
SEMANTIC CONCURRENCY CONTROL AND
DEADLOCK HANDLING TECHNIQUES FOR

DISTRIBUTED OBJECT ENVIRONMENTS

A THESIS
submitted to Pondicherry University in partial

fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

V.GEETHA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
PONDICHERRY ENGINEERING COLLEGE

PUDUCHERRY – 605 014
INDIA

OCTOBER 2012

Dr. N.SREENATH, M.Tech., Ph.D (IITM)
Professor of CSE
Pondicherry Engineering College
Puducherry -605014.

CERTIFICATE

 Certified that this thesis entitled “SEMANTIC CONCURRENCY CONTROL

AND DEADLOCK HANDLING TECHNIQUES FOR DISTRIBUTED

OBJECT ENVIRONMENTS” submitted for the award of the degree of DOCTOR

OF PHILOSOPHY in COMPUTER SCIENCE AND ENGINEERING of the

Pondicherry University, Puducherry is a record of original research work done by

Mrs. V.GEETHA during the period of study under my supervision and that the thesis

has not previously formed the basis for the award to the candidate to any Degree,

Diploma, Associateship, Fellowship or other similar titles. This thesis represents

independent work on the part of the candidate.

(Dr. N.SREENATH)
 Supervisor

Date :
Place : Puducherry

ACKNOWLEDGEMENT

Many people have contributed to the escalation of this thesis with either their

personal or technical support, for which I wish to express my humble gratefulness.

First I would like to record my gratitude to my Supervisor Dr.N.Sreenath,

Professor of Computer Science & Engineering, for his supervision, advice and

guidance from the very early stage of this research as well as encouraging and

supporting me through out the work.

My sincere thanks to Dr. V. Prithivi Raj, Principal, Pondicherry Engineering

College for his encouragement and permission to carry out the research work.

 I am grateful to my Doctoral Committee members Dr.R.Panneerselvam,

Professor, School of Management, Pondicherry University and Dr.P.Dananjayan,

Professor of Electronics and Communication & Engineering Pondicherry Engineering

College for providing valuable comments and constructive suggestions towards

improving the quality of this research.

I wish to express my sincere thanks to Dr. N. Sreenath, Professor and Head,

Department of Computer Science and Engineering and Dr. M. Ezhilarasan,

Associate Professor and Head, Department of Information Technology for providing a

peaceful working environment. I would also like to thank Dr. K. Vivekanandan and

Dr. S. Kanmani, for their support in this research.

I wish to express my thanks to Teaching and Supporting Staff of both the

Department of Computer Science and Engineering and Department of Information

Technology for their kind cooperation.

 I am indebted to my parents who sacrificed their entire life to educate me.

My gratitude is shown to my beloved husband Mr. G.Venkatasubramanian,

who helped me for the fine execution of this thesis. He is always my inspiration and

without his help, I could not have completed this thesis.

 I am much grateful to my son Mr. V. Rajeshwar Balaji for his unlimited

love and support shown during the entire research period.

Finally I am indebted to all my friends and relatives for their inspiring

encouragement in carrying out this research.

V. Geetha

v

TABLE OF CONTENTS

Chapter Title Page

 ABSTRACT i

 LIST OF FIGURES vi

 LIST OF TABLES ix

 LIST OF ACRONYMS AND ABBREVIATIONS xi

 1 INTRODUCTION 1

1.1 Distributed Environment 1

1.2 Distributed Object Environment 2

 1.2.1 Object Oriented Databases 3

 1.2.2 Object Oriented Distributed Systems 4

1.3 Concurrency Control and Deadlock Handling Techniques 4

1.4 Motivation 8

1.5 Objectives of the Research Work 12

1.6 Organization of Chapters in the Thesis 12

 2 LITERATURE REVIEW 14

2.1 Preamble 14

2.2 Object Oriented Concepts 19

 2.2.1 Classification of Design Time Operations 26

 2.3 Existing Semantic Multi-Granular Locking schemes 27

 2.3.1 Conflicts among Runtime Transactions 28

 2.3.2 Conflicts among Design Time Transactions 31

 2.3.3 Conflicts between Runtime transactions and 33
 Design Time Transactions

2.4 Deadlock Handling Techniques in OODS 35

2.4.1 Existing Deadlock Prevention Algorithms 35

2.4.2 Fault Tolerance in Distributed Deadlock 38
 Detection Algorithms

vi

Chapter Title Page

2.4.3 Existing Victim Selection Algorithms 39

2.5 Extract of the Literature Survey 42

2.6 Summary 43

 3 CONSISTENCY ENSURED SEMANTIC MULTI-GRANULAR

 LOCK MODEL (CESGML) FOR OBJECT ORIENTED

 DATABASES IMPLEMENTING STABLE DOMAINS 44

3.1 Preamble 44

3.2 The CESGML Scheme 45

3.2.1. Consistency among Runtime Transactions 46

3.2.2. Concurrency among Design Time Transactions 50

3.2.3. Concurrency between Runtime Transactions and 57
 Design Time Transactions

3.3 Experimental Results and Discussion 61

3.4 Summary 67

 4 SEMANTIC MULTI-GRANULAR LOCK MODELS FOR

 OBJECT ORIENTED DATABASES IMPLEMENTING

 CONTINOUSLY EVOLVING DOMAINS 68

 4.1 Preamble 68

 4.2 Semantic MGLM using Access Control Lists 70

 4.3 Semantic MGLM using Lock Rippling 73

 4.4 Experimental Results and Discussions 79

4.5 Summary 80

 5 SEMANTIC MULTI-GRANULAR LOCK MODEL FOR

 OBJECT ORIENTED DISTRIBUTED SYSTEMS 81

5.1 Preamble 81

5.2 Defining Lock types and Granularity for Classes 82
 and their Relationships

 5.2.1 Defining Lock Types and Granularity for 82
 Attributes and Classes

vii

Chapter Title Page

 5.2.2 Types and Granularity of Lock based on 84
 Method Types for Inheritance

 5.2.3 Types and Granularity of Lock based on 85
 Method Types for Aggregation

 5.2.4 Types and Granularity of Lock based on 87
 Method Types for Association

 5.2.5 Compatibility Matrix for Runtime Transactions 8
 based on Class Relationships

 5.2.6 Compatibility Matrix for Runtime 92
 and Design time transactions

5.3 Summary 92

 6 DEADLOCK HANDLING TECHNIQUES FOR OODS 94

6.1 Preamble 94

6.2 Deadlock Prevention Algorithm for OODS 95

 6.2.1 Resource Ordering Technique 96

 6.2.2 Formal Model for Resource Ordering using 102
 Predicate Calculus

 6.2.3 System Model 103

 6.2.4 Deadlock Prevention Modules Description 104

 6.2.5 Deadlock Prevention Algorithm 106

 6.2.6 Informal Proof 108

 6.2.7 Formal Proof 109

 6.2.8 Summary 111

6.3 Fault Informant Probe based Distributed Deadlock 111
Detection Algorithm

 6.3.1 Definitions 113

 6.3.2 System Model 115

 6.3.3 Fault-informant Probe based DDDR Algorithm 115

 6.3.4 Formal Proof 119

 6.3.5 Summary 123

viii

Chapter Title Page

6.4 Weight based Victim Selection Algorithm 123

 6.4.1 Performance of Existing Algorithms 123

 6.4.2 Proposed Weight based Victim Selection 127
Algorithm

 6.4.3 Summary 129

 7 CONCLUSIONS AND FUTURE RESEARCH

 DIRECTIONS 130

7.1 Conclusions 130

7.2 Future Research Directions 135

 REFERENCES 137

 LIST OF PUBLICATIONS 142

 VITAE 143

ABSTRACT

Nowadays distributed applications are implemented for various domains like

business, engineering etc. for wide access and immediate response time. In distributed

system, server tier is implemented using procedures and data store is implemented

using RDBMS. This results in “Impedance Mismatch” that requires conversion of

data format between procedures and databases. They do not support complex data

modeling. The distributed applications for emerging domains are migrating to the

distributed object environment to exploit the features of object oriented paradigm for

modeling their complex domain data and their relationships and to avoid the

“Impedance Mismatch” Problem. In practice, distributed object environment exist as

object oriented databases and object oriented distributed systems. Here, objects are

viewed as reusable data resources. Objects encapsulate attributes and methods or

member functions. The data from the database tier is mapped on the attributes. The

methods operate on them to serve the clients.

They support two types of transactions namely runtime transactions for data

access and design time transactions to modify the schema. Due to the complexity of

data and their complicated relationships, sophisticated concurrency control techniques

are required to ensure the consistency of the objects. This research work aims in

providing better concurrency control and deadlock handling techniques for distributed

object environments.

The existing semantic multi-granular lock models for object oriented

databases perform better than the conventional concurrency control techniques by

exploiting the features of object oriented paradigm. However they provide coarse

i

granular lock modes and hence concurrency is limited. In some of the existing

models, concurrency is provided at the cost of consistency. In all the existing models,

lock modes for all types of design time operations are not provided. To overcome

these limitations, a Consistency Ensured Semantic Multi-Granular Lock model

(CESGML) is proposed that ensures consistency and provides lock modes of fine

granularity for data access and schema access.

The applications that are implemented using the object oriented databases tend

to evolve over time to provide better service to the clients and to expand the scope of

the domain. This requires frequent modifications of schema to reflect the

improvements made on the domain structure. It implies that more number of design

time transactions will arrive in parallel along with the runtime transactions. In order to

promote concurrency, the existing semantic multi granular lock models make use of

the access vectors for providing fine granularity of data access and schema access.

The access vectors maintain the lock status of attribute, methods, classes and their

relationships. The access vectors are to be searched and updated to support concurrent

runtime transactions and design time transactions. The overhead increases linearly as

the number of design time transactions increase.

Two models namely semantic multi-granular lock model using access control

lists and semantic multi-granular lock model using lock rippling are proposed to

eliminate the search and maintenance overhead of access vectors while providing high

degree of concurrency. The semantic multi-granular lock model using lock rippling

defines commutative matrix based on operations. It does not require any access vector

for its execution and hence avoids the delay due to search and maintenance of access

vectors. Thus it reduces the transaction response time and promotes concurrency.

ii

The semantic multi-granular lock model using access control lists also does

not require any access vectors. It splits the lock table to store the data items separately

based on read or write operations. This reduces the search time and improves response

time. The object semantics is used to identify the conflicting operations.

The concurrency control mechanisms of object oriented databases cannot be

extended as they are to object oriented distributed systems. This is because query

languages are used to access object oriented databases. But in object oriented

distributed systems, programming languages like C++ and Java are used to make the

client transactions. Then the lock types and the granularities of resources are to be

ascertained from the client code using document tools like docC++ and Javadoc. After

identifying the lock modes for all the objects used in the client code, the compatibility

matrix defined in object oriented databases can be extended to object oriented

distributed systems. A methodology has been proposed to map the types and

properties of methods in objects into suitable lock modes and granularities of lock.

Then the compatibility matrix based on object relationships from OODBMS has been

modified and extended to object oriented distributed systems.

Application of concurrency control may need to deadlocks. Deadlock affects

throughput of the system and increases the transaction response time. Deadlocks can

be handled by prevention or detection and resolution. Object oriented distributed

system basically supports AND model requests. Detection of deadlocks for AND

model requests in distributed system is tedious. It is already proven that deadlock

prevention algorithms perform better than deadlock detection algorithms in

iii

distributed environments. A deadlock prevention algorithm for AND model requests

ensures getting all the resources before execution. It is expected to break circular wait

and avoid starvation. A deadlock prevention algorithm based on resource ordering

technique is proposed by exploiting the semantics of object oriented paradigm. It also

proposes access ordering that eliminates starvation in poverty and starvation in

wealth.

Probe based deadlock detection algorithm is a very popular algorithm for

detecting deadlocks in distributed environments. In this algorithm, the initiator sends

probes to detect circular wait. If the probe comes back to the initiator, it infers

deadlock, otherwise it is assumed to be live lock. However it is not fault tolerant. In a

faulty environment, if the probe does not come back to the initator, it does not know

whether it is due to live lock or site failure. A colored probe based distributed

deadlock detection algorithm is proposed that can inform the initiator the status of the

probe in all possible scenarios. The status could be live lock, deadlock or system

isolation due to hardware, software and network failures.

Deadlock resolution phase chooses a victim transaction after detecting a

deadlock. The victim is aborted to break the circular wait and make the system active

again. Extensive survey of existing resolution algorithm is done. From the survey, the

impact of transaction attributes on the system parameters is inferred. A weight based

victim selection algorithm is proposed to exploit the inference in choosing victim

transaction based on the desirable parameters of the system. The existing probe based

distributed deadlock detection and resolution algorithm requires a separate deadlock

resolution phase. The probe is modified to include the victim dynamically selected

iv

using the proposed weight based victim selection algorithm. When the probe reaches

the initiator of the deadlock, the victim ID will be available that may be aborted to

break the circular wait.

The outcome of this research can be used for providing better concurrency and

eliminating deadlocks in distributed object environments.

v

LIST OF FIGURES

Fig. No. Title Page

1.1 Architecture of a truly distributed system 2

1.2 Client/server model in distributed systems 2

1.3 Client/server model in object oriented distributed system 4

2.1 Concurrency control at database tier 15

2.2 Concurrency control at server tier 16

2.3 Locking the sub class object with its base class 22
 object to maintain consistency

2.4 Locking the composite object with its component 22
 object to maintain consistency

2.5 Locking the associative object with its associated 23

 object to maintain consistency

2.6 Classification of concurrency control techniques 27

2.7 Hierarchy of lock granules in OODS 36

2.8 Sample class diagram with horizontal partitioning 37

3.1 Locking in inheritance 51

3.2 Comparison of hierarchy of granules of design time 56

Transactions

3.3a Sample class diagram 58

3.3b CDV for the sample class diagram in table format 58

3.4 Simulation model [Kim1991] 61

3.5 Performance by varying arrival rate 63

3.6 Performance by varying design time read to write ratio 64

vi

Fig. No. Title Page

3.7 Performance by varying design time to run time 64

 transaction ratio

3.8 Plot of technique name versus response time 67

4.1 Format of shared list 72

4.2 Format of available and exclusive lists 72

4.3 List search policies for S and X lock modes 72

4.4 Sample class diagram 3.3a represented as bi-directed graph 77

4.5 Lock rippling to lock associated children classes on a 77
Modify Definition (MD) request to class A

4.6 Lock rippling to lock associated parent classes on Runtime 78
Modify Access request (RMA) to class I

4.7 Performance varying design time transaction to runtime 79
 transaction ratio

5.1a Locking in single inheritance 89

5.1b Locking in multilevel inheritance 90

5.1c Locking in multiple inheritance 90

6.1 Architecture diagram of the proposed system 104

6.2 Sample class diagram after resource ordering 105

6.3 Deployment of sample class diagram 106

6.4a Deadlock in fault free environment 119

6.4b Live lock in fault free environment-case 1 120

6.4c Live lock in fault free environment- case 2 120

6.5a Live lock/deadlock in faulty environment 121
 (1 site failure) - case 1

6.5b Livelock/deadlock in faulty environment 121
 (1 site failure) - case 2

vii

Fig. No. Title Page

6.5c Livelock/deadlock in faulty environment 122

 (2 site failure) - case1

6.5d Livelock/ deadlock in faulty environment 122
 (2 site failure) - case 2

6.6 Performance for number of transactions vs Throughput 125

6.7 Performance for number of transactions vs resource utilization 126

6.8 Performance for number of transactions versus fairness 127

viii

LIST OF TABLES

Table No. Title Page

1.1 Compatibility matrix for S and X lock modes 6

1.2 Compatibility matrix of Gray1978’s multi-granular lock model 7

3.1 Commutativity matrix for the example comparing CESGML 49
 scheme and Jun2000 scheme

3.2 Commutativity matrix for the example comparing CESGML 49
Scheme and Malta1993 scheme

3.3 Proposed commutativity matrix for design time transactions 55

3.4 Commutativity matrix for design time transactions accessing 55
defined and adapted class

3.5 Proposed commutativity matrix for design time transaction 59
and run time transactions using access vectors

3.6 Commutativity matrix for transactions accessing defined class 59
and adapted classes using access vectors

3.7 Simulation parameters 62

3.8 ANOVA results 66

3.9 Duncan Range test results 66

4.1 Compatibility matrix for runtime and design time transactions 76

5.1 Lock types for types of classes 83

5.2a Granularity of attributes 84

5.2b Granularity of classes 84

5.3 Lock type based on method types for Inheritance 85

5.4 Lock granularity based on method properties in Inheritance 85

5.5 Lock type based on method types for Aggregation 86

5.6 Lock granularity for aggregation or composition 87

ix

Table No. Title Page

5.7 Lock type based on method types for Association 87

5.8 Lock granularity for Association 88

5.9 Compatibility matrix for Inheritance [Garza1987] 89

5.10 Revised compatibility matrix for Inheritance 90

5.11 Revised compatibility matrix for Aggregation and 91
 Association

 5.12 Compatibility matrix for runtime transactions 91

5.13 Revised compatibility matrix for design time transactions 92
 and runtime transactions

 6.1 Comparison of various victim selection policies 124

 6.2a Transaction attribute list 128

 6.2b Desirable performance attributes of the system 129

x

LIST OF ACRONYMS AND ABBREVIATIONS

AA Add Attribute

AAV Attribute Access Vector

ACID Atomicity, Consistency, Isolation and Durability

AE Add Entity

AI Add Instance

AM Add Method

BG Bi-directed Graph

CDV Class Dependency Vector

CESMGL Consistency Ensured Semantic Multi-Granular Lock Model

COM Component Object Model

DA Delete Attribute

DAG Directed Acyclic Graph

DDDR Distributed Deadlock Detection and Resolution

DE Delete Entity

DI Delete Instance

DM Delete Method

DPA Deadlock Prevention Algorithm

FCFS First Come First Served

FIFO First In First Out

GWFG Global Wait for Graph

IA Instance Access

IS Intension Shared

ISCS Intension Shared Class Shared

xi

ISO Intension Shared Object

ISOS Intension Shared Object Shared

IX Intension Exclusive

IXCS Intension Exclusive Class Shared

IXO Intension Exclusive Object

IXOS Intension Exclusive Object Shared

MA Modify Attribute

MAV Method Access Vector

MCD Modify Class Definition

MCL Modify Class Lattice

MCL Move Class Lattice

MCR Modify Class Relationship

MDD Modify Domain Definition

MGML Multi-Granular Lock Model

MMI Modify Method Implementation

MMS Modify Method Signature

MSCL Modify Sub-Class Lattice

OCC Optimistic Concurrency control

OODB Object Oriented Databases

OODBMS Object Oriented Database Management Systems

OODS Object Oriented Distributed Systems

RA Runtime Access

RA Read Attribute

RAA Read Adapted Attributes

RAMI Read Adapted Method Implementation

xii

RAMS Read Adapted Method Signature

RCD Read Class Definition

RCL Read Class Lattice

RCR Read Class Relationship

RD Read Definition

RDBMS Relational Database Management System

RDD Read Domain Definition

RM Resource Manager

RMA Runtime Modify Access

RMI Read Method Implementation

RMS Read Method Signature

RRA Runtime Read Access

RS Read Schema

RSCL Read Sub-Class Lattice

S Shared lock mode

SCC Semantic Concurrency Control

SCC Semantic Concurrency Control

SIX Shared Intension Exclusive

SIXCS Shared Intension Exclusive Class Shared

SIXO Shared Intension Exclusive Object

SIXOS Shared Intension Exclusive Object Shared

TM Transaction Manager

WD Write Definition

WS Write Schema

X Exclusive lock mode

xiii

CHAPTER 1

INTRODUCTION

1.1 Distributed Environment

Distributed environment is a collection of loosely coupled processors

interconnected by a communication network that work together collaboratively. The

location of the processor is referred as a site. So typically, a distributed system is a

collection of sites.

There are four major reasons for building distributed systems namely resource

sharing, computation speedup, reliability and communication. In a distributed

environment, resources at one site can be accessed by the local as well as remote

users. The resource can be a physical resource like high speed processor, printer etc.,

or a logical resource like files, databases etc. Computation speedup can be achieved

by shifting the jobs from overloaded site to a slack site. This idea of load sharing

among the sites improves the performance of the system. Apart from the performance,

reliability is also increased by providing fault tolerance. When one of the sites fails

due to hardware failure or software bug, its function is automatically taken over by

another site. Though this requires redundancy of data, it improves the reliability of the

system. The failure of one site does not affect the functioning of other sites in the

system.

Distributed system can be centrally managed or truly distributed. In a centrally

managed distributed system, one of the sites is chosen as the controller. The controller

site is responsible for managing and coordinating the functions of all the other sites.

This poses a bottleneck threat. I.e., everything relies on this controller. If the

controller site fails, the entire system fails. So this setup is not favored much.

In the truly distributed system, each site allows autonomous management. Each

site is responsible for managing itself. Therefore each site is unaware of the activities

happening at other sites. They communicate only through the messages. The structure

of a truly distributed system is given in figure 1.1.

In the figure, each site has a local Transaction Manager (TM) whose function is to

serve the clients arriving at the site. It manages the execution of the transactions that

access data stored in this site. The resources needed for the transaction can be

accessed by requesting the Resource Manager (RM) local to the site. It has to provide

1

TM

RM

NetworkTM

RM

RM

TM

TM- Transaction Manager RM- Resource Manager

Figure 1.1 Architecture of a truly distributed system

appropriate concurrency control techniques for the local as well as the remote

transactions arriving at this site to access its resource. It is also responsible for getting

access to remote resources on behalf of its local transactions.

Server

Client

 Request

DDB

Procedures RDBMS/OODBMS

 Response

Data

Access

Figure 1.2 Client/server model in distributed systems

In a distributed system, the clients’ transactions are served by executing

procedures stored in the server. The server accesses the data resources in the form of

databases like relational databases and object oriented databases etc. It is the

responsibility of the data resources to ensure their data consistency. So only the full

fledged database management systems can be connected at the back end. The legacy

file formats cannot be supported. Figure 1.2 shows the client/server model practiced

in the distributed system.

1.2 Distributed Object Environment

The earliest and most relevant applications of distributed system were in business

and administration. Recently several applications have cropped up that require

support for the management of complex data types. There are several application

areas that are limited by the restrictions of the relational data model and procedural

2

approach. Hence the object oriented approach is brought into the design of distributed

systems. It has the features of encapsulation, abstraction, security and reusability.

The object model has structure and behavior. It encapsulates a set of attributes that

con

istributed systems in two forms namely Object

Ori

ns that require support for complex data and long

dur

ps in a

• upport modeling of object behaviors and dynamic constraints.

tures,

equired.

•

data. This requires

• schema modification

•

like Avance, Encore, Gemstone, Iris, O2,

Ori

tain the data and a set of methods that have a body of code to implement a service.

The interface between an object and the rest of the system is defined by a set of

allowed messages. The objects are interrelated by inheritance, aggregation and

association relationships.

Typically objects exist in d

ented Databases (OODBMS) and Object Oriented Distributed Systems (OODS).

1.2.1. Object oriented databases

The first choice for the applicatio

ation transactions is obviously object oriented databases. OODBMS is a collection

of objects. The objects are classified into classes and instances. A class is a collection

of instances. Objects represent complex data. Their complex relationships are defined

by combinations of object relationships such as inheritance, composition

(aggregation) and association. The support of complex objects imposes several

requirements on both the object data model and object management. They are

• The object model should support structural modeling and interrelationshi

natural way.

 It must also s

• In addition in the intended application environments, the object struc

behavior and interrelationships may evolve over time [Bertino1991].

From the object management perspective, the following features are r

Object versioning mechanisms to support evolution of objects.

• Transactions can extend in time and involve large amounts of

the complex recovery and concurrency control mechanisms.

Due to the evolutionary nature of applications, extension of

operations should be supported without requiring system slowdown or shutdown

along with the execution of data requests.

Should provide security mechanisms.

Several advanced database products

on and Vbase have provided support for the aforementioned features.

3

1.2.2. Object oriented distributed systems

e result of merging object oriented

tech

n be provided

• neous environments by its ability to separate their interface

• us evolution of business domains to suit their new

• can hide the implementation and therefore easily change the object

• of whether it is local or remote call

e viewed as reusable data resources. Figure 1.3 shows the

clie

In th in the

obj

ing Techniques

e at a server site at

the same time. These parallel transactions should not affect the consistency of the

Object oriented distributed system is th

niques with distributed systems technology. This approach makes objects as the

unit of computation and distribution. It has the ability to encapsulate both data and

operations in a single computational unit. It has the following benefits:

• Systems with diversified behavior for the same service request ca

using polymorphism.

It can support heteroge

from their implementation.

It can support the continuo

requirements.

Encapsulation

behavior without affecting the users much.

There is a uniform invocation irrespective

using message passing.

In OODS, the objects ar

nt/server model of the object oriented distributed systems.

Figure 1.3 Client/server model in object oriented distributed system

is figure, the client’s request is satisfied by invoking the methods

ects residing at server tier. So unlike distributed system which is procedure

oriented, OODS is action oriented. The objects encapsulate the attributes and

associated methods or member functions. The objects are related by inheritance,

aggregation and association. Inheritance defines a ‘parent-child relationship’.

Aggregation defines ‘has a’ relationship. The association is used to define all other

relationships such as associated-with, using etc. The domain objects and their

relationships are represented as a class diagram..

1.3 Concurrency Control and Deadlock Handl

In a distributed system, typically several transactions may arriv

Client
Request

DDB

Files/RDBMS/OODBMS Server

Objects
Response

4

data

a to reflect

database to maintain data and consistency. Complex concurrency

ntrol techniques. The timestamp ordering is based on

the

r update operation.

local variables.

 conflicts.

.

T

starva

ng is widely used because of its ease in

implementation. It enforces the requirement of allowing a transaction to access a data

. They should not lead to dirty reads or dirty writes. The ACID property of the

database has to be preserved. Ideally parallel reads are allowed. Mixed read and write

operations are not allowed. Parallel write operations are also not allowed.

 The business domains are continuously evolving in nature. They might want to

improve their services to the clients. This requires modification of schem

the changes in the business domain. Transactions would arrive to modify the schema.

Then all the consistency requirements defined for data have to be extended for

schema also.

 Concurrency control mechanisms are applied to synchronize the transactions

accessing the

control mechanisms are needed for the object oriented system because of its complex

nature. However, the concurrency control mechanisms should not affect the

performance of the system. A good concurrency control mechanism should improve

the throughput of the system by improving concurrency so that maximum number of

transactions can run in parallel.

Timestamp Ordering, Optimistic Concurrency Control (OCC) and Locking are the

commonly used concurrency co

time stamps assigned to the transactions as they arrive at the system. The

transactions are served in the system in First Come First Served (FCFS) order. But it

is very difficult to implement time stamps in distributed systems.

 OCC is a validation based protocol. Each transaction executes in two or three

different phases in its lifetime, depending on whether it is a read o

The phases are

1. Read phase- Reads all data items and write operations are performed on

temporary

2. Validation phase- Checks the validity of updating the database with temporary

variable values without any

3. Write phase- If the validation phase is successful, the database is updated.

Otherwise the transaction is rolled back

his is a better scheme than timestamp ordering, but there is a possibility of

tion of long duration transactions.

Locking is the most common method of concurrency control. Among the various

concurrency control mechanisms, locki

5

item

The c es is given in the table 1.1.

S X

 only if it holds a lock on it. In lock based concurrency control scheme, a

transaction has to acquire locks before accessing the database and release them after

use. Locking technique uses compatibility or commutativity matrix to decide whether

a new transaction can concurrently execute with those that are already executing

without affecting consistency. If the lock modes are compatible, the transactions can

execute. If the lock modes are conflicting, then the transaction that is requesting the

lock will be blocked. It has to wait until the transaction currently holding the resource

has released the lock or preempted. There are two possible lock modes.

1. Shared (S) – To read a data item. Write is not allowed. Several transactions can

use this lock mode to share a data item.

2. Exclusive (X) - Both read and write operations can be performed on the data

item. But it cannot be shared.

ompatibility matrix for S and X lock mod

Table 1.1 Compatibility matrix for S and X lock modes

S Y N

X N N

In the table, ‘Y’ indicates locks ar compati ‘N’ indicates locks are

incompatible. The locking tech ue require lock tab long with the compatibility

matrix. The lock table defines the current lock status of all the data items in the

dom

transactions using the databases. Using MGLM, transactions can request

the

e ble.

niq s a le a

ain. The lock table has to be updated on every lock request and lock release

message.

The performance of locking technique is further improved by Multi-Granular

Lock Model (MGLM). It is a common technique for implementing concurrency

control on

same database in different granule sizes varying from coarse granules to fine

granules. This maximizes the concurrency while minimizing the number of locks. The

main advantages of MGLM are high concurrency and minimal deadlocks. There are

several multi-granular lock models proposed in the literature. Gray1978 has defined

semantic MGLM for relational databases. In MGLM, intention locks are used to infer

the presence of locked resources at a smaller granule level. The lock modes defined in

Gray1978 are Intension locks –IS(Intension Shared) and IX (intension Exclusive) to

6

lock fine granules, S (Shared - Read), X (eXclusive – Write) and SIX (Shared

Intension eXclusive – locks all in S mode but a few of them to be updated alone in X

mode). The compatibility matrix proposed in Gray1978 is given in table 1.2.

Table 1.2 Compatibility matrix of Gray1978’s multi-granular lock model

 IS IX S X SIX

IS Y Y Y N Y

IX Y Y N N N

This multi-granu model is extended to object orient environm s also

with suitable modification by applying the semantics of the object oriented paradigm.

Though concurrency control techniques ensure consistency of data and schema,

they

tran

 set of vertices representing active transactions, E is a set of

edg

ystem to enter a

dea

ring is imposed on all the data

S Y N Y N N

X N N N N N

SIX Y N N N N

lar lock ed ent

 have the negative effect of introducing deadlocks. A system is in a deadlock state

if there is a set of transactions such that every transaction is waiting for another

saction in the set in a circular way. None of the transactions can make progress in

such a situation. This results in poor throughput and high transaction response time

which are undesirable.

In distributed systems, the dependency among transactions can be described as a

directed graph called as Global Wait-For Graph (GWFG). The graph consists of a pair

G = (V, E) where V is a

es representing their dependency. When there is an edge Ti -> Tj, it indicates that

Ti is waiting for Tj to release a data item that it needs. The presence of a deadlock in

the system can be inferred from the presence of cycle in the GWFG.

There are two principal methods to deal deadlocks. We can use a deadlock

prevention algorithm to ensure that the system will never enter a deadlock state. It is a

pessimistic and proactive approach. Alternatively, we can allow the s

dlock state and then try to recover by using deadlock detection and recovery

scheme. This is an optimistic and reactive approach.

There are two approaches to deadlock prevention. One approach ensures that no

cyclic waits can occur by ordering the transactions or holding all the resources before

execution. In resource ordering technique, an orde

7

item

. In

this

 to break the cycle. Selection of a victim should be such that there is no

star

uted systems, the business data and methods

ss various sites. Distributed databases are used to store the business

da

ncy control to server tier as it is implemented using procedures. This

is

s. It insists on the transactions to lock the data items in a sequence consistent with

the ordering rules. This scheme is easy to implement as long as the set of data items

accessed by a transaction is known, when the transaction starts execution. The other

approach is to roll back, whenever the wait could potentially result in a deadlock.

Several deadlock detection and resolution algorithms are available in the

literature. One of them is the popular probe based deadlock detection algorithm

presented in Chandy1983. It is very popular because of its easy implementation

 algorithm, when a transaction suspects deadlock, it sends a probe along the edges

of GWFG. If the probe comes back to the initiator, it indicates the presence of

deadlock.

When the detection algorithm detects a deadlock existence, the system must

recover from the deadlock. The most common solution is to roll back one or more

transactions

vation or degradation of desirable parameters such as throughput, response time

and resource utilization of the system.

1.4 Motivation

Nowadays, business domains are implemented as distributed applications for

reaching wider range of clients. In distrib

are scattered acro

ta. Business methods are implemented as procedures. In order to avoid the

inconsistency of the business data due to concurrent access by several clients,

concurrency control techniques are applied on the databases in the database tier. The

legacy data files cannot be used in the distributed systems because they are primitive

and do not provide concurrency control. Further, distributed systems require separate

concurrency control technique for each of the database models in which the business

data are stored.

