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ABSTRACT 

 Critical and objective decisions made during the corrective maintenance of 

proprietary software rely on the innate knowledge, experience, judgment and 

wisdom of the software practitioners. The decision making process during corrective 

maintenance pertains to evaluating the validity of a bug, duplicate bug detection, 

bug triage, bug reassignment, patch testing, etc.  The retention of tacit knowledge of 

the software practitioners has been proven to be complicated for Open Source 

Software Maintenance. Bug management is one of the core constituent of Open 

Source Software Maintenance. Bug Triage is an integral element of bug 

management. Bug Triage is concerned about evaluating the validity of a reported 

bug, assigning severity, priority and the most critical exercise is to determine an 

appropriate developer to solve the bug. Bug Triage when performed manually is 

susceptible to error and delay. This principal problem instigates the research work to 

develop techniques that provide automated support for Bug Triage and thereby, aid 

the Open Source Software Maintenance. 

This research work presents techniques that automate and thereby ameliorate 

the human driven bug triage process by eliciting information from the bug 

repository.  The Open Source Software development process generates massive data 

that are stored in software repositories. This data embeds in it the patterns, practices, 

behavior and social context of the developers involved in the Open Source Software. 

The amelioration of the bug triage process is achieved by routing the new 

bug report through an optimal referral chain of developers who can add value 

towards solving of the bug. To this end, the research work makes several 

contributions. To begin with, the bug tossing relation among developers is elicited 

from the bug repository and the collaboration in terms of bug tossing is modeled as a 

directed weighted Bug Toss Graph. The Bug Toss Graph is formalized as an Actual 

Path Model. The Bug Toss Graph is further refined to an Enriched Collaboration 

Graph by augmenting features that capture the dynamism of relationship among the 

developers. The next step is to design and administer adaptive techniques based on 

ant systems to query and learn the referral chain of developers from the 
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progressively evolving Enriched Collaboration Graph. The adaptive techniques gain 

information about a developer’s contribution by passively observing the developers 

bug tossing activity.  The adaptive learning techniques employ probabilistic strategy 

to select outgoing links for bug report forwarding. Further, to bolster the 

recommendation metrics of Precision and Recall, additional Path Similarity metric is 

introduced to evaluate the effectiveness of the retrieved referral chain of developers 

in terms of position and order. The Path Similarity metric is based on Levenshtein 

distance. The Path Similarity metric computes the number of edit operations needed 

to convert the retrieved referral chain of developers to the original path of 

developers. This computation is performed based on dynamic programming.  

Finally, to further demonstrate the overarching usefulness of the Ameliorated Bug 

Triage System, an Holistic Evaluation Framework with Key Performance Indicators 

(KPI) based on developer’s performance is introduced. The set of KPIs inducted are 

Developer Time Index, Developer Effectiveness Index and Developer Productivity.  

The KPIs serve as the user metrics to evaluate the Ameliorated Bug Triage System. 

Thus, in this research work, the Ameliorated Bug Triage System is 

developed in a progressive manner. The proposed Ameliorated Bug Triage System 

is based on an Enriched Collaboration Graph. The adaptive Co-Ant algorithm is 

utilized as the learning model in the Enriched Collaboration Graph. The existing 

Bug Triage System is based on the Bug Toss Graph modeled as a Goal Oriented 

Path model. The Weighted Breadth First Search algorithm is utilized as the learning 

model in the existing system.  

The experimental results prove that the developed Ameliorated Bug Triage 

System shows significant improvement over the existing Bug Triage System in 

terms of the three conventional metrics viz., Path Length, Precision and Recall. In 

addition to the conventional metrics, a new metric - Path Similarity is proposed. The 

Ameliorated Bug Triage System outperforms the existing system in terms of the 

proposed Path Similarity metric as well. Further, the developed Holistic Evaluation 

Framework is used to validate the proposed Ameliorated Bug Triage System using 

the three KPIs viz., Developer Time Index, Developer Effectiveness Index and 

Developer Productivity. The outcome of the evaluation using the Holistic Evaluation 

http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
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Framework further proves that the proposed Ameliorated Bug Triage System is 

superior to the existing Bug Triage System. ANOVA is used to perform the 

statistical analysis of experimental results. The ANOVA based statistical analysis 

concludes that the proposed Ameliorated Bug Triage System performs significantly 

better than the existing system. Thus, the Ameliorated Bug Triage System aids to 

automate the Bug Triage process. 
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CHAPTER - 1 

INTRODUCTION 

 

1.1 PREAMBLE 

 This chapter introduces the concept of Bug Triage. It also presents the 

broader context of Bug Triage in the milieu of Open Source Software. The key 

differences between Open Source Software and Proprietary Software are 

highlighted. The relevance of Software repositories in Open Source Software 

Maintenance is presented. Finally, the Bug Triage and bug tossing are introduced. 

1.2 OPEN SOURCE SOFTWARE  

 Open Source Software (OSS) is commercial software where full access 

to the code for viewing, modification and redistribution is granted to all the users by 

agreeing to a free of cost license. Over the years, there is a deep proliferation of OSS 

in every walk of life in terms of DNS servers, web proxy caches, Apache web 

server, etc. Gartner has reported that OSS will be part of 99% of the mission-critical 

systems by the year 2016. Further, to reiterate the wide adoption of OSS, even the 

stock exchanges of the New York, London and Tokyo are based on Linux [1].  

 OSS systems have graduated from being an alternative to a necessity in 

today‟s environment.  The foremost trigger for OSS adoption is the global recession 

in the year 2009.  The recession in the year 2009 resulted in tightened budgets, 

which has forced companies to look into the expenditure of the software 

procurements. With tighter budgets, there is a growing need for the experienced 

developer with strong mathematical leanings and prove-it-as-you-code model of 

software development[2].  

 The key player of OSS environment is the open source community. The 

open source community comprises a set of developers who assist in development, 
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implementation, deployment and maintenance of the software. The developers 

collaborate in a decentralized and distributed manner. The software developers 

participate voluntarily and are connected via the Internet [3].  

 OSS banks on a wiki-like coding environment where the developers are 

more often scrutinized by their peers. The uniqueness of OSS is that, there is a 

blurring of boundaries between the software users and the software developers. The 

motivation for contribution of code mostly is peer respect, ego gratification and 

future prospects. These factors contribute in building high quality and robust 

software that are secure, flexible and stable. The other benefit of OSS is the 

avoidance of vendor lock-in. 

 Proprietary software scores over OSS in documentation, mature ease of 

use, accountability and vendor handholding, even after deployment.Bugs eventually 

arise in deployed software, irrespective of the software being proprietary or open. 

There is continued vendor support for the procured proprietary software in terms of 

upgrades, patches, etc. This vendor support is guaranteed in the case of proprietary 

software by Service Level Agreements.This guaranteed support, after deployment,is 

amiss in OSS. The maintenance support to deployed software in OSS is offered in 

terms of mailing list, live chat, issue tracking system and web forums. The very 

nature of OSS is voluntary, collaborative and geographically distributed. The 

challenge to OSS is there is no guaranteed support.  

The solution to this challenge lies in the software repositories. While 

there are very many obvious advantages of OSS, the not-so-obvious benefit of OSS 

is the availability of software repositories in the public domain. These repositories 

hold in them information pertaining to the OSS development. The one thing that is 

possible in this scenario is to exploit the software repositories that are the fringe 

benefit of OSS development model.  With the information in the software 

repositories though accountability of support is a distant possibility, accelerated 

support is a reality.  
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1.3 SOFTWARE REPOSITORIES 

 Software repositories are repositories referring to artifacts that are 

products of software evolution. These data refer to the vast amount of information 

that is accumulated during the period of software evolution [4].Software repositories 

were primarily used for record keeping purposes. Currently, these repositories are 

used to derive actionable knowledge from the static records stored.These 

repositories were unavailable in the public domain when software development was 

confined within enterprises. Now, with the landscape changing with the proliferation 

of OSS, access to these repositories is possible. 

