generalized parameter adaptation technique to improve the generic algorithm of

DE by analyzing the existing adaptation techniques.

Chen and Tseng (2014) proposed an Enhanced Multiple Trajectory Search (EMTS)

mechanism which utilizes the estimated orthogonal sequence to generate the ini-

tial solutions. In MTS, the multiple solutions are used for diversification and then

each solution performs a local search iteratively. Furthermore, a novel local search

mechanism is used to strengthen the neighborhood environment. Garćıa-Mart́ınez

et al. (2011) introduced a modified DE based on two criteria namely role differ-

entiation and malleable mutation. In standard DE, the solutions in a population

are arbitrarily chosen to perform either crossover or mutation process. Whereas

in case of role differentiation method the appropriate solution are selected to gen-

erate the new solution based on the different groups of generation. In addition to
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that, the malleable mutation strategy is used to adjust the mating capability of

fixing vectors in appropriate decision locations.

Iorio and Li (2008) proposed a sampling based DE approach for creating more

new individuals using crossover operators in order to enhance the exploration

capability. Gomez and Leon (2010) proposed co-evolutionary chromosome gen-

erating scheme to quantify the individuals. In this scheme, each subcomponent

is quantifying its individuals with the help of information exchange between the

subcomponents. Xuemei (2010) introduced a novel mutation strategy in DE which

creates a new individual with the help of three individual’s namely local best indi-

vidual, randomly drawn individual and global best individual. In addition to that,

Cauchy mutation based approach was proposed by [Pan et al. 2012] which improve

the global best if it is not improved for a course of iterations. This mechanism

generates a neighbor individual around the global best solution and it updates

the global best if and only if generated new neighbor individual is better than the

current global best solution.

2.3.1.2 Opposition Based Approaches

Rahnamayan et al. (2006) proposed a novel mechanism based on the concept of

opposition based learning in order to improve the standard DE algorithm. This

algorithm introduces a two strategies namely, opposition-based population initial-

ization and iterative jumping mechanism. In opposition-based population initial-

ization mechanism, the two subcomponents are generated in which one subcom-

ponent consists randomly generated decision vector and another subcomponent

holds opposite number of decision vectors of first subcomponent. The objective

values of each subcomponent are quantified based on the union of two subcompo-

nents. At the time search process, the iterative jumping mechanism is quantified

to opposite number of subcomponent with the help of prior probability rate. In

addition to that, the territory of solutions are measured dynamically based on the

upper and lower boundary values of each decision vectors.

Gao et al. (2012) introduced a hybrid opposition based learning and harmony

search optimization algorithm in which the integration works simultaneously in

the mutation process. Center-based sampling approach was introduced by [Rah-

namayan and Wang 2009] in which they uses Euclidean distance in order to provide

the closeness probability to an unidentified individuals for the certain positions of

a search space in a black-box problem. In addition to that the closeness probabil-
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ity is identified using the Monte-Carlo based simulation. The closeness probability

of an unidentified individual for the mid position increases with the increase in

dimensionality of the problems. The newly generated samples which are closer

to the center position, then samples are considered as the closer position to the

unidentified samples.

In addition to that, opposition points are used to compare the features of center

position. Mahdavi et al. (2015) introduced center-position based approach in

simulated annealing which observes the center position as a starting position in

order to improve the performance of an original algorithm. In recent times, a

detailed review of initial population seeding schemes are introduced in evolutionary

computation by [Kazimipour et al. 2014] in which generic population seeding is

initialized based on the three methods namely random based, composition based

and generality based schemes. Furthermore, the effectiveness of each population

seeding schemes is tested on differential evolution for LSO problems.

2.3.2 Swarm Intelligence

Hsieh et al. (2008) introduced an efficient population utilization strategy for parti-

cle swarm optimization (EPUS-PSO). In this algorithm, they includes three novel

mechanism namely population supervisor, solution sharing and searching range

sharing (SRS). Firstly, population supervisor is used to generate new particles

or to maintain the particles which have efficient search capability by eradicating

the unnecessary particles. Secondly, they used solution sharing mechanism based

on [Li et al. 2015] in which the unified learning probability is identified for each

particle in order to adjust its positions. If the arbitrary value is lesser that the

computed learning probability value then two neighbor particles are selected from

the population P and if the selected particles is better than the particle best then

the random particles will share their information to the current particle otherwise

particle best share its information.

The solution sharing probability is computed based on the dimension of the prob-

lems and size of the population. Thirdly, search range sharing strategy adopts

both the local and global searching boundary to each particle. In local search

sharing strategy, the search range is restricted to a limited range (i.e. pbestmin

and pbestmax especially for the perturbed particles. This local strategy forces the

perturbed particles to exploit its current search environment. In global strategy,

the perturbed particles are scattered in the specified boundary region which helps
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the particles to search the new best position in un-searched region and eradicate

the stagnation in local optima.

Lozano et al. (2011) introduced a novel velocity modulation and restarting scheme

in particle swarm optimization algorithm in order to handle the scalability prob-

lems. Firstly, velocity modulation strategy is used to measure the overall adjust-

ment of the particles iteratively. Velocity modulation strategy controls the fast

movement on the particles and guides the particles to search within the appropri-

ate search region. Secondly, restarting strategy is observed from Eshelman and

Auger et al. approaches. This strategy works based on the specified termination

conditions which includes two independent conditions namely 1) if the entire parti-

cles in the swarm is below the threshold1 (i.e. 1e−3) then the position of particles

are arbitrarily initialized based on the probability of inverse dimensionality, 2) if

the change in objective function of Specified generation (i.e. 10× dimensions/

population size) is smaller than threshold2 (i.e. 1e − 8) then the particles are

regenerated within the global best position.

In addition to that, [Korenaga et al. 2007] proposed a modified PSO based on the

rotated particle scheme. In the rotated particle swarm approach, two particles are

randomly selected from the population and the diagonal position of each particle

is measured based on the previous particle’s best. Based on the diagonal measure-

ment the new particle with best position is identified and updates its historical

best particles.

Cheng and Jin (2015) introduced new optimization algorithm namely competi-

tive swarm optimizer which works based on the pair wise competitive mechanism.

Generally, generic particle swarm algorithm improve based on four different strate-

gies namely, adaptive control parameters, improvement in neighborhood topology,

hybrid with other search mechanism and finally multi-swarm concept. In the CSO

approach, particles are randomly initialized and then the population P is divided

into two swarms (i.e. P/2). From the two swarms particles are arbitrarily cho-

sen for the pair wise competition. The two particles are randomly chosen that

is one from the swarm1 and another from the swarm2, the particles which hold

highest fitness value then the swarm is considered as the winner and another will

be considered as loser. The loser particle learns from the winner particle in order

to determine its search direction. In addition to that, the self-adaptive param-

eters and balanced search mechanism are used to handle the high dimensional

problems.
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Akay and Karaboga (2012) applied artificial bee colony algorithm to handle un-

constrained and constrained large scale optimization problems. Based on the Debs

method they selected the bees from the hive to produce a new solution. In order

to handle the constrained optimization problem, they used constraint violation

mechanism in which the probability values are measured to identify the solutions

which are within the feasible regions. Nickabadi et al. (2011) introduced soft adap-

tive mechanism in particle swarm algorithm in which adaptive inertia weight is

presented. In addition to that the acceleration feature is included to balance the

global and local search process. The adaptive strategy provides good opportu-

nity to the particles to update its search positions and also helps to eradicate the

particles which are move far away from the search region. Each particle in this

approach maintains a legible safety distance termed as proximity index in order

to regulate the particle to be nearer to the best particles.

Chen and Vargas (2010) introduced a novel algorithm using locust swarms in which

the particles adjust its position based on devour and move on method. In devour

methods the search particles forced to search the local optimum for a certain

number of iterations and then move on method is processed to jump away from the

local optimum. This algorithm best suit for unconstrained multi-modal problems

but whenever the scaling or constraints of the problem is high then it degrades

the performance on locating the global optimum. Chu et al. (2011b) proposed a

boundary handling mechanism in particle swarm optimization which uses three

strategies namely random, reflecting and absorbing. In random based boundary

handling scheme, the particles which move out of the boundary values are replaced

by generating random values using uniform distribution between the upper and

lower boundary region and the generated values are replaced with the outside

boundary values. In absorbing scheme, instead of replacing the entire particles

the specific outside boundary decision vectors are absorbed and replaced. Finally,

in case of reflecting approach the particles which moves away from the boundary

region are reflected as like a mirror and projected within the boundary.

Fister Jr et al. (2013) introduced a new algorithm namely fast bacterial swarming

algorithm (FSBA) in which foraging approach of BFA and swarming mechanism

of PSO is combined to cooperatively solve the high dimensional problems. Fur-

thermore, an adaptive step length is addressed to improve the local search process

and also attraction factor is used to reduce the premature convergence. Though

adaptive step length is used to adjust the position, it slows down the search pro-

cess and provides poor exploration on multi-modal problems. Gozde and Tapla-
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macioglu (2011) addressed automatic iterative tuning process in particle swarm

optimization which eradicates the poor exploration and provides global search ca-

pability for scalability problems. The automatic iterative tuning process provides

two efficient processes namely the size of the search space is determined for each

particles and the parameter values are self-adjusted based on the scalability of the

problem.

Wang et al. (2013b) applied two strategies namely diversity enhanced mechanism

and neighborhood strategies in particle swarm optimization. These strategies

help the algorithm to maintain a balance between the global and local search

mechanism. Diversity enhanced mechanism improved based on [Jordehi 2015] in

which the repulsion phase is defined to modify the velocity updating process. In

order to update the particle, a sample particle is generated based on the historical

best particle and global best particle. The sample which has better fitness then the

particle is replaced with the current particles otherwise greedy selection mechanism

is used to generate the particle. Furthermore, the particles in neighborhood search

strategy updates its position based on two methods two methods namely locally

and globally mechanism. In local mechanism the particle updates its position

using the historical information and randomly chosen particles. In case of global

mechanism the particle updates its position using global best particle and two

randomly chosen particles. This approach possesses a tradeoff between the search

mechanisms. However, setting the number of particles in swarm is quite complex

in case of varying high dimensional problems.

2.4 Summary

In this chapter, the literature survey has been presented in two folds. The first

one is based on the decomposition based approaches and another one is based on

the non-decomposition based approaches.

In the view of decomposition based approaches, various approaches like Coopera-

tive Co-evolution based dynamic grouping and static grouping are introduced but

it still lags in solving large scale problem with interacting variables (i.e. finding the

exact position of interaction variables in a problem is difficult in order to split up

high dimensional decision vector into several sub component structure especially

for the unknown high dimensional problems). Whereas, non-decomposition based

approaches are considered as an alternative solution for solving both separable and
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non-separable high dimensional problems. Though these approaches have various

parameters tuning strategies, opposition based approaches and learning mecha-

nisms, still it requires an efficient search mechanisms and adaptive parameters

in case of handling the varying size of high dimensional problems with complex

search space (i.e. high dimensional with multi-optimal problems).
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Chapter 3

Goals and Research Methodology

3.1 Introduction

With fast growing technology vast variety of real world problems are quite complex

due to curse of dimensionality and vast search space. Most commonly accept that

meta-heuristic based algorithms are an alternate solution for dealing huge decision

vectors and complex search space problems. But those algorithms are not directly

applied to solve LSO problems due to premature convergence and stagnation in

local optima. Wide variety of novel techniques are designed and developed to

improve those algorithms which are discussed in chapter 2. In addition to that, we

observe that the algorithm with the characteristics of cooperation, collaboration

and coordination among the search agents may provide the efficient results as well

as suits to tackle the large scale problems.

From the wide variety of optimization algorithm, we notify that grey wolf optimiza-

tion algorithm holds effective leadership and hunting mechanism as well as it has

three characteristics naturally as mentioned above. In addition to that, the per-

formance of GWO is superior when compared to other meta-heuristic algorithms

(i.e. GA, DE and PSO) with the benefit of holding few control parameters [Mir-

jalili et al. 2014; Singh and Singh 2017a,b; Joshi and Arora 2017; Diwan and Khan

2016]. Apart from that, GWO has gained much interest among the researchers,

because of its simplicity and ease of implementation. This algorithm quite su-

perior in solving small scale practical applications but degrades its performance

when dealing with the complex high dimensional problems. Further modifications

over GWO might improve the performance of the algorithm to a large extend and

adapts for the growth of the search space dimensional problems.

In this perspective, enhanced model of self adaptive strategies are integrated with

generic grey wolf optimization for solving large scale optimization problems effi-

ciently. The research goals and experiments of the proposed work are formulated
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in order to reveal its efficiency with other state-of-art meta-heuristics algorithms

over the large scale problems. This chapter deals with the goals of this research

work offered in this dissertation along with the outline for experimentation proce-

dure performed for the proposed research.

3.2 Research Goals

The fundamental model of GWO is to fabricate a population of feasible search

agents and its positions are adjusted using three best solutions to obtain the opti-

mal point. The traditional GWO has been improved by various researchers using

novel exploration schemes and parameter tuning models [Madhiarasan and Deepa

2016; Kohli and Arora 2017; Mittal et al. 2016; Guha et al. 2016; Zhang et al.

2016; Yang et al. 2017] to enrich the performance of the algorithm with the search

space diversification and capability to achieve the optimal point. The performance

of GWO mostly works based on the iterative best solutions and coefficient param-

eters. Though the position adjustment in GWO based on these processes, it is

not sufficient to tackle the LSO problems when compared to other meta-heuristics

algorithms.

Additionally, the modified GWO have been applied on several applications with

small instances viz. multilevel thresholding [Khairuzzaman and Chaudhury 2017],

optimal reactive power dispatch problem [Wong et al. 2014], optimal power flow

[El-Fergany and Hasanien 2015], feature subset selection [Emary et al. 2015], unit

commitment problem [Kamboj et al. 2016], evolving kernel extreme learning ma-

chine [Wang et al. 2017] and so on and also provides better performance by iden-

tifying the optimal solution. However, on dealing large dimensional problems,

only some of the variants have the capability to achieve the optimal or near op-

timal solution and also eradicates the local optima stagnation. Still, they face

the problems of local optima struck, slow convergence speed and poor balance

on search mechanism especially on high dimensional or large instances problems.

The enhancement over the process of interaction, adaptation and learning might

improve the performance of the algorithm and helps to handle the large scale

problems.

From the above perspective and from the hindrance of existing approaches in grey

wolf optimization, the main intension is described as to design and develop self

adaptive strategies which have interactive learning and adaptive mechanism for
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Grey Wolf Optimization algorithm. The research goals are defined such that to

propose an enhanced model for Grey Wolf Optimization algorithm using efficient

self adaptive strategies to enhance the performance with respect to computation

time, search diversity, variation on population size, scalability of dimensionality

and success rate.

The proposed research work was carried out with two goals:

� To propose an efficient self adaptive search schemes to enhance the search

process of search agent and to adopt on growth of dimensionality problems.

� To solve various large scale dimensionality benchmark functions and real-

time applications.

The preliminary goal is derived to improve the search process of the search agent

as well as to adapt on the varying dimensionality problems whereas the next

goal is derived to solve the various large scale benchmark functions to show its

efficiency among other state-of-art meta-heuristics algorithms. The proposed al-

gorithm is implemented with a suitable set of benchmark functions at different

dimensions.

In this view of attaining the goals derived in the research are developed into many

divisions and the major objectives are described as follows:

1. To design and develop a multi-swarm approach and guided neighborhood

search mechanism.

2. To design and develop a position repulsion mechanism and global best os-

cillation scheme.

3. To propose an enhanced model for grey wolf optimization by merging all the

novel mechanism with self adaptive parameters.

4. To build an experimental framework for analyzing the performance of the

proposed algorithm.

(a) To construct a Test-Bed with the set of large scale benchmark functions

at different dimensions and for real time problems viz. economic load

dispatch problem as well as for node localization in WSN.

(b) To validate the performance of the enhanced approach of Grey wolf

optimization algorithm.
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In looking to contend for these goals, obviously this work varies in flavor from most

of the research works. It provides an enhanced model of self adaptive GWO with

different search mechanism to improve the performance to the large extent. One

of the major features of the proposed work is that it measures the performance

of the proposed work utilizing planned test-bed with appropriate performance

metrics and benchmark functions with different dimensions. The following section

depicts the experimental study attempted to seek after these goals and the general

operation performed in this proposed research work.

3.3 Research Methodology

3.3.1 Experimental Framework

The empirical structure of the experimental architecture is described in the figure

3.1. This architecture holds three different levels: Experimental Analysis Layer,

Test-Bed Layer and Validation Layer. The functionality of each layer are derived

and illustrated in the following sections:

3.3.1.1 Experimentation and Analyses Layer

The experimental setup and the performance proposed methodology of self adap-

tive grey wolf optimization algorithm are provided in the experimental and anal-

yses layer.

The experimental setup was derived to attain the efficiency of the proposed model

under different environmental criteria. The different parameters such as popu-

lation size, number of function evaluations, and maximum number of iterations,

independent runs, guided probability and Lévy step size. In these, initially pop-

ulation size of the proposed algorithm is varied based on the literature [Ali et al.

2015; Nieto et al. 2015] in order to prove the efficiency over different population

size as well as the group size is varied to identify the best group size. Number of

function evaluations and number of runs are fixed based on the literature [Omidvar

et al. 2017; Dong et al. 2013]. Guided probability is static which induce limited

search agents to learn and finally the Lévy step size are set based on the literature

study [Jensi and Jiji 2016; Haklı and Uğuz 2014]. Experiments are performed
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Figure 3.1: Layered View of Experimentation Methodology

using MATLAB tool with three different phases which are discussed in test-bed

layer.
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3.3.1.2 Test-Bed Layer

In our research contribution, the Test-Bed layer is divided into three different

phases. In the initial phase on large scale benchmark functions, second phase on

Economic Load dispatch (ELD) problem, and final phase on Localization problem

(i.e. Localization of nodes in wireless sensor network).

Phase I - Large scale benchmark functions: In order to evaluate the performance of

the proposed approach, the standard large scale benchmark functions are utilized.

The test function has different properties such as unimodal, multimodal, separa-

ble and non separable and it is defined in CEC 2010 [Zhao et al. 2011]. These

test functions are widely used to evaluate the capability of the newly designed

and developed metaheuristics especially for handling LSO problems. Most of the

works in the literature have utilized these set of standard benchmark functions for

scalability and adaptability of the algorithm on scaling high dimensional problems.

The objective of this function is to minimize the values of decision variables and to

attain the optimal solution. Each of the function has different optimal values and

different ranges with either separability or non-separability characteristics. The

dimensionality of the function has been varied to maximum of 1000 dimensions

which has 1000 number of decision variables.

Performance assessment criteria: Performance assessment criteria are selected

and classified into the following factors, namely Quality, Exploration and Time.

The Quality based features are the indicator to determine the quality of the so-

lutions under the examination in which error rate and success rate are included.

The Exploration based factors aid to determine the capability of algorithm to

explore the search agents to a global search space of the problem and to analyze

the efficiency on eradicating the local optima struck, convergence diversity has

been used. The time based factor determines the efficiency of the algorithm in

order to obtain the optimal or near optimal solution with corresponding to its

computational time. Additionally, the proposed model is compared with other

state-of-art meta-heuristics algorithms to show its efficacy over these performance

metrics.

Phase II Economic Load Dispatch Problem: This phase contributes on the per-

formance of the proposed work with respect to the real world problem namely

Economic Load Dispatch (ELD) problem. Economic Load dispatch problem is

considered as one of the real world large scale problem in which the search space

is highly complex and has multi-modality features.
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Most of the researchers widely used this problem to evaluate the performance of

the algorithm in-terms of capability and high accuracy on obtaining the optimal

solution. The test instance of the ELD is collected from the literature study

[Zaman et al. 2016; Meng et al. 2016]. The objective of this problem is to generate

the total power by reducing the total cost of generations. In that n number of

generators with varying load demand is provided with the main intension to obtain

the load by minimizing the generation cost. Most of the research works in ELD

problem have been experimented only for the 10 unit, 13 unit and 40 unit system

and only few considered 80 unit system and large scale of above 80 unit system

(> 80 generating unit) varies between 10 to 640 unit system. The large scale

benchmark instances of ELD have been performed to analyze the performance of

the proposed model.

Performance assessment criteria: In order to evaluate the performance of the pro-

posed approach on ELD problem some of the standard performance metrics are

considered based on the literature study [Pradhan et al. 2016; Sahoo et al. 2015].

The main performance metrics are convergence diversity with respect to the ob-

tained best fitness based on the number of generations. In addition to that success

rate, which is used to analyze that how efficiently provides the optimal or near

optimal for n independent runs. Total generation cost is used to determine that

the proposed algorithm how efficiently solves by providing the minimum generat-

ing cost with respect to the number of generations. Finally, computation time is

used to identify the rapidity of the proposed model to achieve the desired optimal

result or the generation limit for the considered complex ELD problem. Addi-

tionally, the proposed model is compared with other state-of-art meta-heuristics

algorithms to show its efficacy over these performance metrics.

Phase III Localization problem: Localization problem is one of the complex multi-

modality or non-convex problem which is selected as another test problem. The

localization problem is a well-known problem which is to identify or locate the ex-

act position of the unknown node position with the help of known or anchor nodes.

Most of the research works have been contributed in this problem to provide a

valid solution using meta-heuristics algorithm [Goyal and Patterh 2014; Mihoubi

et al. 2018]. The objective of this problem is to locate the position of unknown

nodes by minimizing the localization error. Experiments on this problem are per-

formed based on the increase in number of sensor nodes (i.e. 1000 node scenario)

with varying the number of anchor nodes.
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Performance assessment criteria: Performance assessment criteria for localiza-

tion problem are chosen as standard metrics based on the literature study. The

performance evaluation is performed based on the different anchor nodes how effec-

tively locate the position of unknown node by providing the minimum localization

error. Secondly, by considering the different transmission range how effectively the

proposed model provides the better results with minimum localization error. The

time based factor is considered as computation time to determine the quickness of

the proposed model to obtain the required optima solution (or) generation limit

for the considered problem. Additionally, the proposed model is compared with

the standard state-of-art meta-heuristic algorithms.