Hence, the possibility of shifting the concurrency control mechanisms from the

database tier to the server tier is explored. In distributed systems, it is not possible to

shift the concurre

 possible in OODS because the client transactions to the database tier can be

accessed only through the objects in server tier. This will help the OODS to support

legacy file formats also. Moreover, it is sufficient to provide a common concurrency

control mechanism independent of the nature of persistent storage. While exploring

the requirements of concurrency control mechanisms for OODS, the concurrency

8

control mechanisms defined for OODBMS is a good place to look for as it is the only

other distributed object environment.

The three common concurrency control mechanisms such as locking, timestamp

ordering and optimistic concurrency control have been dealt in the literature for

adoption in OODBMS. Locking is more widely used than the other two techniques,

be

used to request data from the OODBMS. But in OODS, object oriented

tended in

O

domain. The domain is represented using the class diagram in OODS. Then

th

s to modify the structure. These

tr

cause of its ease in implementation. MGLM- one of the types of locking, is a

common technique for implementing concurrency control on transactions using the

OODBMS. The other reason for the wide usage of multi granular locking is that it

allows application of the semantics of object oriented paradigm to improve the

performance.

 Even though the concurrency control mechanisms in OODBMS can be

considered, they cannot be adopted as they are in OODS. This is because query

languages are

programming languages like C++ and Java are used to make the client transactions.

Then the lock types and the granularities of resources are to be ascertained from the

client code using document tools. Document tool is a tool that parses the declarations

and documentation comments in a set of source files and produces a set of HTML

pages describing the classes, interfaces, constructors, methods, and fields.

 The doc tools like docC++ and Javadoc can be used for identifying the method

type and properties. After identifying the lock modes for all the classes used in the

client code, the commutativity matrix defined in OODBMS can be ex

ODS.

All the business domains might eventually want to upgrade their services to clients.

This evolution of business domain introduces the need to change the structure of the

business

e evolution of the business domain might require changes in the definitions of

attributes, methods, classes and their relationships.

 Usually, the object oriented distributed systems receive runtime transactions

requesting the access of business data. Due to the continuous evolution of business

domains, the systems may also receive transaction

ansactions are called as design time transactions. Both types of transactions can be

either read or write transactions. This requires the application of concurrency control

to protect the consistency of the objects. These two types of transactions may induce

three different types of conflicts among the transactions to a class diagram: conflicts

9

among run time transactions, conflicts among design time transactions and conflicts

between run time and design time transactions.

In OODBMS, both types of transactions can be executed in parallel as transactions

are written in query languages. In OODS, the transactions are implemented in

programming languages as mentioned earlier.

Then proposing a concurrency control mechanism for OODS involves two steps:

1. Define lock types and granularity for all types of methods defined in the classes

that are related by relationships namely inheritance, aggregation and association

 for OODBMS can be classified as MGLM

rela for each class relationship separately. However, lock

mo

rrency of runtime transactions is maximized at the cost of inconsistency

esign time

3. models have not fully exploited the semantics of attributes,

5. ransactions are executed in coarse granularity which reduces the

6. e transactions that are arriving

 So a MGLM has to be proposed which will improve the degree of concurrency

for design time transactions and run time transactions by fully utilizing the semantics

and represent the business domain.

2. Propose a compatibility matrix based on class relationships that will address the

conflicts mentioned above.

The existing semantic based MGLM

based on relationships and MGLM based on operations. Models based on

tionships define lock modes

des for the combinations of class relationships are not defined. Hence, they are not

widely used.

The models based on operations have maximized the concurrency for runtime

transactions by using access vectors. They have the following limitations:

1. The concu

of business data.

2. None of the lock models have addressed the conflicts among d

transactions and conflicts between runtime and design time transactions

The existing lock

methods and class relationships to maximize the concurrency of design time

transactions.

4. They have also not proposed fine granularity lock modes for all types of design

time operations defined in Bannerjee1987.

Design time t

concurrency and thus reduces the throughput also.

Run time transactions and design tim

simultaneously are blocked, even if they access different part of the class diagram.

This affects the performance of the system.

10

of object oriented features. Separate lock modes covering all types of design time

rations based on Bannerjee1987 have to be proposed. It should eliminate the

nsistencies in the existing models. An enha

ope

inco nced compatibility matrix has to be

schema of the domain needs to be changed frequently to match the new

cha

ssary and sufficient condition for deadlock is the

pre

cyc

defined to provide high parallelism between design time transactions and run time

transactions.

Multi granular lock models using access vectors provide high concurrency for

domains which do not alter its services frequently (stable domains). Here the design

time transactions are rare. These models require access vectors in addition to the

compatibility matrix and lock table. But in the case of continuously evolving

domains, the

nges in the domain. Then, the access vectors as well as lock table should be altered

every time a schema change is made. Because of this, the maintenance overhead is

more than the conventional locking technique. This introduced the need for a new

concurrency control scheme to support continuously evolving systems with less

overhead. This algorithm should provide same or higher concurrency than the existing

models with nil or less overhead.

Concurrency control mechanisms provide consistency at the cost of introducing

deadlocks. OODS transactions support AND model [Hac1989]. This means that a

transaction can execute only when it gets all the resources. If there exist no

alternatives for any of the resources and if the resource request model is AND model,

then Holt1972 says that the nece

sence of a cycle in GWFG. Shaw1974 and Coffman1971 have shown that by

resource ordering, deadlocks can be prevented in the single resource model. Then a

novel resource ordering technique is to be proposed as a common resource ordering

policy cannot be adopted for all the systems. A resource ordering policy exploiting the

semantics of class relationships is more suitable. To eliminate starvation, an access

ordering policy based on semantics of object oriented features is also to be proposed.

 Though the existing distributed deadlock detection algorithms perform well, they

are not fault tolerant. They enforce a constraint that the implementation environment

is free from hardware, software and network failures. So there is a need for improved

fault tolerant distributed deadlock detection algorithm.

Once a deadlock is detected, a victim transaction has to be selected to break the

le. Selection of an optimal victim that incurs minimum cost dynamically is a NP-

11

Complete problem [Gary1979]. So a cost based victim selection algorithm has to be

proposed which lets the selection of factors based on which the victim can be chosen.

•

BMS supporting transactions from

th high concurrency and low maintenance

• ity matrix for all class

• a deadlock prevention technique for distributed object oriented

•

t the status of sites.

1.6 tion of Chapters in the Thesis

 by briefly describing the concepts of

he

also formulated and explained.

w the related existing works for their merits and

dem

existing

algo

similar existing algorithms are reported in this chapter.

 Thus the object of high concurrency, low overhead concurrency control and

deadlock handling techniques are to be proposed by exploiting the object oriented

semantics of distributed object environments.

1.5 Objectives of the Research Work

To enhance the existing semantic MGLM for OODBMS by proposing fine

granularity for design time operations in stable domains.

• To propose semantic MGLM for OOD

continuously evolving domains wi

overhead.

To propose lock types, lock granularity and compatibil

relationships namely inheritance, composition and association for distributed

object oriented system.

To propose

systems.

To propose a fault-informant algorithm to send colored probes to the initiator of

deadlock detection abou

• To propose a weight based victim selection algorithm for deadlock resolution.

 Organiza

The thesis is organized as follows.

Chapter 1 introduces the research problem

distributed object environment along with the challenges of the problem domain. T

motivation and the objectives of the thesis are

Chapter 2 is dedicated to revie

erits. It gives a brief classification of semantic concurrency control techniques

and deadlock handling techniques in distributed object environment. The

representative algorithms are identified and reported. The limitations in the

rithms are summarized. At the end of this chapter, the proposed research work is

defined and described.

Chapter 3 describes an enhanced semantic MGLM for OODBMS supporting

stable domains. The performance comparison of the proposed algorithm and the

12

 Chapter 4 proposes two semantic concurrency control mechanisms in OODBMS

for continuously evolving domains namely semantic MGLM using lock rippling and

sem

or OODS by defining the lock

typ

xisting probe based distributed deadlock detection algorithm is

enh

ing the findings that facilitated to

acc

antic MGLM using access control lists. They are compared with the existing

semantic MGLM.

 Chapter 5 proposes semantic concurrency control f

es, granularity for all types of object relationships. A compatibility matrix

combining all the relationships is also proposed.

Chapter 6 proposes a deadlock prevention technique based on resource ordering

for OODS. The e

anced to work in faulty environments also. A weight based victim selection

algorithm is also proposed.

Chapter 7 concludes the thesis by highlight

omplish the objectives. The limitations of the research work have been identified

to carryout the possible future research to make further improvement in this direction.

13

CHAPTER 2

LITERATURE REVIEW

2.1 Preamble

Object Oriented Databases (OODB) are widely used for many advanced

applications like CAD, CAM etc. because of its modeling support to represent

complex data and their complex relationships. Complex data are represented as

objects. Complex relationships are defined by combinations of object relationships

such as inheritance, composition (aggregation) and association. This modeling power

makes OODBMS to have high potential for many of the future applications.

OODBMS is a collection of objects. The objects are classified into classes and

instances. A class is a collection of instances. There are two types of accesses to

OODBMS. Users may access the OODBMS for data (runtime transactions) or schema

(design time transactions). A transaction in OODBMS is defined as partially ordered

set of method invocations on objects [Agrawal1992]. A typical runtime transaction

involves execution of associated methods (also called member functions) to read or

alter the value of attributes in an instance. The values of the attributes map on to the

data in the underlying database. The runtime access to the database can be at class

level (involving all the instances in a class) or at instance level (involving any one

instance in a class) based on the property of the methods [Riehle2000b]. The design

time transaction involves reading and modifying the structure of the domain. The

domain structure is represented by schema in databases. Hence, design time

transactions are used to alter the schema. Since it is OODBMS, the structure is

defined by a set of related classes participating in the domain. The collection of

related classes is called as class lattice. It is represented using a class diagram. Class

lattice is a group of classes related by inheritance, aggregation and association

relationships. The access to the database can be a read or write operation. The read

operations can be executed in shared lock mode and write operations should be

executed in exclusive lock mode to avoid dirty reads and dirty writes.

Existing concurrency control schemes cannot be adopted for object oriented

environments because of the following reasons:

• The inherent complex nature of objects is not exploited in promoting concurrency.

14

• The rich structural and behavioral semantics of the objects provide better

performance.

• The transactions in object oriented environments are long duration in nature.

Existing concurrency control schemes are not equipped to support them.

Preemption of such long transactions due to incompatibility under utilizes system

resources. At the same time, letting a transaction to hold resources for longer

duration may delay other transactions and reduce the throughput.

Object Oriented Distributed Systems (OODS) blend the benefits of distributed

systems and object oriented programming. While distributed systems promote

resource sharing, object oriented programming helps to simplify the design of

complex systems by its bottom up approach. In OODS, the reusable data resources are

modeled as objects. The objects in server tier, encapsulate the state and methods that

implements the business logic of the domain. The set of values of attributes define the

state of the object. The methods implement the business logic and operate on the

attributes to serve the clients. The objects residing in the server tier access the

persistent store in the database tier to update their states.

In distributed systems, the database tier could be modeled as relational database or

object oriented database. The concurrency control mechanisms are usually applied on

the databases in the data store tier as in figure 2.1. This eliminates the possibility of

using legacy data sources like files that are simple in nature and lack in concurrency

control mechanisms

 Server

 Concurrency Control

Client
Request

DDB

Procedure

 RDBMS/OODBMS

Figure 2.1 Concurrency control at database tier

In OODS, the concurrency control mechanisms can be shifted to application

server tier as in figure 2.2. Then concurrency control mechanisms can be applied on

the objects in the application server tier. The shift of concurrency control mechanism

from database tier to application server tier aids in supporting all types of persistent

store of data. The other advantage is rather than defining concurrency control

15

mechanisms for each type of data store, a common concurrency control mechanism

can be proposed for objects.

Concurrency Control

Client DDB

Objects

Server
Files/RDBMS/OODBMS

Figure 2.2 Concurrency control at server tier

 The possibility of shifting concurrency control mechanisms from databases in the

database tier to objects in the server tier may be explored so that any form of data

persistence can be supported. This is because the client requests for data in the

database tier can be accessed only through the objects in server tier. So this will help

OODS to support legacy file formats also. Then obviously concurrency control

mechanisms defined for OODBMS is a good place to look for defining optimal

concurrency control algorithms in OODS.

 Though concurrency control mechanisms in OODBMS can be considered, they

cannot be adopted as they are in OODS. This is because query language is used to

request databases. But in OODS, object oriented programming languages like C++,

Java are used to make client requests. Then lock types and granularity of resources are

to be ascertained from the client code. The doc tools like docC++, Javadoc can be

used to identify the method type and properties [Riehle2000a, Riehle2000b]. After

this, the compatibility matrix used in OODBMS can be considered for adoption in

OODS.

The business domain implemented in OODS may eventually be upgraded to

provide better services to clients. Then it introduces the need for changing the

structure of the domain. The domain is represented using class diagram in OODS. The

evolution of business domain might require changes in definitions of attributes,

methods, classes and their relationships. Then OODS may receive data requests as

well as schema change requests for which concurrency control is to be imposed.

Then OODS will receive two types of requests: Runtime data requests and

Design time requests to modify the structure of domain. Both of them can be either

read or write requests. Then concurrency control has to be applied to protect the

consistency of the objects. These two types of requests induce three different types of

16

conflicts among requests to a class diagram: conflicts among runtime requests,

conflicts among design time requests and conflicts between runtime and design time

requests. In OODBMS, both types of transactions can be executed in parallel as

transactions are written in query languages. In OODS, the transactions are

implemented in programming languages as mentioned earlier. The commutativity

matrix proposed should resolve all the above conflicts.

The application of concurrency control techniques have the negative effect of

resulting in deadlocks. Deadlock prevention is one of the proactive techniques to

handle deadlocks. Prevention of deadlocks has the benefit of low runtime cost and

better response time. Coffman1971 states that prevention algorithms work by

preventing any one or more necessary conditions of deadlock namely mutual

exclusion, non pre-emption, hold and wait and circular wait. It also states that

prevention of deadlock, by eliminating mutual exclusion and non-preemption

conditions is generally influenced by the nature of resources. Hold and wait, when it

leads to circular wait results in deadlock.

Shaw1974 says that deadlock prevention can be implemented by using any of the

following techniques namely collective requests, maximal claims and ordered

resource allocation. Collective requests can be used for batch processing systems and

are not suitable for real time systems. Maximal claims method can be used when all

the resources are not required initially and resources can be requested as the execution

of transaction progresses.

 But Hac1989 states that all the resources are to be granted for a transaction to

proceed in distributed systems. This is because the resources are scattered across

various sites and none of the sites know the status of other sites. Hence checking for

circular wait condition is tedious in distributed systems than in centralized systems.

Then techniques like maximal claims and collective requests cannot be applied in

distributed systems. Moreover, rollback of transactions on detection of deadlocks will

cause more overhead. Therefore, the transactions should get all the resources they

need, before they proceed. Since the transactions get all the resources before

execution, their execution can continue without any wait time. However, the resource

requests are to be known apriori to prevent deadlocks. In order to know the requests

apriori, the resource requirements of all transactions needs to be known. Though this

technique is sub optimal in utilization of resources, rollback overhead is sub optimal

to this and causes increase in response time and lesser throughput. Hence, it is a trade

17

off between utilization of resources against throughput and response time. Further

Hac1989 have shown that deadlock prevention algorithms are better than deadlock

detection algorithms with better performance and response time in distributed

systems.

 A good Deadlock Prevention Algorithm (DPA) should avoid starvation. In DPA,

access ordering defines how the simultaneous transactions should be ordered to access

the resources. Poor access ordering policy leads to starvation. It involves abortion of

the same transaction repeatedly. It is categorized into starvation in poverty [Holt1972]

and starvation in wealth [Parnas1972]. It is an outcome of exercising concurrency

control to the simultaneous transactions. They can be defined as follows:

Starvation in poverty [Holt1972]: A resource request made by a transaction is never

satisfied there after; alternately the requested resource is assigned to other transactions

repeatedly.

Starvation in wealth [Parnas1972]: A resource requested by a transaction is never

satisfied though it is permanently satisfiable from a particular time instant.

In DPA, access ordering is usually on FIFO basis. This generally ensures fairness

in the system. However, strict adherence of FIFO strategy may introduce starvation in

wealth, which states that latter transaction which could have been satisfied, is kept

waiting, since earlier transaction is waiting. Alternately, assigning static priority for

transactions introduces starvation in poverty, which is a consequence of expedient

scheduling strategy. This makes shortage of resources and makes lower priority

transactions permanently blocked.

Deadlock detection is a reactive strategy for handling deadlocks. It is the best

mechanism for systems with lower and moderate number of deadlocks. Deadlock can

be usually detected by checking for presence of cycle in Wait-For Graph

(WFG).Detection of deadlock is more difficult in distributed systems than in

centralized systems. This is because the resources are distributed in different sites and

transactions access them from any of these sites. They communicate only through

messages. Hence in order to know the wait-for status of the transactions, a Global

WFG (GWFG) has to be constructed. Selection of a victim using this GWFG is

complex.

The most popular algorithm for distributed deadlock detection and resolution is

the probe based algorithm by Chandy1983. In this algorithm, the transaction that

suspects deadlock sends probe messages along the wait for edges of the GWFG. If the

18

probe returns back to the initiator, it indicates the presence of deadlock. Simultaneous

initiation of probe messages by many transactions for the same deadlock may lead to

phantom deadlocks. Hence priority based algorithms [Chowdary1989; Mitchell1984;

Sinha1985] have been proposed. These algorithms ensure that only one probe is sent

per deadlock cycle. The initiator is decided based on priority. Later several DDDR

(Distributed Deadlock Detection and Resolution) algorithms have been proposed for

various request models which optimize on message complexities.

All these algorithms expect the underlying system model to be fault free. In

Ozsu1999, it is stated that the failures in distributed systems could be categorized as:

1. Transaction failure- bug in code

2. Site failure- processor failure

3. Link failure- communication link failure

So there is a need for fault tolerant DDDR that can handle the above mentioned

failures. If faults cannot be handled, atleast the initiator should be informed about the

status to avoid infinite wait.

Once a deadlock is detected, one of the transactions should be chosen as victim.

Aborting it will break the cycle and thus eliminate the deadlock. The victim thus

selected needs to rollback and restart later. Hence the negative outcome of the

deadlock resolution is the possibility of penalization of the same transaction again and

again i.e., starvation.

In section 2.2, object oriented concepts related to the research work are

explained. In section 2.3, existing semantic multi-granular models for object oriented

environments are explored and their lacuna are identified. In section 2.4, the

adaptability of DPA to OODS is explored and the existing algorithms are analysed.

The popular probe based DDDR algorithm by Chandy1983 is not fault tolerant.

Survey is done to see whether there are any other fault tolerant DDDR algorithms

existing. Several existing victim selection algorithms for deadlock resolution are

analysed for optimality of performance. In section 2.5, the limitations of the literature

survey are summarized and objectives of the research work are finalized.

2.2 Object Oriented Concepts

This section revisits the object oriented concepts related to the research work.

The types and properties of object methods are explained first. Then the semantics of

class types, attribute types and class relationships with respect to locking is discussed.

19

The client requests are satisfied by executing the methods defined in the object.

These methods need to operate on the data to satisfy the request. The methods not

only have types but also properties. Depending on the type of methods, the read or

write operations can be ascertained. Then concurrency control mechanisms can be

defined whenever there are R-W and W-W conflicts. Riehle2000a has classified the

object methods into three types:

1. Query method: returns some information about the object being queried. It does

not change the object’s state. There are four main query method types:- Get

method, Boolean query method, Comparison method and Conversion method.

2. Mutation method: changes the object’s state (mutates it). Typically, it does not

return a value to the client. There are three main mutation method types:- Set

method, Initialization method and Command method.

3. Helper methods: performs some support task for the calling object. There are

two types of helper methods: - Factory method and Assertion method.

Apart from types, a method also has properties [Riehle2000b]. Example of

method properties are whether the method is primitive or composed, whether it is

available for overriding through subclasses (hook method), or whether it is a mere

wrapper around a more complicated method (Template method). A method has

exactly one method type, but it can have several properties. Method types and

properties are orthogonal and can be composed arbitrarily.

Two types of classes are defined in object oriented systems namely Abstract and

Concrete classes. Abstract classes are usually used to define the class template.

Instances are not created from this type of classes. Usually they act as base classes

from which one or more concrete classes are derived. Concrete classes are classes

defined mainly to create instances. They support all types of methods to create, query,

mutate and delete objects. The locks on concrete classes depend on the type of

member method which is invoked. Both read (S) and write (X) locks must be

available for them at both design time as well as runtime. So lock types for both

abstract and concrete classes are to be ascertained.

In OODBMS, only instance level attributes are referred. The scope of values of

these attributes is restricted to the state of the object in which they are present. They

are mutually independent and directly inaccessible by other objects of the same class.

In OODS, instance level attributes as well as class level attributes are present. The

class level attributes are shared by all instances of a class. They are also called as

20

static attributes of a class. For e.g., nextregno can be defined as a static member in the

student class to generate the next register number for a new student object. Hence the

smallest granule size for instance level attributes could be object or individual

attributes, whereas the granule size of class level attribute can be as small as a class.

As mentioned earlier, the classes are related by inheritance, aggregation and

association relationships. The inheritance relationship also called as “IS A”

relationship is sub divided into single inheritance, multi level inheritance, multiple

inheritance, hierarchical inheritance and hybrid inheritance. The inheritance

relationship except multiple inheritance can be represented using tree structure and is

called class hierarchy. The inclusion of multiple inheritance will lead to network

structure and is called class lattice.

The aggregation also called as “HAS A” relationship defines the containment of

component objects in a composite object. The composite object uses the services of

component objects to provide its service. There are two types of aggregation namely

strong and weak aggregation. The weak aggregation is a subtype of association and

hence the rules used for association can also be extended to this. The strong

aggregation is also called as composition and defines “PART OF” relationship. The

composition [Kim1989] can be classified into dependent or independent based on the

dependence of creation and deletion of component objects on composite objects. The

composition is also classified into shared or exclusive based on the possibility of

sharing component objects by more than one composite object.

The association relationship defines the USING relationship, where one or more

objects use the service of an object. Since it is an object relationship, a binary

association can be treated as shared composition with single component and N-ary

association can be treated as shared composition with multiple component objects.

The rules defined for composition may be extended to association.

Garza1988 and Kim1989 have explored the types and properties of inheritance

and aggregation. However it is worth noting certain points regarding these

relationships:

1. Transactions can request a single object or all the objects of a class based on the

member function present in it. The property of the member function may be

instance level or class level [Riehle2000b]. Garza1988 states that when class level

methods are called, instead of setting individual locks on all objects, a single lock

on its class may be set to minimize the lock escalation.

21

2. When a transaction requests a sub class object (figure 2.3), the sub class object

and its corresponding base class object mapping to the same record in a database

table must also be locked to maintain consistency. Hence base class object is an

implicit resource needed for a transaction, when a transaction makes explicit

resource request to sub class object. However when base class objects are

requested, sub class objects need not be locked.

 Implicit
 Request

 Explicit Database Table
 Request

 Client tier Server tier Database tier

Sub
class

object

Base
Class
Object

T

Figure 2.3 Locking the sub class object with its base class object to maintain
consistency

3. When a transaction requests a composite object, its component objects also need

to be locked. In aggregation, component objects constitute composite object.

Hence component objects are implicit resources to composite object (explicit

resource). The composite object gets the request and forwards it to component

object, if the service is implemented in component object. The component object

provides the service to the transaction as in figure 2.4.

Response Database Table

 Implicit
Request

 Explicit

Request
 Client Tier Server tier Database Tier

Composite
object

Component
object

 T

Figure 2.4 Locking the composite object with its component object to maintain

consistency

22

4. In association, when a transaction calls an associative object, it may access

associated object to provide the service. Then associated object needs to be locked

along with the requested object to maintain consistency as in figure 2.5.

 Associated

 Object Database Table

 Request Response

 Request

 Associative
 T Object

Response
 Client tier Server tier Database tier

Figure 2.5 Locking the associative object with its associated object to maintain
consistency

Association differs from Inheritance and Aggregation relationships in the following

ways:

• Association requires several qualifying attributes to completely define itself,

unlike “IS-A” and “HAS-A” relationships that are complete and semantically

strong.

• In Inheritance and Aggregation, the cardinality of the relationship is usually 1.But

in association; the cardinality can range from 0 to many. Hence a policy must be

decided to fix the granule size.

• Reflexive association is present only in association, in which one object may

associate with 0 or more objects of the same class. This leads to self looping.

• Usually inheritance and aggregation are static. These relationships are decided at

design time. But association can be static or dynamic.

Henderson1997 has classified the association in the following categories:

1. Direct vs. Indirect Association:

In direct association, the two classes are directly linked. This will be usually

binary association.

23

A B C

 Employee Works under Manager managing Company

In the above example, the association between A, B and B, C are direct. But

the association between A and C is indirect. This implies that if class A is requested,

then B is also to be requested. This is because B is directly associated with A and A

might need the services of B. But B is associated with C. This implies that B might

use the services of C to serve A. Hence A is indirectly associated with C. When B is

locked along with A, C also needs to be locked. This association type decides the

extent of locking.

2. Binary Vs N-ary Association:

Binary association is association between two classes. If more than two classes

are associated, then it is called N-ary association. N-ary association is difficult to

implement as it is. Hence it is implemented as a collection of binary associations.

for example Subject

 Subject Teacher
 Teacher Student Teacher Student
 Student Class

 Class

 N-ary Association Binary Association

3. Referential Vs Dependent Association:

In referential or independent association, the association is logical. The

associated classes are called as target and source classes. Target class is connected to

source class which provides service. This typically defines “USING” relationship.

When source classes are removed, the target classes are not removed. They are

independent of each other.

Alternately, dependent association is physical. Here the classes are called

producer and client. If producer is removed, the client also ceases to exist. In other

words, client depends on server for its existence. This imposes constraints on creation

and deletion of client on producer.

 4. Shared vs. Exclusive Association:

In this type, the association is either dedicated to one class or shared with many

classes.

24

5. Static vs. Dynamic Association:

Stevens2002 states that association can have static or permanent links (long term

association) or dynamic links (short term association). Static links are defined at

design time. But Dynamic links are transient, contextual and initiated only on request.

Hence request for dynamically associated classes are deferred till runtime.

6. Reflexive Association:

This is a rarity in association itself. An object can be a client of other objects in

the class.

 Example.

A supervisor, who is also an instance of employee, manages other employees. This is

called as self looping.

7. Inherited Association:

Example.

 Studied by

Employee Manages

Subject Student

Studied by

Subject PG Student

The association between subject and student is inherited to the derived class PG

Student also. This lets redefinition of the association between student and subject.

Any association is expected to define the following attributes to be semantically

complete.

1. Role name: Two classes may have more than one association. This helps to select a

specific association at a time between the two associated classes. This helps to deduce

what attributes are going to be accessed for a particular association. Then concurrency

may be increased.

2. Interface specifier: Along with role name, this also helps to identify attributes

required, the services (methods) provided in a specific association.

3. Visibility: Specifies the access rights to other attributes and methods in the class. A

transaction in OODS is typically constituted of interfaces. An interface may contain

one or more methods or member functions of the implementing class. Then it is

25

required that these methods are declared as ‘public’. Otherwise they are hidden from

the client and their request will not be satisfied.

4. Cardinality/ Multiplicity: Cardinality specifies the correspondence between the

associated classes. This can be used to deduce granule size.

The above mentioned factors can be utilized while defining lock model for

objects related by association. So far, the association relationship is not considered

because of its inability to completely define the relationship semantically.

2.2.1 Classification of design time operations

In OODBMS, schema or the class diagram is viewed as directed acyclic graph.

The classes are viewed as nodes and the relationship links connecting classes are

viewed as edges. In [Kim1990; Bannerjee1987], the design time transactions altering

the schema are classified into changes to class definition and changes to the class

hierarchy structure. The changes to class definition can be

1. Modifying the definition of attributes defined in the class such as changing its

name and domain,

2. Adding/ deleting attribute

3. Adding/ deleting method

4. Modifying interface (signature) or implementation of a method

5. Creating/ deleting instance

6. Moving an attribute from one class to another class

7. Moving a method from one class to another class

 In Bannerjee1987, the changes to class hierarchy are classified into changes to

the nodes and changes to the links. Changes to the node involve

1. Adding a new class

2. Dropping an existing class

3. Changing the name of a class

4. Moving a class from one position in class hierarchy to another position

Changing an edge or link means changing the relationships between any two

classes in the class diagram. This includes

1. Making a class as parent class to a subclass

2. Removing a class from the list of parents of a class and

3. Changing the order of parent classes of a class.

26

 Hence changes to the link actually involve changing the relationship between

classes and changing the position of a class in the class diagram. Then it is obvious

that changes to class level requires locking at class level and changes to class

hierarchy structure requires locking at class hierarchy level. Though in

Bannerjee1987, links refer to class hierarchy level, it can be rephrased as class

lattice level as links do not refer to inheritance alone but also other relationships like

aggregation and association. Any concurrency control scheme is expected to provide

support for all the design time operations mentioned above.

2.3 Existing Semantic Multi-Granular Lock Models

Concurrency control
techniques

Timestamp Locking Optimistic Concurrency
Control

Multi-granular locking

Semantic Multi-granular
Locking

Based on relationships Based on operations

Figure 2.6 Classification of concurrency control techniques

Figure 2.6 shows the classification of existing concurrency control techniques.

Concurrency control techniques are broadly classified as Timestamp ordering,

Locking and Optimistic Concurrency Control techniques. Locking is widely favored

for ease in implementation. Multi-Granular Lock Model (MGLM) is a popular model

of Locking. In the literature, it has been proven that the application of object oriented

concepts in determining granularity improves the performance. These existing

semantic multi-granular lock models for OODBMS provide commutativity among

transactions in two ways: based on relationships and based on commutativity.

One group of works proposes concurrency control based on the compatibility of

relationships namely inheritance, aggregation and association between the objects.

Separate lock modes are defined for each of the above relationships. In the second

27

group of concurrency control schemes, compatibility is defined based on the

commutativity of operations. They require application programmers to perform

semantic analysis on the source code of methods (member functions) of the class.

These semantic multi-granular lock models can be assessed based on the level of

concurrency they provide for parallel execution of design time and runtime

transactions without compromising on consistency. These two types of transactions

induce three different types of conflicts among transactions to a class lattice: conflicts

among runtime transactions, conflicts among design time transactions and conflicts

between runtime and design time transactions. Algorithms addressing these types of

access conflicts are discussed below.

2.3.1 Conflicts among runtime transactions

Gray1976 has first introduced MGLM for relational databases. Intension locks

are used to infer the presence of locked resources at smaller granule level. The lock

modes defined here are S (Shared - Read), X (eXclusive – Write) and SIX (Shared

Intension eXclusive – locks all in S mode but a few of them in X mode). IS and IX

intension lock modes are to be set at coarse level before locking resources using S, X

and SIX lock modes at fine granule level.

MGLM was first extended to object oriented databases by Garza1988 for

ORION. In this paper, MGLM is defined for objects related by inheritance and

exclusive aggregation only. They have applied the lock modes defined by Gray1976

for OODBMS. The locks defined in Garza1988 are of granularities of classes

(collection of instances) and instances. Later Kim1989 has extended it to all types of

aggregation (namely shared and exclusive aggregation, dependent and independent

aggregation). In this paper, apart from the lock modes in Garza1988, new lock modes

like ISOS, IXOS, SIXOS are added to support shared aggregation. In Jun1998,

concurrency control for runtime transactions on classes related by inheritance is

proposed. The smallest granule in all these schemes for runtime transactions is only

up to instance level and all of them have proposed MGLM based on relationships

only. In Saha2009, a self adjusting MGLM is defined to let the transactions to

dynamically choose their granularity from coarse to finer size on a particular resource

based on the increasing degree of resource contention.

As mentioned earlier, the schema in OODBMS is represented using class

diagrams. In class diagrams, the class relationships namely inheritance, aggregation

28

and association exist in different combinations. These concurrency control schemes

define lock modes for each relationship separately. They have not defined lock modes

for objects which have combination of relationships. Hence they are not suitable for

representing complex data models. Further, their granularity is restricted to instance

level.