 Software practitioners employ strategies based on instinct and past 

experience. For example, managers use experiences from past project to allocate 

resources, Testers prioritize the testing features based on past experience [5].  In an 

enterprise system, there is minimal attrition of the software developers. As a result 

of this, the tacit knowledge of the developer can be tapped into. This tacit 

knowledge is not readily available in OSS where the software developers are in a 

state of flux. The software repositories bridge this gap in providing implicit 

knowledge and past experience in the OSS context. 

The few thrust areas, where software repositories are currently used 

are:(i) source code mining, (ii) study of issues and patches, (iii) bug prediction,  

(iv) communication artifacts mining, (v) text mining and (vi) developer modeling 

[6]. The following section throws light on the popular software repositories.The 

popular repositories are versioning repositories, email repositories and bug 

repositories. 

1.3.1  Version Control Repository 

Revision control refers to tracking of changes to source code. 

Maintaining the documents and configuration files are part of version control. Often, 

a version control system consists of source code with monitored access. The changes 

made to the code along with the accounting information of who made the change, 

date, time why the change was made is maintained. This version control is more 
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important in a distributed, collaborative and virtual environment which is the 

signature of OSS systems. Revision control is important in comparing the 

performance of the current version with any of the previous version of software. It is 

also useful in tracking all the modifications made to the source code. These 

modifications are made regularly in OSS. Revision control systems assist in 

monitoring the modifications carried on a source code and to locate contaminations 

if any.  

 Revision control plays an important role in finding the role of developers 

in the evolution of the OSS system. It helps to identify the number of authors for a 

particular source code and the behaviors of the developers when developing the code 

[7].  

1.3.2  E-mail Repository 

E-mail repositories contain artifacts that comprise design choices and 

issues encountered in software development. The mailing list is used for technical 

discussions, reporting of bugs, announcement of releases etc. This archive can serve 

as part of the institutional memory. The analysis pertaing to e-mail repository 

are,selection of e-mails  to be used, data pre-processing techniques to be employed, 

applicability of techniques applied in small e-mail collections to large collections, 

etc[8],[9]. 

1.3.3  Bug Repository 

 Bug repositories are where the users of OSS are encouraged to report the 

bugs.  The OSS system uses an open bug repository like www.bugzilla.org or 

www.jira.org. The use of the open bug repository propels the identification of more 

problems in the software with relative ease and encourages more developers to 

engage in the discussions and deliberations on a bug. 
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1.3.3.1  Anatomy of a Bug Report 

A bug report consists of pre-defined fields, free-form text, attachments 

and dependencies. The pre-defined field consists of fields such as BugID, the 

reporter of the bug, the fields product, the component to which the bug belongs to, 

the version, the operating system, the priority and the severity. The fields like 

assignee, status of the bug etc are subject to frequent change [10].  

The free form text is the textual summary part of the bug report. It 

comprises of the one line summary of the bug and the detailed description of the 

effects of the bug. The comments parts details the comments made by the public as 

well as the developers during the course of discussion over the bug. Additional 

attachments like screen shot of the bug and the activity log of the bug are also 

provided. 

 

Figure 1.1: Bug Report of Bug ID – 413917 

 A sample bug report from www.bugzilla.org is presented in the  

Figure 1.1.  The bug report ID is Bug ID - 413917. The status is „Resolved‟ and 
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„Fixed‟. The component to which the bug belongs to is „Framework‟ and it is 

assigned to a developer named Miles Parker. The bug was reported on 29
th

 July 

2013 by Sam Davis.  The comments posted on the bug are displayed on the lower 

part of the bug report. The hyperlink „History‟ links the activity log of that particular 

bug. 

1.3.3.2  Activity Log 

 The activity log of the Bug ID-413917 is depicted in the Figure 1.2. The 

activity log provides a gist of the history of the bug. From the activity log, it can be 

inferred that the bug was reported by Sam Davis on 29
th

 July 2013. On the same day, 

it was assigned to Miles Parker. Following this, the status of the bug has been 

modified from „New‟ to „Assigned‟. The developer  Miles Parker has assigned it to 

Steffen Pingel on 30
th

 July 2013. The developer Steffen Pingel has modified the 

priority of the bug from „P3‟ to „P1‟, added the Target Milestone field and the 

severity of the bug has been modified to „Major‟ from „Normal‟. The bug is tossed 

back to Miles Parker on the same day.  

 

Figure 1.2: Activity Log of BugID - 413917 
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 The developer Miles Parker now has changed the component field to 

„Framework‟ from „Gerrit Connecter‟ and modified the summary field of the bug. 

The following day i.e. 31
st
 July 2013 the status of the bug is changed to „Resolved‟ 

from „Assigned‟ and the resolution is made as „Fixed‟ by Miles Parker. This log 

shows that the bug may not be solved by the first assignee itself, it may need to be 

changed hands in order to be solved. This changing of developers is called as tossing 

of the bug. The tossing of the bug contributes to the time taken to resolve the bug. 

 For example, the tossing activity underwent by Bug ID - 413917 is {Sam 

Davis, Mike Parker, Steffen Pingel,Mike Parker}. Fortunately, the bug has been 

resolved in two days which is not the case always. 

 The tossing path of another bug with Bug ID-320934 is {cgold, 

markus_keller, cgold, markus_keller, cgold, spektom, markus_keller, pwebster}. 

The bug was reported on 2010-07-29 and finally, resolved on 2013-08-14.  

 The tossing path of yet another bug of Bug ID - 402560 is 

{pascal.rapicault, peter, martin.oberhuber, markus_keller, Joerg.Thoennes, pascal, 

hamdan.msheik, pascal.rapicault}. The bug was reported on 2013-03-06 and finally, 

resolved on 2013-08-27. It has been reported that 90% of the bugs gets tossed at 

least once. It takes 40 days to assign a bug to a developer and another 90 days to 

reassign a bug [11], [12]. 

1.4 BUG TRIAGING 

Bug Triaging process addresses the validation and then, the distribution 

of bug reports to the most appropriate developers in order to resolve the bugs. The 

conceptual view of the Bug Triaging process is given in the Figure 1.3.Once the bug 

report is submitted to the bug repository, the triager has to evaluate, prioritize, 

categorize and assign the bug to software developer. The bugs may be categorized 

according to the content in the summary or by the component to which the given 

bugs belong to. The bug is assigned to a software developer based on the expertise 

of the software developer. 
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Figure 1.3: Conceptual View of a Bug Triage System 

The bug assigned to a software developer may get reassigned if the 

concerned software developer is not able to solve the bug. This process of 

reassignment is termed as bug tossing. After a few bug tosses, the bug may get 

resolved. The bug tossing relation among the software developers can be modeled as 

a Bug Toss Graph. In the Bug Toss Graph, the nodes represent the software 

developers and the arcs represent the tossing activity. The goal of the triager is to 

find a software developer in a manner such that the number of tosses a bug 

undergoes before being resolved is minimized. Each toss takes up some lead time 

for the software developer to familiarize himself with the bug, thereby contributing 

to the bug fix time. The goal of any Automated Bug Triage System is to minimize 

the bug resolution time by minimizing the number of unwarranted reassignments in 

the life time of the bug. 

1.5 MOTIVATION 

OSS development is here to stay. It is all the more relevant in the current 

period of global economic slump. OSS has moved on from being a low cost 

alternative to the in house software development, to a necessity.  Examples of OSS 
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in every walk of life include Android, Chrome, Wordpress blogging platform, 

Openoffice, 7-Zip, PDFCreator etc. The list is endless.   

While OSS may have no proprietary rights and there is no cost incurred 

while acquiring an OSS per say, there are hidden costs when using OSS. The cost 

incurred via adopting OSS is due to the limited handholding to the service provided 

by the OSS after its deployment, limited warranty for the software and lack of 

documentation. Or, in other words, maintaining an OSS, post its deployment is 

tricky. This is because: OSS development does not conform to the traditional 

software development practices. It is independent and more agile in nature. This is 

due to the fact that the participation of the developers in OSS development is 

voluntary. Since the participation is voluntary, the developers can shift from one 

project to another, there may be expertise evolution, or more so the developers may 

drop out of disinterest.  