3.3.1.3 Validation Layer

Validation layer is used to validate the proposed model with respect to the statis-

tical analysis. In this research work, we have considered Friedman statistical test

which is a non-parametric statistical test analysis. This test is used to validate

the efficiency of the proposed model comparing to 1× N meta-heuristic algorithms

(i.e. N is the number of alternative or other state-of-art algorithms). This test

is done by ranking the algorithms based on the performance for each benchmark

function.

3.4 Summary

The principal concern in this research is to design and develop an enhanced model

of GWO with the multi population approach and self adaptive strategies and to

evaluate the performance using standard test problem. A three layer experimen-

tation methodology is formulated and developed for the research described in this

chapter. The experimentation and analyses layer consists of the experimental

setup and proposed methodology considered with this research. The experimental

setup with different parameters has been described. The test bed layer describes

the three phases of the test problem and the various performance assessment

criteria selected for experimentation to validate the performance of the enhanced

model of self adaptive GWO. Finally, the validation layer is responsible to validate

the performance of the proposed model with the corresponding other state-of-art

meta-heuristics algorithm.
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Chapter 4

Proposed Methodology-I

4.1 Introduction

Grey Wolf Optimization (GWO) is a recently proposed swarm intelligence based

optimization algorithm proposed by [Mirjalili et al 2014]. GWO is inspired by the

behavior of grey wolves which holds efficient leadership and hunting mechanism.

A wide variety of researchers from various fields have utilized this optimization

algorithm to solve their domain specific problem because of its ease implemen-

tation and simplicity. GWO provides sufficient solution for too many real world

applications viz. combined heat and power dispatch problem [Jayakumar et al.

2016], multilevel thresholding [Khairuzzaman and Chaudhury 2017], feature sub-

set selection [Emary et al. 2015], optimal reactive power dispatch problem [Wong

et al. 2014], train multilayer perceptrons [Mirjalili 2015], unit commitment prob-

lem [Kamboj et al. 2016], evolving kernel extreme learning machine [Wang et al.

2017], power system stabilizer design [Shakarami and Davoudkhani 2016] and so

on.

Like other meta-heuristics algorithms namely GA and PSO, GWO also degrades

its performance on handling the increase in search space dimension problems.

Generally, GWO lags in providing faster convergence rate for the problems with

single local optima. In addition to that, GWO get stuck into local optima in case

of handling large scale complex multi-modal problems. In order to handle these

issues, an efficient search mechanism with self adaptive properties are essential for

tackling the growth of search space dimension problems.

In our research work, we propose an enhanced model with self-adaptive strate-

gies namely Self-Adaptive Grey Wolf Optimization (SAGWO) which regulates

the search agents in GWO to tackle the large-scale problems. The essence of self-

adaptive strategy is to deliver a technique to preserve the exploration over the

swarm and a novel dynamics to avoid the local optima stuck.
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The proposed strategy is combined with GWO to solve the scaling problems in an

efficient manner. The self-adaptive strategies are designed with three mechanisms

namely 1) Guided Neighborhood search mechanism which observes the experience

of search agents from neighbor groups, 2) Position repulsion based mechanism

which repulse the search agents to explore the global search space to eradicate the

stagnation in local optima basin and 3) Global best based Oscillation mechanism

which is used to adjust the global best search agent alone.

With the above perspectives, this section deals with an overview of the proposed

framework. In that, Multi-swarm approach and Guided Neighborhood Search

strategies are discussed in detail with its advantages on handling the large scale

optimization problems and other remaining strategies are discussed in chapter

5.

4.2 Self Adaptive Background of Strategies

Self-adaptive strategy mimics the learning behavior of human beings intergroup

interactive approach. The entire population of search agents is sub divided into

multiple groups to exchange their learning experiences at the time of searching

process. In addition, various existing approaches are designed in the concepts of

learning mechanism to induce the global search capability. The main contribution

of the proposed work is described as follows.

1. In most of the multi-swarm based meta-heuristic algorithms, the roles of

each group are predefined in advance [Niu et al. 2007; Chen and Yu 2005;

Liu et al. 2013] as like Master-Slave (MS) mechanism. In this MS mechanism,

one group will act as the master and the other group will act as the slave in

which the slave group observes the search experience and adjusts its current

positions based on the master group experience. In case of self-adaptive

approach, it overcome the MS mechanism and has no predefined roles over

the search group. The roles of the multi swarm changes dynamically during

the search process, for example, the group which act as the master/learned

group in current iteration will get a chance to act as slave/learner group in

next iterations so that the search agents can exchange their information in

bidirectional over the groups.

2. The MS mechanism based algorithms generally uses the migration and/or

regroup parameters based on that the search agents exchange their informa-
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tion over the multi groups at an acceptable interval. However, these search

process improves the exploration over the search group and the global search

process, but it diminish the search speed of the algorithm. Whereas, in case

of self-adaptive strategy, the best search agent has maximum probability

to exchange its experience with the search agents in another groups. At

the same time, this strategy maintains the diversification over the popula-

tion and provides faster convergence rate in order to achieve the optimal

solution.

3. The proposed strategy maintains the promising balance between the explo-

ration and exploitation over the exchanging of the search experience. The

search agents from the learner groups absorb the best experience from the

neighbor learned group, and other search agents maintains the existing learn-

ing mechanism of GWO along with exploration mechanism. This strategy

adjusts the search agents to some extent with in the search space, which

guides to maintain the diversification. In addition, learner group search

agents has the individual measurement to determine the rate of learning

from the learned group in order to provide a chance to search agents to

exploit its search location with the help of the learned group experiences.

The self-adaptive strategy mainly focuses on exchanging the information in

a bidirectional way between the search groups.

4. In addition to that, the swarm diversity has been addressed to examine the

proposed search process. Moreover, this process guides the search groups to

utilize the global search space without any restriction over the search agents

in case of scaling problems.

Search agents are divided into j groups denoted as G (i.e. G1, G2, ..., Gj) in pro-

posed work. Each group contains an alpha which acts as the first best search agent

of the group, beta which act as the second best search agent of the group, delta

determines the third best search agent of the group and neighborhood search

agents which are selected randomly from the group and finally the global best

which is best among all the groups. Let us consider, X t
i,j, X

t
n1,j, X

t
n2,j denoted as

the current search agent position, first neighborhood search agent position and

second neighborhood search agent position of the ith search agent in j groups

respectively.Likewise, the alpha search agent denoted as which is expressed as

αtj = [αt1,j, α
t
2,j, ..., α

t
D,j] for j groups over t iterations.
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Figure 4.1: Main process of the proposed SAGWO
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Figure 4.2: Group behavior of Grey Wolves

The global best search agent is denoted as X t
g which is chosen from the overall

j groups based on its fitness values of f(αtj) (i.e. f(X t
g) = min[f(αtj)]). The ap-

proach of group behavior process in our proposed work is shown in figure 4.1.

The Overall Framework

Like the classical GWO, the proposed SAGWO initially starts with the random

generation of search position for all search agents within the search boundary space

and then it divides the search agents into j swarms. Then the fitness of all search

agents in every j swarm is measured. The current search agents X t
i,j, neighbor

search agents X t
n1,j and X t

n2,j, alpha search agents αtj and global best search agents

X t
g of all j swarms are determined. On the other hand, the role of each j swarm

for all t iterations is determined. If the swarm act as the learner swarm, then the

learning rate for all search agents in the learning swarm is measured.

With the help of individual learning rate and search agents from learned swarm,

update the current search position of the search agents in the learner swarm. If the

swarm act as the learned group perform the existing learning mechanism of GWO

for some search agents and perform position repulsion mechanism for remaining

search agents in the learned swarm. Then, compute the fitness for all search agents

with its new position using the objective function. Later, update the search agents

of X t
i,j, X

t
n1,j, X

t
n2,j, α

t
j, X

t
g in all j swarms. Additionally, if the global best solution

is not improved for k iteration then perform global best oscillation mechanism for

global best solution alone. Repeat the above process, until the algorithm reaches
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maximum number of iteration or global best solution achieves the optimal solution.

The generic flow of the proposed SAGWO algorithm is shown in algorithm 4.1 and

the illustration of general framework is shown in figure 4.2.

Algorithm 4.1 Generic Flow of Proposed Work

Initialize the swarm S(0) with N search agents and divide the swarm into j sub
swarms (j ∈ 1, 2, ..., G) within the search boundary;
Compute the fitness of all search agent in j sub swarms;
Determine X t

i,j, X
t
n1,j, X

t
n2,j, α

t
j, X

t
g of all j sub swarms;

while stopping condition(s) not true do
Determine the role of each sub swarm;
if Learner Group then

Identify the learning rate of each search agent in the learner swarm;
Update the position of the search agent in learner swarm;

else
Update the search agent of learned swarm according to the position repul-
sion and existing learning mechanism of GWO;

end if
Evaluate the fitness of all search agents in j sub swarms;
Determine X t

i,j, X
t
n1,j, X

t
n2,j, α

t
j, X

t
g of all j sub swarms;

Process Global Best Oscillation mechanism for X t
g if globalbest is not im-

proved for k iterations;
end while
visualize the global best X t

g;

4.3 Multi-Swarm Approach

In this work, the design of multi-swarm approach is made simple. The algorithm

first randomly initializes the entire search agents in population and then it ran-

domly partitions the swarm S into G sub swarms S(x(1, ..., N)) = SS1(x), ..., SSG(x).

The size of the swarm N is computed with respect to the dimensionality of the

problem and its mathematical formulation is expressed in Eq. 4.1.

N = IS + |D
10
| (4.1)

where N is the determined swarm size of the proposed approach, IS represents

the initial swarm size and D is the dimensionality of the problem. The small

swarm size is quite enough for uni-modal problems whereas for high dimensional
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multi-modal problems the size of swarm is to be high in order to efficiently explore

its search space.

Algorithm 4.2 Multi-swarm approach

Input: Determine the entire population S(x1,...,N) = x1, x2, ..., xN .
Output: A size of G sub swarms SS1, SS2, ..., SSG.
Step 1: Identify the size of each sub swarm (NS):
NS = N/G
where NS denotes the number of search agents in each sub swarms, N is the
total number of search agents in Swarm S and G represents the size of the
group.
Step 2: For each subgroup SSi,j(i = 1, 2, ..., NS; j = 1, 2, ...G), assign the
search agents;
Step 3: Terminate and visualize output;

The swarm size is dynamically varied based on the dimensionality of the problem.

Then each sub swarm is arbitrarily assigned with set of search agents NS from

the entire swarm S. This approach helps the algorithm to enhance the exploration

among the population, more specifically for solving high dimensional multi-modal

problems. This approach allows each subgroup to perform the interaction between

the search agents. The algorithm of multi-swarm approach is given in algorithm

4.2.

4.4 Determining the Role of Sub Swarm

In this process, the sub swarm roles are determined iteratively either to perform as

learner or learned one. For example, some set of sub swarms will be act as learner

group and other group will act as the learned group. The role of each group changes

iteratively for all t iterations based on the best solution (i.e. alpha solution)

obtained in the sub swarm. The search agent in a learner group observes the

experience from the learned neighbor sub swarm. In this determination, the sub

swarm with best search agent is more likely to have chance to act as learned one.

To determine the role, two sub swarms are initially selected from the G sub swarm.

Then, the Boltzmann selection scheme is applied to compute the probability for

selecting one as the learned sub swarm. Boltzmann selection scheme is also known

as SoftMax method which is developed by [Abed-alguni and Alkhateeb 2017]. This

scheme uses the global time varying parameter to select the appropriate sub swarm

as the leader one. This scheme most probably select one as the learned sub swarm
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which attains the global best position so far. The probability PL is determined

based on the following equation.

PLtm =
e−f(α

t
m)−f(Xt

g)/τ∑2
m=1(e

−f(Xt
α,m)−f(Xt

g)/τ )
(4.2)

where, m represents the two sub swarms selected from the j sub swarms. τ denotes

the temperature or global time adjustment parameter. If τ value is maximum then

the probability of selecting learned group holds equal opportunity, otherwise the

selection resides within the f(αtm) and f(X t
g). In order to choose the learned group,

computed probability is compared with the random numbers between [0, 1]. This

comparison based role determination guides to dynamically change the role of the

group for every t iteration. The dynamic change over the role of the group helps

iteratively to preserve the diversity.

4.5 Guided Neighborhood Search Mechanism

Guided Neighborhood search (GNS) mechanism is contributed to improve the

exploitation process of the search algorithm. This mechanism is further classified

into two categories namely 1. Neighborhood search mechanism and 2. Guided

search mechanism. In case of neighborhood search mechanism, the search agents

adjust its position based on the randomly selected search agent or by the search

agent which is closer to the selected search agents. Whereas, in case of guided

search mechanism, the search agents update its position using Limited memory

BFGS (L-BFGS) mechanism.

The proposed guided neighborhood search mechanism works only for the learner

group. This mechanism initially computes the learning rate of each search agent

based on the rank. Later, the search agent with higher learning rate undergoes

the guided search mechanism and all other remaining search agent with minimum

learning rate adjust its position based on the neighbor learned group search expe-

rience. GNS strategy is quite effective in case of obtaining global optima whenever

the local optimum is nearer to it. The GNS is capable to generate the best po-

sition for the search agent based on its current search region. This mechanism is

quite helpful in exploiting the search environment in frequent iterations.
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4.5.1 Measuring Learning Rate Probability

The idea of measuring the learning probability is inspired from the natural social

learning. This learning probability is used to compute the rate of learning based

on the ranking assignment of the search agent to adjust the search position from

the learned group. Based on the nondeterministic method, ranking assignment

is processed in which the rank for each search agent is assigned using its current

fitness value. In particular, the learner group is rearranged as worst to best (i.e.

as like descending order) based on the fitness value of the search agent, and the

ranking of the search agent is expressed in eq. 4.3.

Ri = NS − Ii + 1 (4.3)

where, Ri represents the ranking of ith search agent, NS denotes the number of

search agents in the learner group and Ii is the index value of the ith search agent

after an arrangement. In specific, the current best search agent will attain the

highest ranking (i.e. Xbest = NS)and the current worst search agent obtain the

lowest ranking (i.e. Xworst = 1).

With the help of ranking assignment, the learning probability is measured for all

search agents. For the measurement, parameter PM is used which holds different

probability measurement value for all search agents in the learning group. More-

over, the probability value is determined as much small as to provide a chance to

exploit its current search state. The learning probability measure PM fluctuates

in the range of [0.1, 1] based on the empirical simulations and thus the formulated

expression is given in Eq. 4.4.

PMi = (1− Ri − 1

NS
)φ log(D

S
) (4.4)

where NS is a number of search agents in learning swarm, D represents the dimen-

sionality of the problem and S denotes the size of the swarm and φ is the positive

exponents. More likely, the search agents with best fitness has less probability

of learning rate and the search agents with worst fitness has high probability of

learning rate. Since, the best search agents have a chance to sustain its current

state with small adjustments and also helps to exploit the current search space.

In other words, the fluctuation on the parameter φ provides different learning rate

which degrades the performance. Based on the empirical results φ is fixed as 0.5
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which helps to improve the learning rate for n-dimensional problems.

The figure 4.3 illustrates the relationship between the probability of learning PMi

with swarm size S and the dimensionality D. The curves in the figures shows

the relationship between the learning probability and dimensionality of problem

which fluctuates between D ≤ 100toD = 2000. For small dimension (D ≤ 100),

the learning probability is same for all search agents (i.e. PMi = 1). At the same

time, for large dimension the learning probability linearly decreases with respect

to increase in fitness values or dimensions (D).

Figure 4.3: Probability of learning curves for varying dimensionality from D100 to
D = 2000.

4.5.2 Position Update using Neighborhood Search

The search agents in learner swarm updates its search direction based on the

two modes. Firstly, some set of search agents update its position based on the

experience of the neighbor learned group (i.e., based on the three search agents

X t
n1d, X

t
n2d and αtl from the learned group).In existing GWO algorithm, the search

agents adjust its position based on the three best search agents whereas this up-

dating process stops converging in a course of iterations due to similar position of

the three search agents.
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Figure 4.4: Example of Information Exchange between the five sub swarms with
complete free form of neighborhood topology.

The figure 4.4 illustrates that any sub swarm which acts as the learned one will

exchange their information to their neighbor learning sub swarm. Here, five sub

swarms are considered namely sub swarm (SS1), sub swarm (SS2), sub swarm

(SS3), sub swarm (SS4) and sub swarm (SS5) in which sub swarm (SS1) act as

the learner then it can exchange the learning experience from any of the other

sub swarm (SS2 - SS5). Likewise, the information exchange dynamically hap-

pens based on the changes on the learned sub swarm. In the proposed neigh-

borhood based search mechanism, two search agents are arbitrarily selected from

the learned group for information exchange between the groups namely X t
n1d and

X t
n2d.Along with that the learned group best search agent, αtl is utilized to adjust

the search agent position. The neighborhood based search mechanism is formu-

lated and expressed in eq. 4.5.

X t+1
id,j = 0.33× (A′1r1(X

t
n1d−Xid, jt)+A′2r2(X

t
n2d−Xid, jt)+PMir3(X

t
α,l−X t

id,j))

(4.5)

where A′1, A
′
2 are the coefficient parameters used to observe the experience from

the neighbors (i.e. X t
n1dandX

t
n2d) of learned group. The values of coefficient

parameter are different from the generic GWO values which aids to achieve better

exploitation as well as for the faster convergence rate. Another parameter PMi is

used to control the magnitude of learning from the learned group.
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4.5.3 Position Update using Guided Search Mechanism

In this section, in order to boost the search agents we have chosen the L-BFGS

technique for guided search process. Broadly speaking, limited memory BFGS

(L-BFGS) mechanism is an extension of BFGS technique. Let us consider x0 be

the initial point and the next point is iteratively determined based on the line

search technique using the eq. 4.6.

xk+1 = xk + λkdk (4.6)

where λk represents the step length and dk denotes the descent direction. Most

of the researchers addressed different techniques to estimate the step length λk.

Initially, [Liu and Nocedal 1989] introduced a mechanism to obtain λk which is

given in eq. 4.7.

φ(xk + λkdk)− φ(xk) ≤ σλkOg(xk)
Tdk (4.7)

where σ is an arbitrary value (i.e. σ ∈ (0, 1)) and Og(xk) denotes the Jacobian

matrix. With the help of above formula, Zhu [ ] introduced the monotone line

search mechanism as given in eq. 4.8.

φ(xk + λkdk)− φ(xlk) ≤ σλkOg(xk)
Tdk (4.8)

φ(xlk) = max(0 ≤ j ≤ m(k))φ(xk−j),m(0) = 0,

m(k) = minm(k + 1) + 1,M(fork ≥ 1), and M is a positive integer. Based on

the above formulas, it is quite simple to compute Og(xk), but it might increase the

workload for large-scale problems. In order to eradicate the issue, we presented

the modern backtracking inaccurate mechanism that is expressed in eq. 4.9.

‖g(xk + λkdk)‖2 ≤ ‖g(xk)‖2 + ψλ2kg
T
k dk (4.9)

where ψ ∈ (0, 1), g is symmetric for all xk (i.e. gk = g(xk)). The numerical

performance of this modified line search mechanism provides more accurate than

the standard line search mechanism. Li and Li 2011 developed an exact monotone
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line search mechanism which is given in eq. 4.10.

φ(xk + λkdk)− φ(xlk) ≤ −ψ1‖λkdk‖2 − ψ2‖λkgk‖2 + Ψk‖g(xk)‖2 (4.10)

where ψ1 and ψ2 are nonnegative constants, λk = rik , r ∈ (0, 1), ik denotes the

minimum positive integer i and Ψk determined as eq. 4.11.

∞∑
k=0

Psik =∞ (4.11)

The line search technique is included with BFGS update equation and obtained

efficient results. Based on this modification we presented some mechanisms for

dk. Initially, Newton method is a most effective method which generally requires

a smallest number of function estimations and it’s efficiency in handling uncon-

strained problems. But, its efficacy mainly depends on the assumption to handle

the linear system that occurs when iteratively calculating dk.

Og(xk)dk = −g(xk)

Additionally, the approximate solution of linear system might be too oppressive,

or it is not required when xk is far away from a solution. Inaccurate Newton tech-

niques perform the fundamental method for Newton-type large-scale algorithms.

The present estimation of the solution is refurbished by relatively solving the lin-

ear system. From the class of Quasi-Newton methods, BFGS is the most effective

method in which search direction dk is determined in eq. 4.12.

Bkdk + gk = 0 (4.12)

where gk = g(xk) and Bk is manipulated by modified BFGS equation 4.13.

Bk+1 = Bk −
BkSkSkTBk

STk BkSk
+
yky

T
k

yTk Sk
(4.13)

where sk = xk+1 − xk and yk = gk+1 − gk. Let the inverse of Bk is denoted as Hk,
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then the inverse update equation is determined as eq. 4.14.

Hk+1 = Hk −
yTk (Sk−Hkyk)SkS

T
k

(yTk Sk)
2 +

(Sk−Hkyk)STk +Sk(Sk−Hkyk)T

(yTk Sk)2

= (1− Sky
T
k

yTk Sk
Hk(1−

ykS
T
k

yTk Sk
) +

SkS
T
k

Sky
T
k

(4.14)

This is the twofold representation of DFP update equation in the logic that Hk ↔
Bk, H(k + 1) ↔ B(k + 1) and sk ↔ yk. Moreover, Limited memory BFGS (L-

BFGS) technique is an extension of the BFGS technique for solving large-scale

problems. The L-BFGS is almost similar to BFGS, the only difference is that the

inverse Hessian estimation is not generated easily, whereas this may be estimated

by small number of BFGS updates. This mechanism speedup the convergence

rate and consumes minimum storage for computation. In the LBFGS technique,

Hk matrix is determined by updating the standard matrix Hm̃(> 0) times with

the help of BFGS equation with the earlier m̃ iterations. The rudimentary BFGS

improvement has the following eq. 4.15.