In the lock models based on commutativity of operations, Badrinath1988 initiated

this by defining commutativity based on the operations defined in class methods with

the objective of defining the granularity less than object level. In Badrinath1988,

attribute is the smallest granularity supported. They state that any two methods in a

class can be parallely executed if they do not share any attribute. This provides a

granularity smaller than object. But it requires knowledge of the structure of all

methods in a class. In Badrinath1992, the idea of recoverability is defined. i.e., the

methods can be executed in any order. But the commit order is fixed. This also

requires apriori knowledge of all possible outcomes of all methods. In Agrawal1992,

the idea of Right Backward (RB) commutativity is introduced. It states that “an

operation o1 is said to have RB commutativity with another operation o2 on an object

if for every state in which executing o2 followed by o1 has the same state and result

as executing o1 followed by o2”. This is less restrictive than commutativity

relationship, as it is included in commutativity. However application programmers

need to know all possible results of each method.

 Malta1993 proposed commutativity of methods to resolve lock conflicts between

runtime transactions. In Malta1993, the lock modes are defined independent of object

relationships. This paper has claimed to eliminate the burden of determining

commutativity exhaustively for every pair of methods at runtime, by determining it

apriori using Direct Access Vectors (DAV). It is based on the idea of Badrinath1988.

A DAV is a vector defined for every method, whose field corresponds to each

attribute defined in the class on which the method operates. Each value composing

this vector denotes the most restrictive access mode used by the method when

accessing the corresponding field. The access mode of any attribute can be one of the

three values, N(null), R(read), W(write) with N < R < W for their restrictiveness. The

access vectors are defined for all methods based on their lock mode on every attribute

defined in the class. Commutativity is based on access modes. If access modes are

compatible, then DAVs of corresponding methods commute. If the DAVs commute,

then the methods commute. This involves two steps. 1. DAV is constructed for each

29

method. 2. The commutativity table of methods is constructed. Then final DAV for all

the methods specifies the most restrictive access of all the attributes in a class. This

paper has claimed to reduce locking overhead, lock escalation and deadlocks. Since

the most restrictive lock mode is decided in the beginning itself, lock overheads due

to lock conversions are reduced, and hence deadlock is minimized. Moreover, this

paper has extended concurrency up to attribute level.

 In Jun2000, fine granularity of runtime transactions is provided to the attribute

level using DAV. For every attribute, the methods that are using this attribute are

considered. From the method implementation, it is inferred whether the method reads

or writes the attribute value. The granularity is assessed to the level of break points.

This provides finer granularity smaller than attribute level. It is to be noted that the

attributes are not only used in the classes where they are defined but also in other

classes that are related to the defined class by inheritance, aggregation and

association. These related classes are called as adapted classes. Then while

constructing DAV, the DAV of methods in adapted classes also should be considered

along with the defined class methods. In aggregation and association, the method

implementations in defined class are used as they are in adapted classes. Therefore,

new DAV is not required for classes related by aggregation and association.

 However in inheritance, the methods inherited from base class to subclasses are

classified into two types namely template methods and hook methods as in

Riehle2000a. Template methods are adapted as they are from the base class. I.e. both

the interface and implementation are same in both base class and subclasses. This

means that implementation inheritance is followed for template methods. In hook

methods however only interface or signature is inherited. This supports method

overriding. The base class and subclasses are allowed to have separate

implementations for this interface. This is called as interface inheritance. Both

template methods and hook methods of subclasses can access the attributes of the

base class. Then commutativity table for the base class should include final DAV of

hook methods in subclasses as they can also access attributes in base class but may be

in different lock mode. Thus these mechanisms fail either in providing fine

granularity or in consistency.

 Now let us analyze the concurrency control strategies followed by some of the

popular object oriented databases. In ZODB [Fulton1996, Fulton1999], concurrency

control of runtime requests is based on timestamps. The optimistic time-stamp

30

protocol used by the ZODB is well suited to design environments and other

environments where there are complex data structures and in which reads are far more

common than writes.

 Versant [Versant2008] by default uses a pessimistic locking strategy to ensure

that objects in the database server are in sync with client access in an ACID way. This

is done by using a combination of locks against both schema and instance objects. In

brief, the database server process maintains lock request queues at the object level to

control concurrency of access to the same object.

 ObjectStore [Objectstore2011] uses locks to isolate transactions from the effects

of other transactions acting on the same data. ObjectStore uses strict two-phase

locking for controlling concurrent access. Lock contention occurs when a client

attempts to access persistent data that is incompatibly locked by another client. For

example, when a client attempts to read data that another client has already locked for

writing. The effect of lock contention is that one client is blocked and must wait to

acquire its lock until the other client releases its lock. Lock contention has no effect

on the correctness of the operations involved in lock contention, nor does it in any

way compromise data integrity. But it does impact the performance of the blocked

clients.

2.3.2 Conflicts among design time transactions

In this section, conflicts among the transactions requesting the design time

operations as in section 2.2.1 are addressed. In Lee1996 all the schema operations are

supported by locking the entire schema with Read Schema (RS) and Write Schema

(WS) lock modes. In Malta1993, lock mode for changing the class definition (class

contents) is provided by RD (Read Definition) and MD (Modify Definition) lock

modes. They have overlooked the other types of schema changes. Agrawal1992

provided finer granularity by defining separate lock modes for attributes and methods

(which are class contents). They have not defined any separate lock mode for

operations involving changes to nodes and edges. In Lee1996 and Malta1993,

transactions modifying class relationships are serialized and no other runtime

transactions or design time transactions are allowed to execute parallely. i.e., the

entire class diagram is locked and indirectly the entire database is locked. Therefore,

there is no separate lock mode defined in the literature to read or modify class

relationships as defined in Bannerjee1987.

31

In Jun2000, class definition has been divided into three compartments namely

1. Reading and Modifying Attributes (RA, MA),

2. Reading and Modifying Methods (RM, MM) and

3. Reading and Modifying Class Relationships (RCR, MCR).

Lock mode for attributes involves changing the domain of the attribute, or

deleting the attribute. In Jun2000, there is only one lock mode shared by all the

attributes of a class. At any time, only one attribute can be modified in a class. This

lock mode considers the access conflicts within the class only. It does not consider the

conflicts arising due to the relationship of this class with other classes.

In Jun2000, there is only one lock mode for all the methods defined in a class. At

any time, only one method can be modified in a class. This lock mode considers the

access conflicts of methods within the class only. It does not consider the access

conflicts arising due to the inheritance, association and aggregation relationships of

this class with other classes.

In Jun2000, operations involving change in class relationship are serialized. It

does not take into account the structural modifications between classes. I.e., it

considers only intra class relationships and excludes inter class relationships. Then it

can be observed that all the class level and class lattice level operations represented by

MCR (Modify Class Relationship) lock mode blocks all the other design time

transactions along with runtime transactions. So in all these existing works, the

granularity of design time operations is still coarse. The transactions that modify

class relationships are serialized.

In ZODB [Fu1ton1996], the design time transactions are handled in 4 ways.

Changes in object methods are easily accommodated because classes are not stored in

the object database. Changes to class implementation are reflected in its instances, the

next time an application is executed. Adding attributes to instances is straightforward

if a default value can be provided in a class definition. More complex data structure

changes must be handled in __setstate__ methods. A __setstate__ method can check

for old state structures and convert them to new structures when an object's state is

loaded from the database.

In Versant [Versant2008], schema evolution is supported by lazy evaluation. It

supports versioning of schema. In existing schema, it generates errors and allows the

user to choose the version. In either case, the runtime transactions are temporarily

suspended.

32

ObjectStore [Objectstore2011] by default uses batch mode while installing

schema in a user database. All schema data in the application schema database is

added to the user database when the application first accesses the database typically,

when the application creates the database. Thereafter, no schema needs to be added to

the database unless the application has been changed to access persistent objects of a

new type.

As an alternative to batch mode, you can specify incremental mode. When

ObjectStore uses this mode, it installs schema for a particular type only when an

application first allocates persistent storage for an object of the type. Incremental

mode has two advantages:

• It spreads the cost of schema installation over the lifetime of the database.

• It installs only schema for types that are allocated in the database, thus reducing the

size of the schema data in the database.

Alternately, incremental mode can increase the chances of lock contention

because it spreads schema installation across the lifetime of the application, rather

than confining it to one time. When batch mode is in use, lock contention during

schema installation can occur only when a process first accesses a database.

2.3.3 Conflicts between runtime transactions and design time transactions

In runtime transactions, the values of attributes are read or modified by executing

the associated methods in a class. The attribute values are locked in read and write

lock modes. In design time transactions, the attribute definitions are read or modified.

Thus an attribute has two facets and is chosen depending on the type of transaction.

During runtime transactions, the methods are locked in read mode as their

contents are not modified by execution. In design time transactions, the method

definitions are read or modified. When any attribute or method definition is modified,

runtime transactions accessing them should not be allowed.

In Garza1988, S (Shared) and X (eXclusive) lock modes are defined for reading

and modifying class definition respectively. In this, an entire class object is taken for

lock granularity. Since X mode is not compatible with all other lock modes, a class

definition modification blocks all other accesses to the same class. Moreover, the

same S and X lock modes are used for runtime transactions also. This scheme

provides limited concurrency since a class definition read does not commute with any

runtime transaction.

33

Actually, a class definition read commutes with an instance write as described in

Cart1990. In Cart1990, only two lock modes are used for an entire class object: CR

(Class Definition Read) and CW (Class Definition Write), respectively. Since CW

conflicts with CR and any other runtime lock modes, concurrency between class

definition accesses (class definition read and class definition write) and runtime

accesses is limited. As discussed earlier, two lock modes on a class object limits

concurrency between class definition write and instance access since higher

concurrency is possible by taking finer locking granularity in both class objects and

instance objects.

In Malta1993, MD blocks any other instance access as well as RD and MD, since

MD lock does not commute with any other lock modes. In Servio1990, an exclusive

lock is required for a modify class definition. It guarantees that other transactions

cannot acquire any kind of lock on the object since an exclusive lock on a class does

not commute with any other lock requesting transactions. This results in severe

concurrency degradation. Similarly, Lee1996 offer two lock modes on a class object:

Read Schema (RS) and Write Schema (WS). Since WS lock is not compatible with

any other lock modes, concurrency between a class definition access and an instance

access is limited.

A limited concurrency between class definition write and instance access is

provided in Agrawal1992 as follows. Lock granularity as individual attributes and

individual methods instead of an entire class object is adopted. That is, as long as two

class definition access methods or instance access methods access disjoint portions of

a class definition, they can run concurrently. These fine granularity locks are required

each time an instance access method is invoked so that their scheme incurs large

overhead.

In Olsen1995, an instance write method can run concurrently with a class

definition write method on the same class. This concurrency is based on the following

argument: ``the instance update operation is given a copy of old class definition that is

publicly available. Once a class definition is updated, it becomes publicly available

and all new instances use it. After all instance update operations that used an old class

definition have either aborted or completed, the new class definition is applied to all

instances of that class''. Although they allow concurrency between instance access and

class definition access, their lock granularity is still too big because an entire instance

object is taken.

34

In Jun2000 though the granularity is at attribute level, as it provides coarse

granularity for operations handling class relationships, the granularity is not always

fine. However, AAV (Attribute Access Vector) is defined for all the attributes in

every class to maintain their lock status. Using this, simultaneous access to more than

one attribute is facilitated. This paper offers a trade off between limited concurrency

of accessing only one attribute at a time against maintenance overhead of AAV for

concurrent access of all attributes of a class. Similarly, MAV (Method Access Vector)

is defined for all methods in the domain to maintain their lock status. Using this,

simultaneous access to all methods is facilitated. It offers a trade off between limited

concurrency of accessing only one method at a time against maintenance overhead of

MAV for all methods of every class. If separate lock modes can be defined for node

changes and link changes, then concurrency can be enhanced.

2.4 Deadlock Handling Techniques in OODS

Application of concurrency control techniques may lead to deadlocks. It has been

shown that application of semantics of object oriented concepts on concurrency

control techniques improves concurrency. So it can be experimented to see whether it

also works for deadlock prevention algorithms also. In the next section, the

adaptability of deadlock prevention algorithms of distributed systems to OODS is

explored. In section 2.4.2, the short comings of the popular distributed deadlock

detection algorithm proposed by Chandy1983 are analyzed. In section 2.4.3, the

existing victim selection algorithms are compared against their performance towards

the desirable factors like throughput, response time, fairness, resource utilization.

2.4.1 Existing deadlock prevention algorithms

In Object-Oriented Distributed Systems (OODS), objects are the resources and

they can be acquired using locks. The resources are multi–granular in nature and the

hierarchy can be as given in figure 2.7. Class diagram is the structural diagram giving

static view of the system. It gives details of all the objects participating in the domain,

their attributes, member functions and their relationships with other objects in the

system. It consists of a set of transactions T and a set of resources R. OODS requests

support AND model [Hac1989]. A resource request in AND model system is of the

form r1∩r2∩….rn where ri є R. This means that a transaction can execute only when it

gets all the resources.

35

Let T1, T2….Tn ∈ T. T maintains a list of transactions that are currently

executed in the system. Once a transaction has finished execution, it is removed from

the list. In single request model, when a transaction enters into the system it requests

for the resources one by one. A transaction can request for the next resource, only

 CLASS
 LATTICE

CLASS
HIERARCHY

CLASS

OBJECT

Figure 2.7 Hierarchy of lock granules in OODS

when the previous resource is granted to it. All the resources that it needs are

maintained in the REQUESTTi list. All the resources granted to it are maintained in

ALLOCATEDTi list. Any request that is granted will be removed from REQUESTTi

and added to ALLOCATEDTi. Once the execution of Ti is over, ALLOCATEDTi is

made empty. There is another list called FREE that holds all the resources that are

available and not granted to any of the transactions. When any resource request is

granted, it is removed from FREE list and attached to the ALLOCATED list of the

transaction that requested the resource.

Let us assume that there exists only one unit of every resource and each resource

type is unique. If there exist no alternatives for any of the resources and if resource

request model is AND model, then Holt1972 says that the necessary and sufficient

condition for deadlock is the presence of cycle in wait for graph. Shaw1974 and

Coffman1971 have shown that by resource ordering, deadlocks can be prevented in

single resource model.

In OODS, the resources specified in class diagram are distributed to various sites.

Since it is a distributed system, objects and associated database fragments are to be

partitioned and distributed to various sites. Several partitioning algorithms

[Ozsu1999] like horizontal partitioning, vertical partitioning, path partitioning etc

36

have been proposed in the literature. Horizontal partitioning is simplest of all the

algorithms. The other reason for choosing horizontal partitioning is to group closer

resource IDs and isolate transactions with similar requests. The grouping of

transactions will reduce deadlock-handling time. Figure 2.8 shows a sample class

diagram after horizontal partitioning.

Here it can be observed that each level of classes is assigned to a different site.

Figure 2.8 Sample class diagram with horizontal partitioning

Several deadlock prevention algorithms have been defined for distributed systems

and distributed object oriented systems.

Andrews1982 has proposed Deadlock Prevention Algorithm (DPA) for

predicting hardware resource requirements and preventing deadlocks at runtime.

Reddy1993 has proposed DPA for distributed database system, which is claimed to

provide deadlock freedom at low message cost. It eliminates the deadlock by giving

higher priority to active transactions. If all the conflicting transactions are active, the

transaction having higher Transaction Identification Number (TIN - which is a triple

field value (S, I, C) where S is the site ID, I is the unique transaction ID and C is the

transaction arrival time in local clock) is given priority. Thus, it prevents cycles in

wait- for-graph. However, it does not consider the case where conflicting transactions

require multiple resources and latter transactions already have more resources than

earlier transactions.

Davidson1993 have proposed AND-OR DPA for concurrent real time systems

using resource ordering technique. Here the ordering is done for passive data

resources and their associated active resources (like processors). In this DPA, the

interdependency or relationship of data resources among themselves is not addressed.

37

Hence, this cannot be considered for objects in OODS that is related to other objects

in many ways.

Cummins2001 recursively checks for presence of cycle of any size, whenever

simultaneous transactions in distributed object system request for object resources. It

does not exploit the structure of object oriented system defined using class diagrams

and does not utilize the object relationships to infer the required resources apriori.

Lewis2008 has proposed DPA for multi threaded environment. A transaction i.e.

thread in this case, should set the deadlock prevention mode indicator for every data

resource as shared or exclusive. If the mode is exclusive, then access is serialized.

Here also, deadlock is prevented by access ordering and effect of mutual dependency

of resources is not addressed.

Anand2009 have proposed DPA for distributed environment. Deadlock

prevention is achieved here by preempting threads (which are the resources) assigned

to transactions. Here each transaction having complex nested calls request for

multiple threads for their execution. They request the same thread to execute a

method. Then conflicting transactions having one thread and requesting another may

lead to deadlock. Then lower priority transaction is made to preempt.

From the literature survey, it can be inferred that very few DPA have been

proposed for OODS. Majority of the algorithms are generic. The algorithms that have

been proposed for OODS does not exploit the semantics of object oriented paradigm.

None of them propose any resource ordering technique using it.

2.4.2 Fault tolerance in distributed deadlock detection algorithms

Deadlock detection is an optimistic approach for handling deadlocks. Probe based

deadlock detection algorithm [Chandy1983] is one of the most popular algorithm

because of its simplest approach to detect deadlocks. However it has the drawbacks of

lack of fault tolerance and requirement of separate deadlock resolution phase.

In order to provide fault tolerant deadlock detection in distributed systems,

Li1993 has proposed a totally distributed fault tolerant DDDR algorithm using fault

diagnosis model. In this, the processors are categorized into faulty and non faulty. All

non faulty processors will certify the other processors as faulty or non faulty. A fault

vector is attached as part of the probe where each bit in the vector represents a

processor in the system. 0 represents non faulty and 1 represents faulty. It has the

following drawbacks: The processors are diagnosed periodically by the other non

38

faulty processors. If the period is very small, the non faulty processors need to spend

more time in diagnosing other processors than executing its transactions. This will

reduce throughput of the system. On the other hand, if the periodicity is more, then

reliability reduces. Hence the success of this algorithm lies in choosing ideal period of

diagnosis. Fault diagnosis is not a function of deadlock detection. However fault

information needs to be given. Message complexity is more in propagating updated

processors’ status and clean messages. It can identify only one processor failure per

deadlock cycle.

Apart from Li1993, very few works have been proposed on fault tolerant DDDR

algorithms. Hansdah2002 discusses about link failure, where grant messages are lost

or delayed. Brzezinski1995 offers solution for asynchronous messaging system,

where the messages are not delivered in FIFO basis. It proposes a token based system

to handle this. However this algorithm also assumes that there are no site failures.

2.4.3 Existing victim selection algorithms

Detection of deadlocks is followed by its resolution. In distributed systems,

detection of deadlock is more difficult than in centralized systems. This is because the

resources are distributed in different sites and transactions access them from any of

these sites. They communicate through messages only. Hence in order to know the

wait-for status of the transactions, a Global WFG has to be constructed. Selection of a

victim using this GWFG is complex. Zobel1988, Newton1979 and Singhal1989 have

done survey on various deadlock handling techniques, but they have not focused on

victim selection algorithms for deadlock resolution. Moon1997 have compared the

performance of deadlock handling techniques against the attribute of throughput

alone.

The circular wait state can be broken by aborting one of the transactions

participating in the cycle. The transaction chosen for abortion is called as victim.

Several algorithms have been proposed in the literature for the selection of victim

under different criteria as given below:

1. Selection Criteria: Youngest [Agarwal1987].

Transaction Attribute: Arrival time or Age

Transaction that has arrived latest or whose time stamp is greater than all the

participating transactions is chosen as the victim. This assumes that the later

transaction would not have done much progress and hence aborts the latest

39

transaction. It is highly fair and provides linear response time as it serves in FIFO

basis.

2. Selection Criteria: Minimum History [Agarwal1987]

Transaction Attribute: History

The transaction that has been aborted least number of times so far (also called as

history) will be chosen as the victim. This ensures elimination of starvation.

3. Selection Criteria: Least Priority [Sinha1985]

Transaction Attribute: Static Priority

The transaction having the least static priority will be aborted. This helps to decide

the order of execution, given a collection of transactions. The priority of the

transactions can be statically fixed by the users or the domain.

4. Selection Criteria: Maximum Size[Weikum2005]

Transaction Attribute: Size

The transaction, whose code size is largest among all the active transactions, will

be aborted. As the transaction size increase, it is assumed to consume more resources

and finish execution much later. Hence transaction with largest size is chosen as

victim. This improves the throughput of the system as more number of smaller

transactions is finished in the given time.

5. Selection Criteria: Minimum number of locks [Agarwal1987]

Transaction Attribute: In-degree in Wait for Graph

Transaction that has acquired least number of resources so far, inferred by the

least number of grant messages and represented by in degree in WFG is chosen as

victim. The transaction is chosen only based on its current resource holding status and

hence may improve the throughput of the system. The resource utilization improves,

because of the selection of a victim which has locked minimum number of resources

in the system so far, and does not penalize a transaction on any other criteria.

6. Selection Criteria: Maximum number of cycles [Chow1991]

Transaction Attribute: Cycle participation

Transaction involved in maximum number of deadlock cycles will be aborted.

Normally, it is expected to choose one victim per cycle. By using this algorithm, the

number of victims may be reduced. Hence number of transactions rolled back is lesser

and hence throughput increases.

7. Selection Criteria: Maximum Edge cycle [Chow1991]

Transaction Attribute: in-degree+ out -degree

40

This resolution is based on maximum participation of a transaction in a number of

cycles. The possibility could be that the transaction is already holding high priority

resources and further requires more number of resources held by other transactions.

Hence there is more number of edges in the GWFG. It is not only based on

transaction attribute, but also based on resource attribute. It is the sum of request

edges represented by out-degree and grant edges represented by in-degree in the

GWFG.

8. Selection Criteria: Blocker [Agarwal1987]

Transaction Attribute: Random blocker, current blocker

The transaction that has caused the deadlock is aborted in this algorithm. The

overhead of selecting a victim is nil in this case. It also reduces deadlock resolution

latency. But other attributes are suboptimal.

9. Selection Criteria: Minimum work done [Agarwal1987]

Transaction Attribute: Resource consumed

Transaction that has consumed least amount of resources is chosen as the victim.

10. Selection Criteria: Initiator [Agarwal1987]

Transaction Attribute: transaction that has initiated the deadlock detection

The transaction, which had initiated the deadlock detection phase on time out, is

chosen as victim. This minimizes the deadlock resolution latency in a distributed

system, as initiator ID is always communicated to all sites.

11. Selection Criteria: Maximum release set [Terekov1999]

Transaction Attribute: holding maximum number of resources

Transaction holding more number of resources which, when aborted will benefit

maximum number of transactions, is chosen as victim.

12. Selection Criteria: Minimum number of submitted operations [Holt1972]

Transaction Attribute: Number of submitted operations

The transaction which has done minimum work so far is chosen as the victim.

13. Selection Criteria: low priority + least resource priority + min. work done

[Lin1996]

Transaction Attribute: low priority + minimum work done

This algorithm works in three phases. In the first phase a set of low priority

victims are selected. In phase two, victims holding higher priority resources from the

first phase list are chosen. In phase three, victim which has done least work done is

aborted from phase two list.

41

14. Selection Criteria: Minimum Abortion cost [Lin1994]

Transaction Attribute: Age and work done

Abortion cost is a function of number of currently submitted operations and

transaction age and given as, Abortion cost = ∝ N (T) +βt (T), where ∝+β = 1 and N

(t) – number of currently submitted operations, t (T) – age of transaction. ∝ and β are

weights to choose between age and work done. Age improves fairness and work done

improves throughput.

In all these victim selection algorithms, there is a trade off between desirable

factors. One factor is achieved at the cost of another factor. Garey1979 has stated that

identification of minimum number of victims at runtime is NP complete.

2.5 Extract of the Literature Survey

a. None of the existing semantic MGLM for OODBMS has exploited the semantics

of object-oriented paradigm fully to ensure consistency of the database and maximize

concurrency among the transactions. Fine granularity of access for the design time

transactions is lacking. Lock modes for design time operations are implemented

partially.

b. Existing semantic MGLM perform well for runtime transactions. They provide

maximum concurrency for stable domains using access vectors. As the number of

design time requests increase, their performance deteriorates. This is because of the

increase in the search and maintenance overhead of access vectors that are used for

maximizing concurrency for stable domains.

c. OODS differ from OODBMS. i.e., in OODS, client transactions are implemented

in programming languages. In OODBMS, the queries are implemented in query

languages. Therefore, semantic MGLM in OODBMS cannot be extended to OODS.

So it is required to infer the lock modes and granularity from the code and map them

to commutativity matrix defined for OODBMS.

d. Concurrency control in any AND model system invariably leads to deadlock.

OODS supports AND model [Hac1989]. Therefore, deadlocks have to be handled.

The OOP semantics can be exploited to provide a better deadlock handling technique.

e. Existing probe based deadlock detection algorithm [Chandy1983] is not fault

tolerant. Further, it requires a separate resolution phase to select a victim transaction

and abort it.

42

2.6 Summary

To overcome the limitations inferred from the literature survey, the research

problem is defined with the following objectives:

a. Guaranteeing consistency of the data and the schema of OODBMS by defining a

separate commutativity matrix for checking inter class dependencies between classes

related by inheritance, aggregation and association. It is also proposed to provide fine

granularity of all the design time operations defined by Bannerjee1987 using object

oriented semantics.

b. Removing the overhead of maintaining and searching various access vectors in the

existing SCC techniques of OODBMS to support continuously evolving domains.

c. Providing lock types and granularity for the methods in OODS from the code

implementing the methods. It is also intended to extend the compatibility matrix from

OODBMS for adoption in OODS.

d. Defining resource ordering and access ordering techniques for deadlock prevention

in OODS by exploiting object oriented semantics to eliminate cycles, starvation in

poverty and starvation in wealth.

e. Improving the existing probe based deadlock detection algorithm to be fault

tolerant. It is also intended to include victim selection as part of the probe to reduce its

time complexity in deadlock detection and resolution phases.

43

CHAPTER 3

CONSISTENCY ENSURED SEMANTIC MULTI-
GRANULAR LOCK MODEL (CESMGL) FOR OBJECT
ORIENTED DATABASES IMPLEMENTING STABLE

DOMAINS

3.1 Preamble

OODBMS is a collection of objects. Users may access the OODBMS for data

(runtime transactions) or schema (design time transactions). A typical runtime

transaction involves execution of associated methods (also called member functions)

to read or alter the value of attributes in an instance. The values of the attributes map

on to the data in the underlying database. The runtime access to the database can be at

class level (involving all the instances in a class) or instance level (involving any one

instance in a class) based on the property of methods [Riehle2000b]. A design time

transaction involves reading and modifying the structure of the domain. The domain

structure is represented by schema in databases. Hence, design time transactions are

used to alter the schema. In OODBMS, the structure is defined by a set of related

classes participating in the domain. The classes may be related by inheritance,

aggregation and association relationships. Design time transactions are classified into

transactions requesting at node content level, transactions requesting at node level and

transactions requesting at edge level [Bannerjee1989]. The design time transactions

are sparse in stable business domains.

Multi- Granular Lock Model (MGLM) is a common technique for implementing

concurrency control on the transactions using the OODBMS. The main advantages of

MGLM are providing high concurrency and minimal deadlocks.

Though there are several semantic based MGLM [Garza1988, Kim1989,

Malta1993, Lee1996, Saha2009, Jun2000], they have the following lacuna:

• Maximum concurrency is achieved for runtime transactions in Jun2000’s scheme

at the cost of consistency. In the other schemes, the granularity for runtime

transactions is coarse.

44

• None of them has fully exploited the semantics of attributes, methods and class

relationships to maximize the concurrency of design time transactions. In

Jun2000’s scheme, medium size granularity is provided for design time

transactions requesting at node content level. The node level and link level design

time transactions are executed in serialized manner because of the coarse

granularity support.

• Fine granularity lock modes for the above mentioned three types of design time

transactions are not proposed.

This chapter aims in proposing a semantic MGLM, which will improve the degree

of concurrency for design time transactions and runtime transactions by fully utilizing

the semantics of object oriented features. The proposed CESMGL scheme has the

following characteristics: First, it proposes fine granularity for all types of design time

transactions. Second, it provides separate lock modes covering all types of operations

possible by design time transactions mentioned in Bannerjee1987. Third, it

demonstrates that fine granularity of runtime transactions can be provided without

affecting consistency. Fourth, it proposes enhanced commutativity matrix between all

design time transactions and runtime transactions. The CESMGL scheme provides

more parallelism between design time transactions and runtime transactions. A

simulation model is constructed to evaluate the performance of the proposed work.

This model is used to compare the proposed work with the latest existing techniques.

The performance results show that the CESMGL scheme is better than existing

works.

3.2 The CESMGL Scheme

The CESMGL scheme aims in providing the following objectives. It ensures

consistency among runtime transactions and provides fine granule locking for design

time transactions. It will not only improve concurrency among design time

transactions, but will also improve concurrency between runtime transactions and

design time transactions. The principles based on which the concurrency is improved

among design time transactions and between runtime transactions and design time

transactions are discussed in the following sections. In the next section, modifications

are made to Jun2000’s scheme to preserve the consistency among runtime

transactions. In section 3.2.2, commutativity matrix of fine grained design time

operations is defined. Another commutativity matrix is defined to maintain the

45

consistency in accessing the attributes and methods from adapted classes. In section

3.2.3, semantics involved in parallel access of data and schema is discussed.

3.2.1 Consistency among runtime transactions

The models proposed before Jun2000 offer coarse granularity for runtime

transactions. Jun2000 provides the finest granularity of access for runtime

transactions. It offers the granularity of attributes with breakpoints which is smaller

than the granularity of attributes. This means that the attribute can be shared by

runtime transactions between break points. Jun2000 also provides better concurrency

for design time transactions than the models proposed before his scheme.

In Jun2000, a pre-analysis is done to define commutativity among all methods in

a class. It involves two steps: (1) construction of DAV for every method and (2)

construction of a commutativity table of methods. In each method, a programmer or a

compiler inserts a breakpoint when a conditional statement is encountered. Every

method has a special breakpoint called first breakpoint before the first statement in the

method. There are three types of DAVs in each method: (1) a final DAV of the first

breakpoint, which is a DAV of the entire method as in Malta1993, (2) an initial DAV

of the first breakpoint, which is a union of access modes of each attribute used by

statements between the first breakpoint and the next breakpoint and access modes of

each attribute used by statements from the first statement to the last statement that are

executed regardless of execution paths. A union operation “+'' is equivalent to max,

e.g., R+W =W take more restrictive mode among two operations. Union operation is

necessary to build worst-case access mode of each attribute, and (3) an initial DAV of

every other breakpoint, which contains access modes of all attributes used by

statements between this breakpoint and the next breakpoint. This is done up to the end

of the method.

In Jun2000, the dependency of a class with other classes is not considered while

constructing the DAV of a class. The DAV proposed in this paper is correct and

performs well for implementation inheritance, aggregation and association. However,

it will not work for interface inheritance. In implementation inheritance, both the

interface and implementation of a base class method (template method) are inherited

into the subclass. In interface inheritance, only the interface of the method is inherited

into the subclass. The subclass is allowed to define its own implementation for this

method. The base class methods that are reimplemented in the subclasses are called

46

hook methods [Riehle2000a]. The reimplementation of hook methods in subclasses is

not only applicable for single inheritance but also for multi level inheritance and

hierarchical inheritance. In multi level inheritance, the hook method is reimplemented

at every level of inheritance. In hierarchical inheritance, all the subclasses inherited

from the common base class will have separate implementations. Then while defining

DAV for a class, it is necessary to consider the implementations of these hook

methods in all the subclasses. This is required to preserve the consistency of the

attribute. It can be explained with an example. The example used in Jun2000 is used

here to show the changes to be done to preserve the consistency. Here single

inheritance is assumed for simplicity.

Assume that there are four attributes a1, a2, a3, a4 and three methods M1, M2

and M3 in the base class. Object O1 is an instance of base class. Let M1, M2 be

template methods and they are inherited as it is in subclasses. Let M3 be a hook

method and it has separate implementations in base class and subclass. Let A, A1,

A2, and A3 are breakpoints of M1, B is a breakpoint of M2, and C, C1, and C2 are

breakpoints of M3. Let D and D1 be break points of M3 in subclass implementation.