Bug management is a central component of the software maintenance of 

the OSS. Bug management comprises of the following three activities: (i) Bug 

Triaging, (ii) bug assignment to the software developer for solution and (iii) solving 

of the bug. Software maintenance expenditure is about 50% of the overall 

expenditure of the software project. In OSS development, the expenditure translates 

to time. Bug Triaging comprises of checking for validity of the bug, assigning 

priority, severity and assigning the bug to a correct software developer. Manual Bug 

Triaging is time consuming and fault prone [11], [12], [13]. So, it is imperative that 

automated support is essential for Bug Triaging. It is postulated that automated 

support for Bug Triaging will accelerate the bug management process which in turn 

will percolate to the OSS maintenance and thereby slash down the Total Cost of 

Ownership of the OSS.   

1.6 THESIS ORGANIZATION 

The rest of this thesis is organized as follows. Chapter 2 presents a 

pervasive analysis of the state of the art techniques of Bug Triage in OSS. Besides 
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that, it presents an analysis of Ticket Resolution techniques in Enterprise Systems.  

The shortcomings in the state of the art techniques in Bug Triaging are identified. 

Chapter 3 records the Problem Statement, Research Objectives of the 

thesis. Further, it proceeds to present the high level conceptual view of the 

Ameliorated Bug Triage System.  The research methodology, the data preparation 

and metrics used for evaluation are documented in this chapter. 

Chapter 4 documents the analysis of techniques that were considered for 

serving as Path Similarity metric. The techniques are evaluated by computing the 

Correlation Coefficient values. 

Chapter 5catalogues the comparison of Actual Path Model with the Goal 

Oriented Path Model. The enhanced bug triage algorithm based on Bi-Objective 

Optimization is presented in the chapter. 

Chapter 6 records the formal model for the Enriched Collaboration 

Graph. Moreover, it offers the Adaptive Techniques employed on the Collaboration 

Graph. The adaptive techniques are based on the self organizing and adaptive 

behavior of ant systems. 

Chapter 7 archives the Holistic Evaluation Framework of Bug Triage 

System by integrating the developer performance in the evaluation. It inducts the 

three Key Performance Indicators based on the developer‟s performance. 

Chapter 8 presents a comprehensive conclusion of the thesis. It also 

provides an extensive indication of the future directions of the research. 
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CHAPTER - 2 

REVIEW OF THE LITERATURE 

 

2.1  PREAMBLE 

This chapter offers a literature appraisal of the existing research 

approaches of the ongoing research in the field of Bug Triaging as well as its 

counterpart in the Ticket Resolution techniques in Enterprise System (ES). The 

survey has analyzed all the recent leading research publications. Taxonomy of the 

techniques that are adhered in the field of Bug Triage is derived.  The gaps in the 

literature are highlighted. 

2.2  STATE OF THE ART BUG TRIAGE TECHNIQUES IN OSS 

The survey reveals that the techniques employed for Bug Triaging use 

the textual summary in the bug report and use the text mining approach on them. 

The other set of techniques exploits the tossing relation that the developers indulge 

in.   

It can be noticed from the taxonomy depicted in the Figure 2.1 that the 

majority of techniques fall under content based techniques which use the textual 

summary from the bug report or link based which use the tossing relation. The 

content based techniques can further be classified as activity based or location based. 

In activity based techniques, the text based approaches are used over the summary 

field of the bug report, whereas in the location based techniques, the bug has to be 

localized. Bug localization pertains to locating the source code module to which the 

bug belongs to. Following bug localization, the textual contents linked with the 

source code module such as comment, versioning information serve as fodder to the 

location based techniques. The textual content, be it activity based or location based, 

are predominantly used with techniques based on machine learning, soft computing 

and information retrieval. 
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The link based techniques use the links that exist among the developers. 

The link may be in terms of bug reassignments i.e. tosses or comments made by the 

developers on the bug reports. The graph that is derived from the links can either be 

a Goal Oriented Path Model (GP)or Actual Path Model (AP). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Taxonomy of the Techniques for Bug Triage in OSS 
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iii) Tossing Graph Model  

iv) Evaluation Parameters  

2.2.1  Content Based Techniques 

2.2.1.1  Activity Based Techniques 

In activity based techniques for Bug Triaging, the bug reports similar to 

the new incoming bug report are identified. From the similar bug reports, the 

potential software developers are inferred. The similar bug reports are identified by 

machine learning, soft computing or information retrieval methods. 

Machine Learning 

Machine learning treats the textual summary in the bug report as 

instances.  Instances may also have a label that indicates the category, or class, to 

which they belong. A supervised machine learning algorithm takes as input a set of 

instances with labels and produces a classifier as output. The classifier can then be 

used to assign a label to an unknown instance. There are a considerable number of 

techniques that are based on machine learning for Bug Triage. They are listed below. 

Reducing efforts in making developer recommendations is done in a 

three pronged manner [14]based on machine learning techniques. There are three 

kinds of recommenders viz., (i) software developer oriented recommender, (ii) 

component recommender and (iii) interest recommender. The software developer 

oriented recommender suggests the developer who may fix the bug, the component 

recommender localizes the component the bug belongs to and the interest 

recommender suggests developer who may be interested in resolving the bug.  The 

algorithms explored are Naïve Bayes, Support Vector Machine (SVM), C4.5, 

Expectation Maximization, Conjunctive Rules and Nearest Neighbor. The 

parameters that were used for evaluation are Precision, Recall and F-Measure.  SVM 

and Naïve Bayes performed better with regard to the parameter - Precision to make 

one recommendation, but, when more than two recommendations had to be done, 
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SVM performed better. The bug reports are pre-processed and only the summary 

and description fields are utilized. 

Machine learning algorithms are used to model the expertise of the 

developers [15]. This model is then utilized in making recommendations. The 

recommendation is based on the following eight types of information: the textual 

description of the bug, the component, the operating system, the hardware, the 

version, the developer associated with the source code, the work load of the 

developer and a list of active developers. SVM algorithm was used as the machine 

learning algorithm. The Precision of the system was 86% for the data from Eclipse 

project. 

 TRiaging Approach using bug reports Metadata (TRAM) system uses 

the discriminating terms in the bug report including reporter of the bug and the 

component to triage a bug [16]. The Naïve Bayes classifier is used to build the 

predictive model. The chi-square method is used for feature selection during data 

preparation.  The system was evaluated using the parameters: (i) Precision (ii) Recall 

and (iii) F-Measure. 

The developer preferably works at most only on two to three 

components [17]. This information is exploited with unsupervised learning 

techniques to make developer recommendations. It is observed that the filtering 

module of supervised learning techniques greatly affect the diversity of the 

developers recommended.  The developer‟s expertise is leveraged using a Vector 

Space Model (VSM). The cosine similarity metric is used to compute the similarity 

between any two developers.  The system is evaluated using Accuracy and Diversity 

metrics. Diversity in recommendation is used to break monotony in developer 

recommendation. Data preparation considering efficient feature selection and 

instance selection are used to reduce the training set for Bug Triage [18]. The feature 

selection is done based on chi-squared test. The instance selection is based on 

iterative case filter algorithm. The system is validated using the parameters 

Accuracy, Precision and Recall. The Bug Triaging task is visualized as a text 

classification problem [19]. Specifically, it is treated as a multi-class, single label 
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classification problem where the software developer corresponds to a class and each 

bug report is assigned to a class using Naïve Bayes classification. The system 

achieves 30% Accuracy. A theoretical framework based on SVM to recommend 

software developers considering preference elicitation and load balancing for 

triaging of bugs is proposed [20].  

Social Network Metrics are integrated into the developer 

recommendation in Developer Recommendation with k-nearest-neighbor search and 

Expertise ranking (DREX) [21]. The system makes contribution in two aspects. 