Hk+1 = V T
k HkVk + εkSkS

T
k (4.15)

where εk = 1
sTk yk

, Vk = 1 − εkykS
T
k , and I is the element matrix. Hk+1 in the

L-BFGS technique has the following eq. 4.16.

Hk+1 = V T
k HkVk + εkSkS

T
k

= V T
k [V T

k−1Hk−1Vk−1 + εk−1Sk−1S
T
k−1]Vk + εkSkS

T
k

= ...

= [V T
k , ..., Vk−m̃+1]Hk−m̃+1[Vk−m̃+1, ..., Vk] + εk−m̃+1

[V T
k−1, ..., V

T
k−m̃+2]Sk−m̃+1S

T
k−m̃+1[Vk−m̃+2, ..., Vk−1]+, ...,+εkSkS

T
k

(4.16)

Some modifications on L-BFGS technique has been addressed with the help of line

search techniques to guide the search agents to solve the large-scale optimization

problems. The algorithm for L-BFGS technique is given as in algorithm 4.3.

In this algorithm, we considered the inverse of Hk as Bk and also considered the

fundamental matrix B0 and its inverse H0 are positive infinite.

In case of guided search mechanism, some search agents updates its search position

based on this L-BFGS mechanism. This mechanism helps the solution to exploit

their current search positions which are far away from the global best position.
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Algorithm 4.3 L-BFGS

Step 1: Select the initial point x0,an initial symmetric positive matrix H0 ∈
<n×n, non-negative constants ψ1, ψ2 and constants r,ψ, ε ∈ (0, 1), a non-
negative integer m1 and Ψk, let k = 0.
Step 2: Stop if condition satisfies ;
Step 3: Determine search direction dk by Bkdk = −gk,
Step 4: If ‖g(xk + dk)‖ ≤ ε‖g(xk)‖, then pick λk = 1 and move to Step 6,
otherwise move to step 6.
Step 5: Let ik be the minimum positive integer i such that line search 4.6 holds
for λ = ri. Let λk = rik.
Step 6: Let the next iterative be xk+1 = xk + λkdk.
Step 7: Let m̃ = mink + 1,m1. Set Sk = xk+1−xk = λkdk and yk = gk+1− gk.
Update B0 for l = k − m̃+ 1, ..., k measure

Bl+1
k = Bl

k −
BlkSlS

T
l B

l
k

STl B
l
kSl

+
yly

T
l

yTl Sl

where Sl = xl+1 − xl, yl = gl+1 − gl and Bk−m̃+1
k = B0 for all k.

Step 8: Set k:k+1. Go to Step 2.

In addition to that, L-BFGS mechanism provides more accurate and effective

self-correcting functionalities in adjusting the search agent position. The position

update for search agents is expressed as eq. 4.17.

X t+1
id,j = (

1

2
PMi(α

t
l −X t

id,j)) + ρL−BFGS(X t
id,j) (4.17)

where ρ represents the constant parameter and its used to adjust the current search

position of the search agents.

Generic GWO is quite complicated to identify the best-fit search agent in the

local neighborhood. To eradicate this issue, L-BFGS is addressed to guide the

search agent to exploit its local environment in order to identify the best position

more quickly. When one search agent is assigned into the guided search, the local

optimization technique L-BFGS is performed by setting this search agent as the

starting point, from the initial position the technique converge towards the best

fit position.

In addition to that, the guided probability parameter Pg is used to select the search

agent either to perform the neighborhood based search mechanism or guided search

mechanism. In our work, we suggest Pg = 0.8 that is one fourth of the learning

search agents perform the guided search and remaining search agents process the

neighborhood search mechanism. More specifically, the search agent with high

learning rate has maximum probability to process the guided search mechanism.
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This parameter is compared with the random value (i.e. rand[0, 1]) and this

provides dynamic changes on the selection of search agent and provides a better

chance for efficient exploitation.

4.6 Summary

In this chapter, self adaptive strategies based GWO algorithm has been proposed

to enhance the learning rate between the search agents. Likewise, the features of

the self adaptive strategies are discussed. The proposed model consists of three

strategies namely, Guided Neighborhood Search, Position Repulsion Mechanism

and Global Oscillation Scheme. This chapter described the characteristic features

of Guided Neighborhood Search Mechanism with its effect on the adjustment of

search agent position in order to enrich the exploitation. Moreover, Multi-swarm

based approach is also presented.
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Chapter 5

Proposed Methodology-II

5.1 Introduction

The multi swarm approach and guided neighborhood strategies are discussed in

the chapter 4. In this section, the position repulsion mechanism and global best

oscillation scheme are discussed with its influence on adjusting the search agent in

order to obtain the optimal solution. Furthermore, the swarm diversity is intro-

duced to identify the influence of the neighborhood control which helps to main-

tain a trade-off between the intensification and diversification. Later, the entire

structure of the proposed model with its flowchart is discussed in detail.

5.2 Position Repulsion Mechanism

In traditional GWO algorithm, the omega wolves are guided by the best search

agents to adjust its position. The position of the search agent in every iteration

determined as attractor which helps to speed up the search process but it degrades

the algorithm by stagnating in local saddle point especially for large scale multi-

modal problems. Furthermore, Guided Neighborhood Strategies (GNS) which are

discussed in chapter 4 provide an efficient search over the multi-swarm. In some

cases the search agent in learner swarm has the capability to explore the search

space. However, in case of complex multi-modal problems the GNS intend to

provide poor exploration over the search agents. To handle this issue, position

repulsion mechanism with the help of Lévy flight technique is addressed. This

repulsion mechanism has been introduced for the learner swarm in which the

search agents are utilizing the global search space and enrich the search process.

In addition to that, global search is occasionally motivated by longer walking

distance, which provides the algorithm to move out of the saddle point and enhance

the global search ability.
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(a) (b)

(c)

Figure 5.1: Grey wolf with different movements (a) Grey wolf stops moving or stagnate
in a position, (b) Grey wolf with slow movement, (c) Grey wolf with fast movement

56



Figure 5.1 (a) illustrates that the grey wolf stops moving in a certain number of

iteration due to struck in local optima or fails to explore the search space. In order

to eradicate, Lévy flight with varying step size has been processed which adjust

the search agent with two different movements namely search agent with slow and

fast movement as shown in figure 5.1 (b) and (c). In case of slow movement the

search agent will utilize the current search space and then it starts to explore

the search space slowly whereas in fast movement the search agent jumps out of

the saddle point, which in turn the global optima with its current position is not

determined. So, the step size with arbitrary movement is to be determined by

handling both the slow and fast movement.

Lévy distribution is generally expressed as eq. 5.1.

Lévy(β) ∼ s−1−ω, (0 < ω ≤ 2) (5.1)

Generally speaking, Lévy flight is an arbitrary walk technique in which the step size

follows the Lévy distributions, and walk direction follows the uniform distribution.

The Lévy distribution is performed with the help of Mantegna law to obtain the

step size [Haklı and Uğuz 2014; Tang et al. 2016]. The step size based on Mantegna

law is measured as eq. 5.2.

step =
u

|v| 1ω
(5.2)

where u and v denotes the positive integer which adopts the normal distribution,

i.e. stated in eq. 5.3.

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v)σv =
Γ(1 + ω)× sin(πω

2
)

Γ[ (1+ω)
2

]× ω × 2
(ω−1)

2

1
ω

(5.3)

where Γ represent standard Gamma function which aids to update the position in

a steady state and ω denotes the positive integer (i.e. ω ∈ [0.3, 1.99]).

LévyF light = rand(0, 1)× normal(0, 1)× step (5.4)

Where rand(0, 1) denotes the random value of uniform distribution, normal(0, 1)

represents the arbitrary umber of normal distribution. The random movement

with step size value (α = 0.5) is shown in figure 5.2. The equation 5.1 to 5.4
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expresses the Lévy flight mechanism which generates the small integer values for

random walk movement around the boundary space. This random walk movement

aids to explore the search space of the particles within the search region.

The proposed position repulsion operation is expressed as eq. 5.5.

X t+1
i = X t

i + rand× (LévyF light
⊗

(X t
g −X t

i )) (5.5)

where X t
i represents the current position of the search agent i, X t

g is the global best

search agent in current iteration t and rand denotes the arbitrary value between

[0, 1],
⊗

determines an entry wise multiplications.

Figure 5.2: Lévy flight movements with step size (α = 0.5)

In addition to that, the novel selection scheme is addressed to select the search

agents to perform the position repulsion using Lévy mechanism. This selection

scheme adopts the position repulsion operator for the solution which is not im-

proved in the current iteration by comparing the previous iterations. The selection

mechanism is given in Eq. 5.6.

pSi = exp(−
(f(X t−1

id,j )− f(X t
id,j))∑m

j=1 f(X t
id,j)

) (5.6)
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5.3 Global Best Oscillation Scheme

The global best oscillation scheme (GBOS) is a small adjustment mechanism es-

pecially for global best solution. This scheme works only when the global best

solution is not improved for certain number of iterations. In SAGWO, the global

best search agent is identified from the set of sub swarms and it is denoted by X t
g.

Iteratively, the global solution is updated in case of current best is better than

the previous best. In some cases, the proposed algorithm regrets the chance to

explore the global optima for complex multi-modal problems. In order to erad-

icate the issue, GBOS helps the global best search agent to jump out from the

local optima struck and adjust the position vector in a better region. This GBOS

scheme works on single dimension of Xg to conserve the current good structure.

The single dimension perturbation provides more chances to generate a new bet-

ter region. The notation Od is used to represent the dth dimension of Xg. GBOS

is computed based on the Gaussian distribution [Krohling and Mendel 2009] and

given as in Eq. 5.7.

Od = X t
gd + (Ub− Lb)×Gaussian(X t

gd) (5.7)

where Ub and Lb represents the upper and lower dimension value, Gaussian (X t
gd)

is a random number of a Gaussian distribution with average and a standard devia-

tion of global best X t
gd. This strategy processes the extensive oscillation to explore

the search space where as little oscillation aids to explore the current search agent

position. Finally, the global best search agent will be replaced if and only if new

global search agent fitness is better than X t
gd. The generic flow chart of global

best oscillation scheme is given in figure 5.3.

Finally, projection operator is used to adjust the position of the search agents

which moves out of the search range [Ub, Lb]. The formulation of projection op-

erator is given in eq. 5.8.

P ∈ (Od, Ub, Lb) =

minUb, 2Ub−Od ifOd < Lb

maxLb, 2Ub−Od ifOd > Ub
(5.8)

where UB and LB determines the upper and lower boundary spaces, Od denotes

the newly adjusted position.
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Algorithm 5.1 Global Best Oscillation Scheme

Procedure GBOS
Randomly select decision vector d from the global best X t

gd

Oscillate the selected global best decision vector
Check the newly adjusted position is out of boundary search space
if Od /∈ [Lb, Ub] then

Apply Projection operator to roll back within the boundary space
end if
Evaluate the fitness f(Od)
if f(Od) < f(X t

gd) then
X t
gd = Od

end if
Return X t

gd;

5.4 Swarm Diversity

In most of the swarm based approach contributes only on maintaining the high

diversity among the swarm which in result alleviates premature convergence but

higher degree of diversity may slow down the convergence speed. So, a balanced

process has been measured which provides both the diversity among the swarm

as well as the speed up the convergence rate. The Swarm diversity is used to

examine the effect of the neighborhood control as well as used to balance the

search process. For example, the higher exploitation on the learner sub swarm

will result on local optima stagnation. This diversification measure helps to detect

the effect of the neighborhood and chance of stagnation in local optima. If the

effect of neighborhood is high then it induces the learned swarm to explore more

[Mohapatra et al. 2017; Cheng and Jin 2015].

The Diversity measure of the groups measured during every iterative search process

is given in eq. 5.9.

DM(G) =
1

m

m∑
i=1

√√√√ n∑
j=1

(Xij − X̂ij)2withX̂ij =
1

m

m∑
i=1

(Xij) (5.9)

where DM(G) denotes the diversity measure of the group G, m is the group size,

n is the dimension of the decision space, Xij is the position of the search agent

i of j dimension, and X̂ij is the average value of the overall search agents of j

dimensions.
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Algorithm 5.2 Self Adaptive Grey Wolf Optimization Algorithm

Identify the number of search agents and size of the sub swarm using multi-
swarm approach;
Initialize the positions of all N search agents Xi(i = 1, 2, , n) in G swarms and
assign the NS search agents to all G groups (Xi ∈ (Ub, Lb)).
while Stop Criterion is not obtained do

Evaluate the fitness value for all search agents in G swarms
Update αtj, X

t
g

if rand ≤ PLtm then
//Perform learning process for learner sub swarm
Identify learning rate (PMi)
if rand < Pg then

Update the position using neighborhood learned experiences
else

Update the position using guided search mechanism
end if

else
//Perform Search mechanism for learned sub swarm
Compute the swarm diversity for learned group
Process the selection process to perform Position Repulsion operation
if rand < pSi then

Perform the Position Repulsion Operation
else

Perform the Operation of Generic GWO
end if
if X t+1

i,j exceeds the boundary space then
Project within the search space

end if
end if
Global Best Oscillation Scheme

end while
Return Xg
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Figure 5.3: Flowchart of Global best Oscillation Scheme

5.5 Description of SAGWO Algorithm

The proposed SAGWO algorithm 5.2 starts with the multi-swarm approach which

determines the number of search agents based on the dimensionality of the prob-

lem. Then, it initialize the search agents randomly within the upper and lower

boundary search space (Ub, Lb) and divide the swarm S(0) into G groups.
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Figure 5.4: Flowchart of Global best Oscillation Scheme

Assign, SS search agents to all G sub swarms and evaluate the fitness of all search

agents. Identify the alpha for all j sub swarms αtj and overall global best X t
g.
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The role of each sub swarm PLtm is determined and if the PLtm is greater than

or equal to the rand then the sub swarm will act as the learner one otherwise

the sub swarm will be act as the learned one. Identify the learning rate (PMi)

for all the search agents in learner sub swarm and using the guided probability

perform either the neighborhood learned experience or guided search mechanism.

When arbitrary value is less than the guided probability then the search agent will

perform the neighborhood learned experiences otherwise it performs the guided

search experience.

Then, compute the swarm diversity for the learned groups if the diversity of the

sub swarm is less than the exploration of the search agents will be more. Then

identify the selection probability, if the selection probability is greater than the

random value then perform the position repulsion operation otherwise update

the search positions using generic GWO. Using projection operation, project the

search agents which are out of the boundary search space. Finally, perform the

global best oscillation scheme iff the global best is not improved for certain number

iterations. Repeat the process until the stop criteria of the algorithm reaches. The

generic flowchart of the proposed SAGWO algorithm is shown in figure 5.4.

The proposed work enriches the capability of both exploitation and exploration

using the Neighborhood search mechanism and Position Repulsion operator. In

addition to that, diversity measure used to evaluate the effect the neighborhood

control as well as used to balance the search process. For example, the higher

exploitation on the learner swarm aids to exploit its local search space but within

the certain number of iteration it struck into local optima without any sort of

update in the search position. At the same time, higher exploration allows the

search agents to move around the global search space but fails to exploits local

search space.

In order to determine the steady state, diversification measure aids to detect the

effect of the neighborhood and chance of stagnation in local optima. If the effect

of neighborhood is high then it induces the learned swarm to explore the search

space. Without loss of generality, this steady state process helps the proposed work

to balance the exploration and exploitation among the search agents towards the

optimal solution.
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5.6 Summary

In this chapter, self adaptive strategies namely guided neighborhood search, po-

sition repulsion mechanism and global best oscillation scheme has been proposed

to enhance the grey wolf optimization. These three mechanisms mutually work to

accelerate the search and guide the algorithm to obtain the global optimal or near

optimal solution in significant time. In addition to that, multi-swarm approach has

been introduced to handle the high dimensional problems with varying population

sizes with its dimensionality. Furthermore, swarm diversity has been used to im-

prove the diversity among the swarms based on the influence of the neighborhood

control and the formulation of each schemes with its adaptive parameters.
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Chapter 6

SAGWO for Large Scale Benchmark

Functions

6.1 Introduction

In the chapter 4 and 5, a self adaptive strategy has been proposed to enhance the

grey wolf optimization algorithm in order to handle the high dimensional com-

plex optimization problems. The proposed algorithm has to be evaluated and

compared with respect to other state-of-art of meta-heuristic algorithms using

suitable performance measures. In this perspective, an appropriate experimental

setup has been formulated and experiments are carried out on different uncon-

strained large scale benchmark functions. In addition to that, real-world complex

optimization problems such as Economic Load Dispatch (ELD) problem and Lo-

calization problem is utilised in order to validate the performance of the proposed

work.

6.2 Experimental Setup

6.2.1 Test-Bed Design

The performance of the proposed model has been processed by large scale bench-

mark functions and the same have been demonstrated on real world problems. The

test bed design have been classified into three phases namely first is on large scale

benchmark function, then economic load dispatch problem and finally localization

problem. Experiments carried out on proposed model under different phases to

evaluate the performance in the most precision way.

The parameters of SAGWO and the corresponding values are shown in Table

6.1. Guided probability is used to exploit the search agent in order to locate
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the possible best position within its current environment. Lévy step size is to

explore the search agent to avoid the stagnation in local optima or saddle point.

The reason behind the setting of Lévy flight step size is to project the random

walk over the search agent to identify the best position in a large complex search

space.

Table 6.1: SAGWO Configuration Parameter

S.No Parameter Value

1 Initial Population Size 100

2 Swarm Size (s) 4

3 Generation Limit 200

4 Initialization Random

5 Guided Probability 0.3

6 Lévy Step Size 0.55

7 Constant Parameter (ρ) 0.5

6.3 Large Scale Benchmark Functions

In this section, the experimentation have been carried out on the large scale bench-

mark functions in order to evaluate the performance of the proposed work as well

as with other state-of-art meta-heuristics algorithm. This experimentation helps

to judge the proposed SAGWO algorithm on different characteristics of problems

viz. separability, non-separability, unimodal and multimodal. These benchmark

functions are collected from the special issue of soft computing [Herrera et al.

2010] in order to evaluate the scalability of the algorithm.

The proposed work has been implemented on MATLAB 2014a. The algorithm has

been performed over 25 independent runs for each test functions. The dimension

of each test function varies from 50, 100, 200, 500 and 1000 continuous real values

within a desired range. The performance metrics observed based on the best,

worst, median, mean and standard deviation of each function. The maximum

number of fitness evaluation have been fixed as 5000 × D (i.e. D represents the

dimensions), which will act as the stop criteria of each run. The benchmark

functions (f1 − f19) have been used and those details are stated in Table 6.2-

6.5.
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6.3.1 Benchmark functions

Optimization task of the proposed work is to maximize (or) minimize the objec-

tives by following the environmental criteria. In this research all the test bench-

mark functions are minimization problems. The performance of the proposed work

can be easily evaluated by these set of benchmark functions. The benchmark func-

tions which have been considered are 19 functions with different properties viz.

uni-modal, multi-modal, separable (i.e. variable independent), non-separable (i.e.

variable dependent) and hybrid composed (i.e. variables with both dependent

and independent). The test functions F1 to F6 were observed for CEC 2008 [Tang

et al. 2007] and functions f7 to F11 were observed for IDSA 2009 [Lozano et al.

2011] and functions F12 to F19 have been created specifically for this special issue

[Herrera et al. 2010]. The lists of benchmark functions with its special character-

istics are given in Table 6.2-6.5.

Uni-modal functions

In this test case, seven uni-modal functions (F1-F2, F7-F11) are considered, each

uni-modal has either same search range or different search range. This helps to

analyze the optimization algorithms by determining the global maximum or global

minimum without any form of local optima. This function is mathematically ex-

pressed and given in Table 6.2 and its properties are also provided in Table 6.4.

Multi-modal functions

In order to evaluate the performance of the algorithm four multi-modal functions

(F3 − F6) are considered. This function has complex search space with many

local optima. At the same the local optima increases with respect to increase

in dimensionality of the problem. Multi-modal function is used to evaluate the

capability of optimization algorithm by handling complex search of a problem.