Object O2 is an instance of subclass. Note that the operator ‘+’ stands for union. The

contents and DAVs of each method are given below:

47

After constructing the DAVs for all the breakpoints in all methods, a

commutativity table of methods is constructed. In a commutativity table, a lock

requester’s entry contains names of the final DAVs of the first breakpoints in all

methods (represented as NF where N is the name of the first breakpoint in each

method). For example, AF represents a final DAV of the first breakpoint A in method

M1, which is [R, W, W, W]. A lock holder’s entries contain names of the final DAV

of the first breakpoint (in the form of N), name of the initial DAV of the first F

48

breakpoint (in the form of NI) and names of the initial DAVs of other breakpoints

(represented as Ni where i is ranging from 1 to number of breakpoints-1) in each

method. For example, in method M1, A , AF I, A1, A2 and A3 represent the following

DAVs [R,W,W,W], [R,R,R,N], [R,W,N,N], [N,R,W,N], [R,N,N,W] respectively.

Since, the worst-case access mode is assumed for each attribute before execution to

avoid problems of lock conversion, lock requesters always have the most restrictive

access modes (i.e., final DAVs of the first breakpoints).However, after the execution

of a method, a lock holder may have a less restrictive access mode. Two breakpoints

commute if their corresponding DAVs commute. Two DAVs commute if, for every

attribute, its access mode in the two DAVs commutes.

Table3.1 Commutativity matrix for the example comparing CESGML scheme and

Jun2000 scheme

 AF AI A1 A2 A3 BBF CF CI C1 C2 D D D1 F I

AF N N N N N N Y Y Y Y N N N
BBF N Y Y Y N N Y Y Y Y N Y N

CF N Y N Y Y Y Y Y Y Y Y N N
D N N N N N N Y Y Y Y N Y N F

Table3.2 Commutativity matrix for the example comparing CESGML scheme

and Malta1993 scheme

 M1 M2 BASE CLASS SUBCLASS M3
M3

M1 N N N N
M2 N N Y N

BASECLASS M3 N Y Y N
SUBCLASS M3 N N N N

Table 3.1 gives the commutativity table constructed in the CESMGL scheme to

that of Jun2000’s scheme. The shaded portion shows Jun2000’s scheme. The

CESMGL scheme shows where consistency is to be preserved. Table 3.2 gives the

commutativity table for the CESMGL scheme and the shaded portion in the scheme

proposed in Malta1993. Note that Y and N denote “compatible” and “incompatible”

status of transactions respectively. In Jun2000’s scheme, method M2 commutes with

base class implementation of M3. However M2 does not commute with subclass

implementation of M3.This consistency requirement is ignored in Jun2000’s scheme.

The CESMGL scheme appends the consistency requirements to preserve the

49

consistency of attributes. It is also interesting to note in the example that the base

class and subclass implementations of M3 themselves do not commute. From this it

can be inferred that when both objects O1 as well as O2 calls M3, they should not be

allowed to execute in parallel as they do not commute. The CESMGL concurrency

control scheme is based on two-phase locking. Therefore the correctness of proposed

commutative of operations need not be proved [Eswaran1976].

 It should be noted that whenever the implementation of a method is changed, the

corresponding DAV should be changed accordingly. This means that commutativity

relationships should also be redefined.

3.2.2 Concurrency among design time transactions

The CESMGL scheme defines the lock modes for design time operations with

the following objectives:

1. Exploit the features of object oriented concepts to identify mutually exclusive

operations in the system.

2. Maximize concurrency by providing rich set of lock modes.

3. Provide commutativity matrix independent of domain or specific instances, so that

it does not require any apriori analysis.

4. Impose concurrency control wherever consistency is affected due to semantics of

object oriented concepts.

The CESMGL scheme aims to cover all the operations that could be done on

the schema as defined in [Kim1990, Bannerjee1987]. The operations can be seen at

three levels: at node (class) contents level, at node level and at link level. As

specified in Bannerjee1987, the node contents are instances, attributes and methods.

In the following paragraphs, the mutually exclusive operations and dependent

operations are identified to propose the lock modes for design time operations.

Based on the semantics of inheritance, subclasses can read as well as modify

their attributes, but they can only read base class attributes. Only the base classes can

modify the base class attributes. This theory can be extended to aggregation and

association also. The definitions of attributes defined in a component class can be

modified only in that component class where as composite objects can only read

them. Similarly the attributes in an associated class can be modified only in that

associated class. The associative classes cannot alter them. In simple words,

modification is possible only in the class in which the attributes are defined.

50

Therefore, the attributes from the base classes, component classes and associated

classes can be viewed as adapted attributes in the subclass or composite class or

associative classes. In Jun2000, adapted attributes and attributes defined in the class

cannot be accessed in parallel even though they are mutually exclusive, without using

AAV. It also does not address the need for controlling the parallel execution of

modifying an attribute definition in the base class (component class/associated class)

while reading the same attribute definition in the subclass (composite class/associative

class). Allowing this will lead to dirty reads.

By object oriented semantics, modification of methods typically includes

modifying the interface of the method, modifying its implementation and modifying

its location i.e., moving a method from one class to another class in the class

hierarchy. Modifying the interface means modifying the name of the method, adding

or deleting the input parameters, changing their order and changing the returning type.

In Jun2000, all the operations related to modification of methods are done in the same

lock mode.

Figure 3.1 Locking in Inheritance

For example, consider figure 3.1. A1 is an attribute of base class and it is

inherited in subclass. B1 is subclass attribute. M1 and M2 are methods of base class.

In this M1 is inherited as it is in subclass (called as template method) [Riehle2000a],

whereas M2 is overridden in subclass (called as hook method) [Riehle2000a]. M3 is a

method defined in subclass. By Jun2000, all types of attributes i.e., adapted attribute

A1 and defined attribute B1 are locked by a single lock mode when the sub class

object is involved. All the methods i.e., template method M1, hook method M2 and

local method M3 are locked by a single lock mode in the subclass. The semantics of

each of these attributes and methods are not utilized to maximize the concurrency.

There are certain aspects that can be inferred from figure 3.1. Attribute A1 can

be read in both base class as well as in subclass. However, modifying A1 is possible

51

only in base class. It is worth noting that while base class is modifying the definition

of A1, no transaction should be allowed for the subclass to read the definition of A1

to maintain consistency. In subclass, attribute B1 can be read or modified. So the

attributes in any class can be categorized into two categories: Attributes adapted from

other classes and Attributes defined in the same class. Hence, the attributes are

classified into Adapted Attributes (AA) and Attributes (A). Then separate lock modes

can be defined for reading adapted attributes(RAA) and reading and modifying

defined attributes (RA,MA). Since adapted attributes cannot be modified in this class,

lock mode for modifying the adapted attributes is not available in the sub class. So, all

the subclasses will have adapted attributes and attributes defined in that class.

However as the base classes do not have any parents; their adapted attributes list will

be empty.

In figure 3.1, M1 is a template method whose interface and implementation

can be modified only in the base class. It can only be read in the subclasses. M2 is a

hook method. Therefore, its interface is modifiable only in the base class and

implementation is modifiable in both base class and subclass. This means hook

methods can be overridden and can have different implementations in base class and

subclass. M3 is a method defined in subclass and can be read and modified only in

subclass, as it is not visible in the base class. Similarly, interface and implementation

of methods defined in the component class cannot be modified in composite class.

They are available only for reading in the composite class. Hence, they can be treated

similar to template methods of inheritance. This can be extended to association also.

In Jun2000, MM is the only lock mode to handle all these method types.

Szyperski2002 says that the interface i.e. method definition is independent of

method implementation. This concept is called as separation of concerns. In object

oriented environment, the implementation of a method can be modified any number

of times. As long as its interface definition does not change, the clients need not be

informed about the change in the implementation. The implementation of the methods

is usually modified to provide better service to clients. However, when the interface is

changed, the clients need to be informed, as they are going to avail this service only

by calling in this interface format. In fact, the interface is viewed as a contract

between client and server. So lock mode for accessing a method is split into Method

Signature (MS) and Method Implementation (MI) in the CESMGL scheme. The

interfaces or definitions of the methods in base classes, component classes and

52

associated classes are separately maintained in the class. Hence separate lock modes

can be defined for reading the interfaces of adapted class methods (RAMS) and for

reading and modifying subclass methods (RMS, MMS). Since interfaces of the

methods in adapted class cannot be modified in the class where they are used, lock

mode for modifying the interface of these adapted methods is not available in this

class.

Modification of template methods in base classes, component classes and

associated classes is possible only in respective classes and is bound to the related

subclass lattice. However, Hook methods are overridden in subclasses. Hence, their

implementation in base class and subclasses can be independently modified without

affecting the other implementations.

Hence, MI is further split into Adapted Method Implementation (AMI) and

Method Implementation (MI) in the CESMGL scheme. The implementation can be

read or modified by the lock modes (RAMI, MAMI, RMI and MMI). There is only

read mode available for adapted method implementations for all the methods except

hook methods. MAMI represents modification of the hook methods and MMI is for

modifying methods defined in this class. When the transactions request to modify

adapted attributes in the respective classes where they are defined and try to read them

in the class where they are adapted, such parallel accesses should not be allowed to

maintain consistency. This is applicable to the modification of interfaces and

implementation of methods also to maintain consistency. Hence, the compatibility of

lock modes on these attributes, interfaces and implementations of these methods at

both the classes where they are defined and where they are read, need to be checked

to ensure consistency. New lock modes such as AI (Add Instance), DI (Delete

Instance) AA (Add Attribute), DA (Delete Attribute), AM (Add Method) and DM

(Delete Method) are defined to insert and delete instances, attributes and methods for

a class. Thus we have defined lock modes for all the design time operations accessing

at the node content level as defined in Bannerjee1987. Now the node level operations

are explored to provide fine granularity and promote concurrency.

Modifying a class involves adding, deleting a class or moving its location in the

class lattice. In Jun2000, class definition includes name of the class, all attributes and

methods defined in the class, set of super classes and subclasses of the class. This

combines the class level and link or edge level operations in the schema. Based on

Bannerjee1987 classification of modification operations of schema, it can observed

53

that class lattice level operations represented by MCR (Modify Class Relationship)

lock mode in Jun2000 blocks all the class level as well as other class lattice level

operations along with runtime transactions.

In Jun2000, MCR lock mode is defined for modifying class definitions. It is used

to add or drop a class and to modify super class/subclass relationship. RCR lock mode

is defined to read the definition of a class. Class definition includes name of the class,

set of all attributes defined or inherited into the class, sets of super classes and

subclasses of the class and set of methods defined or inherited into the class. If the

operations defined in Jun2000 are compared with Bannerjee1987, it can be inferred

that the operations defined in Jun2000 is only a subset of that of Bannerjee1987. This

results in two consequences. First, there are no sufficient lock modes to cover all the

schema design operations. Second, for a large number of operations, the granularity is

coarse. Then to promote concurrency, the operations in class level and edge level are

to be categorized into two groups:

1. Operations affecting at subclass lattice level

2. Operations affecting at class lattice level.

Lock modes like AA, MA, DA, RA, AM, MMS, MMI, DM, AI, DI affect not

only the class for which they are requested but also its adapted classes. This collection

of related classes is called as subclass lattice. There can be more than one subclass

lattice in a class lattice. Apart from the operations mentioned above, changing class

name, changing the order of relationship between two classes, adding a class,

dropping a class, making a class as parent class (component class/associated class) to

a subclass (composite class/associative class), removing a class from the list of

parents (component classes/associated classes) of a class and changing the order of

parent classes of a class are also operations affecting at subclass lattice level. These

operations do not affect other subclass lattices.

The operations like move an attribute/method from one class to another class

and move a class from one position to another position in the class lattice affect the

whole lattice as they may be moved from one subclass lattice to another subclass

lattice. Then it can be inferred that move operation affects the entire class lattice. This

operation should not be allowed to execute with any of the other transactions. So the

lock modes for the above operations can be grouped as Modify Subclass Lattice

(MSCL) and Modify Class Lattice (MCL).

54

55

Table 3.3 Proposed commutativity matrix for design time transactions

 A
A

RA
A

R
A

M
A

D
A

A
M

RA
MS

RM
S

M
MS

RA
MI

MA
MI

R
MI

M
MI

D
M

A
I

D
I

RS
CL

MS
CL

RC
L

MC
L

AA Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N
RA
A

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N

RA Y Y Y N N Y Y Y Y Y Y Y Y Y Y Y Y N Y N
MA Y Y N N N N Y Y Y Y N Y Y N N N N N N N
DA Y Y N N N N Y N N Y N N N Y N N N N N N
AM Y Y Y N N Y Y Y Y Y Y Y Y Y N N N N N N
RA
MS

Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y N Y N

RM
S

Y Y Y Y N Y Y Y N Y Y Y N N Y Y Y N Y N

MM
S

Y Y Y Y N Y Y N N Y Y N N N N N N N N N

RA
MI

Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y N Y N

MA
MI

Y Y Y N N Y N Y Y N N Y Y Y N N N N N N

RMI Y Y Y Y N Y Y Y N Y Y Y N N Y Y Y N Y N
MM
I

Y Y Y Y N Y Y Y Y Y Y N N N N N N N N N

DM Y Y Y N Y Y Y N N Y Y N N Y N N N N N N
AI N Y Y N N N Y Y N Y N Y N N N N N N Y N
DI N Y Y N N N Y Y N Y N Y N N N N N N Y N
RSC
L

Y Y Y Y N N Y Y N N N Y N N Y Y Y N Y N

MS
CL

N

RCL N Y Y N N N Y Y N Y N Y N N Y Y Y N Y N
MC
L

N

Table 3.4 Commutativity matrix for design time transactions accessing defined class
and adapted class

 Adapted Classes

 RAA RAMS RAMI MAMI
AA N Y Y N
RA Y Y Y Y
MA N Y Y N
 DA N N N N
AM Y N N N
RMS Y Y Y Y
MMS Y N N N
MMI Y Y N Y
RMI Y Y Y Y

D
e
f
i
n
e
d

C
l
a
s
s
 DM Y N N N

Table 3.3 defines the commutativity matrix defined for class lattice. Table 3.4

defines the commutativity matrix for classes where the attributes and methods

(interface and implementation) are defined against where they are adapted. In the

tables, Y means two methods always commute and N means they never commute.

The shaded portion in the table indicates all the possible operations on a class content

namely attributes, methods and instances. As they are frequently accessed operations

at sub class lattice level, separate lock modes are defined for all of them. The

remaining operations are allowed using MSCL lock mode.

Using the commutativity of lock modes in Table 3.3, a finer granularity lock can

be obtained. The lock granularity in the proposed work is one of the lock modes such

as MA, MMS, MMI, MAMI, AA, DA, AM, DM, AI, DI, MSCL, MCL and RAA,

RA, RAMS, RMS, RAMI, RMI, RSCL, RCL. Whenever a design time transaction

arrives, Table 3.3 is checked for compatibility. If the transaction accesses subclass,

composite class or associative class and lock mode is one of RAA, RAMS, RAMI and

MAMI or if it is base class, component class or associated class and the lock mode is

one of AA, RA, MA, DA, AM, MMS, MMI, DM, Table 3.4 is checked for

compatibility. The hierarchy of granules in design time transactions in Malta1993,

Jun2000 and CESMGL scheme can be summarized as given in figure 3.2.

ND – Not Defined MS – Method Signature M – Methods
SC – Schema Changes CN – Changes to Node I – Instances
MI – Method Implementation A – Attributes AA – Adapted Attributes
CE – Changes to Edges CL – Class Lattice level SCL – Subclass Lattice level
CNC – Changes to Node Content
AMS – Adapted Method Signature AMI – Adapted Method Implementation

Figure 3.2 Comparison of hierarchy of granules of design time transactions

Let us consider the various scenarios to show how Jun2000’s scheme and

CESMGL scheme works: Let T1 be a transaction arriving at t. Let T2 and T3 be

transactions arriving at t+1. Let us assume that each transaction takes at least 1 second

to complete. Let class name: [tran-name, lock type (item name)] be the format for

design time transaction. Item name refers to the name of the attribute or method

56

which is accessed. Let us consider figure 3.1. Let the base class be C1.Let its subclass

be C2. T1 requests C1. T2 and T3 requests C2. The scenarios will show how the

scheme ensures consistency wherever necessary and improves concurrency wherever

possible.

3.2.3 Concurrency between runtime transactions and design time transactions

The runtime transactions and design time transactions can have fine granularity

access by using lock modes as well as access vectors. In Jun2000’s scheme, AAV and

MAV are defined to concurrently access more than one attribute or method in the

same class. However for all the other operations the granularity is still coarse.

Changes to class lattice at both node level as well as link level are represented by

57

MCR lock mode. Therefore, overall concurrency is still restrained. This can be

explained with an example. Consider the sample class diagram as in figure 3.3a. The

CDV (Class Dependency Vector) is used to identify the subclass lattices in the class

diagram. There are 3 subclass lattices in the sample class diagram namely (A,B,E,H),

(B,C,F) and (D,G,I). So, if any class in a subclass lattice is requested, all the classes in

the same subclass lattice are also locked. This provides concurrency at subclass lattice

level for class lattice level design operations with runtime operations.

In general in a class lattice, there is an upward dependency for runtime

transactions. i.e., whenever a runtime transaction is made on subclass, composite class

or associative class, its corresponding base class, component class or associative class

also has to be locked. On the other hand, there is a downward dependency for design

time transactions. Whenever there is any structural modification in base class,

component class or associative class, it is passed on to the relative subclass,

composite class or associative class. Then concurrency can be further improved by

locking the defined classes for runtime transactions and adapted classes for design

time transactions. For example in figure 3.3a, if a runtime request is made to E, its

defined classes A and B are to be locked. If a design time request is made to E, its

adapted class H is to be locked.

 Defined
Classes

Class Adapted
classes

---- A E,H
------ B E,H,F
------- C F
----- D G,I
A,B E H
B,C F --- D G I
A,B,E H ---
D,G I -----

(a) (b)

Figure 3.3(a) Sample class diagram (b) CDV for the sample class diagram in table
format

This can be defined using Class Dependency Vector (CDV) in table format as in

figure 3.3b. From figure 3.3b, it can be observed that classes at leaf level like F, H and

I do not influence other classes. Then any changes done at the node level in these

classes like changing the class name, deleting this class, adding/ deleting attributes

and adding / deleting methods can be done at class level. Similarly classes closer to

58

59

the root level like A, B, C and D are not affected by other classes. Then the

commutativity matrix for transactions between defined class and adapted classes need

not be checked for these classes. Thus it can be observed that for all subclass lattice

operations of the transactions, maximum concurrency can be achieved. The AAV and

MAV vectors facilitates intra class parallelism, while CDV facilitates inter class

parallelism.

Table 3.5 gives the commutativity matrix for design time and runtime

transactions. Table 3.6 is used to ensure consistency among transactions that are

accessing in parallel a defined class and its adapted classes. In the tables, Y means

two methods always commute, N means they never commute and ∆ means that the

two methods commute only when they access disjoint portions of a class.

Table 3.5 Proposed commutativity matrix for design time transactions and runtime
transactions using access vectors

 AA RAA RA MA DA AM RAMS RMS MMS RAMI MAMI RMI MMI DM AI DI RSCL MSCL RCL MCL IA
AA Y Y Y Y Y Y Y Y Y Y Y Y Y Y ∆ ∆ ∆ ∆ ∆ N ∆
RAA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ∆ Y N Y
RA Y Y Y ∆ ∆ Y Y Y Y Y Y Y Y Y Y Y Y ∆ Y N Y
MA Y Y ∆ ∆ ∆ ∆ Y Y Y Y ∆ Y Y ∆ ∆ ∆ ∆ ∆ ∆ N ∆
DA Y Y ∆ ∆ ∆ ∆ Y ∆ ∆ Y ∆ ∆ ∆ Y ∆ ∆ ∆ ∆ ∆ N ∆
AM Y Y Y ∆ ∆ Y Y Y Y Y Y Y Y Y ∆ ∆ ∆ ∆ ∆ N ∆
RAMS Y Y Y Y Y Y Y Y Y Y ∆ Y Y Y Y Y Y ∆ Y N Y
RMS Y Y Y Y ∆ Y Y Y ∆ Y Y Y ∆ ∆ Y Y Y ∆ Y N Y
MMS Y Y Y Y ∆ Y Y ∆ ∆ Y Y ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ N ∆
RAMI Y Y Y Y Y Y Y Y Y Y ∆ Y Y Y Y Y Y ∆ Y N Y
MAMI Y Y Y ∆ ∆ Y ∆ Y Y ∆ ∆ Y Y Y ∆ ∆ N ∆ ∆ N ∆
RMI Y Y Y Y ∆ Y Y Y ∆ Y Y Y ∆ ∆ Y Y Y ∆ Y N Y
MMI Y Y Y Y ∆ Y Y Y Y Y Y ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ N ∆
DM Y Y Y ∆ Y Y Y ∆ ∆ Y Y ∆ ∆ Y ∆ ∆ ∆ ∆ ∆ N ∆
AI ∆ Y Y ∆ ∆ ∆ Y Y ∆ Y ∆ Y ∆ ∆ ∆ ∆ ∆ ∆ Y N ∆
DI ∆ Y Y ∆ ∆ ∆ Y Y ∆ Y ∆ Y ∆ ∆ ∆ ∆ ∆ ∆ Y N ∆
RSCL Y Y Y Y ∆ ∆ Y Y ∆ ∆ ∆ Y ∆ ∆ Y Y Y ∆ Y N Y
MSCL ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ N ∆
RCL ∆ Y Y ∆ ∆ ∆ Y Y ∆ Y ∆ Y ∆ ∆ Y Y Y ∆ Y N Y
MCL N
IA ∆ Y Y ∆ ∆ ∆ Y Y ∆ Y ∆ Y ∆ ∆ ∆ ∆ Y ∆ Y N ∆

Table 3.6 Commutativity matrix for transactions accessing defined class and adapted

classes using access vectors

Adapted Classes
 RAA RAMS RAMI MAMI
AA ∆ Y Y ∆
RA Y Y Y Y
MA ∆ Y Y ∆
 DA ∆ ∆ ∆ ∆
AM Y ∆ ∆ ∆
RMS Y Y Y Y
MMS Y ∆ ∆ ∆
MMI Y Y ∆ Y
RMI Y Y Y Y

D
e
f
i
n
e
d

C
l
a
s
s
 DM Y ∆ ∆ ∆

For example, consider the following operations by transactions T1, T2 and T3 for

the sample diagram in figure 3a. At time t, T1 is doing a runtime access on instance I1

of class B. At time t+1, T2 is modifying implementation of the hook method M1 of

class H. At time t+2, T3 is modifying the name of the class G. At time t+3, T1 is

modifying the definition of attribute a1 in class F. At time t+4, T2 is doing runtime

transaction on instance I2 of class D.

Time T1 T2 T3

t B: IA(I1)
t+1 H: MAMI on M1
t+2 G:MSCL(Change class name)
t+3 F: MA (a1)
t+4 D: IA (I2)

The following paragraph shows how locks are changed on the class diagram for

the above scenario.

t: CDV:[A: N, B: IA (I1), E: N, H:N]

Initially the lock status of subclass lattice (A, B, E, H) is null. At time t, the lock

status of B is updated to a runtime lock. At time t+1, the lock status of H is updated.

t+1: CDV: [A: N, B:T1, IA (I1), E: N, H: T2,MAMI (M1)]

At time t+2, lock is requested to modify the name of class G. As any structural

change in G will not affect class D, its lock status is not updated. However, I is

inherited from G. So any change in G is also inherited to G. So I is also locked to

maintain the consistency.

t+2: CDV: [D: N, G: T3, MSCL (class name), I: T3, MSCL]

At time t+3, T1 modifies the attribute definition of a1 in class F. F does not have

any adapted class. Any structural change in class F, does not affect the other classes in

the subclass lattice.

t+3: CDV: [A: N, B: N, F: T3, MA(a1)]

At time t+4, there is an instance access to I2 of class D. D is a base class. There

are no defined classes for D. so it is enough to lock D alone.

t+4: CDV: [D: IA (I2), G: N, I: N]

Apart from CDV, AAV and MAV are maintained for every class to support

parallel access of attributes and methods in the same class.

60

3.3 Experimental Results and Discussion

The CESMGL scheme is tested using a simulation model as in [Kim1991]. In this

section, the simulation model, experimental details and analysis of the results are

presented.

The simulation model used in the existing works is adopted for testing the

CESMGL scheme. The existing simulation model [Kim1991] is used to facilitate easy

comparison. The simulation model is implemented using Java. Fig 3.4 shows the

architecture diagram of the simulation model. The various components in simulation

model are transaction generator, transaction manager, CPU scheduler, lock manager,

deadlock manager and buffer manager.

 Transaction

Generator
Transaction
Manager

CPU
Scheduler CPU

Concurrency
Control
Manager

Buffer
Manager

Deadlock
Handler

Ready Queue Block Queue

Figure 3.4 Simulation model [Kim1991]

The transaction generator creates each transaction with its transaction type,

unique transaction identifier and creation time. The transaction format is (transaction

type, resource type, resource-id). The transaction type can be runtime or design time

transaction. The resource type can be one of attribute, method, instance, class,

subclass lattice and class lattice. Transaction manager is responsible for scheduling

the execution of all transactions. It sends lock requests to the lock manager and sends

release messages on transaction completion. Deadlock handler detects presence of

deadlock and aborts a transaction. The transaction manager eventually starts the

aborted transaction. The aborted transaction still maintains the original creation time

to preserve its seniority. The CPU scheduler is responsible for scheduling in-coming

transactions. The transactions are served in FIFO order. The transaction holding CPU

will not be preempted for other transactions to avoid wastage of work and resources.

61

The lock manager orders the resource accesses based on the proposed concurrency

control scheme. A transaction request is served if its lock mode is compatible with the

existing transactions. It is blocked if the lock mode is incompatible. The data is

accessed from main memory. Buffer manager augments main memory access as disk

access is time consuming and will not give correct picture on the performance of the

system.

007 Benchmark by [Carey1993, Carey1994] is well known for testing the

performance of OODBMS. It is used in Jun2000 for showing the performance of his

proposal. But 007 benchmark defines the benchmark only for runtime transactions. It

does not define any testing cases for design time transactions. So it cannot be fully

adopted for the CESMGL scheme. However in the CESMGL scheme, the database

model and testing cases of runtime transactions of 007 bench mark are adopted for

performance evaluation. 007 benchmark classifies databases into small, medium and

large, based on their size. Here, small size is chosen for simplicity. The design time

transactions are formulated to cover all the three types of schema changes defined in

Bannerjee1987. Table 3.7 gives the simulation parameters.

Table 3.7 Simulation parameters

Parameters Default
value(range)

Time to process one operation 0.00000625ms
Mean time to set lock by runtime
transaction

0.3301 ms

Mean time to set lock by design
time transaction

0.3422ms

Mean time to release lock 0. 0015ms
Multiprogramming level 8 (5-15)
Prob. of Traversal 0.25 (0-1)
Prob. of Query 0.25 (0-1)
Prob. of Schema change 0.5 (0-1)
Prob. of Changes to nodes 0.15 (0-1)
Prob. of Changes to edges 0.20(0-1)
Prob.of changes to node contents 0.15(0-1)
Transaction inter-arrival time 500(100-1000)
Database model [Carey1993] Small (small,

medium, large)

Three testing cases are chosen to measure the performance of the CESMGL

scheme for all types of transactions: Varying arrival rate of the transactions, varying

read-to-write ratio of design time transactions and varying runtime transaction to

design time transaction ratio. The existing schemes chosen to compare against the

62

CESMGL scheme are Orion scheme [Garza1988] and Jun2000 scheme. Orion scheme

is chosen as it is the best scheme based on relationships. Jun2000’s scheme is chosen

as it is the latest scheme based on access vectors. As the CESMGL scheme is also

based on access vectors, it is compared against these two schemes.

Figure 3.5 Performance by varying arrival rate

Figure 3.5 shows the test case of varying arrival rate. This test is done to evaluate

how the schemes work under various system loads. Orion takes the maximum

response time. Jun2000’s scheme is better than Orion. The CESMGL scheme works

better for all the loads. The average lock waiting time of Orion, Jun2000’s scheme

and the CESMGL scheme are 46.12ms, 35.43ms and 28.12ms respectively. Thus the

CESGML scheme takes the least waiting time. It is because of the coarse to fine

granularity they provide. Orion locks the entire instance object for runtime

transactions and locks the entire class object for the class content level design time

operations. It locks the entire class lattice for node level and edge level design time

operations. In Jun2000’s scheme fine granularity is achieved for runtime transactions

at the level of attributes with break points at the cost of consistency. Medium

granularity is achieved for class content design operations for accessing attributes and

methods. For all other operations the entire class lattice is locked. In the CESMGL

scheme, further concurrency is enhanced by introducing new lock modes. On the

whole, CESMGL scheme is better than Orion by 46.88% and Jun2000’s scheme by

18.5%. Jun2000’s scheme is better than Orion by 34.8%.

63

Figure 3.6 Performance by varying design time read to write ratio

Figure 3.6 shows the test case of varying design time read-to-write ratio. In this

also, Orion’s performance is poor. It is because Orion takes entire class object as the

lock granularity for class definition access and there is no concurrency between read

and write operations on class definition access. Further it serializes all class lattice and

subclass lattice operations. Due to this the performance of Orion is poor. In Jun2000’s

scheme, the granularity is refined for class content modification. But other design

operations are still at coarse level. In the CESMGL scheme, the finest granularity is

achieved for class content level operations. The other design operations are also

divided into sub class lattice and class lattice level operations. The average lock

waiting time of Orion, Jun2000’s scheme and CESMGL scheme are 49.12ms,

35.43ms and 28.12ms respectively. On the whole, CESMGL scheme is better than

Orion by 68% and Jun2000’s scheme by 32.1%. Jun2000’s scheme is better than

Orion by 28.04%.

Figure 3.7 Performance by varying design time to runtime transaction ratio

64

Figure 3.7 shows the test case of varying design time to runtime ratio. Orion

takes highest response time. As it takes coarse granularity for both types of

transactions, its response time is very high. Jun2000’s scheme is better than Orion

because it provides fine granularity for runtime transactions and medium granularity

for design time transactions. However CESMGL scheme performs the best. This is

because of fine granularity of subclass lattice level operations with the help of CDV.

In the graph, it can be noted that Jun2000’s scheme response time is lower than

CESMGL scheme for higher ratio of runtime transactions. This is because CESMGL

scheme blocks inconsistent runtime transactions while it is not checked in Jun2000’s

scheme.

ANOVA (Analysis of Variants) is used to compare the performance of the three

techniques as given below. Here it is assumed that the response variable ‘Response

Time’ is affected by three factors namely, ‘number of transactions’ (represented as

numtran), ‘type of transaction’ (Dtorratio) and ‘technique’ (techniqname). The

response times are noted for 100, 400 and 700 transactions to study the behavior of

the techniques for small to fairly large number of transactions. The transactions could

be runtime transactions or design time transactions. There are three subtypes of design

time transactions namely changes to node contents, nodes and links as mentioned in

Bannerjee1987. Out of the total number of transactions five ratios of design time to

runtime transactions are taken to study the behavior of the techniques namely 100:0,

75:25, 50:50, 25:75 and 0:100. In each of the ratios, the sub types of design time

operations namely node content level operations, node level operations and link level

operations are considered. The response times are taken for each subtype of design

time transactions for all ratios. The techniques considered are Orion, Jun and

Proposed called as CESGML. For each experimental combination of the three

factors, two replications have been carried out.

The significance of the differences between the treatments of each of the

components of the model is tested using 15 null hypotheses by taking combinations of

the above mentioned four factors. As the objective is to show that CESGML performs

better than the other two existing techniques, only one hypothesis is considered here.

H01: There is no significant difference in response time by using different techniques.

 As the significant ratio is less than 0.05, the null hypotheses are rejected with

95% confidence level. This means that there is a significant difference in response

65

66

time due to change in the number of transactions, design time to runtime ratio and due

to different techniques.

The null hypothesis H01 for the techniques is rejected. Since there is a significant

difference between different algorithms, second level of test is conducted called as

Duncan multiple range test to discriminate the differences among the techniques.