First, the similar bug reports are searched with respect to the incoming bug report 

with K-Nearest-Neighbor search. Then, the developers from the similar bugs are 

ranked according to their contribution in the discussion of the bugs. This 

contribution is measured in terms of social network metrics such as in-degree, out-

degree, page rank, betweenness and closeness. The system is evaluated based on the 

parameters: Precision and Recall. 

A semi automated approach based on machine learning is presented [22].  

The novelty of the approach is that it identifies trace between the bug repository and 

the source code. The approach comprises of four predominant steps :(i) 

characterizing the bug report(ii) labeling the bug report(iii) choosing reports for the 

training set and (iv) applying the classifier algorithm. The characterizing of the bug 

report involves converting the free-form text to a feature vector. The labeling of the 

bug reports is performed based on heuristics. The label is assigned as per the 

developer who submitted the last patch or by the developer who changed the status 

as resolved or the developer who assigned duplicate status, etc. The choosing of bug 

reports for training is done by filtering approach. The filtering operation is 

performed by avoiding developers who no longer work in the project and developer 

with minor contributions. The SVM classifier is used to classify the bug. The system 

is evaluated with Precision and Recall parameters. 

DevRec is a composite method that performs triage with bug report 

based analysis and software developer based analysis [23]. The bug reports based 

analysis finds the bug reports that are similar to an incoming bug report based on k-
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nearest neighbors. The second part consists of determining a software developer‟s 

affinity to bug reports in terms of the following parameters: topic, components and 

product. The Recall@5 and Recall@10 values are computed for performance 

evaluation. An auction algorithm based Bug Triage is advocated [24].  A Port 

Stemming algorithm is used to extract the keywords from an incoming bug. The 

keywords extracted are then compared with the keywords from the history database. 

A keyword extraction algorithm is used to classify the remaining bug reports. As a 

final step, the candidate software developers are chosen based on history, 

preference, experience, credit, efficiency and workload. 

 The textual summary is once again used with ann-gram based algorithm 

and approximate string matching to recommend developers [25]. The evaluation 

metrics are Precision and Weighted Average Recall.This free-form text is converted 

to a feature vector. The resulting data is then labeled according to the software 

developer. Summarizing the data in the report using path group and determining the 

activity levels of the software developers are the two techniques implemented. The 

accuracy percentage of the recommender is 75%. 

 For any content based method, the natural language content of the bug 

report is converted to a bag of words. Term selection is an important aspect of data 

preparation in bag of words method. Selection of terms affects classification 

accuracy [26]. The three term selection methods that are examined are based on 

Logs Odd Ratio score. These methods are compared against Information Gain 

Methods and Latent Semantic Analysis (LSI). The Bayesian Network Classifier is 

used for triaging of the bugs in the bug repository. The results are compared based 

on Precision and Recall. Logs Odd Ratio provided 30% improvement in Precision 

and 5% improvement in Recall.Data preparation can also be viewed as a dimension 

reduction problem [27]. The report title and report summary from the bug report are 

extracted. The extracted text data is then converted to term document matrix using 

parsing, filtering and term weighting. The dimension of the term document matrix is 

reduced using feature selection and LSI. The reduced term frequency matrix is used 

along with seven different classifiers. It has been observed that SVM with LSI 
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produces the best results. The Accuracy, Precision and Recall values of SVM and 

LSI are 44.4%, 30% and 28% respectively. 

The summary of the survey in Bug Triaging based on machine learning 

in Open Source System is presented in the Table 2.1. 

Table 2.1: Summary of Machine Learning Techniques 

Paper 
Machine learning 

Accuracy Precision Recall F-Measure 

[14] -   - 

[15] -  - - 

[16] -    

[17]  - - - 

[18] -    

[19]  - - - 

[21] -   - 

[22] -   - 

[23] - -  - 

[25] -   - 

[26]    - 

[27] -    

 

Soft Computing 

The Bugzie system is based on fuzzy set approach [28]. The set of 

technical terms are collected from the software artifacts. A fuzzy set „Ct‟ is used to 

represent a set of software developers to fix a bug with term „t‟. The system has 

three stages. They are (i) training(ii) recommending and (iii) updating. The system 
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Bugzie outperforms SVM, Naïve Bayes, C4.5 and Bayesian Network in terms of the 

Parameters: (i) Prediction(ii) Accuracy and (iii) Time Efficiency. 

Information Retrieval 

Over specialization is frequently associated with recommender systems. 

This is handled by content boosted collaborative filtering [29]. The content boosted 

collaborative filtering is the combination of content based recommendation and 

collaborative based recommendation. The recommendation problem is reformulated 

as an optimization problem of accuracy and cost. The software developer profiles 

are created by a cost aware triage algorithm based on Latent Dirichet Analysis 

(LDA). A cost profile for each software developer is prepared based on the time 

taken by the software developer to solve the bug. The performance evaluation was a 

trade-off between cost in terms of bug fix time and accuracy. The bug fix time 

efficiency was improved by 30%. 

Knowledge management in terms of activity profile for the software 

developers present in the bug tracking system is reported to enhance the Bug Triage 

process [30]. The activity profile consists of the user role (review, assign, resolve) 

and user‟s topic association. For an incoming bug, the topic association is derived 

based on LDA using the title, description and system component. A list of software 

developers who match the new bug‟s topic are then ranked. The ranking is based on 

the software developers experience and the number of topics the software developers 

is associated. The new system produces an average hit ratio of 88%. 

A prototype for Bug Triage which uses the resolved bug reports as well 

as the change sets has been developed [31]. Information retrieval method is used to 

find the bug reports that are similar to an incoming bug report based on cosine 

similarity. Then, the software developers who provided the change set for the similar 

bug reports are retrieved. A score that takes into account the number of change set 

provided by the software developer and the similarity score of the bug report is 

calculated for every software developer. The software developers are ranked using 

this score. Further, to provide context for the assigned software developer, the files 
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that were examined while the similar bug was resolved is provided. To foster 

collaboration, the prototype has been developed as a multi touch table.  

Time aware bug assignment is presented in FixTime [32]. The method is 

based on topic modeling. A log normal regression model is used profile bug 

resolution time across topics. The system is validated using Prediction Accuracy. 

Porch Light is the prototype for a tool for Bug Triaging [33]. Software 

developers deal with grouped bug reports effectively. The Porch Light provides a tag 

based grouping of bugs. The grouping may be with respect to the component to 

which the bug belong or any dependency among the previously resolved bugs etc. A 

specialized Bug Tagging Language (BTL) is used for creating new tag sets. The 

predominant tags that are labeled are: 

i) Popular – Bugs with more than three comments 

ii) Missing details – Bugs with no screen shot or stack trace 

iii) Hot Potato – Bugs that are reassigned more than two times 

iv) Zombie – Bugs with no activity for more than  a month 

Software DEveloper Recommendation based on TOpic Models 

(DETROM) is modeled on a bipartite graph to make software developer 

recommendations [34]. As a first step, the software developers who contributed 

towards the resolution of the bug from the history are extracted from the activity log 

associated with each bug. A bipartite graph is built with nodes as software 

developers and bug reports. Topic modeling is applied over the natural language 

contents of the resolved bugs and the conditional probability that a bug belongs to a 

particular topic is derived. The association between the software developer and the 

bug reports is calculated as a probability. For an incoming bug report, the topic of 

the bug is determined. The probability of a software developer towards resolving a 

bug is calculated. The software developer with the highest probability is chosen for 

resolving the bug. The DETROM system is validated using Precision, Recall and F-

Measure. 
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The time meta data is used to improve the bug assignment process [35]. 