Separable functions

The functions F1, F6, F7 and F8 are the separable problems in which the decision

vectors can be divided into partitions for optimization purpose. In these function,

F1, F6 and F7 are easily optimized dimension by dimension whereas function F8

cannot be optimized dimension by dimension.
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Table 6.2: Benchmark functions F1-F7

Functions Name Description

F1 Shifted Sphere function
∑D

i=1 Z
2
i + fbias, z = x− o

F2 Shifted Schwefel Problem 2.21 maxi‖zi‖, 1 ≤ i ≤ D + fbias, z = x− o

F3 Shifted Rosenbrock’s function
∑D

i=1(100(z2i + zi+1)
2 + (zi − 1)2) + fbias, z = x− o

F4 Shifted Rastrigin’s function
∑D

i=1(z
2
i − 10cos(2πzi) + 10) + fbias, z = x− o

F5 Shifted Griewank’s Function
∑D

i=1
z2i

4000 −
∏D
i=1 cos(

zi√
i
) + 1 + fbias, z = x− o

F6 Shifted Ackley’s Function −20exp(−0.2
√

1
D

∑D
i=1 z

2
i )− exp( 1

D

∑D
i=1 cos(2πzi))

F7 Shifted Schwefel’s Problem 2.22
∑D

i=1 ‖xi‖+
∏D
i=1 ‖xi‖

69



Table 6.3: Benchmark functions F8-F11

Functions Name Description

F8 Shifted Schwefel’s Problem 1.2
∑D

i=1(
∑D

j=1 xj)
2

F9 Shifted Extended F10

(
∑D

i=1 f10(xi, xi+1)) + f10(xD, x1)

f10 = (x2 + y2)0.25 × (sin2(x2 + y2))0.1 + 1

F10 Shifted Bohachevsky
∑D

i=1(x
2
i + 2xi+ 12 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7)

F11 Shifted Schaffer
∑D

i=1(x
2
i + x2i+1)

0.25(sin2(50(x2i + x2i+1)
0.1) + 1)
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Table 6.4: Properties of function F1-F11

Function Range Optimum Modality Shifted Separable EOD

F1 [−100, 100]D −450+ U Y Y Y

F2 [−100, 100]D −449+ U Y N N

F3 [−100, 100]D −448+ M Y N Y

F4 [−5, 5]D −447+ M Y Y Y

F5 [−600, 600]D −446+ M Y N N

F6 [−32, 32]D −445+ M Y Y Y

F7 [−10, 10]D 0 U Y Y Y

F8 [−65.536, 65.356]D 0 U Y N N

F9 [−100, 100]D 0 U Y N Y

F10 [−15, 15]D 0 U Y N N

F11 [−100, 100]D 0 U Y N N

U- Uni-modal, M-Multi-modal, EOD- Easily Optimized dimension by dimension,

Y/N - Yes/No, D-Dimension, +− fbias
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Table 6.5: Properties of function F12-F19

Function Fns F’ Mns Range Optimum

F12 NS-F9 F1 0.25 [−100, 100]D 0
F13 NS-F9 F3 0.25 [−100, 100]D 0
F14 NS-F9 F4 0.25 [−100, 100]D 0
F15 NS-F10 NS − F7 0.25 [−100, 100]D 0
F16 NS-F9 F1 0.5 [−100, 100]D 0
F17 NS-F9 F3 0.75 [−100, 100]D 0
F18 NS-F9 F4 0.75 [−100, 100]D 0
F19 NS-F10 NS − F7 0.75 [−100, 100]D 0

Fns -hybridize a non-separable function with other function F’ (Fns
⊕

F’),
Mns - m non-separable

Non-Separable functions

The functions F2, F3, F5, F9 and F10 are as non-separable functions. This func-

tion is quite special for our proposed work in order to analyze the performance by

obtaining better results. These quite help to determine whether the introduced

algorithm could be efficient in real-world problems.

Hybrid Composite functions

The Functions F12−F19 are determined as hybrid composite functions. They are

created by composing two functions together (i.e. a non-separable function NS

is combined (
⊕

) with other functions F’ in order to act as both hybridized one).

The decision variables in these function has both separability and non-separability

characteristics. In addition to that the functions F7− F11 act as the non-shifted

version in order to hybridize the function.

6.3.2 Performance Metrics

In this section, the performance metrics derived aid to evaluate the performance

of proposed SAGWO and also for the comparison of other recent meta-heuristics

algorithms. These metrics are given as follows.

Average Standard Deviation: Standard deviation computes the distance that re-

sides among the fitness values to obtain the best value w.r.t the known optimum

value. ASD is determined with the help of estimated values using the Eq. 6.1.

An algorithm which holds minimum value that indicates a better performance as
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compared to the other algorithms chosen.

ASD =

∑n
i=1 SD of an benchmark

n
(6.1)

where SD determines the standard deviation of a benchmark functions obtained

from the n independent runs.

Success Rate (SR): Success Rate is the ratio of number of times an algorithm

found the optimum or near optimum out of n independent runs. The measure is

given in Eq. 6.2.

SuccessRate(%) =
SuccessfulRuns

n
× 100 (6.2)

where n denotes the independent runs, successful runs represents the number of

time the algorithm found the best.

Average Best Objective (ABO): The average best objective value is used to de-

termine the performance of the proposed algorithm with other state-of-art meta-

heuristics algorithms. The mathematical expression of the ABO is given in Eq.

6.3:

ABO =

∑R
r=1 Best fitness of run r

Totalrunsn
(6.3)

where r is the current run and n denotes the maximum number of independent runs

which defines that the fitness solution obtained over the R number of runs.

6.3.3 Performance Scalability Study

In this section, the results are provided and several analyses are carried out: Ini-

tially, provided the performance obtained by the proposed work with respect to

the multi population approach and self-adaptive strategies. In addition to that,

the proposed work is compared with other state-of-art meta-heuristic algorithms

to analyze the performance in terms efficiency and convergence diversity and as

well as the scalability analysis is carried out for the proposed algorithm with other

algorithms. Later, the computational time of each algorithm is compared.

The performance of SAWGO has been tested on 19 different set of benchmark
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functions which are introduced for the special issue CEC 2010. The performance

analysis is carried out on varying the dimensions viz., 50−D, 100−D, 200−D, 500−
D and 1000−D of these 19 set of benchmark functions (i.e. D −Dimensional).
Most of the study deliberates that the 500−D and 1000−D dimensional decisions

moves the function into ”high-dimensional”, the study is also aided to analyze the

scalability of the SAGWO performance as the dimensionality of the objective

function increases.

6.3.3.1 Compared Algorithms

The performance of the proposed algorithm SAGWO has been compared with

recently introduced meta-heuristic algorithms which are adaptable to solve the

large scale optimization problems. The algorithms namely Multi-population dif-

ferential evolution with balanced ensemble of mutation strategies (mDE-bES)[Ali

et al. 2015], Modified Competitive Swarm Optimization (MCSO) [Mohapatra et al.

2017] and Dynamic particle swarm optimizer with escaping prey (DPSOEP) [Chen

et al. 2017b] are considered to be compared against the proposed SAGWO algo-

rithm. The parameter settings are fixed based on the suggestions of the authors

in the original sources of those papers.

6.3.3.2 Solution Quality Scalability

This section discuss about the major computation results obtained by proposed

SAGWO algorithm and the various state-of-art meta-heuristic algorithms with

respect to varying the dimensionality of the problems. The performance metrics

such as average, median, maximum and minimum objective function values are

used to analyze the performance of the algorithms. All of these algorithms are

run independently 25 times to diminish arbitrary discrepancy. Table 6.6 represents

the results obtained by the mDE-bES, MCSO, DPSOEP and SAGWO for evalu-

ating the efficiency of the algorithms. Table 6.7 - 6.8 portrays the performance of

the chosen algorithms and its analysis w.r.t benchmark function and performance

metrics are discussed below.

F1 - Shifted Sphere Function

In Shifted Sphere function, a global optimum is found at (0, 0) and f(x) increases

with the increase in scaling. The performance over the function has been tested on
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varying the number of dimensions from 100 to 1000 dimensions. Table 6.6 deliber-

ates the results of SAGWO and other algorithms with varying dimensions. Thus,

the SAGWO, mDE-bES, DPSOEP provides better results in terms of minimum,

maximum, average best objective and median values compared to MCSO algo-

rithm. In addition to that, we notify that the complexity of the problem increases

when the problem is higher than 500 dimensions. Based on this we observed the

results of 500 and 1000 dimensions for average standard deviation and success

rate. The result table 6.16 for 500 dimensions portray that SAGWO, mDE-bES,

DPSOEP are equal in performance but MCSO lags in its efficacy in success rate

and average standard deviation. Table 6.18 results for 1000 dimensions conveys

that the SAGWO, mDE-bES, DPSOEP are shows better performance compared

to MCSO algorithm. Figure 6.1 and 6.2 provides the radar chart based on the

success rate of the algorithm whereas the success rate of the SAGWO, mDE-bES,

DPSOEP provides cent result and MCSO provides 92% in achieving the perfor-

mance.

F2 - Shifted Schwefel Problem 2.21

The experimental result of Shifted Schwefel Problem 2.21 from Table 6.6 conveys

that SAGWO has attained best optimum solution compared to other metaheuris-

tics algorithms viz., mDE-bES, DPSOEP and MCSO. SAGWO considered to be

better to obtain the objective value interms of the average best objective com-

pared to other algorithms. Table 6.16 results portrays that the SAGWO is better

in terms of average standard deviation and success rate for 500 dimension as well

as it proves its efficacy in 1000 dimension as shown in Table 6.18. From the figure

6.1 and 6.2, success rate of the SAGWO achieves 92 percentages by repeatedly

providing the best optimum for all the independent runs though the dimensional-

ity of the problem varies.

F3 - Shifted Rosenbrock’s Function

The experimental results of ShiftedRosenbrock′sFunction from Table 6.7 por-

trays that SAGWO has attained global optimum of f(x) with null error rate for all

the varying dimensionality. At the same, DPSOEP competes with the SAGWO

for all the dimensionality by providing the better results over minimum, ABO

and median but lags in providing better result for maximum. From Table 6.16

and 6.18 notifies that the SAGWO is better in terms of Average best objective,
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average standard deviation and when considering success rate SAGWO provides

repeatedly better results for all independent runs over 500 and 1000 dimensions.

In the aspect of the success rate, SAGWO is higher in percentage than mDE-bES,

DPSOEP and MCSO indicates that SAGWO performance is better than other

compared algorithms.

F4 - Shifted Rastrigin’s Function

The experimental result of ShiftedRastriginsFunction shows that for this test

function global minimum is f(x) = 0 when x = 0 and this has been attained by

the SAGWO with null error rate that has been shown in Table 6.7. SAGWO is

better in achieving best value with n independent runs, thus the success rate of

the SAGWO is 100 percent when compared to other algorithms for 500 dimen-

sions as shown in Table 6.16. From Table 6.18, we notify that the success rate

of SAGWO is better for 1000 dimension, thus clearly shows that even the dimen-

sionality of the problem increases the proposed algorithm provides better results

when compared to other algorithms. In addition to that, the average standard

deviation and average objective value is better in performance. Figure 6.1 and 6.2

shows the radar representation of the success rate achieved by the SAGWO w.r.t

to other algorithms.

F5 - Shifted Griewank’s Function

The experimental result of Shifted Greiwanks test function, fitness value is 0 which

has been attained by mDE-bES for small dimensions like 50 and 100 dimensions

whereas as SAGWO attains the best value for varying dimensions viz., 50, 100,

200, 500 and for 1000 dimensions it provides better result when compared to other

algorithms as shown in Table 6.8. Table 6.16 portrays that the SAGWO achieves

better success rate compared to other algorithms. Though mDE-bES competes

with SAGWO but it fails to attain the better success rate as well in average best

objective and average standard deviations for both 500 and 1000 dimensions as

shown in table 6.18. The radar representation of the success rate for both high

dimensionality 500 and 1000 are shown in figure 6.1 and 6.2.
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Table 6.6: Comparison of the average, median, maximum and minimum objective function values of (F1-F2) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F1 F2

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 0.00+00 0.00E+00 0.00E+00 0.00E+00 3.12E-01 3.01E-01 7.91E-01 2.12E-01
MCSO 1.54E-10 1.43E-10 2.11E-10 1.75E-10 5.12E+01 5.71E+01 8.32E+01 4.74E+01
JOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.01E-10 2.43E-09 1.94E-09 5.80E-10
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.01E-14 1.04E-14 5.21E-14 0.00E+00

100

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.23E+00 4.23E+00 4.14E+00 2.31E+00
MCSO 2.31E-11 2.43E-11 3.17E-11 1.75E-11 7.93E+01 1.75E+01 8.54E+01 7.12E+01
JOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.47E-09 7.53E-10 2.13E-10 1.21E-11
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.73E-13 2.58E-13 1.74E-13 0.00E+00

200

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.85E+01 1.72E+01 2.02E+01 1.87E+01
MCSO 7.21E-11 2.31E-11 4.12E-06 2.54E-11 1.12E+01 1.23E+01 1.21E+02 8.43E+01
JOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.21E-09 8.54E-09 4.75E-09 3.21E-10
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.75E-14 2.32E-14 1.48E-13 0.00E+00

500

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.94E+01 4.91E+01 4.32E+01 3.21E+01
MCSO 1.88E-10 3.21E-10 3.87E-10 1.39E-10 1.87E+01 1.73E+01 1.75E+01 1.01E+01
JOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.43E-05 2.38E-05 4.87E-04 3.19E-05
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.87E-14 5.21E-14 4.31E-13 5.31E-14

1000

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.32E+01 4.17E+01 3.87E+01 1.32E+01
MCSO 2.12E-11 1.34E-11 3.70E-11 2.55E-12 1.85E+01 1.48E+01 1.74E+01 1.01E+01
JOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.98E-04 4.12E-04 5.32E-03 4.94E-04
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.43E-14 9.11E-13 7.31E-03 9.23E-14
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Table 6.7: Comparison of the average, median, maximum and minimum objective function values of (F3-F4) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F3 F4

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 2.72E+01 2.83E+01 2.96E+01 2.46E+01 2.17E-01 7.50E-13 7.84E-01 0.00E+00
MCSO 1.32E+05 1.53E+02 2.13E+06 8.54E-01 3.47E+01 3.47E+02 1.00E+01 3.45E+00
JOA 1.23E-06 3.10E-01 4.12E-06 0.00E+00 2.47E+00 2.10E+01 2.17E+00 3.14E-13
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.02E+00 2.30E+01 0.00E+00 0.00E+00

100

mDE-bES 7.12E+01 7.14E+01 1.17E+02 7.18E+01 3.54E-08 2.00E+01 8.13E-01 2.47E-12
MCSO 3.89E+06 5.12E+03 6.17E+06 8.19E+01 1.25E-14 2.20E+01 4.78E+01 3.47E+00
JOA 0.00E+00 0.00E+00 1.08E-14 0.00E+00 0.00E+00 0.00E+00 3.17E-16 0.00E+00
SAGWO 0.00+00 0.00E+00 0.00E+00 0.00E+00 9.12E-04 0.00E+00 0.00E+00 0.00E+00

200

mDE-bES 1.54E+02 1.19E+02 2.16E+02 1.53E+02 2.71E-01 2.79E-11 2.32E-01 5.97E-14
MCSO 2.15E+06 1.06E+04 4.17E+07 3.01E+02 8.01E+01 3.47E+01 6.74E+01 3.79E+01
JOA 0.00E+00 0.00E+00 1.79E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

500

mDE-bES 4.78E+01 3.97E+01 3.78E+02 4.19E+02 3.31E-03 2.30E+01 3.17E+01 3.47E-11
MCSO 1.53E+05 5.87E+02 1.97E+06 3.71E+02 8.46E-04 2.20E+01 2.77E+02 1.70E+02
JOA 1.27E-13 0.00E+00 3.45E-12 0.00+00 2.10E-02 1.90E+01 7.80E-12 6.47E-16
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E-04 2.00E+01 3.79E-02 0.00E+00

1000

mDE-bES 7.89E+01 8.17E+01 8.97E+01 8.46E+01 8.46E-09 2.20E+01 3.17E+00 2.78E-10
MCSO 7.85E+03 2.47E+02 8.71E+02 7.47E+02 5.16E-02 2.00E+01 3.47E+00 6.47E-04
JOA 6.99E+00 1.87E+00 2.47E+01 0.00E+00 8.46E-03 2.00E+01 7.48E-01 0.00E+00
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.78E-14 2.40E+01 0.00E+00 0.00E+00
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Table 6.8: Comparison of the average, median, maximum and minimum objective function values of (F5-F6) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F5 F6

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.11E-14 3.48E-13 2.47E-05 3.14E-13
MCSO 2.01E-02 3.17E-02 3.70E+00 3.10E-01 2.21E-06 1.32E-06 5.47E-03 2.45E-07
JOA 6.54E+00 2.00E+01 5.47E-02 0.00E+00 9.47E-03 0.00E+00 2.47E-10 0.00E+00
SAGWO 7.12E+00 1.80E+01 0.00E+00 0.00E+00 4.50E-03 0.00E+00 3.78E-16 0.00E+00

100

mDE-bES 4.19E-03 2.00E+01 0.00E+00 0.00E+00 5.22E-08 7.44E-12 5.22E-12 6.47E-13
MCSO 1.74E-06 2.20E+01 5.17E-01 6.87E-10 4.94E-03 6.48E-06 1.48E-06 3.48E-07
JOA 3.55E-03 2.94E-03 6.47E-04 6.74E-13 2.07E-12 1.78E-03 1.67E-01 3.49E-03
SAGWO 3.99E-01 6.74E-12 3.78E-10 6.17E-16 1.27E-11 2.33E-10 3.64E-04 6.31E-11

200

mDE-bES 1.46E+00 1.78E-02 3.79E-02 7.48E-12 2.85E-01 8.31E-11 7.04E-11 3.78E-12
MCSO 3.48E-02 5.79E-02 4.16E-01 3.19E-10 4.02E-06 3.14E-05 6.14E-03 7.68E-05
JOA 8.74E-07 1.79E-06 3.47E-02 6.47E-09 8.31E-02 7.64E-03 2.59E-01 3.45E-03
SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.97E-13 5.11E-11 2.64E-07 3.64E-12

500

mDE-bES 2.01E-01 1.80E+01 1.87E-03 6.47E-10 7.81E+00 1.90E+01 3.79E-09 6.97E-12
MCSO 6.57E+00 2.00E+01 4.79E-02 1.11E-01 8.31E-03 2.20E+01 1.46E-03 5.40E-05
JOA 1.03E+00 1.70E+01 3.47E-04 6.47E-09 2.50E+00 2.10E+01 1.99E-02 6.68E-04
SAGWO 9.69E-02 2.10E+01 0.00E+00 0.00E+00 3.81E-03 2.20E+01 0.00E+00 0.00E+00

1000

mDE-bES 9.71E+00 1.90E+01 4.81E-02 3.78E-06 9.66E-04 2.20E+01 2.46E-07 3.31E-10
MCSO 6.99E+00 1.80E+01 2.47E-01 3.14E-10 1.80E-05 2.20E+01 3.97E-05 1.45E-05
JOA 5.35E+00 1.90E+01 1.87E-02 3.47E-05 8.95E-03 2.10E+01 1.44E-01 3.14E-03
SAGWO 3.54E+00 2.10E+01 3.17E-02 6.48E-15 1.41E-11 0.00E+00 0.00E+00 0.00E+00
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Table 6.9: Comparison of the average, median, maximum and minimum objective function values of (F7-F8) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F7 F8

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.66E-01 3.48E-01 3.69E-01 6.60E-01
MCSO 2.24E-02 3.45E-02 3.19E-01 4.87E-03 6.16E+01 3.15E+02 5.97E+03 2.13E+01
JOA 1.25E-09 6.45E-10 3.45E-08 6.47E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.69E-10 3.45E-09 6.47E-06 3.74E-10

100

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.23E-02 6.04E-02 2.72E-02 1.07E-02
MCSO 2.68E-02 3.78E-02 4.67E-01 6.47E-02 3.00E+02 2.61E+01 4.98E+02 6.16E+01
JOA 1.01E-10 6.09E-09 4.11E-08 3.97E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.78E-11 1.23E-11 2.45E-10 3.67E-11

200

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.29E-02 3.15E-02 6.45E-02 3.74E-02
MCSO 1.64E-01 1.06E-01 1.16E-01 1.01E-01 2.59E+01 4.22E+01 3.78E+02 1.71E+01
JOA 2.71E-08 3.84E-07 6.47E-06 9.81E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.21E-12 6.97E-11 3.45E-10 6.54E-12

500

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.84E-01 3.45E-02 1.27E-01 6.21E-02
MCSO 1.49E-02 6.95E-02 1.09E-02 3.47E-02 1.66E+02 6.38E+01 7.54E+02 9.06E+01
JOA 3.44E-11 3.64E-11 6.47E-10 7.97E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.14E-13 1.53E-12 1.25E-10 3.54E-13

1000

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.66E-02 3.87E-02 6.54E-02 1.64E-02
MCSO 7.22E-01 6.47E-01 6.33E-01 5.17E-01 2.32E+01 1.01E+01 4.92E+01 1.45E+01
JOA 5.94E-10 4.82E-09 3.47E-08 6.77E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

SAGWO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.94E-13 3.87E-12 4.64E-10 9.87E-13
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Table 6.10: Comparison of the average, median, maximum and minimum objective function values of (F9-F10) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F9 F10

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 4.62E+02 4.58E+02 7.67E+02 2.64E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 1.10E+04 5.33E+03 1.69E+04 3.98E+03 2.12E+01 3.54E+01 6.54E+01 1.24E+01
JOA 6.02E-02 2.14E-03 3.00E-01 2.66E-03 6.45E-01 3.45E-02 4.57E-01 7.12E-02

SAGWO 1.54E-04 3.52E-04 4.22E-03 1.40E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

100

mDE-bES 7.12E+01 1.25E+01 3.46E+01 1.64E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 3.45E+03 4.58E+02 9.92E+04 2.34E+02 4.64E+02 6.21E+01 7.21E+02 3.97E+01
JOA 7.13E-03 2.05E-02 3.50E-02 2.32E-03 3.74E-02 6.97E-01 3.21E-01 3.01E-02

SAGWO 8.86E-05 2.05E-04 4.58E-03 1.08E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

200

mDE-bES 2.13E+01 4.57E+01 1.67E+02 3.64E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 7.21E+03 1.90E+02 6.16E+03 2.45E+02 3.34E+02 6.41E+01 3.54E+02 7.31E+01
JOA 3.81E-03 1.95E-02 1.20E-02 2.34E-03 2.01E-03 6.12E-02 9.54E-02 3.42E-03

SAGWO 6.54E-04 3.54E-03 7.96E-02 3.54E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

500

mDE-bES 4.62E+01 4.77E+01 7.85E+02 4.58E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 2.04E+03 1.18E+02 1.41E+03 4.62E+02 4.14E+01 3.01E+01 5.42E+02 6.12E+01
JOA 7.22E-03 9.34E-03 6.34E-02 3.12E-04 5.99E-03 1.64E-02 1.03E-02 3.45E-03

SAGWO 5.78E-06 1.75E-05 6.16E-03 3.50E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1000

mDE-bES 1.27E+01 1.53E+01 3.45E+01 1.01E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 1.95E+02 6.45E+01 6.54E+01 2.45E+01 6.31E+02 1.34E+01 6.34E+01 1.24E+01
JOA 3.52E-01 6.24E-01 9.54E-01 3.01E-01 3.54E-02 1.24E-02 6.54E-01 3.01E-02

SAGWO 8.04E-05 4.62E-03 9.74E-03 6.54E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Table 6.11: Comparison of the average, median, maximum and minimum objective function values of (F11-F12) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F11 F12