Table 3.8 ANOVA results

Tests of Between-Subjects Effects
Dependent Variable:responsetime

Source
Type III Sum of

Squares
Degrees of
Freedom Mean Square F

Significant
Ratio

Model 1.167E6 108 10802.483 2012.568 .000
Numtran 264314.827 2 132157.413 24621.722 .000
Techniqname 117371.494 2 58685.747 10933.508 .000
Dtorratio 17596.878 3 5865.626 1092.801 .000
Dtrtype 3833.689 2 1916.845 357.120 .000
numtran * techniqname 38143.284 4 9535.821 1776.581 .000
numtran * dtorratio 11855.364 6 1975.894 368.121 .000
numtran * dtrtype 1764.414 4 441.104 82.180 .000
techniqname * dtorratio 1088.747 6 181.458 33.807 .000
techniqname * dtrtype 6346.830 4 1586.707 295.613 .000
dtorratio * dtrtype 2733.085 6 455.514 84.865 .000
numtran * techniqname * dtorratio 431.161 12 35.930 6.694 .000
numtran * techniqname * dtrtype 2026.393 8 253.299 47.191 .000
numtran * dtorratio * dtrtype 4111.168 12 342.597 63.828 .000
techniqname * dtorratio * dtrtype 793.496 12 66.125 12.319 .000
numtran * techniqname * dtorratio *
dtrtype

1319.259 24 54.969 10.241 .000

Error 579.691 108 5.368
Total 1167247.845 216

a. R Squared = 1.000 (Adjusted R Squared = .999)

Table 3.9 Duncan Range test results

Multiple Comparisons - Dependent Variable response time
 95% Confidence Interval

(I) technique name (J) technique name

Mean
Difference (I-J)

Std.
Error

Significant
Ratio Lower Bound Upper Bound

Jun 8.3555* .38613 .000 7.4165 9.2945CESGML

Orion 53.0948* .38613 .000 52.1558 54.0338

CESGML -8.3555* .38613 .000 -9.2945 -7.4165Jun

Orion 44.7393* .38613 .000 43.8003 45.6783

CESGML -53.0948* .38613 .000 -54.0338 -52.1558

Duncan

Orion

Orion -44.7393* .38613 .000 -45.6783 -43.8003

Based on observed means. The error term is Mean Square(Error) = 5.368.
* The mean difference is significant at the .05 level

The results of Duncan Range test is given in table 3.9. In table 3.9, it can be

observed that there is a significant improvement in the response time by each of the

techniques as the significant ratio is still in 0.000 which is less than 0.05.

The tests are conducted using SPSS17.0 and the estimated means of response

time with respect to each of the technique is plotted as in figure 3.8. It is found that

technique 3 (CESGML) has the lowest response time when compared to 1(ORION)

and 2 (JUN).

Figure 3.8 Plot of technique name versus response time

3.4 Summary

In this chapter, a concurrency control scheme is proposed based on multiple

granularity lock model to provide fine granularity among design time transactions and

runtime transactions. The CESMGL scheme imposes concurrency control on the

write-to-read conflicts and write-to-write conflicts between classes related by

inheritance and aggregation for both design time as well as runtime accesses. It

minimizes the need for AAV and MAV used in Jun2000’s scheme by proposing rich

set of lock modes based on the semantics of object oriented concepts. Fine granularity

of lock modes modifying the class relationships is proposed by defining CDV and

splitting the lock modes separately for class level changes and class lattice level

changes. The objective of this model is to provide finest granularity on all lock modes

to provide highest concurrency, however with the overhead of maintaining AAV,

MAV and CDV.

67

CHAPTER 4

SEMANTIC MULTI-GRANULAR LOCK MODELS FOR
OBJECT ORIENTED DATABASES IMPLEMENTING

CONTINUOUSLY EVOLVING DOMAINS

4.1 Preamble

Semantic MGLM techniques for OODBMS can be categorized into semantic

MGLM based on compatibility of relationships and semantic MGLM based on

commutativity of operations. The limitations of semantic MGLM based on

compatibility of relationships are as follows:

• Coarse granularity

• Does not support complex relationships combining inheritance, aggregation and

association.

• Same lock mode for all types of operations.

The limitations in semantic MGLM based on commutativity of operations are as

follows:

• Inconsistency due to runtime transactions

• Coarse granularity of design time transactions

• Checks only intra-class dependencies, does not explore inter-class dependencies.

Among the two types of semantic MGLM, MGLM based on commutativity of

operations showed better performance. The limitations of semantic MGLM based on

commutativity of operations are eliminated in CESMGL. It ensures semantic

consistency between classes where attributes and method or member functions are

defined and where they are used. This was overlooked in Jun2000. Concurrency is

further enhanced by defining CDV which is used to lock only the related sub class

lattices instead of locking the entire class lattice for operations involving node

changes. CDV maintains a list of parent classes and child classes for every class.

Parent classes are the classes from which the class is derived. Child classes are the

classes which are derived from class. Thus CDV improved the performance further. In

CESMGL, separate lock modes have been defined to handle changes to nodes and

edges. It provides fine granularity with the help of commutativity matrix and access

68

vectors. Access vectors can be omitted at the cost of limited concurrency. Hence there

is a trade-off between limited concurrency and access vectors maintenance overhead.

CESMGL perform better for the stable domains. In stable domains, the users

make frequent runtime transactions to access the data. The design time transactions

are few and are far in-between. However, in the case of continuously evolving

domains, the class lattice has to be changed frequently. Then, more number of design

time transactions will arrive along with runtime transactions. The design time

operations may need to lock the data items in different granule sizes.

Let us take the following sample scenarios to highlight the complexity involved in

the existing scheme. If a design time transaction needs to modify the signature or

implementation of a method in a class, it needs to block other design time transactions

that are trying to modify the definitions of attributes used in that method. The

compatibility matrix provides this semantic concurrency control. MAV locks the

method in ‘X’ mode so that it is not shared. AAV is used to lock the associated

attributes used in the method. The existing scheme needs access to both MAV and

AAV to provide better concurrency. This involves access overhead, search overhead

and updation overhead of two access vector lists.

If a design time transaction modifies the class definition, it needs to lock the class

definition in ‘X’ mode. Locking the class also involves locking its attributes and

methods using AAV and MAV. In order to preserve consistency, all the classes that

are related to this class inferred from CDV, also need to be locked. Then the lock

status of all the attributes and methods of all the relevant classes are also to be

updated in the AAV and MAV.

If the design time transaction wishes to change the relationship between two

classes, then CDV is also to be accessed along with AAV and MAV.

In all the above mentioned cases, the DAV of all the classes involved in design

time changes are to be modified and runtime transactions are to be blocked until the

DAV are updated. In order to handle a single request, all the access vector lists are

accessed. Because of this, the maintenance overhead is increased.

Though the use of DAV, AAV, MAV and CDV provide higher concurrency, they

have the following limitations:

1. Prior knowledge of the structure of the class is required.

69

2.. The access vectors are to be updated every time the schema is changed due to a

design time transaction which involves maintenance overhead for continuously

evolving domains.

3. The search overhead is also involved in searching the lock status of the data item

requested by the transactions as it needs to search the entire list to read or update

the lock status of a data item.

This introduced the need for a new concurrency control scheme to support

continuously evolving systems with nil or less overhead.

Two solutions are proposed to handle the overheads namely Semantic MGLM

using access control lists and Semantic MGLM using lock rippling. The proposed

schemes have these advantages: It is based on multi-granularity locking. As the

schemes do not use any access vectors, they do not have any overhead of updating

them every time the schema is changed. They do not need prior knowledge of the

structure of objects. Further the proposed scheme provides same parallelism between

design time transactions and runtime transactions as in existing schemes, without any

extra cost.

Semantic MGLM using access control lists is explained in the next section and

Semantic MGLM using lock rippling is explained in section 4.3.

4.2 Semantic MGLM using Access Control Lists

The proposed scheme provides the same level of concurrency as in table 3.5 and

3.6 without the limitations of access vectors, by splitting the lock table into three lists

namely Available, Shared and Exclusive lists. This eliminates the need for

maintaining vector tables along with lock table. The maintenance overhead is

minimized as access vectors are not needed. The search time is minimized as the lock

table is split into three lists. Any transaction requires search to only one of these lists

instead of all of them. This reduces the search overhead to roughly about one third.

In Available list, the attributes and methods of each class that are currently

available are included. In Shared list, the attributes and methods of each class that are

currently in shared (read) lock mode are included. In Exclusive list, the attributes and

methods of each class that are currently in exclusive (write) lock mode are included.

The format of Available, Shared and Exclusive lists are given in figures 4.1 and

4.2. During runtime transactions, the values of attributes are read or modified by

executing the associated methods in a class. The attribute values are locked in read

70

and write lock modes. In design time transactions, the attribute definitions are read or

modified. Thus attribute has two facets namely attribute definition and attribute value

and is chosen depending on the type of transaction.

Runtime transactions lock the methods in read mode as their contents are not

modified by execution. Design time transactions read or modify the method

definitions. When any attribute or method definition is modified, runtime transactions

accessing them should be blocked. RType (resource type) can be attribute definition,

attribute value or method definition. RType - attribute definition is used by design

time transactions. RType - attribute value is accessed by runtime transactions. So, two

entries are maintained for every attribute. The objective for maintaining two entries is

to allow concurrent reading of attribute definition while attribute value is read or

modified. Resource ID holds the name of the attribute or method. Class ID is used to

distinguish attributes or methods whose names are used in more than one class.

Shared list maintains one more field called Refcount to maintain the number of

transactions sharing the resource.

Initially, the attributes and methods of all the classes are included in the Available

list. As the transactions arrive, they are checked for compatibility of locks in the

compatibility matrix. If the locks are compatible, the requested resources are added to

either Shared or Exclusive list, depending on the lock mode. Though all the resources

are in the Available list in the beginning, eventually they will be distributed to other

lists depending on the lock type requested by the arriving transactions.

In order to save search time, list search policies given in figure 4.3 are used.

Exclusive lock mode is allowed for a requested resource only if the resource is

currently present in Available list. Shared lock mode is allowed, only if the resource is

not in Exclusive list. It is allowed when the resource is in Available list or Shared list.

Searching the resource in both lists is time consuming. So if it is not available in

Exclusive list, grant message can be sent and resource can be accordingly updated

from Available list or Shared list in the background. Several transactions can share a

resource in read mode. Refcount field in Shared list is used to count the number of

transactions that are currently sharing the resource. First grant message adds the

resource to the Shared list and sets the Refcount to 1. Every grant message after that,

increments the count. Every release message decrements it. When the Refcount is 0,

the resource is removed and added to the Available list.

71

Class ID RType Resource ID Ref count

Figure 4.1 Format of Shared list

Class ID RType Resource ID

Figure 4.2 Format of Available and Exclusive lists

Requested Lock mode List to be Searched
Exclusive (X) Available list
Shared (S) Exclusive list

Figure 4.3 List search policies for S and X lock modes

Let us now see the working principle of the proposed scheme for runtime and

design time transactions.

The runtime transactions request resources by giving the class ID and method ID.

The attributes used along with their lock mode in every method can be documented

using document tools like JavaDoc or DocC++. From this, the attributes to be locked

can be deduced by preprocessing. As mentioned earlier, the methods are locked in

read mode for runtime transactions. So the requested method ID is removed from the

Available list and added to Shared list. Several runtime transactions executing the

same method can share the implementation. The value entries for all the attribute IDs

used in the method are added to Shared list if they are input parameters, and to

Exclusive list if they are not. In runtime transaction, only the attribute value is read or

modified. So, entry with RType-attribute value is removed from Available list and

added to Shared or Exclusive list. The granularity of runtime transaction is attribute

level which is the fine granularity provided in the existing schemes.

The design time transactions usually read or modify the schema. As mentioned in

Bannerjee1987, the design time transactions can be one of these three types: Changes

to node (class), Changes to class contents (attributes and methods) and Changes to

edges (relationships and position). The design time transactions are handled as below.

The smallest granularity supported for design time transactions is the attribute.

Attribute definitions can be read or modified. Runtime transactions on an attribute

(IA) can be executed in parallel with read attribute definition (RA/RAA) design time

transactions. RA lock mode uses RType – attribute definition entry. When RA and

72

RAA lock modes are requested, corresponding attribute definition entry is added to

the Shared list based on the policy mentioned above.

When MA lock mode is requested, parallel runtime transactions involving this

attribute should not be allowed to maintain consistency. So, both definition entry and

value entry of the attribute should be included in Exclusive list. If only definition

entry is available, it implies that the attribute is currently being used in runtime

transaction. Then, it has to wait until both the entries are available in Available list.

When lock modes RAMS, RMS, MMS, RAMI, RMI, MMI, MAMI are requested

on a method, the search policies as mentioned above are followed to update access

control lists. When new attributes or methods are added in a class using lock modes

AA and AM, they are added to the Available list. The arriving transactions can

request for this attribute or method only after this insertion. When existing attributes

or methods are deleted using DA and DM lock modes, they can be removed only

when they are in the Available list to preserve consistency. This is ensured in the

commutativity matrices in table 3.3, 3.4, 3.5 and 3.6. Changes involving nodes and

edges involve removing all the attributes and methods of the related classes from

Available list and adding them to Exclusive list. They should be serialized to maintain

the semantic consistency of the database.

4.3 Semantic MGLM using Lock Rippling

The schema of OODBMS is represented as a class diagram. The class diagram is

a collection of classes related by inheritance, aggregation and association

relationships. Group of classes related by inheritance (excluding multiple inheritance)

is called as class hierarchy. It is represented as DAG. Group of classes related by a

combination of all types of relationships mentioned above is called class lattice. Then

the class diagram can be viewed as a class lattice and represented as Directed Graph

(DG). In DG, cycles are possible due to multiple inheritance, shared aggregation and

association. The classes are viewed as nodes and the relationship links connecting

classes are viewed as edges. The design time transactions can do changes to schema

in three ways as specified in Kim1989 and Bannerjee1987. The schema operations are

categorized into changes to the contents of a node, changes to nodes and changes to

edges.

From the above group of operations, certain semantic aspects can be inferred.

During runtime transactions, the values of attributes are read or modified by executing

73

the associated method in a class. The attribute values are locked in read and write lock

modes. In design time transactions, the attribute definitions are read or modified.

Thus, attribute has two facets and they are chosen depending on the type of

transaction.

During runtime transactions, the methods are locked in read mode, as their

contents are not modified by execution. In design time transactions, the method

definitions are read or modified. When any attribute or method definition is modified

by a design time transaction, runtime transactions accessing them should not be

allowed.

A runtime transaction can have attribute, instance or class level of granularity. It is

based on the property of the method as to whether the method is primitive or

composed and instance or class level as defined by Reihle2000a.

Further, it is pointed out in CESMGL that when runtime transaction requests a

base class object, it is enough to lock only the base class object. However, when a

runtime transaction requests a sub class object, it is required to lock the associated

base class object that access the same record also to preserve the database

consistency. Thus, there is an upward dependency from the sub classes to the base

class. This is applicable to aggregation and association also. In aggregation, the

component objects are locked along with composite objects. In association,

associative objects are dependent on associated objects and thus needs to be locked.

The operations allowed during schema changes as mentioned in Bannerjee1987

can be grouped into five categories. They are:

1. Add a new attribute/ method/ instance/ class/ edge (relationship).

2. Delete an existing attribute/ method/ instance/ class/ edge (relationship).

3. Modify the definitions, values or implementation of attribute/ method/ instance/

class/ edge (relationship).

4. Read the definitions, values or implementation of attribute/ method/ instance/

class/ edge (relationship).

5. Move an existing attribute/ method/ instance/ class/ edge (relationship) from one

location to another location.

From the above categories of operations, their dependency on creation, deletion

and modification can be inferred. The attributes and methods can be added only to an

existing class. Similarly instances can be created only after defining a new class and

adding its attributes and methods. New relationships can be established only among

74

existing classes. When a new class is added, until it is related to the existing classes

by a relationship edge, it can be in parallel done with any other schema change

without affecting consistency. Once the new class is included in the already existing

class lattice as a base class or component class or associative class by adding an edge,

then its attributes and methods have to be included in its subclasses, composite classes

or associated classes respectively. Then it can be inferred that the possible

granularities for the addition operation is class level or sub class lattice level (group of

related classes).

A class can be deleted only after deleting its attributes, methods and instances. If

the class is related to other classes by inheritance or aggregation or association, its

attributes and methods are to be deleted from them. Any other schema change in the

related sub class lattice should not be allowed when deletion of a class is done. If the

class is a base class or component class or associative class, then its attributes and

methods have to be deleted in its subclasses, composite classes or associated classes

respectively. For example in figure 3.3a, the attributes in A inherited into E and H are

to be deleted, while deleting A.

When a transaction reads the definitions of attribute/ method/ instance/ class/

relationship (edge), it can be done in parallel with all other read operations. It can also

be noted that when an attribute definition is read, its value can be modified by a

runtime transaction. When a design time transaction tries to move an attribute/

method/ instance/ class/ relationship (edge), then the whole class diagram has to be

locked in exclusive mode. This is because the move operation may involve the entire

class lattice as the destination is unpredictable.

The proposed scheme is based on the semantics mentioned above. The class

diagram is represented as Bi-directed Graph (BG). In Directed Graph (DG), the edges

flow from independent classes or parent classes (base classes, component classes and

associated classes) to dependent classes or child classes (sub classes, composite

classes and associative classes). It is unidirectional. The children can be reached from

parent, but the reverse is not possible. In BG, the edges link both ways. This is

needed for the reduction of search time and for lock rippling.

Table 4.1 shows the proposed compatibility matrix for runtime and design time

transactions. The lock modes have been defined based on the inferences mentioned

above. The semantics of the lock modes are as given below.

75

Table 4.1 Compatibility matrix for runtime and design time transactions

 RRA RMA MDD RDD AE DE MCL
RRA Y N N Y Y N N
RMA N N N Y Y N N
MD N N N N Y N N
RD Y Y N Y Y N N
AE Y Y Y Y Y N N
DE N N N N N N N
MCL N N N N N N N

1. RRA – Runtime Read Access- Read the values of attributes as a runtime

transaction.

2. RMA- Runtime Modify Access - Modify values of the attributes as a runtime

transaction.

3. RDD- Read Domain Definition – Read the domain and name of attribute/ instance/

class/ relationship (edge or link) and method. Modifying a method includes

modifying interface- name of the method, input arguments and output arguments

and implementation.

4. MDD- Modify Domain Definition – Read the domain and name of attribute/

instance/ class/ relationship. Read the interface and implementation of a method in

a class.

5. AE – Add Entity – Add a new attribute/ method/ instance/ class/ edge

(relationship).In the case of adding edges, a new relationship is defined between

two existing classes.

6. DE – Delete Entity – Delete an existing attribute/ method/ instance/ class/ edge

(relationship).

7. MCL – Move Class Lattice – This lock mode is used to move the entities namely

attribute/ method/ instance/ class/ edge (relationship) from one position to another

position in the lattice.

The proposed scheme allows locking from the root node to the leaf node for

design time transactions and from the leaf node to the root node locking for runtime

transactions. The procedure for locking can be summarized as follows:

• Check for lock compatibility.

76

• If the lock modes are compatible, set the lock on the resource at the requested

lock mode.

• Ripple the locks from root to leaf, if it is a design time transaction.

• Ripple the locks from leaf to root, if it is a runtime transaction.

• Release the locks in the reverse order after release request.

Figure 4.4 Sample class diagram 3.3a represented as Bi-directed graph

Figure 4.5 Lock rippling to lock associated children classes on a Modify

 Definition (MD) request to class A

Figure 4.4 shows the sample class diagram (schema) in figure 3.3a represented as

BG. In the proposed scheme, when a design time transaction is made for a base class,

the requested lock mode is set on the class. Then the lock is rippled to all its children

including the edges. When a change is made on the definition of an attribute/ method/

instance/ relationship or the class itself, all the classes related to this class (called sub

class lattice), should also be locked in the same lock mode to maintain the consistency

as mentioned in section 2.2. Figure 4.5 shows the rippling of lock, when a Modify

77

Definition (MD) request is made to class A. In the case of design time transactions,

the locks are rippled downwards from parent to children.

Figure 4.6 Lock rippling to lock associated parent classes on Runtime Modify
Access (RMA) request to class I

Similarly when a runtime transaction transactions to modify the attribute values

(RMA) of an object in a subclass, its associated objects in parent classes are also

locked by lock rippling. In the case of runtime transactions, the locks are rippled

upwards from child to all its parents.

Figure 4.6 shows the rippling of runtime transaction lock to parent class using the

upward links. Let a runtime transaction request for class I. Note that A, E and C are

the parents of class I. It can also be noted that the edges are also locked to block any

request to change the relationship between these classes. This eliminates the problem

of setting intension locks for multiple inheritance in ORION scheme [Garza1988].

Intension locks are always set in ORION scheme from root to leaf. ORION scheme

can lock the classes A, E and I along the path. However, it will not lock C, which has

to be locked to preserve consistency.

It is also worth noting that if runtime transactions request for base classes,

component classes and associative classes, the locking will be only on the object of

that class, as it will not have any upward edges. For example, in the sample class

diagram, classes A, B and C are parent classes that do not have any parents. Hence,

these classes alone are locked. Similarly, if child classes are requested for design time

transactions they alone are locked, as they will not have any downward edges. For

example consider the classes L, I, J and K in the sample class diagram.

It is already discussed that the request for moving an entity (ME) requires locking

the entire class lattice. The other operations can be parallelized in different sub class

78

lattices. Hence, concurrency is improved while ensuring consistency wherever

necessary.

4.4. Experimental Results and Discussion

In order to evaluate the proposed schemes in general environment, the simulation

model by Kim1991 in section 3.3 is adapted here and experiments are conducted. The

same simulation model is adapted here so that the proposed schemes can be compared

with CESGML under the same environment in which CESGML was tested. 007

benchmark by Carey1993 is extended here also and the same simulation parameters

are used here.

Figure 4.7 shows the performance of the proposed schemes against CESMGL.

CESMGL provides best performance for stable domains. So test scenarios are chosen

to see their performance, when there is an increasing degree of design time

transactions. The performance is tested by varying the design time transaction to

runtime transaction ratio. CESMGL performs the worst. This is because fine

concurrency is possible only with access vectors. Access vectors involve maintenance

overhead for continuously evolving domains.

Performance

6000

8000

10000

12000

14000

 1.0:0.0 0.8:0.2 0.6:0.4 0.4:0.6 0.2:0.8 0.0:1.0

Varying Designtime to Runtime Ratio

R
es

po
ns

e
Ti

m
e

(m
s)

CESGML Lock Rippling AccessControl List

Figure 4.7 Performance varying design time transaction to runtime transaction ratio

The results show that the performances of all the schemes are approximately

same for stable domains where roughly 100% of the transactions are runtime

transactions. But as the ratio of design time transactions increase (implies evolving

domains), the performance of CESMGL deteriorates. The reason is that, as the ratio of

design time transaction increases, the time taken to update the access vectors increase.

79

As a result, response time increases for the CESGML scheme. In the proposed

schemes, it can be observed that the response time is relatively constant because there

is no need for updating access control lists. The proposed schemes give almost the

same response time for all combinations of design time transactions and runtime

transactions. Semantic MGLM using lock rippling is better than CESGML by 14%.

Semantic MGLM using access control list is better than CESGML by 21%. The

response time for lock rippling is more because of the coarse granularity of lock

modes for runtime transactions. However they do not need any apriori knowledge of

object structure. Thus, the proposed schemes perform better for continuously

evolving domains.

4.5. Summary

In this chapter, two multi-granular lock models namely MGLM using lock

rippling and MGLM using access control lists are proposed for OODBMS

implementing continuously evolving domains. MGLM using lock rippling uses object

semantics to define lock modes by combining intension locks and commutativity of

operations. MGLM using access control lists reduces the search overhead and

maintenance overhead by defining search policies and reducing the number and size

of tables used. They both eliminate the overhead for access vectors used by the

existing semantic MGLM to provide high concurrency. They also eliminate the

requirement of apriori knowledge about the domain structure of all the classes used to

implement the domain.

80

CHAPTER 5

SEMANTIC MULTI-GRANULAR LOCK MODEL FOR
OBJECT ORIENTED DISTRIBUTED SYSTEMS

5.1 Preamble

OODBMS provides better complex data modeling support for the newly

emerging distributed applications than relational databases. OODBMS is used as

persistent data store for distributed systems. It resides in the database tier. However in

distributed systems, the server tier is implemented as procedures as in the figure 2.1.

This requires a conversion between procedural paradigm to object oriented paradigm

and vice versa for all the communications between server tier and data base tier.

Further each of the database models in distributed systems has its own concurrency

control mechanisms that cannot be adapted to any of the other models. The

concurrency control policies are defined only for the database tier and the server tier

has no control over the concurrency control. This introduces a restriction of using

only the refined persistent data store for the domain data like database management

systems. Primitive data stores like files are not supported in distributed systems and

hence they cannot be reused.

The above limitations can be over come in OODS. In OODS, the server tier is

also implemented as objects as in the figure 2.2. So the conversion of data format

between server tier and data base tier is not necessary, if OODBMS provides

persistent data storage. However conversion of data format is still required, if other

database models are used. Hence the possibility of providing a common concurrency

control mechanism that is independent of the persistent data store type is explored by

shifting the concurrency control from database tier to server tier.

In OODS, objects are the reusable data sources. The clients can access the data

from the data store in database tier only through the objects in the server tier. Hence a

common concurrency control mechanism can be defined for the objects in the server

tier. The other advantage of this shift in the concurrency control to the server tier

allows usage of legacy data stores.

Already semantic concurrency control mechanisms have been proposed for object

oriented data bases by exploiting the object oriented paradigm features. They out-

81

perform the conventional concurrency control mechanisms for OODBMS. Hence the

feasibility of extending the same mechanisms to OODS may be analyzed.

OODS support continously evolving domains in which the services are frequently

enhanced to provide better client support. Hence both runtime and design time

transactions are to be supported.

Though concurrency control mechanisms in OODBMS can be considered, they

cannot be extended as they are in OODS. This is because query languages are used to

access databases. But in OODS, object oriented programming languages like C++,

Java are used to make client requests. Then lock types and granularities of resource

are to be ascertained from the client code. The doc tools like docC++, Javadoc can be

used for identifying the method type and properties. Following this, the compatibility

matrix used in OODBMS can be considered for adoption in OODS.

In OODBMS, lock modes are defined only for concrete classes. The lock modes for

abstract classes are not ascertained. The compatibility matrices for inheritance and

aggregation are defined for OODBMS. To use those matrices, lock types and granule

sizes are to be determined for inheritance and aggregation (composition) using the

classification of class method types and properties proposed by

[Riehle2000a;Riehle2000b]. Association is one the important relationships frequently

used to relate objects participating in a domain. Wu1998 have proposed directed

graph based association algebra for query processing and optimization of objects in

object oriented databases. But so far, the types, properties and attributes of association

have not been explored for their probable impact on concurrency or concurrency

control. The lock modes, granule sizes and lock compatibility for association have not

been explored so far.

In the following section, a semantic concurrency control technique is proposed for

object oriented distributed systems. It is done in two steps namely (1) defining lock

types and granularity for all types of classes and their relationships (2) extending the

compatibility matrix defined for OODBMS to OODS. Section 5.3 concludes the

chapter.

5.2 Defining Lock Types and Granularity for Classes and their Relationships

5.2.1 Defining lock types and granularity for attributes and classes

In OODBMS, only instance level attributes are referred. The scope of the values of

82

these attributes is restricted to the state of the object in which they are present. They

are mutually independent and directly inaccessible by other objects of the same class.

In OODS, instance level attributes as well as class level attributes are present. The

class level attributes are shared by all the instances of a class. They are also called as

static attributes of a class. For e.g., nextregno can be defined as a static member in

‘student’ class to generate the next register number for a new student object. Hence

the smallest granule size for instance level attributes could be object or individual

attributes, whereas the granule size of class level attribute can be as small as only a

class.Table 5.2a gives their granularity.

Abstract classes are usually used to define the class template. Instances are not

created from this type of classes. Usually they act as base classes from which one or

more concrete classes are derived. So at runtime, they should be locked only in S

(read) mode. This is because the concrete classes that are inherited from this abstract

class would be reading them. As they do not create instances (objects) and thereby do

not affect the state of the system. However at design time, modifications may be done

to the abstract class by inserting new methods or attributes, modifying the signature of

the existing methods or modifying the data types of the attributes or deleting one or

more attributes and/or methods. Hence the design time clients must be allowed to lock

the abstract class by both S (read) and X (write) locks. It is also worth noting that the

smallest accessible granule of abstract class is a class.

 Table 5.1 Lock types for types of classes

Class type Lock type (Design time) Lock type (Runtime)

Abstract class S/X S

Concrete class S/X S/X

Concrete classes are classes defined mainly to create instances. They have all types

of methods to create, query, mutate and delete objects. So the locks on concrete

classes depend on the type of method which is invoked. So both S and X locks must

be available for them at both design time as well as runtime. [Gray1976;Garza1987;

Kim1990a; Lee1996;Jun2000] address only concrete classes. Their granularity can be

as small as attribute [Jun2000]. Table 5.1 summarizes the lock types allowed for the

83

types of classes at design time and run time and table 5.2b summarizes their

granularity.

Table 5.2a Granularity of attributes Table 5.2 b Granularity of classes

Type of Attributes Granularity

Instance level Instance/Attribute

Class level Class

Type of class Granularity

Abstract class Class hierarchy/Class

Concrete class Class/ Instance/Attribute

5.2.2 Types and granularity of locks based on method types for Inheritance

Based on the definitions of the method types and its properties in section 2.2, the

locks can be determined for inheritance relationship as given below. Gray1978 has

defined the following types of lock modes for coarse and fine granules for relational

databases as in table 1.2. It is extended to object oriented databases as follows.

Instance objects can have only S and X locks. The class objects can be locked in S,

X, IS, IX and SIX modes. The semantics of these modes are defined below:

• An IS (Intention Share) lock on a class means that instances of the class are to be

explicitly locked in S or X mode as necessary.

• An IX (Intention Exclusive) lock on a class means instances of the class will be

explicitly locked in S or X mode as necessary.

• An S (Shared) lock on a class means that the class definition is locked in S mode,

and all instances of the class are implicitly locked in S mode and thus are

protected from any attempt to update them.

• An SIX (Shared Intention Exclusive) lock on a class implies that the class

definition is locked in S mode, and all instances of the class are implicitly locked

in S mode and instances to be updated (by the transaction holding the SIX

lock)will be explicitly locked in X mode.

• An X (Exclusive) lock on a class means that the class definition and all instances

of the class may be read or updated.

Table 5.3 defines the locks based on the types of object methods. The types of

locks are also based on the class level / instance level/ attribute level of access. For

84

class level methods, the class hierarchy is locked by intension locks and classes are

locked by S or X locks. If it is instance method, then class is set by intension locks

and its instances are locked by S or X locks. The objects are accessible only after their

creation. Their accessibility ceases after destruction.

Table 5.3 Lock type based on method types of Inhertiance

METHOD TYPES Class/Instance/

Attribute

Class hierarchy /

Class/ Instance

Query method S IS

Set/Initialization

method

X IX Mutation

Method

Command method S& X SIX

Factory method X IX Helper

Method Assertion method S IS

Table 5.4. Lock granularity based on method properties in Inheritance

 Instance method Class method

 Primitive

method

Composed

method

Template

method

Hook

Method

Primitive

method

Composed

method

Template

method

Hook

method

Query

method

Attribute Object Class

hierarchy

Class Class Class Class

hierarchy

Class

Mutation

method

Attribute Object Class

hierarchy

Class Class Class Class

hierarchy

Class

Helper

method

(factory

method)

-

Object

Class

hierarchy

Object

- Class Class

hierarchy

Class

Table 5.4 defines the lockable granules for various methods based on their

properties as below. By combining the types and properties of the methods, the lock

type and lockable granule size can be deduced.

5.2.3 Types and granularity of lock based on method types for Aggregation

Aggregation is an object relationship. In order to maintain consistency, when a

client requests a composite object, intension lock must be set on its class. Along with

that, the component objects that constitute the composed object must also be set on

85

intention object lock. These intention locks, while locking the particular object that

constitute the composite objects, let other objects of the same class to be used by other

clients. This improves concurrency. Aggregation may have exclusive or shared

reference. Exclusive reference does not allow the component objects to be shared by

other composite objects where as shared reference allows it. Further aggregation may

be dependent or independent on component objects for creation and deletion i.e. in the

case of dependent aggregation, the composite object can be created only after creating

the component objects and it is destroyed when all its composite objects are

destroyed.

Table 5.5 Lock type based on method types for Aggregation

METHOD TYPES

Aggregation

Root Object/

Attribute

Aggregation

 Root Class/

Object

Exclusive

Component

Class/Object

Shared

Component

Class/Object

Query method S IS/ISO ISO/ISA ISOS/ISAS

Set method/

Initialization

method

X IX/IXO IXO/IXA IXOS/SIXAS
Mutation

method
Command

method
S/X SIX/SIXO SIXO/SIXA SIXOS/SIXAS

Factory

method

As per creation and deletion rule basd on dependent /

independent aggregation Helper

method Assertion

method
S IS/ISO ISO/ISA ISOS/ISAS

In the case of independent aggregation, the life cycle of composite object is

independent of its composite objects. Table 5.5 gives the types of locks based on

method types for aggregation. It is followed by granularity of locks as in Table 5.6.