Any text data can be converted to a tf-idf data based on the frequency of occurrence 

in the text documents. In the time based tf-idf, the time of use in the project is also 

considered. There are three modules in this approach. They are: (i) corpus creation 

(ii) expertise determination and (iii) developer recommendation. In the corpus 

creation, the data is collected from the versioning repository.  From the source code, 

the identifiers are extracted and the relationship between the identifier and the 

developer who contributed is established. The source code identifiers are usually the 

name of classes, methods etc as they indicate the functionality of the object. The 

extracted identifiers are divided through tokenization and are converted to 

decomposed identifiers. For each identifier, the developer associated with the 

identifier and the time stamp the source code was committed is taken into account 

for term weighting. Only the noun terms are used. The terms are lemmatised. 

Finally, an index of terms with each unigram associated with a developer is created. 

Term weighting is performed by calculating the frequency of the term. The inverse 

of term used by a developer and the date the bug was reported is used to calculate 

the time based tf-idf.  The calculated term weight determines a developer‟s 

expertise.  A simple ranking method is used to rank the developers by combining the 

term weights of the terms occurring in the new bug report as well as in the developer 

expertise. Three approaches based on SVM classifier and Term Frequency - Inverse 

Document Frequency, LDA with SVM and LDA with Kullback Leibler divergence 

are comprehensively investigated [36]. The LDA with Kullback Leibler divergence 

was found to provide better consistency across components. The bug reports in the 

training set are assigned components. From this information, the average topic 

probability of all reports in the component category is computed. This average acts 

as the centroid of topics. The new bug report is categorized by computing the 

divergence of the new bug report‟s document topic probability from the average 

topic probabilities of each component in the training set. The system is evaluated for 

Recall parameter.The summary of the survey in Bug Triaging based on information 

retrieval in OSS is presented in the Table 2.2. 

  



21 

 

Table 2.2: Summary of Information Retrieval based Techniques 

Paper 

Information Retrieval 

Accuracy Precision Recall 
F-

Measure 
Fix Time 

Average  hit 

Ratio 

[29]  - - -  - 

[30] - - - - -  

[34] -    - - 

[32]  - - - - - 

[36] - - -  - - 

 

2.2.1.2 Location based Techniques 

Location based methods scrutinizes the source code file that may be 

altered to handle the new bug. The probable software developers for resolving the 

bug are identified from the natural language content of the source code file or by 

identifying the software developers who contributed to the source code file. 

Location based bug assignments are an alternative to activity based bug 

assignment [37]. The source code files that need to be modified for the bug are 

identified in the first phase. The software developers associated with the source code 

files are identified in the second phase. Parts of speech method is used for nouns 

extraction from four different sources, namely (i) identifiers such as name of classes‟ 

methods (ii) commit messages (iii) the comments present in the source code and (iv) 

previously fixed bugs for the source code files that the new bug has identified itself 

with. The evaluation parameter used is Accuracy. The proposed system has achieved 

an Accuracy of 89.41% and 59.76% for eclipse and Mozilla projects. 

Change request handling comprises of bug reports processing as well as 

feature requests processing[38]. In the first step, a corpus for the software system is 

created. Identifiers and comments in the source code are utilized to create the 

corpus. The indexing of the corpus is done using LSI. For a new change request, a 

query is formed. The query is a set of terms formed from the change request or bug 
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report. The similarity between the query and the source code files in the corpus are 

determined and the ranking is performed. The software developers who contributed 

to the source code files are extracted according to the commits submitted by the 

software developer in the version control repository. The software developer‟s 

Euclidian distance from the source code file is used to rank the software developers. 

The system produces accuracy in the range of 47% to 96% for bug reports, between 

43% and 60% for feature requests. 

Source code contributions also form a basis for Bug Triage [39]. The 

vocabulary found in the “diffs” of a software developer is lexically compared with 

an incoming bug for making recommendations. The expertise of each author is 

modeled as a term author matrix. The activity decay of a software developer and 

vocabulary decay are modeled. The proposed system achieved 33.6% Precision and 

71% Recall. Another location based method develops a Developer-Component-Bug 

network for assigning bugs. In the Developer-Component-Bug network, the bug are 

localized in accordance with the component they belong to and developers are 

localised with respect to the location of the bug they have fixed [40]. The VSM is 

applied on the incoming new bug report and the similarity between the new bug 

report and other fixed bug reports are calculated. The Developer-Component-Bug 

network is then referred to and the ranked set of developers based on the relevance 

score between the developers and the new bug report is listed. The system was 

evaluated with Recall. The summary of the survey in Bug Triaging based on 

location in Open Source System is presented in Table 2.3. 

Table 2.3: Summary of Location based Techniques 

Paper 

Information Retrieval 

Accuracy Precision Recall 
F-

Measure 
Fix Time 

Average  hit 

Ratio 

[37]  - - - - - 

[38]  - - - - - 

[39] -   - - - 

[40] - -  - - - 
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2.2.2  Link based Techniques 

Only the link data is used here. The importance of non-committers 

known as catalysts is acknowledged [41]. The catalysts may not actually solve the 

bug, but may significantly contribute in terms of commenting or committing a bug. 

The commenting activities and the tossing of bugs are captured in a directed tossing 

graph based on AP model. A minimal essential graph algorithm has been designed 

to identify the essential catalyst in solving a bug. The system is evaluated as per the 

number of nodes reduced. 

2.2.3  Hybrid Techniques 

A Bug Triaging System which combines machine learning with Bug 

Toss Graph based on GP model is advocated [12]. Many machine learning methods 

were analyzed and it was inferred that Naïve Bayes gives the best result. To handle 

the occurrence of inactive software developers and modification of software 

developer expertise, they have modeled the Bug Toss Graph as a multi-featured 

graph. Each arc in the graph is labeled with the bug class that is the 

product/component and software developer activity count. The multi-featured graph 

is modeled as a GP. A Weight Based Breadth First Search (WBFS) algorithm is 

employed to find the best tossing relationship. The whole system is incorporated in 

an incremental learning framework so that recent bugs have more impact on the 

recommendations made by the system. The technique achieved 83.62% Prediction 

Accuracy and 86.31% reduction in tossing lengths.Bug tossing relationships 

modeled as Bug Toss Graph based on GP model to make software developer 

recommendations were first employed in OSS systems [11]. A GP model was made 

based on first order Markov model.  WBFS algorithm was used to maximize the 

path reduction. It has been proved that the usage of WBFS algorithm reduces the 

tossing length from that of the original path length. The GP model also helps to 

increase the prediction accuracy by finding the best tossing relation. Machine 

learning techniques, Naïve Bayes and Bayesian Networks were used in combination 

with the Bug Toss Graph to make the recommendations. The method increases the 

accuracy by 70% and reduces the tossing length by 72%. 
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The Bug Toss Graph can also be modeled using a socio-technical 

approach [42]. The model exploits the number of comments made by a software 

developer in bug resolution. The software developers are prioritized as per the out-

degree. This information is leveraged with SVM and Naïve Bayes Classification 

results. An incremental learning framework with 10 folds is used to recommend 

software developers. A new ranking function based on classifier probability, 

software developer prioritization score based on product and software developer 

prioritization based on component is computed. The software developer 

prioritization based on SVM produced the best results. An approach that consists of 

three aspects: Bug Toss Graph, textual similarity and sub graph generation to narrow 

down the search space is presented [43]. The textual similarities between the new 

bug and the existing bugs were calculated using VSM. Then, the sub graph was 

generated. Over the sub graph, WBFS algorithm was deployed to identify the top 

software developers. This approach reduced the tossing length by 76.25%. 

The bug repository consists of multiple types of entities. A 

heterogeneous network was formed from the bug repository[44], [45]. The 

heterogeneous network consists of four types of entities: (i) software developer(ii) 

bug(iii) comments and (iv) component. Further, each software developer can make 

four types of contributions: (i) reporting bugs (ii) commenting (iii) reopening bugs 

and (iv) fixing bugs. The network schema of the objects and their relations in the 

bug repository is developed. Based on the network schema, the heterogeneous 

network is evolved. For an incoming bug report, the list of potential software 

developers is extracted by using SVM and Naïve Bayes Classifier. For each software 

developer, the best collaborating partner is identified by using the collaboration 

probability metric. The top five software developers along with their partners are 

listed for resolving the bug. 