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 7.01E-06 2.54E-05 6.81E-05 7.12E-06 2.16E-06 3.74E-05 9.75E-04 6.75E-06
MCSO 9.60E+00 1.42E+00 1.66E+00 1.20E-01 8.09E+02 1.03E+01 2.10E+02 6.71E+01
JOA 3.54E-04 5.42E-04 3.12E-02 7.12E-03 9.72E-03 6.75E-02 9.12E-02 7.13E-04

SAGWO 7.87E-08 0.00E+00 1.21E-12 0.00E+00 3.75E-11 2.47E-10 1.87E-10 6.75E-11

100

mDE-bES 1.68E-05 5.88E-04 5.14E-03 6.88E-04 3.01E-05 3.74E-06 4.12E-05 6.45E-06
MCSO 3.82E+00 2.47E+00 3.45E+00 1.24E-01 9.74E+01 2.74E+01 3.97E+01 1.01E+01
JOA 3.57E-05 6.54E-03 8.75E-02 6.75E-04 6.75E-03 6.12E-02 8.01E-02 1.06E-03

SAGWO 4.34E-12 0.00E+00 5.75E-12 0.00E+00 9.28E-10 7.01E-09 1.31E-09 7.64E-10

200

mDE-bES 1.64E-06 3.21E-05 7.12E-05 3.45E-06 9.12E-05 3.45E-04 3.75E-02 6.74E-06
MCSO 2.54E+00 3.41E+00 6.45E+00 3.21E+00 1.75E+00 6.75E+00 3.14E+00 1.21E-01
JOA 1.75E-04 6.34E-03 2.34E-03 3.45E-04 3.74E-04 2.14E-03 1.74E-02 6.47E-03

SAGWO 3.21E-09 3.45E-08 3.64E-08 1.21E-09 6.71E-09 2.75E-08 3.74E-08 9.17E-09

500

mDE-bES 4.43E-05 3.96E-04 2.61E-04 1.54E-05 1.72E-04 3.74E-03 6.74E-03 1.23E-04
MCSO 6.54E+00 3.54E+00 6.75E+00 1.24E+00 7.16E+01 3.17E+00 5.74E+01 3.47E+00
JOA 2.45E-05 3.45E-04 6.54E-04 7.01E-05 9.71E-04 3.74E-03 7.31E-02 3.73E-04

SAGWO 1.64E-11 6.75E-10 3.45E-09 6.75E-10 3.92E-08 1.75E-07 6.09E-08 2.47E-08

1000

mDE-bES 3.98E-05 2.46E-04 1.42E-04 3.54E-05 4.15E-05 3.45E-04 6.87E-03 1.45E-05
MCSO 4.75E+01 6.63E+00 3.75E+01 6.01E+00 3.87E+01 3.45E+00 1.34E+01 3.47E+00
JOA 3.45E-03 1.87E-02 2.94E-02 3.07E-03 7.21E-05 1.84E-04 2.01E-03 1.07E-04

SAGWO 3.17E-10 5.21E-09 7.31E-08 6.75E-10 1.55E-06 6.37E-10 3.54E+00 9.75E-12
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Table 6.12: Comparison of the average, median, maximum and minimum objective function values of (F13-F14) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F13 F14

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 3.19E+01 6.17E+00 1.67E+01 3.75E+00 2.08E-05 2.44E-08 2.64E-07 0.00E+00
MCSO 2.75E+03 4.17E+02 6.78E+03 5.97E+02 6.71E+02 3.47E+00 1.32E+02 3.87E-01
JOA 6.12E-02 3.57E-03 1.37E-01 6.78E-04 5.61E-04 6.42E-03 5.08E-02 3.78E-04

SAGWO 3.75E-10 6.17E-10 1.12E-09 2.75E-11 2.01E+00 1.75E-11 3.12E+00 6.45E-12

100

mDE-bES 7.30E+01 6.60E+00 5.19E+02 1.08E+00 8.01E-04 7.13E-04 5.45E-08 0.00E+00
MCSO 3.83E+03 7.40E+02 1.55E+03 6.18E+01 3.21E+01 5.42E+00 3.47E+01 4.50E+00
JOA 1.43E-03 7.17E-04 3.45E-02 6.19E-05 3.45E-05 6.45E-02 3.14E-02 2.41E-04

SAGWO 3.45E-01 6.75E-10 3.75E-01 6.75E-11 9.43E-08 3.17E-10 2.47E-02 0.00E+00

200

mDE-bES 7.13E+00 6.97E+01 3.75E+02 3.47E+00 9.43E-04 1.91E-03 1.34E-02 1.36E-04
MCSO 3.97E+03 1.75E+02 6.45E+01 7.13E+00 2.09E+01 1.74E+00 6.21E+02 1.42E-01
JOA 4.43E-03 6.71E-02 1.26E-01 4.62E-03 1.07E-04 2.78E-03 2.41E-03 6.74E-04

SAGWO 3.45E-01 7.13E-09 2.12E-01 6.78E-10 5.54E-11 2.67E-10 1.36E+00 1.14E-12

500

mDE-bES 1.27E+01 1.03E+00 6.71E+02 9.71E+00 2.45E-06 1.71E-03 2.67E-01 3.45E-05
MCSO 2.71E+03 2.71E+00 3.74E+01 6.75E-02 2.31E+01 3.47+00 4.12E+01 3.08E-01
JOA 8.63E-04 5.88E-03 1.64E-01 7.45E-04 1.19E-05 3.41E-03 3.75E-01 7.12E-04

SAGWO 1.76E-03 3.71E-08 2.71E-02 3.12E-10 1.67E-09 3.75E-13 2.45E-05 3.47E-12

1000

mDE-bES 6.71E+00 5.18E-02 6.47E+01 3.97E-01 3.58E-03 3.58E-02 9.34E-01 3.64E-03
MCSO 3.67E+03 6.11E+01 1.67E+02 3.74E+00 4.24E+01 3.74E+00 5.08E+01 1.36E+00
JOA 7.93E-03 6.45E+00 6.75E+02 3.97E-03 2.49E-04 6.54E-03 2.17E-01 6.74E-03

SAGWO 4.13E+00 9.74E-08 3.45E-02 9.17E-09 5.97E-09 3.74E-10 3.74E-09 7.21E-10
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Table 6.13: Comparison of the average, median, maximum and minimum objective function values of (F15-F16) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F15 F16

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.32E-08 2.30E-09 2.75E-08 5.46E-10
MCSO 3.45E-01 2.74E-03 6.71E-02 3.31E-04 2.32E+00 3.21E-02 2.16E+00 4.42E-02
JOA 1.07E-10 2.45E-10 1.74E-08 3.74E-10 4.18E-04 4.92E-04 1.61E-04 1.91E-05

SAGWO 1.48E-11 3.74E-11 6.90E-10 4.26E-11 2.41E+00 9.15E-12 2.94E+00 3.15E-12

100

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.04E+00 2.01E+00 2.30E+00 1.71E-01
MCSO 2.71E-01 2.43E-01 1.97E+00 5.08E-03 6.74E+01 4.40E+02 4.71E+03 1.11E+00
JOA 1.37E-09 2.64E-09 2.45E-08 4.16E-09 2.08E-04 2.32E-04 3.15E-03 5.46E-05

SAGWO 1.32E-12 4.62E-11 2.45E-10 3.42E-12 6.16E-10 9.55E-10 3.16E-08 4.03E-11

200

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.36E-05 3.87E-05 6.45E-04 5.23E-05
MCSO 7.31E+00 7.29E+00 1.07E+02 3.12E+00 4.42E+00 5.24E+00 1.25E+01 2.06E+00
JOA 3.54E-09 1.80E-09 7.28E-09 6.91E-10 2.11E-03 1.05E-04 3.15E-03 1.25E-05

SAGWO 1.81E-10 1.54E-11 1.01E-10 3.54E-12 2.04E+00 1.61E-10 1.25E+00 5.28E-11

500

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.46E-06 3.84E-06 3.54E-04 1.35E-07
MCSO 1.02E+01 1.50E+01 1.78E+01 9.84E+00 7.00E+02 5.25E+01 3.81E+02 1.35E+00
JOA 1.32E-08 3.87E-10 6.32E-09 1.39E-11 1.39E-03 2.34E-03 5.47E+00 2.03E-04

SAGWO 3.59E-11 2.66E-10 9.32E-09 3.41E-12 1.39E+00 2.82E-10 3.23E+00 5.28E-11

1000

mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.27E-08 2.03E-08 6.09E-08 9.15E-09
MCSO 2.70E+01 1.34E+01 7.29E+02 1.80E+01 3.84E+03 2.30E+03 5.46E+04 3.87E+02
JOA 1.07E-08 3.92E-08 4.25E-08 9.62E-09 4.42E-02 2.03E-03 2.31E+00 1.34E-03

SAGWO 2.55E-10 2.81E-10 5.94E-10 3.54E-11 8.06E+00 8.13E-11 2.06E+01 1.92E-11
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Table 6.14: Comparison of the average, median, maximum and minimum objective function values of (F17-F18) obtained with mDE-bES,
MCSO, DPSOEP and SAGWO

Dim. Algorithm

Benchmark Function

F17 F18

Avg. Median Max. Min. Avg. Median Max. Min.

50

mDE-bES 3.21E-02 1.05E-01 4.10E+00 5.89E-02 9.33E-04 1.51E-04 2.05E-04 3.02E-05
MCSO 1.23E+00 5.34E+01 2.80E+02 5.45E+00 4.15E+01 7.26E+00 9.60E+02 2.39E-01
JOA 3.21E-01 2.74E+00 6.74E+00 1.74E-02 6.14E-04 3.02E-05 9.71E-01 1.63E-07

SAGWO 2.95E-02 4.27E-07 1.65E+01 9.74E-08 3.41E-06 7.12E+00 3.45E-07 6.74E-09

100

mDE-bES 1.92E+00 2.05E+01 4.25E+03 1.22E+00 1.60E+01 4.14E+00 1.39E+02 9.71E+00
MCSO 9.36E+02 9.35E+01 7.76E+02 2.34E+00 4.28E+02 3.74E+02 4.70E+03 6.41E+01
JOA 1.91E-01 2.22E-01 6.74E+00 9.71E-02 9.75E-03 1.79E-01 1.74E+00 3.21E-04

SAGWO 2.04E-03 1.33E-01 6.74E+00 9.19E-03 5.74E+00 2.74E-06 1.90E+00 1.63E-07

200

mDE-bES 4.18E+01 1.65E+00 3.07E+02 9.17E+00 9.59E-03 5.42E-02 2.51E-01 6.72E-03
MCSO 2.95E+02 1.55E+00 3.45E+02 2.35E+00 1.22E+02 5.85E+02 2.05E+02 2.10E+01
JOA 6.87E-02 2.32E-01 8.84E+00 3.74E-02 5.21E-02 9.59E-03 1.40E-01 9.36E-06

SAGWO 9.71E+00 4.27E-06 5.54E-01 7.32E-07 5.43E+00 9.42E-10 3.74E+00 6.41E-12

500

mDE-bES 1.56E+02 7.00E+00 1.37E+01 6.21E-02 1.13E-01 8.74E-03 5.85E+00 6.09E-04
MCSO 3.47E+03 6.15E+01 3.45E+00 1.60E-01 5.45E+02 2.96E+01 6.74E+03 7.12E+00
JOA 1.11E-03 1.64E-01 2.65E+00 3.12E-02 5.27E-05 1.66E-04 2.12E-01 6.42E-06

SAGWO 4.40E-06 2.95E-02 1.22E-01 6.32E-04 2.82E-04 1.71E-06 7.12E-01 2.56E-09

1000

mDE-bES 3.12E+00 6.41E+00 1.11E+01 3.45E-01 1.71E-02 2.34E-02 8.13E-01 8.60E-03
MCSO 6.45E+02 1.51E+01 6.45E+03 1.74E+00 2.34E+02 7.29E+03 1.11E+04 6.42E+00
JOA 3.45E-04 9.36E-03 3.41E+00 8.31E-05 1.92E-02 3.74E-02 1.61E-02 1.01E-03

SAGWO 6.42E-03 6.47E-03 7.12E-01 3.74E-04 2.54E+01 3.41E+00 3.41E+01 6.21E-05
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Table 6.15: Comparison of the average, median, maximum and minimum objective
function values of (F19) obtained with mDE-bES, MCSO, DPSOEP and SAGWO

Dimension Algorithm Benchmark Function

F19

Avg. Median Max. Min.

50 mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 5.26E+01 3.59E+00 2.87E+02 0.00E+00
JOA 3.51E-07 2.95E-07 5.38E-07 1.54E-11

SAGWO 5.66E-11 6.54E-12 2.19E-10 3.01E-13

100 mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 3.12E+02 6.47E+01 2.15E+03 7.82E+00
JOA 3.14E-10 5.67E-10 3.45E-10 6.71E-11

SAGWO 3.74E-11 6.74E-12 1.65E-10 9.74E-14

200 mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 9.74E+01 6.41E+02 6.41E+03 6.45E+00
JOA 5.32E-10 6.21E-11 3.45E-09 3.54E-12

SAGWO 6.45E-12 3.45E-13 7.54E-12 9.63E-14

500 mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00
MCSO 1.19E+02 5.74E+02 3.36E+04 5.47E+00
JOA 1.11E-10 3.21E-11 5.97E-08 6.85E-12

SAGWO 4.65E-13 3.65E-12 4.12E-10 7.21E-14
1000 mDE-bES 0.00E+00 0.00E+00 0.00E+00 0.00E+00

MCSO 7.50E+03 5.66E+02 1.17E+05 3.67E+00
JOA 2.78E-09 9.74E-10 2.74E-07 3.92E-12

SAGWO 9.12E-10 3.64E-12 2.12E-09 8.21E-14

F6 - Shifted Ackley’s Function

The experimental result of Shifted Ackleys Function test function, fitness value

is 0 SAGWO attains the best value for varying dimensions viz., 500 and 1000

dimensions it provides better result when compared to other algorithms as shown

in Table 6.8. Table 6.16 portrays that the SAGWO achieves better success rate

compared to other algorithms. Though mDE-bES competes with SAGWO but it

fails to attain the better success rate as well in average best objective and average

standard deviations for both 500 and 1000 dimensions as shown in table 6.18. The

radar representation of the success rate for both high dimensionality 500 and 1000

are shown in figure 6.1 and 6.2.

F7 - Shifted Schwefel’s Problem 2.22

The experimental result of Shifted Schwefels Problem 2.22 test function has global
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minimum as 0 which has been attained by mDE-bES and SAGWO for all dimen-

sions it provides better result when compared to other algorithms as shown in

Table 6.9. Table 6.16 portrays that the SAGWO achieves better success rate

compared to other algorithms. Though mDE-bES competes with SAGWO but it

fails to attain the better success rate as well in average best objective and average

standard deviations for both 500 and 1000 dimensions as shown in table 6.18. The

radar representation of the success rate for both high dimensionality 500 and 1000

are shown in figure 6.1 and 6.2.

F8 - Shifted Schwefels Problem 1.2

The experimental results of Shifted Schwefels Problem 1.2 shows that for this test

function, fitness value is 0 which has been attained by DPSOEP for all dimensions

it provides better result when compared to other algorithms as shown in table 6.9.

SAGWO algorithm identifies the best position and too achieve the better best

value compared to other two algorithms. Table 6.16 portrays that the DPSOEP

achieves better success rate compared to other algorithms. Though DPSOEP

competes with SAGWO, it both performs better and attains the better success

rate as well in average best objective and average standard deviations for both 500

and 1000 dimensions as shown in table 6.18. The radar representation of the suc-

cess rate for both high dimensionality 500 and 1000 are shown in figure 6.1 and 6.2.

F9 - Shifted Extended F10

The experimental result of Shifted Extended F10 shows that for this test function,

fitness value is 0 which has attained nearby optimum by SAGWO compared to

mDE-bES, MCSO and DPSOEP. In case of 200 dimensions SAGWO slightly lags

in DPSOEP for best and worst value but it proves its efficacy over average best

objective and median values as shown in table 6.10. Table 6.16 portrays that

the SAGWO achieves better success rate compared to other algorithms. Though

DPSOEP competes with SAGWO but it fails to attain the better success rate as

well in average best objective and average standard deviations for both 500 and

1000 dimensions as shown in table 6.18. The radar representation of the success

rate for both high dimensionality 500 and 1000 are shown in figure 6.1 and 6.2.
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F10 - Shifted Bohachevsky

The experimental results of Shifted Bohachevsky shows that for this test function,

fitness value is 0 which has been attained by mDE-bES and SAGWO for all di-

mensions it provides better result when compared to other algorithms as shown

in table 6.10. Table 6.16 portrays that the SAGWO achieves better success rate

compared to other algorithms. Though mDE-bES competes with SAGWO, it fails

to attain the better success rate as well in average best objective and average stan-

dard deviations for both 500 and 1000 dimensions as shown in table 6.18. The

radar representation of the success rate for both high dimensionality 500 and 1000

are shown in figure 6.1 and 6.2.

F11 - Shifted Schaffer

The experimental result of Shifted Schaffer shows that for this test function, fit-

ness value is 0 which has been attained nearby optimum by SAGWO compared

to mDE-bES, MCSO and DPSOEP. In case of 200 dimensions SAGWO slightly

lags in DPSOEP for best and worst value but it proves its efficacy over average

best objective and median values as shown in table 6.11. Table 6.17 portrays that

the SAGWO achieves better success rate compared to other algorithms. Though

DPSOEP competes with SAGWO, it fails to attain the better success rate as well

in average best objective and average standard deviations for both 500 and 1000

dimensions as shown in table 6.19. The radar representation of the success rate

for both high dimensionality 500 and 1000 are shown in figure 6.1 and 6.2.

F12 Hybrid Function (NS-F9)

The experimental result of Hybrid Function (NS-F9) shows that for this test func-

tion, fitness value is 0 which has been attained nearby optimum by SAGWO

compared to mDE-bES, MCSO and DPSOEP. SAGWO proves its efficacy over

average best objective and median values as shown in table 6.11. Table 6.17 por-

trays that the SAGWO achieves better success rate compared to other algorithms.

SAGWO attains the better success rate as well in average best objective and aver-

age standard deviations for both 500 and 1000 dimensions as shown in table 6.19.

The radar representation of the success rate for both high dimensionality 500 and

1000 are shown in figures 6.1 and 6.2.
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F13 - Hybrid Function (NS-F9)

The experimental result of Hybrid Function (NS-F9) shows that for this test func-

tion, fitness value is 0 which has been attained nearby optimum by SAGWO

compared to mDE-bES, MCSO and DPSOEP. SAGWO proves its efficacy over

average best objective and median values as shown in table 6.12. Table 6.17 por-

trays that the SAGWO achieves better success rate compared to other algorithms.

SAGWO attains the better success rate as well in average best objective and aver-

age standard deviations for both 500 and 1000 dimensions as shown in table 6.19.

The radar representation of the success rate for both high dimensionality 500 and

1000 are shown in figures 6.1 and 6.2.

F14 - Hybrid Function (NS-F9)

The experimental result of Hybrid Function (NS-F9) shows that for this test func-

tion, fitness value is 0 which has attained nearby optimum by SAGWO com-

pared to mDE-bES, MCSO and DPSOEP. Though mDE-bES competes with the

SAGWO, it fails to compete over the high dimensionality thus the SAGWO proves

its efficacy over average best objective and median values as shown in table 6.12.

Table 6.17 portrays that the SAGWO achieves better success rate compared to

other algorithms. SAGWO attains the better success rate as well in average best

objective and average standard deviations for both 500 and 1000 dimensions as

shown in table 6.19. The radar representation of the success rate for both high

dimensionality 500 and 1000 are shown in figures 6.1 and 6.2.

F15 - Hybrid Function (NS-F10)

The experimental results of Hybrid Function (NS-F10) shows that for this test

function, fitness value is 0 which has been attained by mDE-bES for all dimen-

sions it provides better result when compared to other algorithms as shown in table

6.13. Table 6.17 portrays that the SAGWO achieves better success rate compared

to other algorithms. Though mDE-bES competes with SAGWO, it fails to attain

the better success rate as well in average best objective and average standard

deviations for both 500 and 1000 dimensions as shown in table 6.19. The radar

representation of the success rate for both high dimensionality 500 and 1000 are

shown in figure 6.1 and 6.2.
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Table 6.16: Comparison of the Average Best Objective (ABO), Average Standard Deviation (ASD) and Success Rate (SR) for 500
Dimension benchmark problems obtained with mDE-bES, MCSO, DPSOEP and SAGWO.

Fun.

Algorithm

mDE-bES MCSO DPSOEP SAGWO

ABO ASD SR ABO ASD SR ABO ASD SR ABO ASD SR

F1 0.00E+00 0.00E+00 100 1.88E-10 1.21E-09 92 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 100
F2 4.94E+01 3.21E+00 80 1.87E+01 1.77E+01 76 2.43E-05 2.01E-05 88 5.87E-14 4.32E-15 92
F3 4.78E+01 3.43E+01 88 1.53E+05 2.38E+02 68 1.27E-13 3.45E-12 92 0.00E+00 0.00E+00 100
F4 2.97E-01 1.64E-01 84 2.19E+02 1.67E+00 68 3.18E-13 2.51E-14 88 1.97E-04 1.23E-05 92
F5 3.79E-05 3.55E-04 88 2.11E-02 1.92E-02 76 7.18E-06 6.34E-07 88 0.00E+00 0.00E+00 100
F6 2.16E-11 1.69E-12 92 2.10E-05 1.74E-05 84 3.29E-03 2.45E-03 84 0.00E+00 0.00E+00 100
F7 0.00E+00 0.00E+00 100 1.49E-02 1.27E-02 84 3.44E-11 6.65E-11 92 0.00E+00 0.00E+00 100
F8 1.84E-01 2.45E-02 88 1.66E+02 3.63E+01 80 0.00E+00 0.00E+00 100 1.14E-13 9.72E-14 96
F9 4.62E+01 3.79E+00 80 2.04E+03 7.51E+02 64 7.22E-03 3.64E-05 84 5.78E-06 9.54E-08 96
F10 0.00E+00 0.00E+00 100 4.14E+01 8.68E-03 76 5.99E-03 3.41E-04 88 0.00E+00 0.00E+00 100
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Table 6.17: Comparison of the ABO, ASD and SR for 500 Dimension benchmark problems obtained with mDE-bES, MCSO, DPSOEP
and SAGWO.