86

Table 5.6 Lock granularity for Aggregation or Composition

Granularity of locks
Class Type

Primitive method Composed method

Primitive class Component attribute Component object

Non Primitive class Composite object hierarchy

5.2.4 Types and granularity of lock based on method types for Association

Table 5.7 Type of locks based on method types for Association

METHOD TYPES

Association

Root Object/

Attribute

Association

Root Class/

Object

Exclusive

Associated

Class/Object

Shared

Associated

Class/Object

Query method S IS/ISO ISO/ISA ISOS/ISAS

Set method /

Initialization

method

X IX/IXO IXO/IXA IXOS/IXAS
Mutation

method
Command

method
S/X SIX/SIXO SIXO/SIXA SIXOS/SIXAS

Factory

method

As per creation and deletion rule basd on dependent /

independent association Helper

method Assertion

method
S IS/ISO ISO/ISA ISOS/ISAS

Association is also an object relationship. In order to maintain consistency, when

a client requests a associative object, intension lock must be set on its class . Further,

the associated objects that constitute the associative object must also be set on

intention object lock. These intention objects, while locking the particular object that

87

constitute the associative objects, lets other objects of the same class to be used by

other clients. This improves concurrency.

Association may have exclusive or shared reference. Exclusive reference does not

allow the associated objects to be shared by other associative objects where as shared

reference allows it; further association may be dependent or independent on

associated objects for creation and deletion. i.e. in the case of dependent association,

the associative object can be created only after creating associated objects and it is

destroyed when all its associated objects are destroyed. In the case of independent

association, the life cycle of associative object is independent of its associated objects.

Association relationship also possess association hierarchy like aggregation hierarchy.

Table 5.7 below gives the types of lock based on method types for association. It is

followed by granularity of locks as in Table 5.8.

Table 5.8 Lock granularity for Association

Granularity of locks

Class ype
Primitive method

Composed

method

Primitive class
Associated

attribute
Associated object

NonPrimitive class Associative object hierarchy

5.2.5 Compatibility matrix for runtime transactions based on class relationships

The compatibility matrix specified in Garza1987 for inheritance is given in table

5.9. The inheritance can be classified as exclusive inheritance or shared inheritance.

The inheritance types single inheritance, multilevel inheritance, multiple inheritance

allow exclusive inheritance of a parent class to one or more child classes. But in

hierarchical inheritance, several sub classes are inherited from the same parent class

or th parent is shared by many siblings.

88

Table 5.9 Compatibility matrix for Inheritance [Garza1987]

 IS IX S SIX X
IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N

SIX Y N N N N
X N N N N N

If the compatibility matrix specified in Garza1987 is extended for this shared

inheritance, then concurrency will be restricted. At any time, only one sub class is

allowed to lock the parent class. Hence separate intension lock modes must be defined

to increase concurrency. In the compatibility matrix below, separate lock modes need

to be defined in shared and exclusive inheritance. Three more lock modes ISCS

(Intension Shared Class Shared), IXCS (Intension Shared Exclusive Shared) and

SIXCS (Shared Intension Exclusive Class Shared) can be defined to support shared

inheritance. These new lock modes can be appended to the compatibility matrix in

Garza1987 as in table 5.10. The figures 5.1a, 5.1b, 5.1c show the different types of

shared and exclusive inheritance and the locking policy in each type of inheritance.

Table 5.10 gives the revised compatibility matrix.

Base Class

Client
Request

IS/IX/SIX

S/X/S&X

Server 1

Sub Class

Server 2

Explicit Request
Implicit Request

Figure. 5.1a. Locking in Single Inheritance

89

Intermediate

Base Class

Client
Request

IS / IX/SIX

S / X / S&X

Server 1

Sub Class

Server 2

Base Class

Server 3

IS / IX/SIX

 Figure. 5.1b. Locking in Multilevel Inheritance

Client
Request

Server 2

Server

BaseClass1 BaseClass 3 BaseClass2

Sub Class

Server 1 Server N

 IS/
IX/
SIX

…

S / X/ S&X

IS/
IX/
SIX

 IS/
IX/
SIX

Figure 5.1c. Locking in Multiple Inheritance

Table 5.10 Revised compatibility matrix for Inheritance

 IS ISCS IX IXCS S SIX SIXCS X

IS Y Y Y Y Y Y Y N

ISCS Y Y Y Y Y Y Y N

IX Y Y Y Y N N N N

IXCS Y Y Y Y N N N N

S Y Y N N Y N N N

SIX Y Y N N N N N N

SIXCS Y Y N N N N N N

X N N N N N N N N

90

Table 5.11 gives the compatibility matrix for aggregation extended from

Kim1989. Kim1989 has defined compatibility matrix for aggregation by extending

the lock modes defined for inheritance to aggregation. But its granularity size is

restricted to object level. It is further extended to attribute level in the proposed

scheme to improve the concurrency.

Table 5.11 Revised compatibility matrix for Aggregation and Association

 ISA ISAS IXA S IXAS SIXA SIXAS X ISO IXO SIXO ISOS IXOS SIXOS
ISA Y Y Y Y N Y Y N Y N N Y N N
ISAS Y Y Y Y N Y Y N Y N N Y N N
IXA Y Y Y N N N N N N N N N N N
IXAS N N N N N N N N Y Y N N N N
S Y Y N Y N N N N Y N N Y N N
SIXA Y Y N N N N N N N N N N N N
SIXAS Y Y N N N N N N N N N N N N
X N N N N N N N N N N N N N N
ISO Y Y N Y Y N N N Y Y Y Y Y Y
IXO N N N N Y N N N Y Y N Y Y N
SIXO N N N N N N N N Y N N Y N N
ISOS Y Y N Y N N N N Y Y Y Y N N
IXOS N N N N N N N N Y Y N N N N
SIXOS N N N N N N N N Y N N N N N

Table 5.12 Compatibility matrix for runtime transactions

 IS ISCS IX IXCS S SIX SIXCS X ISO IXO SIXO ISOS IXOS SIXOS ISA IXA SIXA ISAS IXAS SIXAS
IS Y Y Y Y Y Y Y N Y N N Y N N Y N N Y N N
ISCS Y Y Y Y Y Y Y N Y N N Y N N Y N N Y N N
IX Y Y Y Y N N N N N N N N N N N N N N N N
ISCS Y Y Y Y N N N N N N N N N N N N N N N N
S Y Y N N Y N N N Y N N Y N N Y N N Y N N
SIX Y Y N N N N N N N N N N N N N N N N N N
SIXCS Y Y N N N N N N N N N N N N N N N N N N
X N
ISO Y Y N N Y N N N Y Y Y Y Y Y Y Y Y Y Y Y
IXO N N N N N N N N Y Y N Y Y N Y Y N Y Y N
SIXO N N N N N N N N Y N N Y N N Y N N Y N N
ISOS Y Y N N Y N N N Y Y Y Y N N Y Y Y Y N N
IXOS N N N N N N N N Y Y N N N N Y Y N N N N
SIXOS N N N N N N N N Y N N N N N Y N N N N N
ISA Y Y N N Y N N N Y Y Y Y Y Y Y Y Y Y Y Y
IXA N N N N N N N N Y Y N Y Y N Y Y N Y Y N
SIXA N N N N N N N N Y N N Y N N Y N N Y N N
ISAS Y Y N N Y N N N Y Y Y Y N N Y Y Y Y N N
IXAS N N N N N N N N Y Y N N N N Y Y N N N N
SIXAS N N N N N N N N Y N N N N N Y N N N N N

 The compatibility matrix for association has to give separate lock modes for

attribute level association and object level association. Association is also an object

91

relationship like aggregation. As lock modes for object level locking and attribute

level locking has already been defined for aggregation, it can also be extended to

association. Hence it is same as the compatibility matrix for aggregation as given in

table 5.11. The compatibility matrix of table 5.12 completely defines the semantics of

all the lock modes for run time transactions. It combines the compatibility matrix

defined for each relationship seperately as given in table 5.10 and 5.11.

5.2.6 Compatibility matrix for runtime and design time transactions

 In OODBMS, fine level lock modes are also defined for design time operations.

It is not possible to extend the same to OODS, because it has no schema and query

language support. When any design time operations are performed, the code

implementing the domain has to be changed. As it is very difficult to predict which

part of the code is getting modified in OODS, coarse level locking is offered for

design time operations in OODS.

Table 5.13 Revised compatibility matrix for design time transactions and
 runtime transactions

 RD WD RA

RD Y N Y

WD N N N

RA Y N Depends on table 5.12

The schema locking defined in Lee1996 may be taken into account for design

time transactions. Just as schemas are changed periodically, OODS can also provide

improved services. This requires the updation of behavior defined by object methods.

The lock modes can be called as RD(Read Definition), WD(Write Definition) and RA

(Runtime Access). Then analogous to the schema locks RS and WS, compatibility

matrix can be defined. The compatibility matrix for design time transactions and

runtime transactions are defined in table 5.13.

5.3 Summary

The compatibility matrix mentioned in this chapter needs to be implemented. In

OODBMS, the compatibility matrix is implemented as part of the DBMS. In OODS

the domain is implemented using object oriented languages like java, c++ etc. Then it

has to be implemented as operating system services or language constructs in

programming languages say as an extended library of the language or as part of the

92

component itself. Providing concurrency control at operating system level is too

complex. Providing it at language level is possible. Already Java,eiffel etc., offers

such extended libraries for various services. Among all the solutions, implementing it

as part of the component is much more feasible. Already, COM has set a precedence

of managing the clients in a primitive way using reference counts. Active component

approach called JADEX has been proposed in Braubach2011 in which the

concurrency module is built as part of the component. They have provided primitive

concurrency control mechanism to avoid dirty reads and writes. They have not

exploited the semantics of object oriented paradigm. If the proposed compatibility

matrix can be incorporated in such components the performance will improve.

This chapter proposes a semantic based concurrency control mechanism for object

oriented distributed systems. It is based on multi granular lock model. The

Compatibility matrix defines lock modes for objects based on the semantics of object

oriented paradigm. It provides fine granularity for runtime data requests. But design

time requests are still in coase level. Hence the future work will be to explore the

possibility of providing fine granularity also for design time requests.

93

CHAPTER 6

DEADLOCK HANDLING TECHNIQUES FOR OBJECT
ORIENTED DISTRIBUTED SYSTEMS

6.1 Preamble

In OODS, the reusable data sources i.e. databases are mapped onto the objects.

Hence, objects are viewed as resources here. To preserve the consistency of the

objects, concurrency control is applied on objects and as a consequence live locks and

deadlocks might occur.

The structure of the object oriented system is defined using static structural

diagram namely class diagram or class lattice. From the class diagram, objects

participating in the system, their attributes, methods and relationships with other

objects in the system can be inferred. The transactions call the methods of these

objects to satisfy their request. Hence, the dependency among the transactions can be

inferred from the class diagram. Deadlocks can be handled by prevention, avoidance

and detection and resolution. Deadlock prevention is easier to implement than

deadlock detection in distributed systems. Deadlock prevention using resource

ordering is generic than other types of Deadlock Prevention Algorithm (DPA) as it

does not impose any constraints on the nature of resources.

Hence, our objectives are namely: - proposing resource-ordering policy for

objects and proposing a deadlock prevention algorithm using the proposed resource

ordering policy for resources i.e. objects in OODS. As mentioned earlier, resource

ordering technique is not new. The novelty in the proposed algorithm lies in defining

the resource ordering policy by exploiting the dependency among objects

participating in the domain. The dependency of the objects with other objects can be

inferred by their relationship with other objects. The possible relationships between

objects can be inheritance, association and aggregation. Section 2.2 shows the

dependency existing among objects in inheritance, association and aggregation.

The proposed algorithm also alleviates the problem of starvation in poverty and

starvation in wealth by framing a policy for access ordering of transactions rather than

using only timestamp ordering. Hence, by combining resource ordering with

transaction access ordering, the proposed scheme prevents deadlock as well as

starvation.

94

Deadlock detection and resolution algorithms are also available for distributed

systems. Probe based distributed deadlock detection and resolution algorithm is one of

the popular DDDR algorithms widely used because of its simple mechanism. The

initiator, usually one of the transactions involved in the circular wait, send probe

messages along the dependency edges of the Global Wait-For-Graph. When the probe

comes back to the initiator, it indicates the presence of deadlock. Then resolution

phase is initiated to choose a victim transaction and abort it.

The Probe based DDDR algorithm has two limitations namely: It cannot work in

faulty environment and it requires a separate resolution phase to identify a victim and

abort it. If the probe does not come back to the initiator, it could be because of live

lock or faulty environment. If it is due to live lock, then the initiator can wait for finite

time before sending the request message. If it is due to faulty environment, the probe

might have been lost and initiator will not be aware of it. It will assume that the delay

is due to live lock and wait. Providing fault tolerance is not a function of DDDR. But

the initiator must always know the status of the probe in all cases.

The victim transaction can be identified while sending the probe instead of

spending time on resolution algorithm to resolve the victim. If the victim can be

dynamically selected at every site and included as part of the probe, then the probe

will contain the final victim when it reaches the initiator. Then a message can be sent

to kill the victim.

In section 6.2, a deadlock prevention algorithm based on resource ordering is

proposed using the object semantics. In section 6.3, a modified fault informant probe

based algorithm is proposed using colored probes. In section 6.4, the existing

deadlock resolution algorithms are explored to identify the system parameters favored

by the transaction attributes. A weight based victim selection algorithm is proposed to

select the victim dynamically based on the choice of the desirable system parameters

like throughput, resource utilization, fairness etc.

6.2 Deadlock prevention Algorithm for OODS

 OODS follows AND request model as transactions need all the resources before

execution. The resource ordering policy decides how the resources are ordered. The

transactions are expected to request for the resources from smaller IDs to larger IDs.

Then it is ideal to assign smaller resource IDs to independent resources and higher

resource IDs to resources dependent on these independent resources. The proposed

95

resource ordering technique is based on the dependency among the objects

participating in the system. In OODS, the dependency among objects is based on their

relationship with other objects as seen in section 2.2. Then dependency can be

categorized based on

1. Relationship between object and class.

2. Objects related by inheritance.

3. Objects related by aggregation or composition.

4. Objects related by association.

The objective for resource ordering is to promote concurrency and it is based on

granularity and degree of dependency. When the granularity size varies from coarse to

fine, the concurrency increases. So lower resource IDs are given for fine granules and

higher resource IDs are given for coarse granules. As mentioned earlier, the

dependency is based on the relationships. As the dependency becomes more as given

in section 2.2, number of objects needed is more. This reduces the concurrency.

Based on these observations and constraints mentioned in section 2.2, partial ordering

is done on each of the case mentioned above, and then total ordering of all the objects

in a system is done.

In section 6.2.1 the resource ordering policy is framed and its formal model is

given using predicate calculus in section 6.2.2. In section 6.2.3, system model is

described. In sections 6.2.4 and 6.2.5, DPA modules and the algorithm are explained.

In section 6.2.6, the access ordering rules proposed to alleviate the problem of

starvation are listed. In sections 6.2.7 and 6.2.8, informal and formal proofs for the

proposed DPA are given. Section 6.2.9 gives the summary.

6.2.1 Resource ordering technique

Partial ordering on a class and its objects:

 The transactions can request for resources in two granularities namely single

object in a class or all the objects in a class. If all the objects are requested, the lock is

applied on the class rather than on the object to minimize the number of locks.

Simultaneous request to both the cases is not allowed to maintain consistency. In this

situation, two possibilities exist:

Case 1: Objects are assigned lower resource IDs than their class.
Case 2: Classes are assigned lower resource IDs than its objects.

96

In case 2, transactions executing class methods and requesting all the objects will

have higher priority than transactions executing instance (object) method and

requesting single object.

Example 1:

Let A be a class. Let a1, a2 and a3 be its objects.

Let T1 requests A. i.e., T1 requests {a1, a2, a3}.

(i.e. all objects in the class. Hence, the class itself is locked as per point (1) in 2.2)

Let T2 requests {a1}.

Let T3 requests {a3}.

Then concurrent execution of these requests proceeds as follows, if case 1 is

considered. Both T2 and T3 are executed first and T1 is executed afterwards.

Case 1

Transaction
T1

Transaction
T2

Transaction
 T3

Wait for
a1,a3
:
:
 Get
a1,a2,a3
Execute
Release
a1,a2,a3

Get a1
Execute
Release a1

Get a3
Execute
Release a3

Case 2

Transaction
T1

Transactio
n T2

Transactio
n T3

Get a1,a2,a3
Execute
Release
a1,a2,a3

Wait for a1
:
:

Get a1
Execute
Release a1

Wait for a3
:
:

Get a3
Execute
Release a3

If case 2 is considered for the same scenario, then execution will be as follows.

Both T2 and T3 are blocked, while T1 is executed first. Here case 1 improves

concurrency and hence improves the throughput of the system. Hence, case 1 is better

97

than case 2. It can be justified as follows. Hence case 1 is better than case 2.Then the

rule can be defined as follows.

Rule 1: For all objects O belonging to class C, resource IDs of objects O should be

less than resource ID of their class C.

 (Note: Transactions will request either only one or all objects, ordering among the

objects of a class is not necessary)

Partial ordering on base class and its inherited sub classes:

Here also resource IDs can be assigned in two ways:

Case 1: Base Classes are assigned lower resource IDs than their subclasses.
Case 2: Sub classes are assigned lower resource IDs than their base classes.

By definition of inheritance, attributes of base class are included as attributes of

subclass. The definition and implementation of template member functions and the

definitions of hook methods of base class are also included in the subclass. Hook

methods are allowed for overriding in subclass.

Example 2:

Let A and B be base classes. Let a1, a2 be instances of A and b1, b2 be instances

of B. Let C be a subclass inherited from A and B. Let c1, c2 be instances of C. Let a1

and b1 be associated base class objects for sub class object c1. Similarly, a2 and b2 be

associated base class objects for c2.

Let T1 requests {A}; T2 requests {B}; T3 requests {C}.

Then the resource set for T3 = {A, B, C}. (By point 2 in 2.2)
The resource set of T1 = {a1, a2}. (By point 1 in 2.2)
Resource set of T2 = {b1, b2}. (By point 1 in 2.2)
Resource set of T3 = {a1, a2, b1, b2, c1, c2} (by point 1 in 2.2)

Case 1

Transaction
T1

Transaction
T2

Transaction
T3

Get A
Execute
Release A

Get B
Execute
Release B

Wait for A, B
:
:
Get A, B, C
Execute
Release A, B,
C

98

Case 2
 Transaction T1 Transaction

T2
Transaction

T3
Wait for A
:
:

Get A
Execute
Release A

Wait for B
:
:

Get B
Execute
Release B

 Get A, B, C
Execute
Release A ,B ,C

If case 1 is considered, then T1 and T2 get more priority than T3. Then

concurrency is improved in case 1 than case 2. Therefore, resource IDs for base

classes (BC) should be less than resource IDs of sub classes (SC) and represented as

follows.

Rule 2: For all base classes BC, if a sub class SC is inherited from BC, then resource

ID of base class BC should be less than the resource ID of subclass SC.

(Note: Since a transaction will request only one of the sub classes at a time, the

ordering among sub classes of a parent class is not necessary.)

Partial ordering on component objects and their composite object:

Here also resources can be ordered in two ways:

Case 1: Component objects are assigned lower resource IDs than their composite
object.

Case 2: Composite object is assigned lower resource ID than its component objects.

Aggregation is an object relationship. By definition of aggregation, component

objects are part of composite object. Composite object avails the service of

component objects, to satisfy the transaction request.

Example 3:

Let A and B be component classes. Let a be an instance of A and b be an instance

of B. C is a composite class constituted from A and B. c is an instance of C. Let a and

b be associated component class objects for composite class object c.

Let T1 requests {a}; Let T2 requests {b}; Let T3 requests {c}.

Then the resource set for T3 = {a, b, c} (By point 3 in 2.2)

If case 1 is considered, T1 and T2 get priority over T3. As their resource sets are

mutually exclusive, they can be concurrently executed. If case 2 is considered, T3 gets

priority over T1 and T2.Case 2 gives higher priority to dependent classes over

independent classes, where as case 1 improves concurrency.

99

Case 1

Transaction
T1

Transaction
T2

Transaction
T3

Get a
Execute
Release a

Get b
Execute
Release b

Wait for a, b
:
:
Get a, b, c
Execute
Release a, b, c

Case 2

Transaction

T1
Transaction

T2
Transaction

T3
Wait for a
:
:
Get a
Execute
Release a

Wait for b
:
:
Get b
Execute
Release b

 Get a, b, c
Execute
Release a ,b ,c

Therefore, the partial ordering in the case of composition relationship among

component class (CC) and composite class (CM) will be,

Rule 3: For all composite classes CM, if a component class CC is a part of CM, then

resource ID of component class CC should be less than the resource ID of composite

class CM.

(Note: Again, the ordering among component objects is immaterial, since they will be

accessed mutually exclusively).

Partial ordering of associative objects and their associated objects: Association

relationship is also an object relationship. Aggregation relationship is a subset of

association. By extending rule 3 to association, the partial ordering among associative

objects (TO) and their associated objects (AO) will be as follows:

Rule 4: For all associative class (TC), if an associative class (TC) is associated with

associated class (AC), then resource ID of associative class TC should be less than

associated class AC.

Total resource ordering:

The partial ordering of resources defined above is applicable when objects are

related by only one relationship. However, in a business domain, objects may have

complex relationships by having combination of above relationships. Hence, total

100

ordering of resources that can have a combination of above relationships has to be

defined. By combining the partial ordering rules proposed earlier, the total ordering of

resources can be defined as follows:

Case 1: When a class has inheritance relationship

Here the ordering needs to be done on base class, its objects, sub class and its

objects. This can be done by combining rule 1 and 2 in the previous section. There are

two options here

Option 1: Resource ID of Base Class Objects < Resource ID of Base Class <
Resource ID of Sub Class Objects < Resource ID of Sub Class.

Option 2: Resource ID of Base Class Objects < Resource ID of Sub Class Objects <

Resource ID of Base Class < Resource ID of Sub Class

Here all the objects are given lower IDs and then their classes are given higher

IDs. From examples 1 and 2, it is obvious that option 2 has higher concurrency than

option 1. Hence, the base class objects and sub class objects are given lower IDs and

their classes are given higher IDs.

Rule 5: For all base class objects BCO belonging to BC and all sub class objects

SCO belonging to SC, if a sub class SC is inherited from base class BC, then

Resource ID (BCO) < Resource ID (SCO) <Resource ID (BC)< Resource ID (SC).

Case 2: When a class has aggregation relationship

There are two options here

Option 1: Resource ID of Component Class Objects < Resource ID of Component
Class < Resource ID of Composite Class Objects < Resource ID of
Composite Class

Option 2: Resource ID of Component Class Objects < Resource ID of Composite
Class objects < Resource ID of Component Class < Resource ID of
Composite Class

Here by examples 1 and 3, it is clear that option 2 is better than option 1.Hence

component objects and composite objects are given lower IDs and their classes are

given higher IDs.

Rule 6: For all component class objects CCO belonging to CC and all composite

class objects CMO belonging to CM, if a component class CC is a part of composite

class CM, then Resource ID (CCO) < Resource ID (CMO) < Resource ID (CM)<

Resource ID (CM).

Case 3: When a class has association relationship

There are two options here

101

Option 1: Resource ID of Associative Class Objects < Resource ID of Associative
Class < Resource ID of Associated Class Objects < Resource ID of
Associated Class

Option 2: Resource ID of Associated Class Objects < Resource ID of Associative
Class objects < Resource ID of Associated Class < Resource ID of
Associative Class

It is clear that option 2 is better than option 1 by extending examples 1 and 3 to

association. Hence, associative objects and associated objects are given lower IDs and

their classes are given higher IDs.

Rule 7: For all associative class objects TCO belonging to TC and all associated

class objects ACO belonging to associated class AC, if an associative class TC is

associated with associated class AC, then Resource ID (ACO) < Resource ID (TCO)

< Resource ID (AC)< Resource ID (TC).

Case 4: When a class has inheritance, association and aggregation relationships:

A class can have all the relationships in any order. For example, an inherited sub

class can be component object of another class. Similarly, a class can be inherited

from composite object class. It implies that the class relationships can be in any order.

Hence ordering cannot be based on relationship alone. The class diagram is

partitioned horizontally by various levels. In a class diagram, as the level increases,

dependency increases and concurrency decreases. Concurrency decreases, because

more no of resources are required for a transaction requesting high-level object or

class to maintain consistency. Hence, lower resource IDs can be assigned for lower

level, and higher resource IDs are assigned for higher level.

Rule 8: For all objects OA belonging to A, for all objects OB belonging to B, for all

classes A in level i and for all classes B in level j of the class diagram where i< j, then

Resource ID (OA) < Resource ID (OB) < Resource ID (A) < Resource ID (B).

The above rules can be formally defined using predicate calculus.

6.2.2 Formal model for resource ordering using predicate calculus

 Let the class diagram representing the domain be the Universal set U. U is a

collection of classes C representing the domain. Let O be the collection of objects

instantiated from the classes C. Then U can be represented as U(C (O)). The classes

are related to each other by inheritance, aggregation and association relationships.

Let BC be base class and SC be sub class related by inheritance. Let BCO be base

class objects and SCO be subclass objects. Let CC be component class and CM be

102

composite class related by aggregation. Let CCO be component class objects and

CMO be composite class objects. Let TC be associative class and AC be associated

class related by association. Let TCO be associative class objects and ACO be

associated class objects.

Let Rid (X) be a function that returns resource id for a resource X. Let Inherit-

from (SC, BC) be a predicate that means SC is inherited from BC. Let Part-of (CC,

CM) be a predicate that means CC is a part of CM. Let Associated-with (TC, AC) be

a predicate that means TC is associated with AC. Let Level (Yi) be a predicate that

means class Y is in level i. Let LL(i, j) be a predicate that means level i is less than

level j.

Then rules 1- 8 can be written in predicate calculus as follows:

Rule 1: (O) (C) (O ∈ C ⇄ Rid (O) < Rid (C)).

Rule 2: (BC) (SC) (Inherit-from (SC, BC) ⇄ Rid (BC) < Rid (SC)).

Rule 3: (CC) (CM) (Part-of (CC, CM) ⇄ Rid (CC) < Rid (CM)).

Rule 4: (TC) (AC) (Associated-with (TC, AC) ⇄ Rid (AC) < Rid (TC)).

Rule 5: (BCO) (BC) (SCO) (SC) ((BCO∈ BC) ∧ (SCO∈SC) ∧ Inherit- from
 (SC, BC) ⇄ Rid (BCO) < Rid (SCO) < Rid (BC) < Rid (SC)).

Rule 6: (CCO) (CC) (CMO) (CM) ((CCO∈ CC) ∧ (CMO∈CM) ∧ Part-of (CC, CM)
⇄ Rid (CCO) < Rid (CMO) < Rid (CC) < Rid (CM)).

Rule 7: (TCO) (TC) (ACO) (AC) ((TCO∈ TC) ∧ (ACO∈AC) ∧ Associated -with

(TC, AC) ⇄ Rid (ACO) < Rid (TCO) < Rid (AC) < Rid (TC)).

Rule 8: (i) (j) [(LL (i, j)∧ Level (Ci) ∧ Level (Cj)) → {(Oi ∈ Ci) (Oj ∈ Cj) →

Rid (Oi) < Rid (Oj) < Rid (Ci) < Rid(Cj) }].

6.2.3 System Model
Fig 6.1 shows the architecture of the proposed system. It is assumed that the

issues relating to partitioning of objects [Huang1990] in OODS are resolved. The

Message Handler receives the client request (transaction) that is usually a call to an

object method and derives method type and properties [Riehle2000a, Riehle2000b].

The transaction manager identifies the type of lock. Further, the granularity of the

lock is decided by the type and properties of methods as in previous section. Since the

resources are objects in OODS, resource manager in each of the sites is called as

103

object manager. The transaction manager needs to get the resources from object

manager to execute the transaction. The lock manager is responsible for maintaining

the lock status of the resources in the site.

 The resources granted to a transaction have to be locked before usage. The lock

modes are shared (S) and exclusive(X). This is done to enforce synchronization and

concurrency control through serialization. Once the execution is over, the lock is

released and the resource can be utilized by the next waiting transaction. The object

subsystem is responsible for the lifecycle of objects. It is also responsible for

providing object persistence and garbage collection and other related activities. The

deadlock preventor module checks for the presence of circular wait condition. If

circular wait condition is not present, transactions can get the resources and execute.

Figure 6.1 Architecture diagram of the proposed system

6.2.4 Deadlock prevention modules description

Preparing the system

The algorithm is based on prevention of circular wait condition. Prevention of

circular wait condition is achieved using resource ordering and access ordering.

Hence, DPA requires some preprocessing to be done before accepting the client

transactions. The preprocessing steps are:

1. Global ordering of the partitioned resources in the system.

2. Deployment of resources to various sites.

Global ordering

As the proposed algorithm is based on resource ordering, it is necessary to order

the resources globally to avoid access conflicts. Since objects are the resources and

104

their global relationship is known from the class diagram, the ordering is done on the

class diagram. The class diagram is partitioned into levels based on the rules of

horizontal partitioning. Then resource ordering is done by applying the total ordering

rules specified in section 6.2.1.

Resource ordering method

1. Let < be the initial total order of all the objects. This ordering starts from level 1 up

to level n.

2. For every set of objects O1 belonging to classes C1 in level 1, add the objects

arbitrarily.

3. For objects in level 2 to level n, order the objects in increasing dependency such

that resource id of objects in level i is less than resource id of objects in level j,

where i< j. Define the function max_object_Rid(O), to return the maximum of

resource ID of all objects O participating in the system which will be the resource

id of last object in level n.

4. For all classes in level 1, i.e. independent classes(classes that need not lock any

other classes to preserve consistency, like base classes and component classes),

add the classes arbitrarily to create the total order such that max_object_Rid (O) is

always less than resource IDs of independent classes i.e. classes in level 1.

5. For classes in level 2 to n, order the classes in increasing dependency, such that

resource ID of classes Ci in level i is less than resource IDs of classes Cj, where i<j.

6. Let be the smallest transitively – closed order that is compatible with steps 1-5.

Figure 6.2 Sample class diagram after resource ordering

105

Deployment

Figure 6.2 shows the resource ordering of the sample class diagram. In this class

diagram, there are four levels. The objects and classes are ordered from level 1 to

level 4 using the resource ordering technique proposed earlier. The maximum

resource id for objects is 24. Figure 6.3 shows the class diagram after deployment of

classes, objects and associated database fragments to various servers. The transactions

may come to any of these servers. The class diagram is horizontally partitioned and

assigned to four sites S1 to S4.

Figure 6.3 Deployment of sample class diagram

6.2.5 Deadlock prevention algorithm

The deadlock prevention algorithm imposes the following constraints:

• All transactions are time stamped.

• A transaction can request only one resource at a time. It can request for the next

resource only when previous resource is granted.

• A transaction cannot request for resource of higher ID without getting the resource

of lower ID.

It involves the following modules.

1. Determine the explicit resources needed

When a transaction enters the system, it request for resource. The resource that is

determined from the transaction directly is called explicit resource. The resource type

and granularity should be determined first. If the transaction maps onto instance

method, the resource will be an object and its ID is known from the system. If it is a

class method, it means all objects of the class needs to be locked. Here instead of

locking objects, class has to be locked. Then the resource ID will be the ID of the

class whose method is called in the transaction.

106

2. Determine the implicit resources needed

 This step is needed mainly to maintain consistency of the system. As already

mentioned, both base class and sub classes should be locked simultaneously, when

sub class is requested by a client. Since base classes and their sub classes are mapped

on to the same database, simultaneous access may lead to inconsistency. Similarly, a

composite object and its component objects are not allowed simultaneous access. This

is due to the ‘part of ‘relationship shared between component objects and composite

objects. This is also extended to association.

 In this module, the resource ID of the explicit (dependent) resource is checked for

its relationship with other classes. This information can be documented using C++doc

or Javadoc. If it is a subclass, all its parent classes need to be locked. Similarly, in the

case of composite objects, all its component objects need to be locked. Then parent

classes and/or component classes are implicit (independent) resources for the request.