A hybrid bug triage algorithm is one which combines a probability 

model and experience model to recommend software developers [46]. For any new 

bug, the bugs that are similar to it are shortlisted by an unigram model. From the 

shortlisted bugs, a social network based on probability model is constructed using 

the comments posted by the software developer. An experience model is extracted 
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again from the shortlisted bugs using the number of fixed bugs and activity 

factor.The hybrid bug triage algorithm then utilizes both models to recommend 

software developers. The unigram based method is enhanced by combining it with 

component information to identify bug reports that are similar to the new bug report 

[47]. From the short listed bug report, a Multiple software Developer Network 

(MDN) is constructed. In MDN, the nodes represent the software developers and 

edges are labeled as vector. The vector consists of two components: (i) the number 

of commits made by the software developer and (ii) the number of comments made 

by the software developer. A software developer ranking score is used to rank the 

software developers. The idea of toss graphs for OSS was introduced in 2009 [13]. 

The Bug Toss Graphs are modeled after GP model. The metric used for evaluation is 

Prediction Accuracy. 

Social networks are utilized to build the concept profile of the developer 

[48].  Using the concept profile a ranked list of developers are retrieved according to 

their expertise and fixing cost. The concept profile development consist of two parts 

i) categorizing bugs ii) extracting Topic terms. K-means clustering algorithm is used 

to categorize the bug. The cosine similarity measure is applied in finding the 

similarity among the bugs. Extracting Topic terms involves extracting terms with 

high frequency. A social network of developers as nodes and their commenting 

activity as links is formed.  Based on the number of links for a developer and the 

number of bugs resolved by a developer, a probability score for each developer is 

calculated.  Finally, a ranking algorithm is used to rank the developers according to 

the developers experience and fixing cost which is the function of fixing time. 

  The crashes that occurred in software were captured in a crash graph 

method [49].The crash graph is used to provide a high level view of the crashes 

reported as bug. The evaluation parameter used is graph similarity. Social networks 

are developed based on the developers commenting activities to detect developer 

communities. The developers in each community are ranked based on their 

experience. When a bug report is assigned as „new‟ the relevant community for the 

bug is identified. The DEvelopers COmmunities in Bug Assignment (DECOBA) has 

five steps. The first step creates a term matrix of bug reports. The next step is to 
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create the social network of developers.  The third step identifies communities using 

a greedy optimization algorithm that detects dense sub graphs. A predictive model is 

built as a fourth step in determining the appropriate community for the incoming 

bug. The predictive model is built on Naive Bayes and Random Forest algorithm. 

The system is evaluated using centrality measures. 

The summary of the Bug Triage techniques based on Hybrid Techniques 

is listed in the Table 2.4. 

Table 2.4: Summary of Hybrid Bug Triaging Techniques 

Paper 

Content Link 

Machine learning Information Retrieval Metric Graph Model 

Accuracy Precision Recall 
F-

Measure 
Accuracy Precision Recall 

F-

Measure 

Mean 

Reciprocal 

Rank 

No of 

steps 
Tosses Comments 

[12]  - - - - - - - -   - 

[11]  - - - - - - - -   - 

[13]  - - - - - - - -   - 

[42]  - - - - - - - -   - 

[44]  - - - - - - - - - -  

[45]  - - - - - - - - - -  

[46] - - - - - - -   - -  

[47] - - - - -    - - -  

[48] - - - - -   - - - -  

[49] - - - - - - - - - - -  

[50] - - - - - - - - -   - 

 

2.2.4  Inference 

From the literature survey, it is inferred that machine learning techniques 

have been broadly applied on the summary field of the bug report. The widely 

applied techniques are Naïve Bayes and SVM [11] - [16], [19], [27], [44], 

[45].These two techniques give better results than the other machine learning 

techniques.The tossing relations that exist among the software developer are 
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captured predominantly as Bug Toss Graph using GP model [11], [12], [13], [42], 

[50]. WBFS algorithm is broadly used to search the Bug Toss Graph. 

2.3 STATE OF THE ART TICKET RESOLUTION TECHNIQUES IN 

ENTERPRISE SYSTEM 

The survey pertaining to ticket resolution has been done along these 

dimensions: 

i) Data  

ii) Algorithm  

iii) Ticket Resolution Graph Model  

iv) Evaluation Parameters 

 

Figure 2.2: Classification of Ticket Resolution Techniques in Enterprise System 

 The Figure 2.2 gives the classification of Ticket Resolution Techniques 

in the literature. Ticket resolution is mainly done by content based, link based or a 

combination of content and link based methods. The dominant method that is 

TICKET RESOLUTION TECHNIQUES 
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applied on the content is machine learning. In link based methods, the ticket transfer 

relations among the software developers are captured using a ticket resolution graph 

based on an AP model. 

2.3.1  Content Based Techniques 

2.3.1.1 Machine Learning 

The Trouble Miner system uses document clustering methods to obtain 

related trouble tickets [51]. The hierarchical clustering algorithm produces a binary 

tree of un-labeled nodes which capture the relation between trouble tickets. An 

algorithm based on depth first search labels the unlabeled Binary tree. The labeled 

tree is then converted to a hierarchy H of n-ary tree. 

2.3.2 Link Based Techniques 

A statistical model is used to capture the ticket resolution sequences 

[52]. The order of the Markov model is fixed according to the conditional entropy 

obtained from the ticket data. A Variable order Multiple active state Search (VMS) 

algorithm generates the ticket transfer recommendations. The robustness of the 

algorithm was evaluated by taking three factors: (i) the training set size (ii) time 

variability of the data and (iii) variety of problem categories. The algorithm 

performed consistently when the training size was increased as well as across 

different problem categories.The performance of the VMS algorithm increased when 

ticket resolutions from recent windows were taken. Expertise awareness is 

determined in terms of transfer effectiveness [53]. A novel exclude algorithm has 

been designed to calculate the transfer effectiveness. The exclude algorithm helps to 

assess the weakest components in the resolution system. It has been inferred that 

Collaborative Networks have truncated power law node degree distributions. The 

routing in Collaboration Networks is also task driven. A network model which 

captures the static connectivity is proposed. A stochastic routing algorithm has been 

developed to simulate human dynamics in Collaboration Networks [54]. 
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2.3.3  Hybrid Techniques 

The Optimized Network Model (ONM) is a generative model which 

uses both content as well as link information [55] , [56]. The model captures the 

transition probability and the reason for which the ticket was transferred between 

two groups. Ranked Resolver algorithm, Greedy transfer algorithm and Holistic 

Routing algorithm has been designed. The ranked resolver algorithm is based on the 

probability a resolver will be able to solve ticket. The greedy algorithm makes one 

step transfer predictions. The holistic routing approach finds the best resolver within 

„k‟ steps. The holistic algorithm is globally optimized. A hybrid model uses the 

ticket content and the resolution sequences to make ticket routing recommendations. 

The system analyses the ticket content and groups a set of semantically 

similar tickets. A cosine similarity based weight function is used for model 

generation. The weighted Markov model is created from these set of tickets. The 

VMS algorithm is used to retrieve the resolution sequences. The algorithm is locally 

optimized. A unified generative model that portrays a lifecycle of a ticket using both 

content and routing sequence is presented [57]. The ONM applies maximum 

likelihood estimation to capture the transfer profiles. The algorithm is globally 

optimized.The summary of the Ticket Resolution techniques is given in Table 2.5. 

Table 2.5: Summary of Ticket Resolution Techniques 

Classification Paper 

Content Ticket Resolution Graph 

Machine learning 
Actual  Path Model 

No of steps Influence 

Content Based [51]  - - 

Link Based 
[52] -  - 

[53] - -  

Hybrid 

[55]   - 

[56]   - 

[57]   - 
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2.3.4  Inference 

It has been observed from the survey that AP models have been 

employed to model the ticket resolution graph[52] - [57]. The locally optimized 

ticket routing algorithm is the VMS algorithm. The globally optimized holistic 

algorithm outperforms the VMS algorithm [52] , [53], [57].The summary of the 

ticket resolution techniques followed are highlighted in Table 2.5. 