Fun.

Algorithm

mDE-bES MCSO DPSOEP SAGWO

ABO ASD SR ABO ASD SR ABO ASD SR ABO ASD SR

F11 4.43E-05 6.87E-07 88 6.54E+00 8.31E-02 80 2.45E-05 9.71E-05 84 1.64E-11 3.96E-10 96
F12 1.72E-04 7.12E-01 92 7.16E+01 3.01E+00 84 9.71E-04 2.08E-06 92 3.92E-08 8.54E-09 96
F13 1.27E+01 3.65E-01 88 2.71E+03 2.85E+00 80 8.63E-04 5.25E-04 96 1.76E-03 5.14E-05 92
F14 2.45E-06 3.54E-07 84 2.31E+01 5.78E-01 88 1.19E-05 6.74E-06 92 1.67E-09 3.84E-08 88
F15 0.00E+00 0.00E+00 100 1.02E+01 3.58E+00 92 1.32E-08 2.45E-06 96 3.59E-11 3.54E-09 92
F16 2.46E-06 6.84E-07 92 7.00E+02 6.54E+00 88 1.39E-03 6.51E-02 84 1.39E+00 6.97E+00 88
F17 1.56E+02 9.54E+00 88 3.47E+03 4.52E+01 92 1.11E-03 5.98E-04 92 4.40E-06 9.54E-07 96
F18 1.13E-01 2.54E-03 84 5.45E+02 3.84E+00 88 5.27E-05 6.84E-06 96 2.82E-04 1.31E-05 96
F19 0.00E+00 0.00E+00 100 1.19E+02 3.51E+00 88 1.11E-10 3.51E-10 92 4.65E-13 5.34E-13 9691



Table 6.18: Comparison of the ABO, ASD and SR for 1000 Dimension benchmark problems.

Fun.

Algorithm

mDE-bES MCSO DPSOEP SAGWO

ABO ASD SR ABO ASD SR ABO ASD SR ABO ASD SR
F1 0.00E+00 0.00E+00 100 2.12E-11 3.54E-10 92 0.00E+00 0.00E+00 100 0.00E+00 0.00E+00 100
F2 4.32E+01 2.47E+00 84 1.85E+01 6.54E+00 80 4.98E-04 9.47E-03 88 9.43E-14 6.45E-15 92
F3 7.89E+01 1.02E+00 92 7.85E+03 7.12E+00 72 6.99E+00 4.50E-03 92 0.00E+00 0.00E+00 100
F4 3.14E+00 8.49E-02 88 2.78E+01 3.82E-01 72 2.47E-01 7.97E-02 84 0.00E+00 7.81E-13 92
F5 2.47E-06 3.54E-08 80 4.78E-02 4.19E-03 80 6.31E-06 5.22E-08 88 3.17E-12 0.00E+00 100
F6 1.44E-12 1.25E-14 88 4.13E-05 1.74E-06 88 3.45E-02 4.94E-03 84 0.00E+00 0.00E+00 100
F7 0.00E+00 0.00E+00 100 7.22E-01 3.55E-03 84 5.94E-10 2.07E-12 92 0.00E+00 0.00E+00 100
F8 2.66E-02 9.12E-04 88 2.32E+01 3.99E-01 80 0.00E+00 0.00E+00 100 5.94E-13 2.55E-14 96
F9 1.27E+01 1.12E+00 80 1.95E+02 7.26E+00 72 3.52E-01 3.64E-05 84 8.04E-05 9.54E-08 96
F10 0.00E+00 0.00E+00 100 6.31E+02 1.46E+00 76 3.54E-02 2.85E-01 88 0.00E+00 0.00E+00 96
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Table 6.19: Comparison of the ABO, ASD and SR for 1000 Dimension benchmark problems.

Fun.

Algorithm

mDE-bES MCSO DPSOEP SAGWO

ABO ASD SR ABO ASD SR ABO ASD SR ABO ASD SR

F11 3.98E-05 3.31E-03 92 4.75E+01 2.01E-01 72 3.45E-03 7.81E+00 76 3.17E-10 4.70E-08 92
F12 4.15E-05 8.46E-04 88 3.87E+01 6.57E+00 80 7.21E-05 8.31E-03 88 1.55E-06 4.94E-05 88
F13 6.71E+00 2.10E-02 76 3.67E+03 1.03E+00 68 7.93E-03 2.50E+00 84 4.13E+00 5.86E-03 84
F14 3.58E-03 1.28E-04 80 4.24E+01 9.69E-02 84 2.49E-04 3.81E-03 88 5.97E-09 1.22E-11 92
F15 0.00E+00 2.04E-14 96 2.70E+01 1.14E-02 80 1.07E-08 6.57E-09 92 2.55E-10 4.71E-09 96
F16 2.27E-08 8.46E-09 88 3.84E+03 9.71E+00 76 4.42E-02 9.66E-04 88 8.06E+00 2.07E-01 88
F17 3.12E+00 5.16E-02 80 6.45E+02 6.99E+00 72 3.45E-04 1.80E-05 88 6.42E-03 4.51E-04 92
F18 1.71E-02 8.46E-03 80 2.34E+02 5.35E+00 76 1.92E-02 8.95E-03 84 2.54E+01 1.38E-03 88
F19 0.00E+00 6.78E-14 96 7.50E+03 3.54E+00 84 2.78E-09 1.41E-11 92 9.12E-10 9.12E-13 96
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F16 - Hybrid Function (NS-F9)

The experimental result of Hybrid Function (NS-F9) shows that for this test func-

tion, fitness value is 0. Though it fails to achieve the optimum but it achieves

the nearer optimum solution by SAGWO for all dimensions it provides better

result when compared to other algorithms as shown in Table 6.13. Table 6.17

portrays that the SAGWO achieves better success rate compared to other algo-

rithms. Though mDE-bES competes with SAGWO, it fails to attain the better

success rate as well in average best objective and average standard deviations for

both 500 and 1000 dimensions. The radar representation of the success rate for

both high dimensionality 500 and 1000 are shown in figure 6.1 and 6.2.

F17 Hybrid Function (NS-F9)

The experimental result of Hybrid Function (NS-F9) shows that for this test func-

tion, fitness value is 0 which was attained by SAGWO for all dimensions it provides

better result when compared to other algorithms as shown in Table 6.14. SAGWO

algorithm identifies the best position and too achieve the better best value com-

pared to other two algorithms. Table 6.14 portrays that the DPSOEP achieves

better success rate compared to other algorithms. Though DPSOEP competes

with SAGWO both performs better and attains the better success rate as well

in average best objective and average standard deviations for both 500 and 1000

dimensions. The radar representation of the success rate for both high dimension-

ality 500 and 1000 are shown in figure 6.1 and 6.2.

F18 - Hybrid Function (NS-F9)

The experimental result of Hybrid Function (NS-F9) shows that for this test func-

tion, fitness value is 0 which was attained by SAGWO for all dimensions it provides

better result when compared to other algorithms in terms of best value as shown

in Table 6.14. SAGWO algorithm identifies the best position and too achieve the

better best value compared to other two algorithms. Table 6.17 portrays that

the DPSOEP achieves better success rate compared to other algorithms. Though

DPSOEP competes with SAGWO both performs better and attains the better

success rate as well in average best objective and average standard deviations for

both 500 and 1000 dimensions as shown in table 6.19. The radar representation

of the success rate for both high dimensionality 500 and 1000 are shown in figure

6.1 and 6.2.
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F19 Hybrid Function (NS-F10)

The Shifted Greiwanks function has the fitness value as 0 which has been attained

by SAGWO for small dimensions like 50 and 100 dimensions whereas as SAGWO

attains the best value for varying dimensions viz., 50, 100, 200, 500 and for 1000

dimensions it provides better result when compared to other algorithms as shown

in table 6.15. Table 6.17 portrays that the SAGWO achieves better success rate

compared to other algorithms. Though mDE-bES competes with SAGWO, it fails

to attain the better success rate as well in average best objective and average stan-

dard deviations for both 500 and 1000 dimensions as shown in table 6.19. The

radar representation of the success rate for both high dimensionality 500 and 1000

are shown in figure 6.1 and 6.2.

The overall observation of the success rate for all test functions has been presented

in Figure 6.3. It clearly shows that the proposed SAGWO provides better success

rate compare to all the algorithms for 500 and 1000 dimensions problems. The

SAGWO obtains 96% (approx.) for 500 dimensions whereas mDE-bES achieves

90% and DPSOEP achieves 91% (approx.) and MCSO achieves 81% (approx.). At

the same time, when the dimensionality of the problem increases from 500 to 1000

dimensions, the SAGWO algorithm provides better results for all test functions

with 94% (approx.) whereas mDE-bES achieves 88% and DPSOEP achieves 88%

(approx.) and MCSO achieves 78% (approx.). This success rate conveys that

SAGWO algorithm provides better results for all the n independent runs which

shows that the algorithm has the capability to adapt to the problem though the

scalability of the problem increases.
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Figure 6.1: Comparison of 500 Dimensional benchmark problems w.r.t Success Rate for mDE-bES, MCSO, DPSOEP and SAGWO.
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Figure 6.2: Comparison of 1000 Dimensional benchmark problems w.r.t Success Rate for mDE-bES, MCSO, DPSOEP and SAGWO.
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Figure 6.3: Overall success rates of all test problems for 500 and 1000 dimensions
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6.3.3.3 Sensitivity Analysis

This section utilizes the functionality of the SAGWO with varying population

size and number of subgroups. Moreover, population size plays a vital role in

determining the stagnation or premature convergence of the algorithms. Generally,

when the population size increases, then the problem of premature convergence

and stagnation reduces as much as possible. Increase in the population size has

the effect of reducing the convergence velocity. As a result, appropriate size of

population has to be determined when dealing with the large-scale problems. The

aim of dealing the sensitivity analysis is to study the effects of the population size

on the new proposal. In addition to that, the number subgroup aids to identify

the best optimum by splitting the population into different groups. This helps

to legitimate the local optima stagnation when the dimensionality of the problem

increases gradually. Normally, the problem holds high local optima when the size

of the dimension of a problem increases. In order to handle it, the algorithm

should have the capability to deal with those problems by adapting its population

size and number of subgroups.

Table 6.20 shows the results obtained by varying the number of population size and

number of groups for high dimensionality problems viz., 500 and 1000 dimensions.

The problem with lesser than 500 dimensions can be easily solved by the most of

the algorithms but it fails to achieve the optimum when the dimensionality of the

problem increases, this analysis helps to prove the proposed capability by handling

the large-scale problems. From the Table 6.20, we observed that for the population

size 100 and number of subgroups 4 gets best value compared to other variations

on the population size and subgroups. In order to observe the population size and

subgroups, we selected some of the functions from separable, non-separable and

hybridized functions such as F1, F3, F5, F7, F8, F15 and F19.

Based on this observation, the proposed SAGWO algorithm fix the population

size as 100 and subgroups as 4 for all the experimentation of benchmark func-

tions.
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Table 6.20: Sensitive analysis with varying population size and swarm size

NP
D=500 D=1000

50 75 100 125 150 50 75 100 125 150

F1 1.46E-10 3.54E-11 0.00E+00 4.62E-11 6.21E-09 5.12E-13 6.12E-14 0.00E+00 3.74E-11 6.74E-13
F3 3.45E-06 5.62E-08 7.54E-09 4.45E-07 2.14E-05 7.39E-08 5.27E-07 5.14E-08 9.50E-08 4.19E-08
F5 7.64E-10 6.08E-10 5.48E-11 2.11E-05 6.54E-12 3.11E-10 6.45E-12 0.00E+00 4.21E-13 2.12E-11
F7 5.41E-13 2.15E-06 1.84E-12 7.26E-12 5.47E-07 5.47E-12 6.12E-10 3.45E-13 2.41E-10 6.41E-10
F8 3.54E-03 4.12E-05 9.12E-07 1.21E-06 3.97E-06 4.33E-10 7.95E-09 3.11E-08 5.87E-11 9.64E-10
F15 2.41E-07 5.68E-05 6.74E-08 9.33E-07 9.64E-04 6.45E-10 2.10E-11 7.21E-11 3.74E+10 6.97E-12
F19 3.97E-10 1.05E-13 3.51E-08 1.85E-07 3.97E-11 2.71E-12 6.44E-12 7.95E-14 3.66E-12 4.52E-13

S 2 3 4 5 6 2 3 4 5 6

F1 3.15E-11 6.23E-07 5.21E-09 1.74E-07 0.00E+00 9.12E-12 6.74E-13 5.45E-14 6.54E-12 6.47E-11
F3 4.56E-07 6.87E-07 9.74E-09 8.15E-08 5.14E-06 3.74E-09 2.10E-08 1.11E-10 7.79E-10 3.51E-09
F5 3.64E-09 7.34E-10 6.54E-09 3.45E-09 5.74E-10 7.12E-10 6.66E-10 5.45E-09 2.34E-10 2.12E-11
F7 6.95E-11 3.12E-10 2.31E-13 6.54E-11 2.87E-10 6.97E-10 2.21E-12 9.54E-13 4.32E-12 7.87E-11
F8 8.71E-05 7.32E-06 3.45E-07 3.74E-09 6.74E-08 1.21E-07 3.22E-07 2.45E-07 3.97E-07 9.87E-07
F15 5.62E-10 3.45E-11 1.45E-13 6.45E-10 7.12E-11 2.87E-11 6.82E-12 7.11E-10 4.75E-12 5.74E-10
F19 3.67E-09 8.54E-11 6.74E-12 7.12E-13 6.74E-12 3.96E-10 5.21E-11 5.44E-12 7.64E-11 8.71E-10

Note: NP Number of Populations, S Number of Sub groups, D Dimension of the problems
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6.4 Summary

Experimentation and result analysis steps were utilized for evaluating and project-

ing the efficacy of the proposed SAGWO approach when compared with mDE-bES,

MCSO and DPSOEP. Large scale benchmark functions were taken to evaluate the

performance of the proposed SAGWO algorithm. To assess the capability of the

algorithm in solving benchmark test functions and attaining global optimum, dif-

ferent performance metrics and various criteria were considered. From the result,

it clearly shows that SAGWO has the ability to attain objective value for 96% of

the test functions which shows an improvement over other compared algorithm

as well as the classical GWO. Based on the success rate and average standard

deviation of the test function, we notify that SAGWO outperforms over test func-

tions. In case of sensitivity analysis, the experimentation over the population size

and subgroups clearly deliberates that the SAGWO has the capability to handle

the local optima and premature convergence. Finally, it has been depicted that

SAGWO algorithm has visibly improved the efficiency of algorithm, and it has

the capability to search the large space to obtain the optimal solution efficiently

compared to other algorithms. This shows that the SAGWO has shown its efficacy

in identifying the best suitable point in the search space for the best functional

expression in an environment with improved quality of solution.
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Chapter 7

SAGWO for Real Time Applications

7.1 Introduction

Self adaptive grey wolf optimization is an enriched algorithm formulated to handle

the large scale optimization problems which influences or regulates the activities

of the grey wolf in the same environment. This algorithm was computationally

modeled and described in the chapter 4 and 5. Self adaptive grey wolf plays an

important role in adapting their behaviors for scalability problems which leads to

determine the global optimal solutions by eradicating the local optimal stagnation.

Further, neighborhood search mechanism and position repulsion operators are

incorporated to improve the quality of the solutions and to attain the same in a

minimum computational time.

To assess the efficiency of the proposed SAGWO algorithm, large scale test func-

tions have been chosen initially and it was analyzed in chapter 6. In addition to

that, the real world problems viz., the economic load dispatch and localization

problems are chosen to analyze the performance of SAGWO over existing algo-

rithms. Economic Load Dispatch (ELD) is one of the general problems in power

systems that considered as the large scale problem in case of the number of gen-

erating units in the system increases gradually. In general, solving this problem

with multiple constraints is quite complex as well as finding the optimal solution

is crucial task.

In addition to that, localization problem is considered as one of the challenging

problem in wireless sensor networks. In case of identifying the position of the

sensor nodes in dense network is crucial because inaccurate position might lead

the network to failure state. At the same time, the increase in number of unknown

nodes will change the networks to quite complex and non-trivial task. The pro-

posed SAGWO has self-adaptability and complexity over solving the complex and

large scale problems which easily attain an optimal solution.
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7.2 Economic Load Dispatch (ELD) Problem

Economic load dispatch (ELD) problem is a well-established complex optimization

problem which includes the non-convexity, non-linearity and high-dimensionality.

The complexity of the problem arises due to the design specifications and operation

constraints of the generating units such as the turning holds, transmission losses,

restricted activity zones, esteem point impacts, and various fuel alternatives. The

objective of this problem is to identify the optimal combination of the output

power of all the online generating units that minimize the total fuel cost, while

satisfying various constraints generated on the system and units.

In reality, most of the thermal generating units are provided with the different

fuel like coal, natural gas and oil. In this situation, the function of ELD problem

is altered from single quadratic function into non-smooth quadratic function. In

addition to that, value point effects are quite important to obtain the accurate cost.

In practical, considering both the value point effects and different fuel options at

the same time for large scale ELD with hundreds of generating units would pose a

crucial task because of discontinuous values and local optima. In such case, solving

this problem using the traditional optimization techniques is quite complex.

In this work, a novel optimization technique namely SAGWO algorithm is applied

to solve the large scale ELD problems by considering both multiple fuel options

and value-point effects simultaneously. As per the discussion in chapter 6, we

notified that the SAGWO is quite efficient to solve the complex and high dimen-

sionality problems through efficient search operators, namely neighborhood search

mechanism, position repulsion mechanism and global best oscillation techniques.

In addition to that, this algorithm overcomes the issues of local optima stagna-

tion and premature convergence by balancing the exploration and exploitation

process.

Objective Function The objective of the ELD problem is to reduce the total fuel

cost of power generation by compensating the equality and inequality constraints

imposed on the system and units. In practical, the ELD cost function with both

multiple fuel options and value point effects is given in Eq. 7.1:

f(Pi) =
D∑
d=1

F (Pi,d) + |
D∑
d=1

Pi,d − PWdemand − PWloss| ×W (7.1)
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where, w denotes the penalty coefficient is fixed as 0.55 for all the test instances,

PWdemand represents the power demand and PWloss transmission power loss.

F (Pi) =



ai1 + bi1Pi + ci1P
2
i + |ei1sin[fi1(P

min
i − Pi)]|, Pmin

i ≤ Pi ≤ Pi1

ai2 + bi2Pi + ci2P
2
i + |ei2sin[fi2(P

min
i − Pi)]|, Pi1 ≤ Pi ≤ Pi2

. .

. .

. .

aik + bikPi + cikP
2
i + |eiksin[fik(P

min
i − Pi)]|, Pi(k−1) ≤ Pi ≤ Pmax

i

(7.2)

where aik, bik, cik, eik and fik are cost coefficient of the ith generator using the fuel

type k. Pmax
i - Maximum power output of the ith generating unit.

7.2.1 Experimental Setup

For ELD, the test case systems are taken from [Chiang 2007] that contains the

number of units, min and max of generation power for every unit along with the

different fuel options and the cost coefficients. The proposed SAGWO algorithm

undergoes for the six different types of test case systems namely 10-640 units

with value point effects and different fuel options. The optimal results achieved

by SAGWO algorithm is compared with the other state-of-art of meta-heuristics

algorithms proposed in the literature. On the other hand to validate the efficiency

of the proposed algorithm namely 320 and 640-unit systems are taken as large

scale instance which has huge local optima and high dimensionality.

The parameters used in the SAGWO for experiment and its corresponding values

are reported in table 6.1. Initial population size for the SAGWO is set as 100 and

the maximum number of generations is considered as 1000. In addition to that,

the penalty coefficient to handle the constraints is fixed as 0.55. Furthermore,

each test case has been repeated for 100 trails in order to minimize the statistical

errors. The cost and the power output in all tables and figures are represented as

$/h and MW .

104



7.2.2 Performance Metrics

In order to analyze the performance of the proposed SAGWO algorithm, com-

parisons are made with other algorithms namely CSO, OGWO and LFA respec-

tively. Six performance metrics were used for evaluating the experimental results,

which are mentioned in this section [Meng et al. 2016; Chiang 2005; Park et al.

2010].

Total Number of Function Evaluations (TFE):The total number of function evalu-

ations (TFE) is determined as number of function evaluations required for a single

run is given in Eq. 7.3.

TFE = ε ? PopulationSize ? MaximumnumberofIterations (7.3)

where ε represented as the number of objective evaluations performed by an al-

gorithm when the population size is set to be 1 and number of generations is set

to be 1. The function evaluation may vary only if the algorithm stagnates in

local optima for certain number of generations otherwise the proposed SAGWO

algorithm has ε = 1.

7.2.3 Experimental Analysis

This section discuss about the efficiency of the proposed SAGWO algorithm and

compared with OGWO [Pradhan et al. 2017], LFA [Kheshti et al. 2017] and CSO

[Cheng and Jin 2015] algorithms by considering the performance metrics that

are discussed in section 7.2.2. The test instances are taken from the [Chiang

et al. 2005] for the experiment are categorized into three classifications namely

small scale instance (10-unit system), medium scale instance (40, 80 and 160-unit

system) and large scale instance (320 and 640-unit system) and the experimental

setup are same for all the instances. Table 7.1 7.8 and figure 7.1 - 7.12 reveal the

performance of the SAGWO in case of 10 to 640-unit systems.