Finally, this module will enumerate all the resources needed for satisfying the

transaction request.

3. Request Ordering

First, the list of resources for every transaction, obtained from the previous

module is sorted in increasing order of resource IDs. The objective of this request

ordering is to enforce the rule that resources of higher IDs can be requested only after

obtaining resources of lower IDs. The location of the servers for these distributed

requests need to be identified, as the resources are partitioned to several sites.

4. Access Ordering

 Any good DPA should prevent deadlocks and starvation. Starvation is abortion of

same transaction repeatedly. If the transactions are allowed to access the resources

based on their arrival time by FIFO basis, starvation in poverty will happen. If

transactions are allowed to access the resources based on priority, starvation in wealth

will happen. Hence, the proposed scheme provides a combination of FIFO ordering

and priority ordering as given below. Here the priority is based on whether the

transaction requests for dependent or independent resources. As the resource ID

requested by a transaction increases, its priority decreases. This priority policy is

chosen to improve concurrency.

Since horizontal portioning is followed, all the transactions will be accessing the

sites in same order. First, all the transactions will request the resource of smaller IDs.

107

Due to horizontal partitioning, this will localize the transactions to the same site. The

following rules are applied to grant a resource.

RULE 1: Transactions Ti and Tj are granted resources independently of their arrival

time, if they satisfy 1 and 2 or 1 and 3 of the following conditions:

1. The resources requested by Ti and Tj are different
 i.e. Rid (ReqTi) ∩ Rid (ReqTj) = Φ.

2. Both Ti and Tj have their resource requests i.e. Rid (ReqTi) and Rid (ReqTj) < =
max_object_Rid (O).

3. Both Ti and Tj have requests i.e. Rid (ReqTi) and Rid (ReqTj)> max_object_Rid

(O).

RULE 2: Transactions Ti and Tj are granted resources on FIFO basis when the

resource IDs are conflicting i.e. Rid(ReqTi) ∩ Rid (ReqTj) ≠ Φ

RULE 3: Transaction Ti has higher priority over Tj when

1. The resources requested by Ti and Tj are different

i.e. Rid(ReqTi) ∩ Rid (ReqTj)= Φ

2. Ti has its Rid(ReqTi) < = max_object_Rid (objects) and Tj has its Rid (ReqTj)>
max_object_Rid (objects).

6.2.6 Informal Proof

The following scenarios are considered to show the working of proposed DPA by

taking typical sample scenarios. The transactions can request the resources only in

two granularities namely classes and objects. So it is enough if the access ordering is

done for transactions requesting objects, classes and objects and classes.

Scenario 1: This is a scenario where rule 1 is applied. (Maximum Concurrency)

Rule1 ensures maximum concurrency. The transactions are allowed to execute in

parallel as long as their resource requests are mutually exclusive.

For example with reference to the above sample class diagram Let Ti requests

{d1} and Tj requests {f1}.

Resource requests for Ti = {a1, d1}.

(Where a1 is the associated base class object of d1)

Requested resource IDs for Ti = {1, 7}.

Similarly resource requests for Tj = {b1, f1}.

(Where b1 is the associated base class object of f1)

Then resource request IDs for Tj = {3, 11}

108

They satisfy Rule 1, since {1, 7}∩ {3, 11) = Φ

And both resource request sets {1,7} and {3,11}are < 24 (max_object_Rid (objects))

 Then Ti and Tj can execute in parallel.

Scenario 2: This is a scenario where rule 2 is applied. (Starvation in Poverty)

 This eliminates starvation in poverty. When the resource requests are conflicting,

they are served on FIFO basis, as both transactions want some or all the resources that

the other transaction also needs. Then younger transaction will have to wound and

wait. Wound and wait is better than wait and die, because of rollback and restart costs.

For example

Ti requests {h1};Tj requests {d1}.

Then resource request for Ti = {a1, d1, h1}. Resource IDs for Ti are {1, 7, 15}.

 Tj request list is {a1, d1}.And request resource IDs are {1, 7}

Rid (ReqTi) ∩Rid (ReqTj) = {1, 7, 15} ∩ {1, 7} ≠ Φ

Then Ti and Tj are serialized based on their arrival time.

Scenario 3: This is a scenario where rule 3 is applied. (Starvation in Wealth)

This eliminates starvation in wealth. When two transactions implicitly conflict,

then priority is given to transaction that needs lesser number of resources as an

expedient scheduling measure. This will improve concurrency.

For example

Ti requests {d1};.Tj requests {D} (class locking implies it needs all its objects)

 Resource requests of Ti = {a1, d1} ;And requested resource IDs for Ti = {1, 7}

(where a1 is the associated base class object of d1).

Resource requests of Tj = {a1, a2, d1, d2}

 (where a1, a2 are the associated base class objects of d1 and d2.)

Then resource request ID for Tj = {32}

They satisfy Rule 1, since {1, 7}∩ {32} = Φ

But implicitly Tj needs resources {1, 2, 7, 8}. This can be inferred by the second

condition, Ti’s resource request sets {1, 7} <24 and Tj’s request ID {32} > 24

(max_object_Rid (O)). Then Ti gets higher priority over Tj.

6.2.7 Formal Proof

Theorem 1: The resource ordering < done using the proposed resource ordering

method is total and meets rules 1-8.

109

 < orders each pair of resources ri and rj : If the resources ri and rj are not already

ordered, by step 2 and 3 all objects are ordered. Then at least one of them should be a

class.

Case 1: ri is an object and rj is its parent class (Rule 1)

 Steps 2 and 3 orders all objects by their dependency. Without loss of generality,

by step 3 and 4, max_object_Rid (ri) < Rid (rj). By transitivity of <, it is proved that ri

< rj.

Case 2: ri is a base class and rj is its sub class (Rule 2)

 If ri is in level i and rj is in level j, and levels i < j, then in general by steps 4 and

5, Rid (ri) <Rid (rj). By definition of inheritance, base classes will be always in lower

level than their subclasses. Hence, it is proved.

Case 3: ri is a component class and rj is its composite class (Rule 3)

 If ri is in level i and rj is in level j, and levels i < j, then in general by steps 4 and

5,Rid (ri) < Rid (rj). By definition of composition, component classes will be always

in lower level than their composite classes. Hence, it is proved.

Case 4: ri is an associative class and rj is associated class (Rule 4)

 If ri is in level i and rj is in level j, and levels i < j, then in general by steps 4 and

5, Rid (ri) < Rid (rj). By definition of association, associated classes will be always in

lower level than their associated classes. Hence, it is proved.

Case 5: Proof of constraint Rule 5

From cases 1 & 2 by transitivity, rule 5 holds good for all resources ri and rj.

Case 6: Proof of constraint Rule 6

 From cases 1 & 3, it is inferred that rule 6 holds good for all resources ri and rj.

Case 7: Proof of constraint Rule 7

From cases 1 & 4, it is inferred that rule 7 holds good for all resources ri and rj.

Case 8: Proof of constraint Rule 8

ri is in level i , rj is in level j and i<j. By steps 1- 6, from cases 5, 6 and 7, it is

proved that they are totally ordered.

Theorem 2: Ordering < is well defined, if ri is less than rj, then rj < ri does not hold.

Let ζ< be defined as {R, E}, where resources R represent nodes and E is

defined as set of edges linking those resources that are related by the ordering ri < rj,

where ri , rj ∈ R and < defines E, then it is enough to show that ζ< contains no cycles.

110

The resources can be either objects or classes. All objects ri and rj are ordered

by step 1 and 2 and edges ri → rj are added for all objects at these steps. If ri and rj are

classes related by inheritance and/or composition and/or association, then by steps 4

and 5 they are ordered and ri → rj are added in this step. So it is clear that so far there

are no back edges rj→ ri added, as the objects and classes are ordered individually. In

step 3 objects and classes are ordered by defining max_object_ Rid (object) to be less

than the resource IDs for all classes. So, it is clear by transitivity, that all objects and

classes are ordered. The edge ri → rj is added where ri is an object with maximum

resource ID and rj is a class. Since edges are added for each type of resource

exclusively, there will be no cycles.

6.2.8 Summary
Any DPA is expected to handle 3 conditions namely (1) Deadlock (2) Starvation

on Poverty (3) Starvation on Wealth.

1 is solved in our algorithm by access ordering. Transactions can access the

resources only in specific order, i.e. resources from lower IDs to higher IDs. Since

FIFO ordering is followed, younger transactions wait on older transactions.

Hence, circular wait is broken. This ensures breaking of cycles and hence

deadlock is prevented.

2 Transactions are satisfied on FIFO basis. This eliminates starvation in poverty.

Starvation in poverty generally occurs when larger requests are kept pending

permanently. This is because smaller transactions are favored over bigger

transactions to increase throughput. However, in our algorithm, the transactions

are served in FIFO basis. Hence, starvation in poverty is eliminated.

3 Though, our algorithm favors FIFO ordering, when two transactions arrive at the

same time, it favors the transaction requesting least number of resources. Hence,

an expedient strategy is followed to speed up the computation, improve the

resource utilization and alleviate starvation of wealth.

Thus our algorithm has shown that deadlock prevention algorithm is possible for

distributed object oriented systems.

6.3 Fault Informant Probe based Distributed Deadlock Detection Algorithm
 Probe based DDDR algorithm is widely used in distributed systems because of its

simplicity. It detects the deadlock by sending a probe through the Wait-for-Edges in

GWFG. If the probe returns back to the initiator, deadlock is deduced. This algorithm

111

expects the network to be fault free. Practically networks are fault prone, hardware,

network and software failures are bound to occur.

 Though there are several fault tolerance algorithms for distributed systems,

generally it is not expected by DDDR to provide fault tolerance. Hence much research

work is not done in this area. However the DDDR algorithm should facilitate for the

initiator of deadlock detection to infer whether it is due to live lock or site failure

(where deadlock may be present) that the probe does not come back to it. If it is due

to live lock, then the transactions can wait for finite time and then start sending

resources’ requests again. If the probe does not come back due to site failure, then the

system needs to be reconfigured to continue. But if it is actually due to deadlock, and

probe does not return to initiator due to site failure, then it is a serious problem.

Since there is no ideal fault tolerance algorithm and site failures are bound to happen,

the initiator needs to get the probe back always despite whether it is live lock or dead

lock. Hence this chapter aims to propose a fault informant algorithm that sends

colored probes to initiator indicating the sites’ status. It detects at most two site

failures per deadlock cycle. The proposed algorithm uses the following colors in

probe messages to indicate the status.

RED: Indicates deadlock and there is no site failure.

ORANGE: Indicates site failure. In this deadlock/ live lock status is unknown due to

site failure.

WHITE: Indicates live lock and there is no site failure

In the proposed algorithm, transaction uses forward and backward probe

messages to detect the reason for not getting the resource. Initially the color of the

probe message is RED. The messages travel along the wait for edges and on the

opposite sides by traversing node by node. A node that is receiving the probe message

should send an acknowledgement to its sender. This is used to inform the active status

of receiver to the sender.

If sender does not receive acknowledgement message before timeout, it infers

that the receiver site has failed. Then sender will change the color of

forward/backward probe messages into ORANGE after updating the bit in fault vector

corresponding to the faulty site. The sender will send a return probe which is

addressed always to the initiator with the color of forward/ backward probe along

with updated fault vector and fault site ID. The initiator will broadcast the faulty state

112

of the site to all the sites. This faulty status is modified only when the faulty site

broadcasts awake message.

If the faulty site ID in both forward and backward probe messages is same, it can

be inferred that it is one site failure. If they are different, then it is “two site failure”

situation.

If there is no site failure, both the forward and backward probe messages will

reach the initiator and by the RED color of the probe, the initiator will infer the

presence of deadlock and will start deadlock resolution phase.

If there is no failure, but the wait for graph terminates at some node which does

not have wait for edge, then receiver will not be able to send message any further. It

will send acknowledgement message to sender indicating that it is active. Then

receiver will change the color of the forward/backward probe into WHITE, and return

probe with forward/backward probe color is sent to initiator. When the initiator

realizes it is live lock, it will wait for some more time.

In the next section, the data structures and message formats used in the algorithm

are defined. In section 6.3.2, the system model is described. In section 6.3.3, the

proposed fault informant probe based DDDR algorithm is explained with pseudo

code. In section 6.3.4, formal proof for the algorithm is given and section 6.3.5

summarizes the paper.

6.3.1 Definitions

Definition 1: Wait for Graph (WFG (N, E)) is a directed graph where nodes N

represent transactions currently participating in the system and E is a finite set of

edges representing the transaction dependency on resources. Ti-→Tj є E where Ti is

waiting on Tj for the resource held by Tj. So Tj is successor of Ti and Ti is

predecessor of Tj.

Definition 2: A Deadlock is identified by a directed cycle in the WFG.

Definition3: Forward probe (Forward_Probe (Initiator, Sender, Receiver,

Forward_Probe_Color)) is a traversal of dependency edges in WFG from initiator and

propagates until it reaches back initiator or terminates when there is no dependency

edge for a transaction in the path i.e. TI → T1→T2…Tn, where {Tn = TI or Tn has

no dependency edge | TI ,T1,T2….Tn є N}. The probe color is RED if there is a

deadlock and WHITE if there is live lock in fault free environment. This probe will

not reach the initiator in faulty environment.

113

Definition 4: Backward probe (Backward_Probe (Initiator, Sender, Receiver,

Backward_Probe_Color)) is a traversal from initiator and propagates backwards along

the dependency edges in WFG, i.e. TI ← T1←T2…Tn, where {Tn = TI or Tn has

no dependency edge | TI → T1→T2…Tn are directed edges є E and T1,T2….Tn є

N}. The objective of using both probes is to identify at most 2 site failures in a

deadlock cycle than 1 site failure as in[l]. The probe color is RED if there is a

deadlock and WHITE if there is live lock in fault free environment. This probe will

not reach the initiator in faulty environment.

Definition 5: A Fault Vector (FaultVector) V = S1S2…Sn, where S1, S2 …Sn

denotes the N sites participating in the system domain. Si = 1, if site i is faulty; Si = 0,

if site i is non faulty. Instead of PMC diagnosis model, the site fault is identified by

message response from the neighboring sites.

Definition 6: Return probe (Return_Probe (Initiator, Sender, Forward/

Backward_Probe_Color, FaultVector, FaultSiteID,)) is the probe forwarded by the

site Si holding transaction Ti to the initiator about its successor faulty site Sj holding

transaction Tj, where Ti→Tj є E. This probe updates the status of site Sj in fault

vector and sends it to the initiator. The initiator updates the status of Sj and broadcasts

to all the other nodes for future requests. It stays unchanged until the awake message

is received from the faulty site Sj. This is done during forward probe. In backward

probe, if predecessor Tj is faulty, then this return probe is forwarded by the successor.

The return probe color is WHITE if there is live lock in fault free environment. The

return probe color is ORANGE if there is site failure. The return probe will have

FaultVector and FaultSiteID only under faulty environment.

Definition 7: Acknowledgement message (Ack_msg (Receiver, Sender)):- Every site

on receiving the probe message from its sender should send an acknowledgement

message to its sender. If this message is not received by the sender, by time out

period, it assumes that receiver is faulty. Then sender sends return probe to initiator

updating fault vector about this faulty site.

Definition 8: Clean message (Clean_message) is to broadcast all the sites to clean the

probes sent by victim which is in faulty site.

Definition 9: Victim is the lowest priority transaction which will be aborted to break

the cycle. Here initiator is the victim.

114

Definition 10: Awake message (awake_mesg (SiteID)) is a message sent by all sites

on startup or after fault recovery. This message is needed to update its status in fault

vector and include it for further transaction requests.

6.3.2 System Model
The system is assumed to be free of congestion for timely delivery and messages

are received in the order in which they are delivered. Further priority based DDDR

algorithm [Mitchell1984] exists to ensure the least priority transaction in the cycle to

become initiator of probe messages. This helps avoiding phantom deadlocks due to

simultaneous initiation of probe messages for the same cycle. In each site it is

assumed that only one transaction is running at a time. A transaction failure is also

assumed as site failure. Each site is running one transaction for simplicity sake. The

site index and transaction index are assumed as same.

6.3.3 Fault-Informant Probe Based DDDR Algorithm
In this proposed scheme, initiator will send forward as well as backward probes.

Hence the algorithm in Li1993 uses backward probe alone and can detect only one

site failure per deadlock cycle. Intuitively if we use both forward and backward

probes in our algorithm, at most two failures can be detected. To improve the

reliability of the system, we use both probes in our mechanism. The procedures for

deadlock detection and resolution are given below.

This procedure will be called whenever a site is started or recovered from failure.

On receiving this message, all the other non faulty sites will update the status of this

site in their fault vector.

Any transaction that comes to the system will initially have the probe queue

empty. It will get the current status of sites from the neighboring sites. Any

transaction after making request for a resource will wait till time out or grant message

which ever comes early. After time out, it will start sending probe messages. Any

115

transaction Ti that receives forward or backward probe messages will execute the

following procedure.

Transaction Ti::
Do
If Receive Forward_Probe (Initiator I, Sender Ti-1,
Receiver = Ti, Forward_Probe_Color = RED)
{

Send Ack_msg to Sender Ti-1
If there is no dependency edge from Ti

 {
 Send Return-Probe (Initiator, Sender,
 Forward_Probe_Color =WHITE);
 Exit;
 }
 else

{
Send Forward_Probe (Initiator I, Sender=Ti,

Receiver = Ti+1,Forward_Probe_Color = RED)
 Until timeout
 {
 Wait for Ack_msg from Ti+1
 If Receive Ack_msg from Ti+1 break;
 }

Update FaultVector[Si+1] = 1;
 Update FaultSiteID = S i+1;

 Send Return- Probe (Initiator I, Sender Ti,
Forward_Probe_Color = ORANGE, FaultVector,
FaultSiteID);

}

If Receive Backward_Probe (Initiator I, Sender Ti+1,

Receiver = Ti, Backward_Probe_Color = RED)
{
 Send Ack_msg to Sender Ti+1
 If there is no dependency edge from Ti
 {
 Send Return-Probe (Initiator I,Sender Ti,

Backward_Probe_Color = WHITE);
 Exit;
 }

else
{

Send Backward_Probe Initiator I,Sender=Ti,
Receiver = Ti-1,Backward_Probe_Color=RED)

Until timeout
{

 Wait for Ack_msg from Ti-1
 If Receive Ack_msg from Ti-1 break;

}
Update Faultvector[Si-1] = 1;

116

Update FaultSiteID = S i-1;
Send Return- Probe (Initiator =I,
Sender=Ti,Backward_Probe_Color=ORANGE,

FaultVector, FaultSiteID);
 }

}
Od.

The existing DDDR algorithm [Chowdary1989, Roseler1988, Sinha1985]

determines the lowest priority transaction in a deadlock cycle and nominates it as

initiator. Initiator will send forward probe along dependency edges and backward

probe along the opposite direction of dependency edges.

Initiator:
Switch on case
{
Case 1: //Livelock/Deadlock–INITIATOR’S NEIGHBORING

SITE(S) FAILURE
{

Send Forward_Probe (Initiator I,Sender=I,
Receiver=Ti, Forward_Probe_Color=RED)

{
 Until timeout

{
Wait for Ack_msg from Receiver Ti;
If Receive Ack_msg from Receiver Ti break;

 }
 Update Faultvector[Si] = 1;
 Update FaultSiteID = Si;
 Forward_Probe_Color = ORANGE;

// Declare Live lock or Deadlock due to site
failure Si
Broadcast Clean_message to roll back transaction

Ti in the faulty site Si;
}

Send Backward_Probe (Initiator I, Sender I,
Receiver = Tj, Backward_Probe_Color = RED)
{

Until timeout
 {
 Wait for Ack_msg from Tj
 If Receive Ack_msg from Tj break;
 }
 Update Faultvector[Sj] = 1;
 Update FaultsiteID = Sj;
 Backward_Probe_Color = ORANGE;
// Declare Live lock or Deadlock due to site failure Sj;

Broadcast Clean message to roll back transaction
Tj in the faulty site Sj;

 }
}

117

Case 2: //Deadlock–NO SITE FAILURE;Probe comes back to
the initiator

If Receive Forward_Probe (Initiator I, Sender Ti,
receiver = Initiator, Forward_Probe_Color = RED) AND
Receive Backward_Probe (Initiator I, Sender Tj, receiver
= Initiator, Backward_Probe_Color = RED)
 {
 Call Deadlock Resolution Algorithm;
 // Declare Deadlock;
 }

Case 3: // Livelock – NO SITE FAILURE
If Receive Return_Probe (Initiator I, Sender Ti, Receiver
= Initiator, Forward_Probe_Color = WHITE) AND Receive
Return_Probe (Initiator I, Sender Tj, Receiver =
Initiator, Backward_Probe_Color = WHITE)

{
 Wait until timeout; // Declare Livelock;

}

Case 4: // Deadlock/ Livelock in 1 / 2 SITE FAILURES

If Receive Return_Probe (Initiator I, Sender Ti, Receiver
= Initiator, Forward_Probe_Color = ORANGE, FaultVector,
FaultSiteID) AND Receive Return_Probe (Initiator, Sender
Tj, Receiver = Initiator, Backward_Probe_Color = ORANGE,
FaultVector, FaultSiteID)

If FaultSiteID in Forward probe== FaultSiteID in Backward
probe

{
//Declare Live lock or Deadlock due to 1 site failure
 Broadcast Clean message to roll back faulty
 transaction Ta in the faulty site Sa;

}

If FaultSiteID in Forward probe <> FaultSiteID in
Backward probe

{
 // Declare Live lock or Deadlock due to 2 site failures.
 Broadcast Clean message to roll back transactions

Ta and Tb in the faulty sites Sa and Sb;
 }
}

EndCase.

118

6.3.4 Formal Proof

The algorithm is proved correct under the following assumptions:

1. Transactions use single request model for requesting the resource.

2. No transaction in deadlock aborts unless it is victimized in resolution phase.

3. There are at most 2 site failures in a cycle.

Theorem 1: The algorithm detects deadlock only if there is a deadlock.

Proof: This algorithm detects a deadlock only when it receives both forward and

backward probes and their colors are red. In that case, no site failure was there, when

the probe was traversing. If a site had not sent acknowledgement message to its

sender, the initiator would have received return probe messages. See figure 6.4.a for

the traversal of probes in deadlock situation. See fig 2b for the probe traversal in

faulty environment.

Scenarios

 These scenarios are considered to give informal proof to the algorithm. They

show how the algorithm works under both fault free and faulty environment. They

also show how deadlock and live lock status are detected. In fault diagnosis model, it

is shown that 2t+1 processors are needed to detect t failures. In our proposed

algorithm, it is shown that 2t-1 processors are enough to detect t failures through

messaging.

Figure 6.4a Deadlock in fault free environment

Since the proposed algorithm also can detect at most 2 site failures, minimum

number of nodes are taken to show the working of the proposed algorithm.

119

Figure 6.4 shows various possible scenarios in a distributed system during

deadlock detection phase.

Scenario 1: Figure 6.4a depicts the scenario when deadlock occurs in fault free

environment. Initiator T1 sends red colored forward and backward probes along

dependency edge and opposite direction of dependency edge. When the initiator

receives back both probes, it infers the presence of deadlock and that there is no site

failure along the path. Then initiator (lowest priority) is victim. The color of the probe

is RED.

Figure 6.4b: Live lock in fault free environment- case 1

Scenario 2: In figure 6.4b, let us assume that T1-the initiator does not have

predecessor. Then backward probe will not be sent back to the initiator. As T4 does

not have any dependency edge, forward probe terminates at T4. T4 changes the

forward probe to WHITE indicating live lock status and T4 is active. This is also a

scenario in fault free environment.

Figure 6.4c Live lock in fault free environment – case 2

Scenario 3: Figure 6.4c also depicts live lock status in fault free environment. Here

T2 is assumed to be having least priority. Hence it becomes the initiator.T3 and T1

120

send forward and backward probes indicating live lock. So they change the color of

the forward and backward probes WHITE and send return probe back to initiator.

Scenario 4: In figure 6.5a, let us assume T4 is faulty.T3 waits until time out for

acknowledgement message from T4. If there is no acknowledgement message from

T4, then it updates the fault vector for site 4, changes the color of probe message to

ORANGE indicating site failure and sends return probe to initiator.T1 also sends

backward probe. T4 sends no acknowledgement even after timeout. T1 concludes T4

faulty. It is confirmed by ORANGE forward probe from T3. Since the fault site id in

return probe from T3 matches with the faulty site deduced by initiator, it concludes

one site failure and it may be a live lock or deadlock situation.

Figure 6.5a Live lock/Deadlock in faulty environment (1 site failure)- case1

Figure 6.5b: Live lock / Deadlock in faulty environment (1 site failure)- case 2

Scenario 5: In figure 6.5b, T2 is initiator. It sends forward probe to T3 and backward

probe to T1. T4 is faulty. So T1 and T3 will not receive acknowledgement messages.

They will change the probe color to ORANGE and send back to initiator after

updating fault vector on T4. Since both T1 and T3 will have their fault site ID same, it

is concluded that it is live lock/ deadlock due to single site failure.

121

Scenario 6: In figure 6.5c, Assume T3 and T4 are both faulty. T2 will send forward

probe to T3. T3 will not send acknowledgement message. So T3 is updated as faulty

on time out. T2 sends T1 backward probe. T1 forwards backward probe to T4. As T4

is also faulty, it will not send acknowledgement to T1. So T1changes return probe to

ORANGE and updates T4 status. Since the fault side IDs updated by initiator and T1

are different, T2 will understand both T3 and T4 are both faulty and infer that it is two

site failures scenario.

Figure 6.5c Live lock /Deadlock in faulty environment (2 site failure)- case1

Figure 6.5d Live lock/Deadlock in faulty environment (2 site failure) – case 2

Scenario 7: This is the worst case for 2 site failures with 4 sites in picture. Let T1 and

T3 are faulty. Initiator sends forward and back ward probes to them. On time out,

since it does not receive acknowledgement messages from neither T1 nor T3, it

deduces that T1 and T3 are both faulty. However the status of T4 is unknown, as it is

unreachable by both T1 as well as T3. Since this algorithm can only detect at most 2

site failures, it cannot be inferred. However in Preparata1967, it is stated that at least

2t+1 processors are needed to detect t failures using PMC diagnosis model. However

in our case it can be inferred that t failures can be detected with 2t – 1 processors.

122

6.3.5 Summary
A new fault tolerant algorithm for Distributed Deadlock Detection and

Resolution is proposed with the following improvements:

• Initiator always knows the status of probe whether deadlock or live lock or site

failure.

• In Li1993 every non-faulty site tests other sites periodically for site failures. In the

proposed algorithm the site failure is decided by acknowledgement messages.

This improves the throughput of non-faulty sites.

• Checking whether faulty sites are rectified is known by awake message. This

situation is not handled separately in Li1993.

• Only one site failure is handled in Li1993. This paper however handles at most 2

site failure which improves fault tolerance

• The color of the probe is used to indicate the status of the system. Red indicates

deadlock with no site failure. Orange indicates live lock or deadlock due to site

failure. White indicates live lock due to a transaction having no dependency edge.

• The worst case message complexity is 4n where n is the number of transactions.

This occurs when there is no site failure and deadlock occurs. The four messages

are the forward probe message and backward probe message to next nodes and

acknowledgement messages for both forward and backward messages to senders

(see figure 6.4a).

• Further fault identification is better than fault diagnosis model, which needs 2t+1

processors to identify t failures. In the messaging mechanism, 2t-1 processors are

enough to identify t failures.

6.4. Weight Based Victim Selection Algorithm
 Deadlock resolution phase follows deadlock detection phase. In this a transaction

is chosen (called as victim) for abortion to break the circular wait that is causing the

deadlock. Several victim selection algorithms have been analyzed in chapter 2.4.3.

6.4.1 Performance of existing victim selection algorithm

Based on the definition of the victim selection algorithms, their characteristics

along with their time complexity can be summarized as in table 6.1.The time

complexity helps to determine the deadlock resolution latency and defined in terms of

‘n’- the number of transactions. From the table, it is worth noting certain points.

123

Table 6.1: Comparison of various victim selection policies

Victim Selection Policy Optimal in Time Complexity
Youngest [Agarwal1987] Fairness O(n)
Min. History [Agarwal1987] Fairness O(n)
Least Static Priority [Newton1979] Response time O(n)
Maximum Size[Chow1991] Throughput O(n)
Min. no. of locks[Agarwal1987] Resource Utilization O(n)

Max. no of cycles[Singhal1989] Throughput O(n2 x k + 2) k–
max. cycle size

Minimum abortion
cost[Srivastava2007] Resource Utilization O (n3)

Max. Edges [Singhal1989] Resource Utilization O (n4)
Blocker [Agarwal1987] Resolution latency O(1)
Initiator Resolution latency O(1)

Max. release set[Moon1997] Resource utilization,
throughput

O (n3m) m- no of
resources

Min. work done so far[Holt1972] Resource Utilization O (n3)
Priority + resource priority + min.
work done[Garey1979]

Resource utilization,
throughput

O(n4.m) m- no of
resources

Youngest is fair in giving priority to the transactions based on their arrival time.

So this will eliminate starvation in poverty [Holt1972]. But this might introduce

starvation in wealth [Parnas1972]. Static priority lets the user to configure the

priorities of the transactions participating in the system. This eliminates starvation in

wealth. This policy is ideal for real time systems. The transactions can be prioritized

based on the need of immediate or delayed response time. But resolution using history

eliminates both starvation in wealth and starvation in poverty. History based

resolution is also fair in the sense that it does not penalize any transaction again and

again. Resolution based on transaction size will increase the number of transactions

completed per unit time i.e. throughput.

Resolution policies like minimum number of locks, minimum work done and

minimum abortion cost focus on lower rollback cost of a transaction, while algorithms

like initiator, blocker, maximum edges and maximum release set choose a victim

based on overall better performance of the system than on concerned individual

transactions. The victims chosen using these algorithms might have already acquired

all the required resources, completed maximum amount of execution or had been

aborted again and again in the past. So they are not fair on individual transactions.

Blocker and initiator can be lower priority transactions and their only benefit is

better deadlock resolution latency, especially in distributed systems. While all the

124

above mentioned algorithms abort one transaction per cycle, resolution based on

maximum number of cycles tries to reduce this. So number of transactions executed

per unit time i.e. throughput increases in this case.

A simulation experiment has been made to study their characteristics with respect

to other attributes. To study these desirable characteristics, attributes of 500

transactions are randomly generated and tested. From the given victim selection

algorithms, blocker and initiator algorithms are not considered because, they are

optimal only in deadlock resolution latency and poor in other aspects. Victim

selection algorithm by Srivastava2007 takes maximum deadlock resolution latency,

hence it is also not considered.

Figure 6.6 Performance for number of transactions versus throughput

In figure 6.6, it can be noticed that algorithm choosing victim based on maximum

number of cycles provide maximum throughput i.e. more than 96%.This is because it

aborts at most ‘n’ transactions, when there are ‘n’ cycles, whereas other algorithms

abort atleast ‘n’ transactions. Then selection on maximum size provides better

throughput i.e. 94%.This is because smaller transactions finish in time when the

transactions are relatively smaller in size. In max edge algorithm, by aborting one

transaction many transactions can proceed. Therefore the throughput is more in this

case also. The performance of other resolution algorithms also depend on attributes of

participating transactions and are bound to vary.

125

In figure 6.7, resource utilization is compared by varying number of transactions.

While throughput is measured in terms of number of transactions, resource utilization

is measured in terms of resources. Maximum resource utilization happens when there

is minimal rollback. Resource utilization is maximized in resolution algorithms of

minimum number of locks and maximum size. It is also noticeable that minimum

abortion cost based on arrival time and minimum number of operations has made the

algorithm suboptimal in both aspects .But it is better than algorithms considering

single transactional attribute.

Figure 6.7 Performance for number of transactions versus resource utilization

126

Figure 6.8 Performance for number of transactions versus fairness

In figure 6.8, fairness is compared with number of transactions. Fairness can be

viewed in two aspects: based on age and starvation. The fairness considered in figure

6.8 is based on arrival time. While throughput, deadlock resolution latency and

resource utilization are desirable attributes of the system, non- starvation and fairness

are desirable attributes of individual transactions.