2.4 EXTRACT OF THE LITERATURE SURVEY 

2.4.1  Graph Models 

Bug resolution is about collaboration among software developers to 

solve a bug. In order to solve a bug, it is necessary to find a set of software 

developers who can collaborate on a bug. It is also observed that not all 

reassignments are detrimental in nature. Some reassignments are necessary to 

determine the root cause of the bug[58] , [59], [60].  Thus, it becomes essential that 

the underlying software developer structure has to be preserved in the Bug Toss 

Graph. From the survey, it has been observed that GP models are extensively 

researched for Bug Triage in OSS. The GP model may be useful in determining the 

best toss relationship with a software developer. The GP models do not capture the 

software developer structure in the network. GP model loses knowledge pertaining 

to intermediate tosses.  

The knowledge about the software developer structure is important to 

retrieve a set of collaborators who can deliberate on a bug. The AP model based Bug 

Toss Graphs need to be explored in the realm of OSS. Further, the current Bug Toss 

Graph model captures the presence or absence of tossing activities. The attribute 

assigned to this tossing activity feature is the cardinality of the tossing activity. 

Multiple attributes can be appended to the cardinality to enrich the graph model. 

2.4.2 Concept Drift 

Software projects evolve through time. In Open Source projects, the 

software developers collaborate to develop software. The software developers may 
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become inactive after sometime and their area of expertise may change. The 

problem of concept drift is present in issue tracking systems. Software projects go 

through periods of stability and instability [61]. Concept drift has been explored to 

some depth by using Window Frequency Baseline, SVM Minibatch, Perceptron, 

modified Bugzie and Regression with Stochastic Gradient Descent [62]. The concept 

drift handling mechanism discussed here takes into account only the textual contents 

of the bug report. In the literature, concept drift handling techniques when taking the 

textual content as well as the tossing relations are based on two methods  

(i) Heuristics of software developer activity count [11], [12](ii) Incremental learning 

framework[11], [12], [42]. The incremental learning framework used in the literature 

uses fixed size window method, which is too rigid to capture the software evolution 

process. 

The Bug Triaging process is a learning process where the Automated 

Bug Triaging system has to learn from past experience to recommend the best set of 

collaborators. Recent data will have more weight in determining the set of 

developers. In order to make the triaging process robust, methods which exploit both 

the contents as well as the tossing relations have to be explored. Attention may be 

given to additional techniques like adaptive techniques in learning model to perform 

effective Bug Triage. Further, the performance loss due the use of GP model needs 

to be analysed. 

2.4.3  Metrics 

The metrics that are used in the Bug Triaging and ticket resolution 

systems are: (i) Accuracy(ii) Precision(iii) Recall and (iv) Mean Steps To Resolve. 

Precision is a better parameter for software developer recommendation because the 

cost of false recommendation is much higher than in search engine. Further, the 

Mean Steps to Resolve parameter codifies only the number steps in the predicted 

path. While the reduction in the number of steps to resolve is required, it is also vital 

to compare how far the predicted path is similar to the original path. 
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The structure and the ordering of nodes in the predicted path need to be 

compared with that of the original path. Metrics based on graph edit distance need to 

be introduced.  Moreover, it is observed from the survey that the Bug Triage System 

is evaluated only with recommender metrics.  In order to build confidence in the 

Bug Triage System, it is necessary to corroborate the results evaluated by 

recommendation metrics with evaluation by user metrics. 

2.5 SUMMARY 

Bug Triaging is an important aspect of OSS maintenance. A broad study 

is made on the state of art practices in Bug Triaging in OSS. The state of art 

practices are compared with the practices in enterprise system. It has been 

understood that many concepts of OSS have been adapted from the ES. The most 

important adaptation is the modeling of the Bug Toss Graph based on Markov 

model. 

From the survey, the classification of techniques handling Bug Triage 

has been derived. It is inferred from the survey that Bug Triage techniques use the 

textual contents in the bug report or the tossing relations that exists among the 

software developers or both. The performance evaluation of the Automated Bug 

Triage System is based on the parameters (i) Precision (ii) Recall(iii) Accuracy and 

(iv) Mean Steps To Resolve. There are a few open areas of research that need to be 

explored in the area of Bug Triage. At present, GP models are widely adapted in 

Bug Triage. The performance of GP model needs to be compared with that of AP 

model in a quantitative manner. Concept drift is present in bug tracking. An efficient 

technique to handle concept drift that uses both the textual content as well as the 

tossing relations is the need of the hour. Effective knowledge management 

techniques are necessary to convert the raw information in the bug repository to 

intelligence which may be exploited by the software practitioners. 
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CHAPTER - 3 

PROBLEM STATEMENT AND RESEARCH OBJECTIVES 

 

3.1 PREAMBLE 

This chapter presents the overarching goal of the research framework 

that is endorsed and the evaluation that is used to appraise the Ameliorated Bug 

Triage Process. The review of the Literature clearly asserts that there is a need to 

upgrade the Bug Triage System along three directions. They are: (i)the 

improvements that are imperative in the graph model(ii) the learning algorithm to be 

adaptive and (iii) the extensive metrics mandatory to enhance the performance of the 

Bug Triage System.  

3.2  PROBLEM STATEMENT 

The intent of this research is to ameliorate the Bug Triage process in 

Open Source Systems. The basic hypothesis is that, Bug Triage can be significantly 

improved by assimilating the propinquity among the developers engaged in bug 

resolution in the enriched collaboration graph and by deploying the adaptive 

learning techniques on the graph. 

Research Question1:Does the social context of the developers make an impact in 

the Bug Triage Process?   

Research Question 2:Does the adaptive techniques make a difference in the Bug 

Triage Process? 
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3.2.1  Research Objectives 

Three Research Objectives are derieved from the Problem Statement. 

They are as follows: 

Collaboration Graph Model 

 To scrutinize and determine the observable difference in the 

performance of the existing Goal Oriented Path Model against the 

Actual Path Model.  

 To determine the factors influencing the performance of the Actual 

Path Model. 

 To integrate the propinquity among the developers to formalize the 

Enriched Collaboration Graph.   

Learning Model 

 To deploy adaptive learning over the Enriched Collaboration Graph 

to engage the dynamic, self organizing Bug Triage environment. 

 To model the adaptive learning complaint with Ant System.  

Evaluation Framework 

 To augument the Recommender metrics with Path Similarity metric. 

 To develop an Holistic Evaluation Framework with Key Performance 

Indicators based on developer performance. 

3.2.2  Research Methodology 

 The experimental research methodology was embraced to investigate 

the research questions in the previous section. The data from the www.bugzilla.org 

was utilized to perform the experiments. The Bug Toss Graph was concocted as a 

GP model. The GP model with the WBFS algorithm is designated as the baseline 
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system.The experiments were repeated for three studies, with data for two years, 

three years and four years to evaluate the consistency of the results. The results from 

the three studies were statistically analyzed using Two Tailed T-test and ANOVA 

for significance against a p value < .05. 

3.2.2.1  Data Preparation 

The bug reports from Eclipse project were used for the experiments 

because of their stability factor. The schematic of the data preparation process is 

given in Figure 3.1. The activity data from the bug reports were used. First, the CSV 

file of the report was downloaded. Following that, a web crawler was designed to 

download the activity data of the Bug IDs in the CSV file from www.bugzilla.org . 

Further, the regex tool was used to resolve the name of the developers in the activity 

data. The extracted activity data were stored in Oracle database for further use. For 

every record in the activity data for a particular bug, there is a corresponding tuple 

created in the Oracle database. Each tuple in the Oracle database consisted of {Bug 

ID, Date, Whom, What, Status}. The „date field‟ accords information about when 

the bug was assigned to the developer, the „whom field‟ consists of the unique ID of 

the developer, the „what field‟ consists of the contribution made by the developer. 