7.2.3.1 Small Scale Test Instance: 10-unit systems

Small test instance deals with the small scale system namely 10-unit systems

with different fuel options and value point effects are used respectively. This
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instance has been most commonly used as the benchmark test instance by all meta-

heuristic algorithms in order to analyze the performance of the same. The total

demand for this instance is fixed as the 2700 MW and the transmission loss has

not been considered. The best solution obtained by SAGWO algorithm and other

compared algorithms for 10-unit system is represented in Table 7.1. The table 7.1

results clearly shows that all the algorithms provides the final power output while

analyzing the total fuel cost, the proposed SAGWO algorithm provides minimum

fuel cost compare to other algorithms.

Table 7.1: Best power output for 10-unit system with load demand of 2700 MW

Units Fuel type SAGWO OGWO LFA CSO

1 2 217.6954 218.7524 219.5247 219.1274
2 1 211.7024 211.1034 211.0346 211.3547
3 1 280.6461 280.5341 279.3421 279.2218
4 3 239.3122 239.4516 239.4476 239.6071
5 1 279.3475 279.8249 280.6521 280.2478
6 3 239.9715 239.7213 239.3525 239.4217
7 1 287.9571 287.6304 287.2463 287.5616
8 3 239.8233 239.2145 240.0527 240.271
9 3 427.6024 427.8247 428.2961 428.0624
10 1 275.9421 275.9426 275.0512 275.1246

Total power output 2700 2700 2700 2700

Total cost 622.863 623.828 623.621 626.754

The performance analysis of the proposed SAGWO algorithm and other algorithms

are given in table 7.2. From the table 7.2, proposed SAGWO algorithm provides

better results for all the performance metrics namely minimum, maximum, and

average fuel cost. At the same time the proposed algorithm provides best results

for all 100 trails which in result provide the minimum standard deviation compare

to other algorithms. While analyzing the success rate, the proposed SAGWO

algorithm deliberates the better results compare to other comparison algorithms.

Furthermore, the proposed SAGWO requires only minimum number of function

evaluations in order to obtain the best result for the test instance 1.

The convergence curves provided in the figure 7.1 clearly shows that the proposed

SAGWO algorithm needs only 200 iterations to converge towards the best solution.

The best result obtained by running the system repeatedly for 100 times and the

best solution obtained for the every trial is presented in figure 7.2 . It clearly shows

that in case of repeated simulation SAGWO provides centralized results which are

nearby best costs and only minimum number simulations gives the little bias. The
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Table 7.2: Comparison of the statistical analysis over 100 trails

Units Algorithm

Total Generation Cost($/h)

Std SR(%) Time(S)
Min Avg Max

10-Unit

OGWO 623.828 624.521 625.412 0.3245 76 10.06
LFA 623.621 624.012 624.854 0.2475 88 9.42
CSO 626.754 627.423 628.529 0.5312 86 11.02

SAGWO 622.863 622.8637 622.8721 0.1234 91 9.04
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Figure 7.1: The convergence curve of SAGWO in small scale test instance (10-unit
systems)

result of obtained SAGWO deliberates that it has the good stability performance

and has the collective intelligence to tackle the local optimal solutions.

7.2.3.2 Medium Scale Test Instance-1: 40-unit systems

This section consists of the 40-unit system, which replica of small scale test in-

stance for 4 times respectively. As the size of the generating units increases, more

local optima gradually increase for the ELD problem with different fuel options

and value-point effects. In order to deal this problem, an efficient optimization

algorithm with more searching capability to eradicate the local optima struck as

well as the premature convergence problem. The result obtained by SAGWO for

40-unit system with load demand of 10800 MW is provided in the table 7.3. The

table 7.3 presents the output power of the each generating units and its total fuel

cost for generating the same. The result for 40-unit systems utilizes the differ-
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Figure 7.2: Distribution of the minimum costs obtained over 100 trails for small scale
test instance (10-unit systems)

ent fuel options which in result provide the minimum fuel cost of 2495.714 $h to

generate the desired power output of 10800 MW.

The convergence curves of the different algorithms are given in figure 7.3, it clearly

deliberates that the proposed SAGWO provides the faster convergence compare

to other algorithms. Initially, the algorithm generates the arbitrary values for

every agent and by using the efficient operators the search agent attains the best

position which is a result of faster convergence rate. Thus, the proposed algorithm

requires only 175 iterations to identify the best solution as well as proves its

efficiency and sustains the best place compared to other algorithms. The results

of the distribution of the minimum costs obtained for the SAGWO algorithm over

100 trials are given in the figure 7.3. It clearly shows that most of the minimum

costs repeatedly obtain the best cost and only few trials exceeds the average costs.

This shows that SAGWO has better stability for solving the ELD problems with

40-unit systems with multiple fuel options.

From the table 7.5, the proposed SAGWO algorithm obtains the minimum total

fuel costs for 40-unit system is 2495.7145$/h. In addition to that, SAGWO out-

performs other algorithms in terms of providing the minimum cost, maximum cost

and average cost. The minimum cost is selected from one of the minimum best

cost obtained over 100 trails. Though LFA algorithm competes with proposed

SAGWO, it fails to converge as much as faster.
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Table 7.3: Best power output for 40-unit system with load demand of 10800 MW

Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type

1 218.0374 2 11 217.5274 2 21 215.3741 2 31 219.3568 2
2 212.2742 1 12 211.3712 1 22 210.6375 1 32 210.2577 1
3 278.5374 1 13 278.6274 1 23 281.4617 1 33 280.5775 1
4 239.6276 3 14 239.3826 3 24 240.9354 3 34 240.2456 1
5 280.1228 1 15 280.7341 1 25 282.6723 1 35 275.2471 1
6 238.5159 3 16 238.5247 3 26 239.7234 3 36 239.8347 3
7 289.7357 1 17 288.6852 1 27 288.3712 1 37 285.0324 1
8 240.3842 3 18 238.5375 3 28 238.3845 3 38 241.0733 3
9 430.5043 3 19 432.4374 3 29 434.2795 3 39 428.2175 3
10 274.3826 1 20 273.6371 1 30 272.1567 1 40 274.5721 1

Total power output: 10801 MW Total cost: 2495.71$/h

PO* - Power Output,
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Figure 7.3: The convergence curve of SAGWO in Medium test instance-1 (40-unit
systems)
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Figure 7.4: Distribution of the minimum costs obtained over 100 trails for Medium
test instance-1 (40-unit systems)

While analyzing the success rate of the SAGWO provides the repeated best so-

lution and achieves the better success rate compared to other algorithms. LFA

algorithm provides best solution for 82 trails whereas SAGWO provides best solu-

tion for 86 trails. In addition to that, the number of function evaluations processed

for the proposed algorithm is lesser among the others except the LFA algorithm
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because the number of function evaluations increases in case of handling the effi-

cient neighborhood search mechanism in SAGWO for particular cases. In terms

of computational time LFA algorithm provides the solution within the minimum

time period whereas in case of analyzing the total cost, SAGWO provides the

minimum which result conveys that the SAGWO is efficient in providing the best

solution compare to LFA algorithm.

7.2.3.3 Medium Scale Test Instance-2: 80-unit systems

In case of medium test instance 2 deals with the 80-unit system which are 8

times duplication of the 10-unit systems with multiple fuel options and value-

point effects. The load demand fixed for the 80-unit system is 21600 MW and

the results of the 80-unit systems are shown in table 7.4. This shows the power

output of all the 80 generators and its total fuel cost utilized for operating the

system. The total fuel cost of the 80-unit systems obtained by the SAGWO is

4986.474$/h.

The convergence curves of the different algorithms are given in figure 7.5, it clearly

deliberates that the proposed SAGWO provides the faster convergence compare

to other algorithms. The proposed algorithm utilizes the minimum iterations to

identify the best solution as well as proves its efficiency and sustains the best

positions compare to other algorithms. The convergence of the SAGWO is much

efficient than other meta-heuristics algorithms. The results of the distribution of

the minimum costs obtained for the SAGWO algorithm over 100 trails are given in

the figure 7.6. It clearly shows that most of the minimum costs repeatedly obtain

the best cost and only few trails are exceeds the average costs. This shows that

SAGWO has better stability for solving the ELD problems with 40-unit systems

with multiple fuel options.

The comparative results of the proposed algorithm and other algorithms for 80-

unit systems are provided in table 7.5. From the obtained results, it clearly shows

that SAGWO provides better results in terms of minimum cost, average cost and

maximum cost. In addition to that, it provides the minimum standard deviation

which means the algorithm provides better results for 100 trails of simulations.

While analyzing the success rate and number of function evaluations SAGWO

provides better success rate as well minimum number of function evaluations for

the obtaining the best solution. In terms of computational efficiency, SAGWO

obtains the best solution within a reasonable time period.
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Table 7.4: Best power output for 80-unit system with load demand of 21600 MW

Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type

1 217.3475 2 21 213.5578 2 41 216.534 2 61 215.1125 2
2 210.2496 1 22 211.2686 1 42 210.9638 1 62 211.0352 1
3 277.2487 1 23 276.2486 1 43 275.8535 1 63 278.0565 1
4 239.6374 3 24 239.5787 3 44 239.5582 3 64 238.0052 3
5 272.2595 1 25 273.9377 1 45 276.6552 1 65 276.0785 1
6 238.9347 3 26 239.8892 3 46 239.5882 3 66 238.2586 3
7 285.5374 1 27 284.7535 1 47 285.7535 1 67 282.3286 1
8 238.3579 3 28 238.8966 3 48 239.8653 3 68 239.4253 3
9 423.2886 3 29 423.2773 3 49 419.2568 3 69 422.0468 3
10 272.4674 1 30 272.9671 1 50 267.2358 1 70 272.3644 1
11 217.2375 2 31 216.347 2 51 217.8682 2 71 212.6862 2
12 209.3179 1 32 211.5667 1 52 210.2635 1 72 210.2935 1
13 277.8314 1 33 278.934 1 53 278.6538 1 73 278.6728 1
14 238.9347 3 34 238.0347 3 54 239.6524 3 74 238.9242 3
15 273.6278 1 35 275.3175 1 55 272.1353 1 75 272.7572 1
16 238.2582 3 36 239.1238 3 56 240.5835 3 76 239.7956 3
17 285.2528 1 37 283.6347 1 57 284.8652 1 77 283.5847 1
18 238.8852 3 38 238.3013 3 58 238.4245 3 78 238.7521 3
19 423.7578 3 39 423.5317 3 59 423.8056 3 79 420.9356 3
20 269.2558 1 40 269.3427 1 60 489.1254 1 80 268.0457 1

Total power output: 21600 MW Total cost: 4986.474$/h

PO* - Power Output,
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Table 7.5: Comparison of the statistical analysis over 100 trails for Medium scale Test
Instance

Units Algorithm

Total Generation Cost($/h)

Std SR(%) Time(S)
Min Avg Max

40-Unit

OGWO 2499.986 2500.214 2503.563 0.6451 76 31.54
LFA 2491.9688 2493.1419 2493.9716 0.5234 88 26.47
CSO 2495.7888 2496.9341 2497.132 0.2484 91 22.12

SAGWO 2495.715 2496.396 2497.321 0.2643 96 21.49

80-Unit

OGWO 4994.642 4996.457 4999.934 0.8912 74 45.31
LFA 4988.517 4990.6001 4991.9812 0.8416 86 36.29
CSO 4990.9267 4991.2948 4992.0014 0.3074 90 53.12

SAGWO 4986.476 4987.341 4989.425 0.2924 95 35.08

160-Unit

OGWO 9986.457 9987.637 9989.0216 0.4678 73 67.12
LFA 9980.2096 9984.9959 9988.7855 1.9379 87 41.57
CSO 9984.2438 9984.9163 9986.364 0.40321 90 162.29

SAGWO 9984.241 9985.675 9986.424 0.2831 93 41.03

Figure 7.5: The convergence curve of SAGWO in Medium test instance-2 (80-unit
systems)

7.2.3.4 Medium Scale Test Instance-3: 160-unit systems

In case of medium scale test instance (160-unit systems) with multiple fuel options

and value-point effects is considered. This instance is the 16-times duplication of

the 10-unit system and it has to generate the load demand of 43200 MW by

utilizing the minimum fuel cost. The 160-unit systems have 160 generators and
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Figure 7.6: Distribution of the minimum costs obtained over 100 trails for Medium
test instance-2 (80-unit systems)

each generator produce the different power output by utilizing the different fuel

options. The power output obtained by different generators by SAGWO for 160-

unit systems is presented in the table 7.6 and 7.7. This shows that the system

has attained the desired power output and utilized minimum fuel for generation

of power.

The comparative results of the other algorithms with its performance factors are

presented in the table 7.5. This shows that the SAGWO is quite efficient in terms of

the maximum cost, average cost and standard deviation, while obtained the same

minimum cost for maximum number of independent runs. From the comparison

we noticed that the SAGWO algorithm is much effective for the ELD problem and

deliberates the effectiveness in terms of solution quality and robustness.

In order to understand the much difference between these algorithms more appar-

ently, figure 7.7 illustrates the comparison of convergence rates of the respective

algorithm are chosen from one of the 100 trails. From figure 7.7, we notified that

the proposed algorithm obtains the similar result as of CSO, while better than

the LFA and OGWO approaches. In this case, most of the algorithm identifies

the best solution but fails to provide the minimum fuel cost. It observed that the

SAGWO algorithm provides the best fuel cost and proves its efficacy and flexibility

over solving the 160-unit system.
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Table 7.6: Best power output for 160-unit system with load demand of 43200 MW

Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type

1 215.5582 2 21 213.2557 2 41 216.8527 2 61 220.8821 2
2 209.1275 1 22 213.8427 1 42 215.175 1 62 212.7257 1
3 280.2554 1 23 279.0458 1 43 278.8857 1 63 284.9765 1
4 240.2386 3 24 238.7285 3 44 241.8745 3 64 240.8535 3
5 278.9527 1 25 279.5252 1 45 278.7572 1 65 273.9372 1
6 240.7585 3 26 240.8575 3 46 239.7727 3 66 238.0527 3
7 283.3568 1 27 288.8582 1 47 289.9252 1 67 287.8756 1
8 236.9838 3 28 237.0525 3 48 238.7538 3 68 242.8527 3
9 422.2427 3 29 433.8528 3 49 422.9282 3 69 420.9378 3
10 278.1578 1 30 267.9578 1 50 269.8975 1 70 267.9638 1
11 214.7728 2 31 218.7784 2 51 213.8324 2 71 216.8556 2
12 209.2677 1 32 212.5828 1 52 211.9275 1 72 214.9678 1
13 279.0568 1 33 278.9275 1 53 276.8574 1 73 277.9785 1
14 237.0457 3 34 238.9757 3 54 235.8275 3 74 235.3758 3
15 270.8582 1 35 269.7882 1 55 282.7385 1 75 275.9687 1
16 240.9628 3 36 237.8955 3 56 239.93 3 76 239.9675 3
17 287.5281 1 37 284.8577 1 57 275.6575 1 77 290.9583 1
18 240.2586 3 38 238.8751 3 58 237.8757 3 78 239.9277 3
19 439.5558 3 39 424.8457 3 59 425.8534 3 79 425.5762 3
20 276.9287 1 40 276.9375 1 60 280.2475 1 80 270.7551 1

PO* - Power Output,
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Table 7.7: Best power output for 160-unit system with load demand of 43200 MW

Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type Unit PO* Fuel type

81 218.5355 2 101 214.6528 2 121 220.8682 2 141 219.2358 2
82 213.5867 1 102 209.6828 1 122 210.2862 1 142 209.5585 1
83 279.8525 1 103 282.6864 1 123 281.9272 1 143 273.8257 1
84 239.7257 3 104 237.9528 3 124 238.8542 3 144 238.8587 3
85 272.9375 1 105 281.4275 1 125 280.8427 1 145 274.8428 1
86 239.8927 3 106 241.2757 3 126 241.8542 3 146 238.8582 3
87 284.8453 1 107 283.9625 1 127 285.6824 1 147 282.8427 1
88 237.8772 3 108 242.2585 3 128 238.9582 3 148 240.8385 3
89 418.8527 3 109 425.9458 3 129 428.2868 3 149 424.9625 3
90 269.2757 1 110 279.2875 1 130 274.9276 1 150 276.228 1
91 217.7572 2 111 219.2857 2 131 220.8572 2 151 216.9251 2
92 210.5275 1 112 212.9458 1 132 214.8885 1 152 212.2866 1
93 274.0457 1 113 281.0285 1 133 274.8247 1 153 280.6588 1
94 239.2556 3 114 238.2867 3 134 239.7568 3 154 424.9527 3
95 283.5352 1 115 269.2025 1 135 273.8427 1 155 276.4585 1
96 236.3545 3 116 238.6952 3 136 238.8271 3 156 241.9428 3
97 283.8686 1 117 288.2481 1 137 291.5425 1 157 292.9284 1
98 239.5854 3 118 239.9642 3 138 237.6585 3 158 237.1782 3
99 423.8682 3 119 417.084 3 139 437.5427 3 159 417.8282 3
100 268.5274 1 120 277.0589 1 140 268.8275 1 160 273.8247 1

Total power output: 43200 MW Total cost: 9984.2438$/h
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Figure 7.7: The convergence curve of SAGWO in Medium test instance-3 (160-unit
systems)
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Figure 7.8: Distribution of the minimum costs obtained over 100 trails for Medium
test instance-3 (160-unit systems)

Finally, the figure 7.8 depicts distribution of minimum fuel cost obtained over

100 independent runs. This clearly conveys that the proposed algorithm provides

repeated best solution for maximum number of independent runs and only for the

minimum number trails deviates from the best solution but it obtains the solution

within the maximum cost.
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7.2.3.5 Large Scale Test Instance-1: 320-unit systems

In order to evaluate the effectiveness of the proposed algorithm two large scale

test instance has been considered. First test instance deals with 320-unit systems

which is a 32-times duplication of the 10-unit systems. The load demand of

this system is set as 86400 MW. As the number of generating units increases

gradually then it leads to the multimodal problem which has drastic local optima

and it is quite difficult to solve using the traditional algorithms. So far, only few

algorithms are used for testing the more than 200-units system with different fuel

options. In this point of view, we considered this test instance for evaluating the

efficiency of the proposed algorithm. The comparative results of the proposed

algorithm and other algorithm is presented in the table 7.8. The result obtained

over the 100 independent runs in order to reduce the statistical errors and to

understand the efficiency of the proposed one with other approaches. This results

shows that the proposed algorithm depicts its efficiency in terms of maximum

cost, average cost and standard deviation, while the algorithm provides the best

solution for maximum number of trails. Though the LFA algorithm competes

with the proposed algorithm in terms of the success rate, while considering the

computational efficiency of the proposed algorithm is better compare to other

optimization algorithms.

Table 7.8: Comparison of the statistical analysis over 100 trails for large scale Test
Instance

Units Algorithm
Total Generation Cost($/h)

Std SR(%) Time(S)
Min Avg Max

320-Unit

OGWO 19972.64 19976.98 19979.64 3.64 79 506.51
LFA 19965.95 19969.34 19971.54 1.25 89 375.12
CSO 19969.93 19972.25 19974.98 0.89 80 412.52

SAGWO 19964.67 19966.87 19969.56 0.76 92 373.27

640-Unit

OGWO 39968.75 39971.64 39976.97 5.45 74 732.45
LFA 39957.77 39969.28 39974.66 4.0725 86 596.36
CSO 39964.06 39968.03 39974.18 1.9075 84 678.41

SAGWO 39954.54 39964.24 39969.45 0.8374 90 594.54

In order to analyze the efficiency among the other algorithms more visually, the

comparison of one arbitrary run chosen over the 100 independent runs of the con-

vergence curves of the appropriate approaches are shown in figure 7.9. From the

figure 7.6, we clearly notify that the proposed algorithm obtains the best solution

within the 230 iterations whereas other algorithm fails to converge towards the
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Figure 7.9: The convergence curve of SAGWO in Large scale test instance-1 (320-unit
systems)
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Figure 7.10: Distribution of the minimum costs obtained over 100 trails for large test
instance-1 (320-unit systems)

minimum cost. The OGWO algorithm has been stagnated in local optima in about

400 iterations, while the result of LFA and CSO are better than the OGWO, and

CSO outperforms the LFA and OGWO. Furthermore, the proposed SAGWO has

proven its efficiency on both local search ability and also on accelerated conver-

gence rate of the algorithm.
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The distribution of the minimum costs obtained over 100 independent runs for

large scale test instance 1 is presented in the figure 7.10. It depicts that the pro-

posed algorithm provides the repeated best solution for all the maximum number

of trails and only for few trails the algorithm provides the little bias. This shows

that the proposed algorithm has the efficient capability to solve the problem as

well as it provides the best solution for maximum trails.

7.2.3.6 Large Scale Test Instance-2: 640-unit systems

This is a 640-unit system considering both the multiple fuel options and value

point effects and its a duplication of 10-unit systems for 64-times. It is clear that

the sharp increase of units number will provides much more non-convexity and

non-linearity into the ELD problem due to high local optima caused by multiple

fuel options and value-point effects. The load demand of the 640-unit system is

set as 172800 MW.

The comparison results of the each algorithm over 100 independent runs are given

in table 7.8. This results shows that the proposed algorithm obtains the better

results than all of other approaches in terms of minimum cost, maximum cost,

average cost and standard deviation. While analyzing the success rate, proposed

algorithm provides the better success rate by providing repeated solution for nearly

86 times among the 100 independent runs, whereas LFA algorithm provides the

82 times repeated solution which is lesser than the proposed algorithm and the

SAGWO takes only minimum number function evaluations to obtain the best

solution. Finally, while analyzing the computational efficiency in terms of the

computational time, the proposed algorithm obtains the best solution within a

reasonable time period.