6.4.2 Proposed weight based victim selection algorithm
The victim selection algorithms are based on transaction attributes and resource

attributes. The common transaction attributes or characteristics are age, history, code

size, priority, resource utilized so far and its attributes in WFG like in-degree, number

of edges, out-degree and cycle participation. Apart from static priority, transactions

are usually dynamically prioritized based on the attributes given above. Victim

selection algorithm based on resource attributes could be based on resource priority,

number of units of a particular resource, costly resource, resource most sought after

etc.

127

The desirable attributes that could improve the system are higher throughput,

better resource utilization and lesser deadlock latency. The desirable attributes in

individual transaction execution is lower response time, fairness, no starvation and

minimum roll back cost. It can be noticed that while each victim selection algorithm

is optimal in one aspect, it is suboptimal in other aspects.

Hence the proposed algorithm is based on assigning weights which can be

configured based on user requirement. For example in real time systems, response

time is more important than other attributes. Similarly throughput is important in

batch processing systems.

In the proposed algorithm, each transaction is expected to possess an attribute list

to maintain its rank in various aspects. The attribute list of a transaction is as table 2a.

The attribute list is created for every transaction arriving at the system. Attribute lists

of all transactions whose execution are completed are deleted. Attribute lists of all

live transactions whose execution are not completed, are also updated whenever a

new transaction arrives or an old transaction leaves the system.

The rank of a transaction with respect to a particular attribute is based on its value

relative to other transactions with respect to that factor. For example, if a transaction

has arrived third among the active transactions in the system, then its rank with

respect to age is fixed as 3. In general, the ranks are determined based on the seniority

of the transaction.

Table 6.2a Transaction attribute list

Transaction ID Rank
Age
History
No of resources
requested

No of resources granted
Size
Static priority

The weights of desirable attributes in the system can be configured so that Σ (G,

F, L, T, R) =100%.This is done based on the nature of the distributed system. The

weights can be in the range 0 to 100%. The ranking of transactions in a centralized

system is easy. However the deadlock detection and selection of a victim for

resolution in distributed system is very tedious. The candidate victims are distributed

in various sites. Selecting a victim transaction for abortion at each local site is

128

suboptimal and affects the performance of the system. Hence global selection of

victim needs propagation of transaction attributes to all sites. The sites in a distributed

system communicate through messages. Hence probe based deadlock detection in

Chandy1983 is one of the best distributed deadlock detection algorithms.

Table 6.2b Desirable performance attributes of the system

 Desirable
system
attribute

Wt as
%

Rank of Transaction
attribute to be favored

Throughput G Size
Fairness F Age, history
Resolution
latency

L Initiator, random
blocker

Response time T Static priority
Resource
utilization

R No of resources
requested

In this algorithm, the transactions waiting for grant message will start sending

probe message after time out. The probe is sent along the wait for edges of a Global

Wait for Graph (GWFG). The probe message has the fields such as initiator

(transaction initiating the probe), sender (transaction forwarding the probe), receiver

(transaction receiving the probe).This algorithm is used to detect cycle which

indicates the presence of deadlock. Two new fields’ namely current victim’s

transaction ID and its attribute list can be added to the probe for propagation for

global victim selection. At each site, the rank of the current victim is compared with

the locally selected victim. If the rank of local victim is higher than the current victim,

the current victim can be replaced before forwarding the probe. When the probe

reaches the initiator, the Transaction ID which is to be aborted will be known. Then

command can be sent to abort the victim to break the cycle and restart the system.

6.4.3 Summary

Resolution is an important phase in handling deadlocks. Selection of a victim

influences the performance of the system strongly. The desirable performance

parameters of the system like throughput, resource utilization are influenced by the

victim selection. The desirable parameters of the transaction like fairness, resolution

latency and response time are to be considered while selecting a victim. The weight

based victim selection scheme balances the desirable parameters of transactions and

system.

129

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

This concluding chapter recounts the research contributions with a brief

discussion on the merits of the proposed semantic multi-granular locking models for

OODBMS and OODS and deadlock handling techniques for OODS. It also reveals a

few open problems in the focused area of research.

7.1 Conclusions

Nowadays business domains and engineering applications are emerging as

distributed applications. They require support of complex data modeling and long

duration transactions. Application of object oriented paradigm provides support of

complex data modeling. These domains are also continuously evolving in nature to

provide better service to their clients. This requires provision of high concurrency and

reliable consistency. Existing conventional concurrency control techniques are not

equipped to meet these requirements of the recently emerging applications. Semantic

concurrency control techniques exploiting the features of object oriented paradigm

have shown better performance than the conventional concurrency control techniques.

 In this research, semantic multi-granular lock models and deadlock handling

techniques are proposed for distributed object environments. The developed models

and algorithms were evaluated by conducting simulation experiments using the

extended version of 007 benchmark. Semantic multi-granular lock models have been

proposed for distributed object environments supporting stable as well as

continuously evolving domains. A deadlock prevention algorithm has been proposed

based on resource ordering and access ordering. The resource ordering and access

ordering principles are based on the semantics of object oriented paradigm. Resource

ordering policy breaks the circular wait. Access ordering policy eliminates the

starvation in wealth and starvation in poverty. Existing probe based deadlock

detection algorithm by Chandy1983 is very popular for its easy implementation. It

uses probe messages to detect deadlock. It has the limitations of not being fault

130

tolerant. It requires a separate resolution phase. These limitations are overcome by the

proposed fault informant probe based algorithm and weight based victim selection

algorithm. The fault informant probe based algorithm detects the status of the system

as whether it is in deadlock or live lock state or having site failures. The weight based

victim selection algorithm selects a victim based in the weights assigned to the

desirable parameters of the system like throughput, fairness, resource utilization etc.

This algorithm is used to dynamically select a victim by communicating the victim

selected so far in the probe. Thus it eliminates the need for separate resolution phase.

The features of the developed algorithms are narrated in the subsequent paragraphs.

(i) A Consistency Ensured Semantic Multi-Granular Lock Model (CESGML)

is proposed for OODBMS implementing stable domains. In stable domains, the

runtime transactions are more in number and design time transactions are rare. The

model provides fine granularity of design time operations and ensures consistency of

runtime transactions. It covers all the design time operations mentioned in the

literature. It exploits the semantics of object oriented paradigm to provide rich set of

lock modes by identifying the mutually exclusive operations. The need for access

vectors is minimized by defining fine granular lock modes. Apart from the access

vectors for attributes and methods, another access vector called Class Dependency

Vector (CDV) is proposed for classes. This provides finer granularity for class

definition and class relationship access. This improves parallelism for node level and

link level design time operations.

Extended 007 benchmark for OODBMS is used to test its performance. The

CESGML is compared with the latest existing techniques based on Semantic MGLM

based on compatibility of relationships namely ORION and Semantic MGLM based

on commutativity of operations namely Jun2000 scheme. CESMGL scheme is better

than Orion by 68% and Jun2000’s scheme by 32.1%. ANOVA is also performed by

comparing the three techniques by varying the number of transactions, design time to

runtime ratio and varying the types of design time operations. In ANOVA and

Duncan range test, it is found that CESGML provides very less response time when

compared to the other two schemes.

131

 (ii) Two semantic multi-granular lock models namely semantic MGLM using

lock rippling and MGLM using access control lists are proposed for OODBMS

implementing continuously evolving domains. In continuously evolving domains,

more number of design time transactions arrives along with runtime transactions. The

existing optimal models for OODBMS require apriori knowledge of the structure of

classes. They use access vectors along with commutativity matrix to provide high

concurrency. They incur the search and maintenance overhead of access vectors. This

overhead increases linearly with the number of design time transactions. The

proposed models eliminate the need for access vectors and hence reduce the response

time when compared to the existing models.

Semantic MGLM using lock rippling extends the ORION locking scheme. In

ORION scheme, the locking is always from the parent to the leaf for both runtime as

well as design time transactions and intension locks are used to provide multi-granular

lock support. In object oriented paradigm, there is an upward dependency from

children to parents for runtime transactions. There is a downward dependency from

parents to children in the case of design time transactions. This principle is not

utilized in ORION. Further, intension locks do not convey what semantic operation is

done on the fine granules and only S and X lock modes are provided for all read and

write operations. In lock rippling, this lacuna is remedied by rippling the lock mode to

convey the semantic operation taking place. A commutativity matrix is specified to

define the conflicting operations. Then more than one lock can be placed on the same

class as long as they are not conflicting. This helps to provide more concurrency than

ORION. It does not require any access vectors for its operation. So the access vector

overhead is nil in lock rippling mechanism.

Semantic MGLM using access control lists provides the same level of

concurrency as in CESGML scheme without the limitations of access vectors, by

splitting the lock table into three lists namely Available, Shared and Exclusive lists.

This eliminates the need for maintaining vector tables along with lock table. The

maintenance overhead is minimized as access vectors are not needed. In Available

list, the attributes and methods of each class that are currently available are included.

In Shared list, the attributes and methods of each class that are currently in shared

(read) lock mode are included. In Exclusive list, the attributes and methods of each

132

class that are currently in exclusive (write) lock mode are included. The search time is

minimized as the lock table is split into three lists. Any transaction requires searching

only one of these lists instead of all of them. This reduces the search overhead to

roughly about one third. In order to save search time further, list search policies are

given. Exclusive lock mode is allowed for a requested resource only if the resource is

currently present in Available list. Shared lock mode is allowed, only if the resource is

not in Exclusive list.

Extended 007 benchmark is used to compare their performance with the

existing techniques. Semantic MGLM using lock rippling is better than CESGML by

14%. Semantic MGLM using access control list is better than CESGML by 21%. The

response time for lock rippling is more because of the coarse granularity of lock

modes for runtime transactions. However they do not need any apriori knowledge of

object structure. Thus, the proposed schemes perform better for continuously

evolving domains.

(iii) A semantic MGLM based on compatibility of relationships is proposed

for OODS. Lock modes and granularity of locks are proposed for attributes and

classes. Lock modes and granularity of locks are proposed for methods based on their

types and properties for each of the relationship namely inheritance, aggregation and

association. The granularity of runtime transactions is extended to attribute level. The

granularity of design time transactions are still coarse due to the limitations of

programming languages using which the domain is implemented.

(iv) A deadlock prevention algorithm is proposed for OODS based on

resource ordering. The resource ordering technique is based on the object semantics.

A formal model of the resource ordering technique is proposed using predicate

calculus. An expedient access ordering policy is also proposed to eliminate the

starvation in poverty and starvation in wealth. Informal and formal proofs are given.

Any DPA is expected to handle 3 conditions namely (1) Deadlock (2) Starvation on

Poverty (3) Starvation on Wealth. Deadlock is prevented in our algorithm by access

ordering. Transactions can access the resources only in specific order, i.e. resources

from lower IDs to higher IDs. Since FIFO ordering is followed, younger transactions

wait on older transactions. Hence, circular wait is broken. This ensures breaking of

133

cycles and hence deadlock is prevented. Transactions are satisfied on FIFO basis. This

eliminates starvation in poverty. Starvation in poverty generally occurs when larger

requests are kept pending permanently. This is because smaller transactions are

favored over bigger transactions to increase throughput. However, in our algorithm,

the transactions are served in FIFO basis. Hence, starvation in poverty is eliminated.

Though, our algorithm favors FIFO ordering, when two transactions arrive at the

same time, it favors the transaction requesting least number of resources. Hence, an

expedient strategy is followed to speed up the computation, improve the resource

utilization and alleviate starvation of wealth. Thus our algorithm has shown that

deadlock prevention algorithm is possible for distributed object oriented systems.

 (v) A probe based distributed deadlock detection algorithm using colored

probes is proposed to provide fault tolerance. In this, Initiator always knows the status

of probe whether deadlock or live lock or site failure. In existing algorithm, every

non-faulty site tests other sites periodically for site failures. In the proposed algorithm

the site failure is decided by acknowledgement messages. This improves the

throughput of non-faulty sites. Fault identification is better than the existing fault

diagnosis model, which needs 2t+1 processors to identify t failures. In the messaging

mechanism, 2t-1 processors are enough to identify t failures. This algorithm is capable

of detecting at most two failures, whereas in the existing algorithm only one site

failure can be detected. The worst case message complexity is 4n where n is the

number of transactions. This occurs when there is no site failure and deadlock occurs.

(vi) A weight based victim selection algorithm is proposed to dynamically select

a victim based on the system parameters chosen for deadlock resolution. The victim

selection algorithms are based on transaction attributes and resource attributes. The

common transaction attributes or characteristics are age, history, code size, priority

etc. The desirable attributes that could improve the system are higher throughput,

better resource utilization and lesser deadlock latency. The desirable attributes in

individual transaction execution is lower response time, fairness, no starvation and

minimum roll back cost. It can be noticed that while each victim selection algorithm

is optimal in one aspect, it is suboptimal in other aspects. Hence the proposed

algorithm is based on assigning weights which can be configured based on user

requirement. For example in real time systems, response time is more important than

134

other attributes In the proposed algorithm, each transaction is expected to possess an

attribute list to maintain its rank in various aspects. Based on the effects of the various

transaction attributes on the performance of the system and transactions, desirable

system parameters are chosen and the transaction attributes influencing them are

identified. Weights are assigned based on the choice of system parameters desired.

The victim is thus computed in every site. When the probe circulates along the wait-

for-edges in GWFG, the victim is updated by comparison. When the probe comes

back to initiator, the victim ID is available for abortion.

7.2 Future Research Directions

In this research attempt is made to provide semantic concurrency control and

deadlock handling for distributed object environments. The algorithms developed in

this research can be further extended in the following aspects.

i. The semantic multi-granular lock models provide fine granularity using

access vectors. They require prior knowledge of the structure of classes to provide

high concurrency. There is a trade off between granularity and requirement of prior

knowledge of class structure. Hence the models may be explored for providing fine

granularity without the overhead of apriori knowledge of class structure.

ii. MGLM using lock rippling does not use any access vectors to provide

concurrency control. However it provides coarse granularity as compared to MGLM

using access control lists. Hence new lock modes may be explored to provide fine

granularity of design time operations.

iii. Semantic MGLM proposed for OODS offers coarse granularity for design

time transactions due to the limitations of programming languages. Hence

possibilities may be explored to propose fine granule of design time operations.

iv. Semantic MGLM proposed for OODS is based on compatibility of

relationships. A semantic MGLM based on commutativity of operations can be

explored to compare their performance and identify the model that performs best.

135

v. Deadlock prevention is a proactive approach. Deadlock detection and

resolution is reactive approach and hence favored. A deadlock detection algorithm can

be explored by exploiting the semantics of objects. It may give better performance as

it has done in semantic concurrency control and deadlock prevention.

136

REFERENCES

Agarwal1987 R.Agarwal, M.Carey and L.Mcvoy, “The performance of Alternative
Strategies for dealing with Deadlocks in database Management Systems”, IEEE
Transactions on Software Engineering, SE-13 (12), pp1348-1363, 1987.

Agrawal1992 D.Agrawal and A.Abbadi, “A non-restrictive concurrency control for
object-oriented databases”, Proceedings of the Third International Conference on
Extending Data Base Technology, Vienna, Austria, March, pp. 469-482,1992.

Anand2009 A.Anand and M.Sethi, “Prevention of Deadlock in a Distributed
Computing Environment”, US Patents, Patent No. 0138886A1, 2009.

Andrews1982 G.R.Andrews and G.M.Levin, “On-the-fly Deadlock Prevention”,
Proceedings of the first ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, New York, USA, pp. 165- 172,1982.

Badrinath1988 B.Badrinath and K.Ramamritham, “Synchronizing transactions on
Objects”, IEEE Transactions on Computers, volume 37(5), pp. 541-547, 1988.

Badrinath1992 B.Badrinath and K.Ramamritham, “Semantic-based concurrency
control: beyond commutativity”, ACM Transactions of Database Systems, volume 17
(1), pp 163-199, 1992.

Bannerjee1987 J.Bannerjee, W.Kim, H.J.Kim and H.F.Korth, “Semantics and
Implementation of Schema evolution in Object–Oriented Databases”, Proceedings of
1987 ACM SIGMOD international conference on Management of data, New York,
USA, pp. 311-322, 1987.

Bertino1991 Elisa Bertino and Lorenzo Martino, “Object Oriented Database
Management Systems: Concepts and Issues”, IEEE Transactions on Computers,
volume 24(4), pp. 33-47, 1991.

Braubach2011 L. Braubach and A.Pokahr, “Intelligent Distributed Computing V”,
Proceedings of the 5th International Symposium on Intelligent Distributed Computing
(IDC 2011), Springer, pp141-151, 2011.

Brzezinski1995 J.Brzezinski, J.M. Helary, M.Raynal and M. Singhal, “Deadlock
models and a General Algorithm for Distributed Deadlock Detection”, Journal of
Parallel and Distributed Computing, volume 31, pp112-125, 1995

Carey1993. M.J.Carey, D.J.Dewitt and J.F.Naughton, “The 007 benchmark”,
Proceedings of ACM SIGMOD Conference on Management of Data, Washington
D.C, USA, pp. 12-21, 1993.

137

Carey1994 M.J.Carey, D.J.Dewitt, Chander Kant and J.F.Naughton , “A status report
on the 007 OODBMS benchmarking effort”, Proceedings of OOPSLA, Portland, OR,
USA, pp. 414-426, 1994.

Cart1990 M. Cart and J. Ferrie, “Integrating concurrency control into an object-
oriented database system”, Proceedings of the Second International Conference on
Extending Data Base Technology, Venice, Italy, March, pp. 363-377, 1990.

Chandy1983 K.Mani Chandy and Jayadev Mishra, “Distributed Deadlock
Detection”, ACM Transactions on Computer Systems, volume 1(2), pp. 144-156,
1983.

Chow1991 Y.Chow, W.F.Klostermeyer and K.Luo, “Efficient techniques for
Deadlock Resolution in Distributed Systems”, Proceedings of the Fifteenth IEEE
Annual International Computer Software and Applications Conference, pp. 64-69,
sep. 1991.

Chowdhary1989 A.N.Chowdhary, W.H.Kohler, J.A.Stankovic and D.Towsley, “A
modified priority based probe algorithm for distributed deadlock detection and
resolution”, IEEE Transactions on Software Engineering., volume SE-15, pp. 10-17,
Jan. 1989.

Coffman1971 E.G.Coffman, M.J.Elphick and A.Shosani, “System Deadlocks”, ACM
Computing Surveys, Volume 3(2), pp. 67-78, 1971.

Cummins2001 F.A.Cummins, “Distributed Object System with Deadlock
Prevention”, US Patents, Patent No. US 6236995B1, 2001.

Davidson1993 Susan Davidson, Insup Lee and Victor Fay Wolfe, “Deadlock
Prevention in Concurrent Real time Systems”, Kluwer Academic Publishers,
Netherlands, Real time Systems, pp. 305 – 318, 1993.

Eswaran1976 K.P. Eswaran, J.N. Gray, R.A.Lorie and I.L. Traiger, “The notion of
consistency and predicate locks in a database system”, Communication of ACM,
volume 19(11), pp. 624-633, 1976.

Fulton1966 Fulton, L.James, “Extension Classes, Python Extension Types Become
Classes”, http://www.digicool.com/releases/ Extension Class., 1996.

Fulton1999 Fulton, L.James, “Zope Object Database Version 3 UML model”,
http://www.zope.org/Documentation/Models/ZODB, 1999.

Garey1979 M.Garey and D.Johnson, “Computers and Intractability: A Guide to the
Theory of NP Completeness”, W.H. Freeman and Company, New York, 1979.

138

Garza1988 J.Garza and W.Kim, “Transaction management in an object-oriented
database system”, Proceedings of the ACM SIGMOD International Conference on
Management of Data, Chicago, IL, USA, June, pp. 37-45, 1988.

Gray1976 J.N.Gray et al., “Granularity of locks and degrees of consistency in shared
database, Modeling in Database management system”, G.M. Nijssen edition, Elsevier,
North Holland, pp 393-491, 1976.

Gunther1981 Klaus D.Gunther, “Prevention of Deadlocks in Packet Switched Data
Transport Systems,” IEEE Transactions on Communications, Volume 29(4), pp.512-
524, 1981.

Hac1989 Anna Hac, Xiaowei Jin and Jo-Han Soo, “A Performance comparison of
Deadlock Prevention and Detection Algorithms in a Distributed File System”, Eighth
International Annual Conference on Computer and communications, 1989.

Hansdah2002 R.C.Hansdah, Nilanjan Gantait and Sandeep Dey, “A Fault Tolerant
distributed Deadlock Detection Algorithm”, Lecture Notes in Computer Science,
Springer link, Vol. 2571, pp. 78-87,2002.

Henderson1997 Brian Henderson-Sellers, “Towards the formalization of
Relationships for Object Modeling”, Proceedings of the International Conference on
Technology of Object-Oriented Languages and Systems- TOOLS-25, Melbourne,
Australia, pp. 267-283, 1997.

Holt1972 Richard Holt, “Some deadlock properties of Computer Systems”, ACM
Computing Surveys, Volume 4(3), pp. 179-196, 1972.

Huang1990 Jong-His Huang and Feng-Jian Wang, “Some Design Issues of a
Distributed Object oriented System”, Second IEEE workshop on future trends of
distributed computing systems, 1990.

Jun1998 W.Jun and Le Gruenwald, “An Effective Class Hierarchy Concurrency
Control Technique in Object – Oriented Database Systems”, Elsevier Journal of
Information and Software Technology, pp 45-53, 1998.

Jun2000 Woochun Jun, “A multi-granularity locking-based concurrency control in
object oriented database system”, Elsevier Journal of Systems and Software, pp
201-217, 2000.

Kim1989 W.Kim, E.Bertino and J.F.Garza, “Composite Objects revisited”,
Proceedings of the ACM SIGMOD international conference on Management of data,
New York, USA, pp. 337-347, 1989.

Kim1990 W.Kim, “Introduction to object-oriented databases”. MIT Press,
Cambridge, MA, USA. 1990.

139

Kim1991 W.Kim, T.Chan and J.Srivastava, “Processor Scheduling and concurrency
control in real-time main memory databases”, IEEE symposium on Applied
Computing, Kansas City, MO, USA, pp. 12-21, April 1991.

Lee1996 S.Y.Lee and R.Liou, “A multi-granularity locking model for concurrency
control in object-oriented database systems”, IEEE Transactions on Knowledge and
Data Engineering, volume 8(1), pp. 144-156, 1996.

Lewis2008 Russell Lee Lewis, “Preventing Deadlocks”, US Patents, Patent No.
0168448 A1, 2008.

Li1993 Pei-yu Li and Bruce McMillin, “Fault-tolerant Distributed Deadlock
Detection/ Resolution”, IEEE Transactions on parallel and distributed systems, pp.
224-230, 1993.

Lin1994 X.Lin, M.E.Orlowska and Y.Zhang, “An Optimal Victim Selection
Algorithm for removing Global Deadlocks in Multidatabase Systems”, 9th
International Conference on Frontiers of Computer Technology, FCT'94, IEEE CS
Press, pp.501-505, 1994.

Lin1996 Xuemin Lin and Jian Chen, “An Optimal Deadlock Resolution Algorithm in
Multidatabase Systems”, Proceedings of ICPADS, Nedlands, Western Australia, pp.
516-521, 1996.

Malta1993 C.Malta and J.Martinez, “Automating fine concurrency control in object-
oriented databases”, Proceedings of the Ninth IEEE Conference on Data Engineering,
Vienna, Austria, pp. 253-260, April 1993.

Milicev2007 Dragan Milicev, “On the Semantics of Associations and Association
Ends in UML”, IEEE Transactions on Software Engineering, volume 33(4), pp 238-
251, April 2007.

Mitchell1984 D.P.Mitchell and M.J.Merrit, “A distributed algorithm for deadlock
detection and resolution”, Proceedings of third ACM Symposium on Principles of
Distributed Computing, Vancouver, Canada, pp. 282-284, Aug 1984.

Moon1997 A.Moon and H.Cho, “Performance Analysis of Global Concurrency
Control Algorithms and Deadlock Resolution Strategies in Multi database Systems”,
IEEE Pacific Rim conference on communications, computers and signal processing,
1997.

Newton1979 G.Newton, “Deadlock prevention, detection and resolution: An
annotated bibliography”, ACM-SIGOPS OS Review, volume 13(4), pp. 33-44, 1979.

ObjectStore2011 http://www.progress.com/en/objectstore/index.html, retrieved
in 2011.

140

Olsen1995 D.Olsen and S.Ram, “Towards a comprehensive concurrency control
mechanism for object-oriented databases”, Journal of Database Management, volume
6(4), pp. 24-35, 1995.

Ozsu1999 M.Tamer Ozsu and Patrick Valduriez, “Principles of Distributed Database
Systems”, Pearson Education, second edition, 1999.

Parnas1972 D.L.Parnas and A.N.Habermann, “Comment on deadlock prevention
method”, Communications of ACM, volume 15(9), pp. 840-841, 1972.

Pender2003 Tom Pender, “UML 2 Bible”, Wiley Publishing Inc., First Edition, 2003.

Preparata1967 F.P.Preparata, G.Metze and R.T.Chien, “On the connection
assignment problem of diagnostic systems”, IEEE Transactions on Electronic
Computers, Volume EC-16(6), 1967.

Reddy1993 P.Krishna Reddy and Subhash Bhalla, “Deadlock Prevention in
Distributed Database Systems”, ACM SIGMOD Record, volume 22(3), pp. 40 -46,
1993.

Roesler1988 M.Roesler, W.A.Burkhard and K.B.Cooper, “Efficient deadlock
resolution for lock-based concurrency control schemes”, IEEE 8th International
conference on Distributed Computing Systems, pp. 224-233, 1988.

Riehle2000a Dirk Riehle and S.P.Berczuk, “Types of Member Functions in Java”,
Report, 2000.

Riehle2000b Dirk Riehle and S.P.Berczuk, “Properties of Member Functions in
Java”, Report, 2000.

Saha2009 D.Saha and J.Morrissey, “A Self–Adjusting Multi-Granularity Locking
Protocol for Object–Oriented Databases”, Second IEEE International Conference on
the Applications of Digital Information and Web Technologies, pp. 832-834, 2009.

Servio1990 Servio, Servio Logic Corporation, “Transactions and Concurrency
Control”, Gemstone Product Overview, Alameda, CA, USA, 1990.

Shaw1974 A.C.Shaw, “The Logical Design of Operating Systems”, Prentice-Hall,
Englewood Cliffs, NJ, 1974.

Sinha1985 M.Sinha and M.Natarajan, “A Priority based Distributed Deadlock
Detection Algorithm”, IEEE transactions on Software Engineering, volume SE-11,
pp. 67-80, 1985.

Singhal1989 Mukesh Singhal, “Deadlock Detection in Distributed Systems”, IEEE
survey and tutorial series, Vol. 22, pp. 37-48, 1989.

141

Srivastava2007 Alok Kumar Srivastava and Wilson Wai Shun, “Victim selection for
deadlock detection”, United states patent, No. US7185339B2, 2007.

Stevens2002 P.Stevens, “On the Interpretation of Binary Associations in the Unified
Modeling Language “, volume 1(1), pp. 68-79, 2002.

Szyperski2002 C. Szyperski, D. Gruntz and S. Murer, “Component Software –
Beyond object -oriented programming”, Pearson Education, second edition, 2002.

Terekov1999 I.Terekov and T.Camp, “Time efficient deadlock resolution
algorithms”, Information Processing Letters, Elsevier Science, pp. 149 -154, 1999.

Versant2008 Versant, “TechView Product Report”, Versant Object Database,
www.odbms.org, 2008.

Weikum2005 G.Weikum and G.Vossen, “Transactional Information Systems”,
ACM, 2005.

Wu1997 Shengli Wu and Nengbin Wang, “Directed Graph based Association
Algebra for Object Oriented Database”, Proceedings of IEEE conference on
Technology of Object oriented languages-TOOLS-24, Washington DC, USA, pp. 53-
59, 1997.

Zobel1988 D.Zobel, C.Koch, “Resolution Techniques and complexity results with
deadlocks: A classifying and annotated bibliography”, OS Review 22 (1), pp. 52-72,
1988.

142

LIST OF PUBLICATIONS

PUBLISHED PAPERS

1. V Geetha and N. Sreenath, ”Distributed Deadlock Detection using Fault

Informing Probes.”, International Journal of Computer Applications Vol. 41 no. 8,
pp6-11, March 2012, Published by Foundation of Computer Science, New York,
USA. ISSN: 0975 – 8887.

2. V Geetha and N. Sreenath. “Augmenting the Performance of Existing OODBMS

Benchmarks”, International Journal of Computer Applications vol. 40, no. 5,
pp41-46, February 2012, Published by Foundation of Computer Science, New
York, USA.ISSN:0975 – 8887.

3. V. Geetha and N. Sreenath, “Impact of Object Operations and Relationships on

Concurrency Control in DOOS”, Tenth International Conference on Distributed
Computing and Networking, Kolkata, India, Proceedings in LNCS, pp258-264,
January 2010.

4. V. Geetha and N. Sreenath, ”A Multi-Granular Lock Model for Distributed Object

Oriented Databases Using Semantics”, Seventh International Conference on
Distributed Computing and Internet Technology, Bhubaneshwar, India,
proceedings in LNCS, pp138-149, February 2011.

5. V. Geetha and N. Sreenath, " Fault-informant distributed deadlock detection using

colored probes", Second International Conference on Advances in
Communication, Network, and Computing, Bangalore, India, Proceedings in
LNCS-CICS, March 2011.

6. V. Geetha and N. Sreenath, “Deadlock Prevention in Distributed Object Oriented

Systems.”, International Conference on Advances in Computing C 2011, Cochin,
India, proceedings in LNCS- CCIS, pp48-57, August 2011.

7. V. Geetha and N. Sreenath., ”Semantic Based Concurrency Control in

OODBMS”, International Conference on Recent Trends in Information
Technology, Chennai, India, Proceedings in IEEE Computer Society, June 3-5,
2011.

8. V. Geetha and N. Sreenath, “High Concurrency for Continuously Evolving

OODBMS”, Eighth International Conference on Distributed Computing and
Internet Technology, proceedings in LNCS, pp 94-105, 2012.

143

COMMUNICATED PAPERS

9. V.Geetha and N.Sreenath, “Preventing Deadlocks and Starvation in Distributed

Object Oriented Systems”, submitted revised paper to Journal of Electrical
Engineering and computer science, Elsevier.

10. V.Geetha and N. Sreenath, “Semantic multi-granular lock model in Object

Oriented Database Systems”, submitted to Journal of Object Technology.

11. V.Geetha and N.Sreenath,” Performance Analysis of Victim Selection Algorithms

in Distributed Systems and Proposal of Weight based Resolution Strategy”,
submitted to International Journal of Artificial Intelligence and Information
technology, MECS publishers.

12. V.Geetha and N.Sreenath,” Semantic Concurrency Control on Continuously

Evolving OODBMS using Access Control Lists “, submitted to ninth International
Conference on Distributed Computing and Internet Technology, 2013.

144

VITAE

V.GEETHA, the author of this thesis is currently working as Assistant

Professor (Senior) in the Department of Information Technology at Pondicherry

Engineering College, Puducherry, India. She was born in march1969 at Puducherry.

She received her B.Tech. degree in Computer Science and Engineering from

Pondicherry University, Puducherry, India in the year 1990 and M. Tech. degree in

Computer Science and Engineering from Pondicherry University, Puducherry in

1999. She worked as Lecturer and Senior Lecturer in Computer Science in the

Government Polytechnic Colleges, Puducherry for eleven years, since 1991. Later she

joined as Lecturer in the Department of Computer Science & Engineering and

Information Technology, Pondicherry Engineering College, Puducherry, in the year

2002. Subsequently she was promoted as Senior Lecturer in the Department of

Information Technology in the year 2007. Her areas of interest include Object-

oriented Design, Distributed Systems and Middleware Technologies. She has

published research papers in International Journals and Conferences.

145

	Thesisfront-cer-ack.pdf
	TABLE OF CONTENTS.pdf
	Ab-ta-fig-acr.pdf
	chapter1.pdf
	chapter2.pdf
	chapter3.pdf
	CHAPTER 3
	CONSISTENCY ENSURED SEMANTIC MULTI-GRANULAR LOCK MODEL (CESMGL) FOR OBJECT ORIENTED DATABASES IMPLEMENTING STABLE DOMAINS

	chapter4.pdf
	chapter5.pdf
	5.1 Preamble
	
	5.2.2 Types and granularity of locks based on method types for Inheritance

	5.2.6 Compatibility matrix for runtime and design time transactions

	chapter6.pdf
	CHAPTER 7.pdf
	ref-pub-vit.pdf