In order to understand the performance of the proposed algorithm among the

other algorithm more visually, figure 7.11 provides the convergence curves of the

respective algorithm among one of the arbitrary chosen trail from the 100 inde-

pendent trails. It clearly conveys that the proposed algorithm requires only 300

iterations to obtain the best solution whereas other algorithm stagnates in certain

iterations due to soaring of the local optima. Finally, the distribution of the best

solution over 100 independent trails is shown in figure 7.12. It depicts that the

proposed algorithm provides best cost for maximum number of trails and only for

few trails it deviates from the best solution.
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Figure 7.11: The convergence curve of SAGWO in Large scale test instance-2 (620-unit
systems)
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Figure 7.12: Distribution of the minimum costs obtained over 100 trails for large test
instance-2 (640-unit systems)

From the above simulations and results for the three test instance cases of ELD

problems, it can be summarized that the proposed algorithm has superior global

search ability and robustness for nonlinear ELD problems. Furthermore, the pro-

posed SAGWO is more effective than the meta-heuristic algorithms reported in

this work as well as it overcomes the issues of the generic GWO and the param-
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eters of the proposed algorithm are adaptive and effective to solve the large scale

optimization problems.

7.3 Localization Problem

The definition of a localization system among sensor nodes is a fundamental issue

for many applications of wireless sensor networks (WSNs). Because sensor net-

works may be deployed in inaccessible terrains or disaster relief operations, the

position of sensor nodes may not be predetermined. Thus, a localization system

is required in order to provide position information to the nodes. The importance

of localization information arises from several factors, many of which are related

only to WSNs. These factors include the identification and correlation of gathered

data, node addressing, management and query of nodes localized in a determined

region, evaluation of nodes density and coverage, energy map generation, geo-

graphic routing, object tracking, and other geographic algorithms. All of these

factors make localization systems a key technology for the development and oper-

ation of WSNs. For large scale wireless sensor network, traditional optimization

algorithms fail to approximate the accurate positions of the sensor network due

to higher error rate on position estimation.

Apparently, a sharp increase of unknown sensor nodes in WSN will introduce more

non-linearity and non-convexity into WSN. In addition to that, it increases the

high local optima into localization problem which makes the traditional algorithm

quite difficult to solve. In order to eradicate these issues an efficient optimization

with global search ability and novel mechanism is required to avoid the local

optima stagnation and faster convergence towards the optimum solution. The

proposed SAGWO has efficient search operators and adaptive parameters which

encounter the issues of the generic GWO and redefined in identifying the superior

solution. It is clear that SAGWO performs better by sustaining the population of

personal best solution from generation to generation.

7.3.1 Problem Formulation

WSN node localization problem formulates using the single hop range based dis-

tribution technique to estimate the position of the unknown node coordinates (X,

Y) with the aid of anchor nodes (position of known nodes) coordinates (x, y). An-
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chor nodes are provided with GPS device, so it has the capability to automatically

determine its position. Most of the nodes in the WSN are not equipped with GPS

due to high cost. To measure coordinates of N unknown nodes, the procedure

followed is given below:

Step 1: Randomly Initialize the N unknown nodes and M anchor nodes within the

communication range (R). Anchor nodes measure their position and com-

municate their coordinates to their neighbors. For all iteration, the node

which settles at the end termed as reference node and this node will act as

anchor node further.

Step 2: Three or more anchor nodes within the communication range of a node is

considered as localized node.

Step 3: Neighboring anchor node aids to measure the location of localized node.

Distance measurements are distracted due to environmental consideration,

to eradicate it Gaussian noise ni is incorporated with the actual distance di.

di =
√

(X − xi)2 + (Y − yi)2 (7.4)

The node estimates its distance from its anchor as d̂i = [di+ni], the noise ni

is generated within the range of di±di( Pn100
) where Pn denotes the percentage

of noise in estimated distance. Whereas (X, Y) is the coordinates of unknown

nodetarget node and (xi, yi) is the coordinates of the ith anchor node in the

neighborhood.

Step 4: The optimization problem is formulated to minimize the error of localiza-

tion problem. Each localizable target hub runs SAGWO calculation freely

to restrict itself by discovering its position coordinates (x, y). The target

capacity of restriction issue can be planned as taken after:

f(x, y) = min(
M∑
i=1

|di − d̂i|) (7.5)

Where, M is the number of anchor nodes within the transmission range (R),

of the target node.

Step 5: The localization error is characterized as the interval between the original

and evaluated areas of an obscure node which is figured as the mean of square

root of interval of evaluated node coordinates (Xi, Yi) and the original node

arranges (exi, eyi) for i = 1, 2, NL (NL is the quantity of confined nodes) as
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demonstrated as follows:

EL =

∑N
i=M+1

√
(Xi − exi)2 + (Yi − eyi)2)

(NL)×R
(7.6)

Step 6: Repeat the step 2 to 5 until all unknown/target nodes get localized or no

more nodes can be localized. Localization Error (EL) and Number of non-

Localized nodes (NNL) aid to identify the performance of the localization

algorithm. The Number of non-Localized nodes (NNL) is identified based

on the difference between the total number nodes and the number of nodes

localized. The performance of the algorithm is better if it obtains minimum

the value of NNL and EL.

7.3.2 Experimental Setup

In this section, the point by point assessment of the SAGWO is exhibited. For

correlation, two algorithms are utilized thus they are as firstly, the generic GWO

and second Modified Bat algorithm (MBA) are used. The algorithmic parameter of

SAGWO for analyzing the localization problem is same as given in section 6.4. The

deployment area of WSN is considered as the 300m * 300m with varying number of

target sensor nodes. The sensor nodes are arbitrarily distributed in the simulation

area, whereas the anchor nodes might vary from
∑10

i=1 i × 10. For SAGWO, the

population size is fixed as 100 and the maximum numbers of iterations are fixed

as 100 and remaining parameters are chosen as per the section 6.4. For GWO,

the parameter linearly decreases in the interval of [2 to 0] and the C parameter

linearly increases from 0 to 2. For MBA, the initial values for parameters pulse

rate (r) and loudness (A) are assigned as 0.5 and 0.2 ms, respectively.

7.3.3 Performance Metrics

In order to analyze the performance of the SAGWO algorithm, comparisons are

made with other algorithms namely GWO and MBA respectively. The perfor-

mance factors to analyze the performance are as given as follows:

Total Localization Error (EL): The total localization error is measured after the

position of all localizable target nodes NL is determined. It is computed as the

mean of square of the distance between the projected node coordinates (Xi, Yi)
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and the real node coordinates (exi, eyi) which is expressed as follows.

EL =

∑N
i=M+1

√
(Xi − exi)2 + (Yi − eyi)2)

(NL)×R
(7.7)

Number of Non-Localized nodes (NNL): Number of non-localized nodes means the

number of nodes are not estimated after the successful generations. It is computed

as follows:

NNL = N −NL (7.8)

Where N is the total number of target nodes or unknown nodes and NL denotes

the number of localized nodes. The minimum values of EL and NNL make the

localization more efficient.

7.3.4 Experimental Analysis

This section discusses about the efficiency of the proposed SAGWO algorithm and

compare with GWO, and MBA algorithms by considering the performance metrics

that are discussed in section 7.3.3.

7.3.4.1 Node Localization

In this section, each localized node implements three algorithms namely SAGWO,

GWO [Mirjalili et al. 2014] and MBA [Goyal and Patterh 2016] to determine the

position. In SAGWO, constant parameter of guided search is fixed as 0.5 and the

guided probability is chosen as 0.8 which guides the algorithm to converge well

and makes the search agent to learn among the surroundings. The Lévy step size

is fixed as 0.5 to explore search space and to eradicate the local optima struck.

The localization of target nodes using SAGWO is presented in figure 7.13. In

GWO, the coefficient parameter a linearly decreases from 2 to 0 and c linearly

increases from 0 to 2. The localization of target nodes using GWO is depicted in

figure 7.15. In MBA, the initial values for parameters pulse rate (r) and loudness

(A) are assigned as 0.5 and 0.2 ms, respectively. The localization of target node

using MBA is depicted in figure 7.14. The figure 7.13 - 7.15, shows that anchor

nodes, target nodes, and the position estimated by the algorithm SAGWO, GWO

and MBA.
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Table 7.9: Comparison results of SAGWO, GWO and MBA with varying Anchor nodes

Anchor Node
Minimum Localization Error Localized Nodes
MBA GWO SAGWO MBA GWO SAGWO

10 0.59 0.52 0.45 230 340 440
20 0.55 0.45 0.39 280 380 500
30 0.51 0.43 0.37 320 420 530
40 0.49 0.41 0.33 370 480 550
50 0.46 0.39 0.31 400 510 580
60 0.43 0.38 0.3 440 580 650
70 0.4 0.37 0.28 480 630 700
80 0.38 0.35 0.26 510 680 753
90 0.36 0.33 0.23 550 700 804
100 0.34 0.3 0.19 560 720 880

Table 7.10: Localized nodes with varying transmission range

Transmission Range
Localized Nodes

MBA GWO SAGWO

10 388 493 580
15 427 551 660
20 489 607 720
25 537 679 750
30 586 732 790
35 663 783 850
40 758 820 880
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Figure 7.13: Node Localization using GWO

Figure 7.14: Node Localization using SAGWO

The results of SAGWO, MBA and GWO based localization are summarized in

table 7.10 shows that all the algorithms utilized here have performed fairly well

in localization problem. The outcome of Pn, percentage noise in estimation of

distance is apparent on localization accuracy. The percentage noise Pn is used as 2
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Figure 7.15: Node Localization using MBA

for average localization error for all algorithms. The total localization error EL and

number of non localized nodes NNL for SAGWO is lesser than that for GWO and

MBA, this shows that SAGWO performs well and obtains the optimal solution.

Furthermore, the computing time utilized for SAGWO is also significantly less

than that for GWO and MBA. Mostly, the localization errors are affected using

some of the critical parameters viz., number of anchor nodes, transmission range

and number of iterations of optimization algorithms.

7.3.4.2 Effect of Anchor Node Density

Mostly the number of non-localized nodes and localization error are reduced as the

number of anchor node increases. Moreover, it is crucial to estimate the position of

nodes if adequate number of anchor nodes (N ≥ 3) is not presented. The density

of anchor nodes plays a major role in order to improve the performance of the

localization algorithm. A minimum number of anchor nodes provide the reduced

efficiency over the localization algorithm. Apparently, the estimation of number

of localized nodes mainly depends on the number of anchor nodes for SAGWO,

GWO and MBA as given in Figure 7.16-7.17. The figure 7.16 and 7.17 clears that

the proposed SAGWO algorithm provides better results compare to generic GWO

algorithm and MBA. The results are achieved through varying the number anchor
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nodes in order to reduce the minimum localization error as well as to improve the

number of localized nodes in the WSN.

Figure 7.16: Localized Nodes with varying Anchor nodes

Figure 7.17: Minimum Localization Error with Varying Anchor nodes
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7.3.4.3 Effect of Transmission Range

The performance of estimating the localized nodes gradually increases as the in-

crease of transmission range over anchor nodes. The increase in transmission

range reflects that anchor node range which in result number of localized nodes

are identified are to be high. The performance of localized nodes depends on the

transmission range for SAGWO, GWO and MBA are shown in figure 7.18. The

result conveys that the minimum transmission range identifies the limited num-

ber of localized nodes whereas in maximum transmission range leads to identify

the maximum number of localized nodes. In addition to that, the Gaussian noise

also plays a vital role that it affects the localization accuracy in practical. As the

noise ratio increases then the EL increases which affect the accuracy of localized

nodes. In order to compensate the localization accuracy the entire experiment is

performed by fixing the noise as Pn = 2. The accuracy of identifying localized

nodes increase with the increase in number of generations as given in figure 7.19.

As the number of generation increases, then the accuracy of prediction over the

localized nodes are to be high.

Figure 7.18: Localized Nodes with varying transmission ranges of Anchor nodes

The figure 7.18 clearly shows that the SAGWO identifies maximum number of

localized nodes in both the cases of increase in transmission range and number of

iterations. The increase in transmission range identifies the as much as possible
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number of localized nodes compared to less transmission range. The proposed

SAGWO estimates the localized nodes better than the other two algorithms. This

shows that the proposed algorithm has effective search capability and superior in

providing the best solution.

7.3.4.4 Effect of Number of Iterations

The increase in number of iterations used to analyse the accuracy of localizing

the sensor nodes. This increase in number of reference nodes which are already

estimated or localized by the anchor nodes. Moreover, this process reduces the

probability of the flip ambiguity problem. In addition to that, if an unknown node

has more number of reference nodes in iteration k+1 than in iteration k, then the

time for localization nodes is to be increased. The increase in number of iteration

might increase the computational time period but it decreases the localization error

by identifying the maximum number of localized nodes as shown in figure 7.19.

Figure 7.19 apparently shows that localization error reduces with the increase in

number of iterations.

From the overall observations notified that the SAGWO based node localization

improves the localization accuracy with decrease in localization error. Localization

of nodes based on SAGWO, GWO and MBA by varying the number of anchor

nodes is provided in the Table 7.7. The SAGWO based localization algorithms

offers the minimum localization error as well as identifies more number of localized

nodes whereas in GWO approximates the position in minimum computation time

but it offers maximum location error. Almost all the optimization algorithm per-

forms well in determining the location of nodes in WSN. SAGWO provides better

localization accuracy to determine the position than GWO and MBA in terms of

minimized localization error.
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Figure 7.19: Localization Error versus Number of Iterations
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7.4 Summary

The assessment carried out in this chapter, is aid to analyze the performance level

of SAGWO with other state-of-art meta-heuristic algorithms. To determine the ef-

ficiency and stability on handling real-time applications Economic Load Dispatch

(ELD) problem and Localization problem in WSN has been chosen for the exper-

iment. The experimental results are analyzed on different test instances namely

Small scale, medium scale and large scale test instance along with the performance

factors. From the obtained results of ELD, we notify that the proposed approaches

shows its superiority over the standard performance metrics as well as the success

rate and total number of function evaluations. In case of Localization problem,

SAGWO is utilized to estimate the location of unknown sensor nodes using three

assessment criterias namely varying the number of anchor density, transmission

range and number of iterations. SAGWO outperforms in its superiority over all

the test instances with increase in efficiency of generic GWO as well as provides

the repeated best solution for n independent runs. Finally, an observation on ELD

and Localization problems conveys that SAGWO performs better than state-of-art

meta-heuristic algorithms.
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Chapter 8

Conclusions and Future Works

This chapter is the concluding part of the thesis and also proposes some suggestions

towards which the present work can be further extended. Section 8.1 brings out

the overall conclusions of the research work carried out in this thesis and in section

8.2 suggestions regarding the future research directions and possible extensions of

the work presented in the thesis are made.

8.1 Conclusion

The key of this research is to model a new variant in GWO that mimic generic func-

tionality of grey wolf and by utilizing the environmental factors that influencing

its performance. This phase was embedded into classical GWO in the exploration

and exploitation phase and this research was motivated from the issues faced b

generic GWO algorithm in the aspect of performance and convergence towards

the large scale optimization problems. The main contribution of this thesis are

described as follows.

In this thesis, an attempt has been made to solve the large scale optimization

problem using self adaptive grey wolf optimization algorithm. They are:

A modified variant of GWO with the name of SAGWO is introduced, it utilizes the

fast solving speed of Neighborhood Guided search and Position repulsion mech-

anism and maintaining the proper balance between exploration and exploitation.

The exploitation of SAGWO is carried out using the Neighborhood Guided search

mechanism and multi-swarm approach. The exploration of SAGWO is determined

using the Position Repulsion mechanism and in addition to that the global best

oscillation technique used to oscillate the global best solution to attain global

optimum.

A comparative performance study is carried out for the large scale benchmark

functions using SAGWO and other state-of-art meta-heuristic algorithms. The
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comparative study of state-of-art meta-heuristic algorithms for large scale real-

time problems viz., Economic Load Dispatch (ELD) and Localization problem

with standard performance metrics are carried out.

The Proposed SAGWO algorithm efficiency was determined by testing with the

large scale benchmark function, Economic Load Dispatch (ELD) problem and Lo-

calization Problem. The first testing was performed on the large scale bench-

mark function with varying dimensionality and this functions has uni-modal,

multi-modal, separable and non-separable characteristics. Existing meta-heuristic

algorithms such as mDE-bES, MCSO and JOA were considered for comparing

SAGWO approach. Second testing was performed with ELD problem that suits

into functionality of SAGWO by determining the optimum solution. For this prob-

lem benchmark tests such as small scale test system ’10 unit’, medium scale test

system ’40-160 unit’ and large scale test system ’320 and 640 unit’ which were

categorized based on the number of generating units. Existing approach such as

OGWO, LFA and IODPSO were experimented for comparing SAGWO perfor-

mance for ELD. Third testing was conducted using Localization problem, which

was considered as another real-time problem in which the objective is to locate

the unknown sensor by reducing its localization error. Existing approach such as

MBA and GWO were also experimented for comparing SAGWO performance for

Localization problem. The experimental results were evaluated using the standard

statistical performance metrics like best value attained, success rate, standard de-

viation, etc. The experimentation results clearly conveys that SAGWO could yeild

better result than the existing approaches. The overall results of SAGWO notifies

the importance of modified variants in large scale benchmark problems.

8.2 Scope for future work

Research is an iterative and continuous procedure. The work presented in the

thesis focuses on the solving large scale optimization problem using SAGWO ap-

proach. There are several directions in which this work could be expanded. Some

of the suggestions for future work in this direction are:

Efficient modification can be done in the implementation of the proposed SAGWO

algorithm that may improves its performance on solving other domain state-of-art

real-time problems. An implementation of the algorithms may be designed for a

small adjustment over the parameters. The implementation of proposed exploita-
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tion and exploration mechanism on other state-of-art meta-heuristic algorithms

will give promising and better results.

Further, the position adjustment of search agent using three features such as

present environment area, Euclidean distance, and secondary search agent struc-

ture. More features need to be explored for more accurate prediction of global

optimum. In this thesis, a modified variant are proposed for large scale optimiza-

tion problem and solved for some set of problems. Further, new problems are

available and they need to be explored for accurate and fast predictions.
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differentiation and malleable mating for differential evolution: an analysis

on large-scale optimisation. Soft Computing, 15(11):2109–2126, 2011.

[89] Antony W Iorio and Xiaodong Li. Improving the performance and scalability

of differential evolution. In Asia-Pacific Conference on Simulated Evolution

and Learning, pages 131–140. Springer, 2008.

[90] Jonatan Gomez and Elizabeth Leon. A coevolutionary chromosome encoding

scheme for high dimensional search spaces. In Evolutionary Computation

144



(CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[91] YOU Xuemei. Differential evolution with a new mutation operator for solv-

ing high dimensional continuous optimization problems. Journal of Compu-

tational Information Systems, 6(9):3033–3039, 2010.

[92] Xiuqin Pan, Yue Zhao, and Xiaona Xu. Adaptive differential evolution with

local search for solving large-scale optimization problems. JOURNAL OF

INFORMATION &COMPUTATIONAL SCIENCE, 9(2):489–496, 2012.

[93] Shahryar Rahnamayan, Hamid R Tizhoosh, and Magdy MA Salama.

Opposition-based differential evolution algorithms. In Evolutionary Compu-

tation, 2006. CEC 2006. IEEE Congress on, pages 2010–2017. IEEE, 2006.

[94] XZ Gao, X Wang, SJ Ovaska, and K Zenger. A hybrid optimization method

of harmony search and opposition-based learning. Engineering Optimization,

44(8):895–914, 2012.

[95] Shahryar Rahnamayan and G Gary Wang. Center-based sampling for

population-based algorithms. In Evolutionary Computation, 2009. CEC’09.

IEEE Congress on, pages 933–938. IEEE, 2009.

[96] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan.

Metaheuristics in large-scale global continues optimization: A survey. In-

formation Sciences, 295:407–428, 2015.

[97] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. A review of population

initialization techniques for evolutionary algorithms. In Evolutionary Com-

putation (CEC), 2014 IEEE Congress on, pages 2585–2592. IEEE, 2014.

[98] Sheng-Ta Hsieh, Tsung-Ying Sun, Chan-Cheng Liu, and Shang-Jeng Tsai.

Solving large scale global optimization using improved particle swarm op-

timizer. In Evolutionary Computation, 2008. CEC 2008.(IEEE World

Congress on Computational Intelligence). IEEE Congress on, pages 1777–

1784. IEEE, 2008.

[99] Yuhua Li, Zhi-Hui Zhan, Shujin Lin, Jun Zhang, and Xiaonan Luo. Compet-

itive and cooperative particle swarm optimization with information sharing

mechanism for global optimization problems. Information Sciences, 293:

370–382, 2015.

[100] Manuel Lozano, Daniel Molina, and Francisco Herrera. Editorial scalability

of evolutionary algorithms and other metaheuristics for large-scale continu-

ous optimization problems. Soft Computing, 15(11):2085–2087, 2011.

[101] Takeshi Korenaga, Toshiharu Hatanaka, and Katsuji Uosaki. Performance

improvement of particle swarm optimization for high-dimensional func-

tion optimization. In Evolutionary Computation, 2007. CEC 2007. IEEE

145



Congress on, pages 3288–3293. IEEE, 2007.

[102] Bahriye Akay and Dervis Karaboga. A modified artificial bee colony algo-

rithm for real-parameter optimization. Information Sciences, 192:120–142,

2012.

[103] Ahmad Nickabadi, Mohammad Mehdi Ebadzadeh, and Reza Safabakhsh. A

novel particle swarm optimization algorithm with adaptive inertia weight.

Applied Soft Computing, 11(4):3658–3670, 2011.

[104] Stephen Chen and Yenny Noa Vargas. Improving the performance of particle

swarms through dimension reductionsa case study with locust swarms. In

Evolutionary computation (CEC), 2010 IEEE congress on, pages 1–8. IEEE,

2010.

[105] Wei Chu, Xiaogang Gao, and Soroosh Sorooshian. Handling boundary con-

straints for particle swarm optimization in high-dimensional search space.

Information Sciences, 181(20):4569–4581, 2011.

[106] Iztok Fister Jr, Xin-She Yang, Iztok Fister, Janez Brest, and Dušan Fister.
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