The next tuple contains information about to whom the bug was reassigned, the 

„date reassigned‟, etc.  

  

 

 

 

 

 

Figure 3.1: Schematic Diagram for Data Preparation 
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3.2.3  High Level Conceptual View of the Ameliorated Bug Triage Process 

The High Level Conceptual View of the Ameliorated Bug Triage 

Process is illustrated in the following Figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: High Level Conceptual View of the Ameliorated Bug Triage Process 
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The overarching goal of the dissertation is to effectively extract patterns 

in the OSS maintenance to produce information that can be utilized in the Bug 

Triage process. This information can steer the Bug Triage practitioners to prescribe 

the developer recommendations based on historical data, rather than  rely on gut and 

experience. The underlying principle of the dissertation is that software repositories 

contain dormant information that can assist in decision making. Based on this 

principle, the dissertation makes a three fold contribution:  

 The underlying Bug Toss Graph model is analyzed. A new Bug 

Toss Graph model based on Actual Path model is designed. This 

graph model is enriched by augmenting the social context of the 

developers. This graph model is the Enriched Collaboration Graph.  

 Adaptive techniques are formalized for learning from the Enriched 

Collaboration Graph.   

 A two phase evaluation framework is designed to accommodate 

recommendation metrics as well as user metrics. This will aid in the 

rigorous evaluation of the Bug Triage System. 

 

3.2.4  Evaluation Metrics 

The outcome of the proposed system is a set of paths encompassing 

developers who can substantially contribute towards the resolution of the bug.  The 

retrieved paths are appraised by an Holistic Evaluation Framework. The Holistic 

Evaluation Framework comprises the common recommendation metrics and the user 

metrics to evaluate the system. The recommendation metrics are Precision and 

Recall.  

The Path Length metric compares the length of paths of the retrieved 

path and that of the corresponding original path. 

 Path Lengthj 
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Where nj -  Number of paths of length „j‟ 

 Li - Length of the i
th 

path of length „j‟ 

The Precision metric compares the number of developers in the retrieved 

path who match with the developers in the original path. The Precision value is in 

the range of {0..1}. 

 Precision = 
Number of Relevant Developers Retrieved

Number of Retrieved Developers
 

The Recall metric compares the number of developers in the retrieved 

path who match with the total number of relevant developers. The Recall value is in 

the range of {0..1}. 

 Recall = 
Number of Relevant Developers Retrieved

Total Number of Relevant Developers
 

 The Path Similarity metric compares the developers in the retrieved path 

to the developers in the original path in terms of position and ordering. This metric 

is computed based on Levenshtein Similarity. 

3.3 SUMMARY 

This chapter catalogues a succinct view of the Problem Statement. The 

Research Objectives derived out of the research questions are given in a 

comprehensive manner. The Research Methodology and the data preparation 

module are highlighted in detail. In addition, the high level conceptual view of the 

dissertation is presented. Further, the performance metrics applied to investigate the 

Ameliorated Bug Triage System are also identified.   
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CHAPTER - 4 

PATH SIMILARITY METRIC FOR BUG TRIAGE 

 

4.1  PREAMBLE 

 This chapter divulges an exploratory analysis of Path Similarity metrics 

applicable for Bug Triage. As discussed earlier, the OSS Development is divergent 

from the traditional software development. Here, the developers are not 

collocated.They communicate mainly in the virtual environment. This fact propelled 

the need for Automated Bug Triage System so as to accelerate the Bug Triage 

process. Any Automated Bug Triage System discerns the optimal set of developers 

to whom a bug has to be sent, so that the bug can be resolved.  To resolve the bug, 

first, its severity has to be determined, following which the component to which the 

bug belongs to, need to be identified. The root cause of the bug needs to be 

perceived, following which, the source code is modified so that the bug is resolved. 

There exists a definite ordering of tasks, that the bug should undergo before being 

resolved. Meanwhile, it has also been argued that all developers are not equal. There 

is a definite role each developer plays in the process of bug resolution. The different 

roles played by the developers vary  among Triagers, Bug analysts, Assists, Patch 

tester, Patch-quality improvers, Core developers and Bug fixers [63].Triagers are 

contributors who examine a bug report and short list the potential fixers. Bug 

Analyst decides on bug prioritization, duplicate bug identification and valid bug 

confirmation. Contributors play the role of brokers. They identify to whom the bug 

has to be tossed. Once a probable solution for a bug has been submitted, a Patch 

tester tests the submitted patch. The Patch-quality improver improves the quality of 

the patch. Core developers are differentiated from bug fixers as developers who have 

contributed to the source code other than the bug fixes. Bug fixers are developers 

who contributed towards the bug fixing. Intuitively, the ordering of the developers 

as per their roles is expressed in the Figure 4.1. 
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Figure 4.1: Roles of Developers in Bug Fixing 

From the figure, it can be witnessed that there is a need for the bug to be 

passed along the developers in a certain order according to the developer role for 

resolving the bug effectively. It can be envisaged that there is a referral chain of 

developers through which the bug needs to be passed, so that it can be resolved.  

The current evaluation techniques for assessing the referral chain rely on 

classical metrics from the recommendation systems. The recommendation metrics 

like Precision, Recall in essence validates whether the developers who actually 

collaborated on the bug are being retrieved by the Bug Triage System.   In addition, 

there is a need for metrics that quantify the performance of the Bug Triage System 

based on the Path Similarity of the retrieved path of the developers with the original 

path of the developers. The metric should measure the ordering, position of 

developers in the retrieved path. To this end, techniques from bioinformatics and 

approximate string matching are explored to find the technique that is most suitable 

to serve as Path Similarity metric for Bug Triage System. 
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4.2  OVERVIEW OF PATH SIMILARITY 

 The task of pair wise sequence alignment is comparing the underlying 

structure of a path with another path. Sequences of DNA, RNA or protein can be 

matched and regions of similarity can be identified based on path or sequence 

alignment. This alignment may be because of structural, functional or evolutionary 

relation among the sequence.  

Pair wise sequence alignment methods are used to find alignment 

between any two sequences. The three main methods for implementing pair wise 

sequence alignment are: (i) dot-matrix method, (ii) dynamic programming and (iii) 

word method. The pairwise alignment methods are applied in different  fields like 

web page prediction, subsequence matching in time series databases using dynamic 

time warped measure, plagiarism detection and  modeling network traffic in 

intrusion detection systems[64], [65], [66], [67], [68].  The pair wise sequence 

methods are broadly classified as local alignment method and global alignment 

method [69], [70]. 

4.2.1  Local Alignment 

The local alignment of two paths or sequence deals with finding segment 

of one path that is close with the segment of another path.The most popular 

algorithms for local alignment are Smith-Waterman algorithm and Needle-Wunch 

algorithm [71]. Dynamic programming is mainly applied in finding the alignment of 

sequences. The original problem is subdivided into sub problems and a solution is 

found for the sub problems. The matches and mismatches between the two paths are 

given by computing a score in the scoring matrix. Smith-Waterman algorithm for 

sequence alignment is defined by dynamic programming approach. 

4.2.2 Global Alignment 

The alignment of two paths or sequences can be obtained by computing 

the distance between the two paths or sequences. Closely related sequences which 

are of same length are very much appropriate for global alignment. Here, the 
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alignment is carried out from the beginning till the end of the sequence to find out 

the best possible alignment. Needleman-Wunsch algorithm is a popular global 

sequence alignment algorithm [72]. The number of mismatches and gaps are 

awarded a cost value to find the distance between the two paths. 

4.3  AN ANALYSIS OF PATH SIMILARITY METRICS FOR BUG 

TRIAGE 

This section records the analysis of the different pairwise sequence 

alignment methods for the evaluation of the retrieved path. The methods used for the 

exploration are Levenshtein similarity, Smith Waterman similarity and Jaro 

Wrinkler similarity[73]. The flow of the system is given in the Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Flow diagram of Analysis of Path Similarity Metrics for Bug Triage 
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The Automated Bug Triage System is used to retrieve the optimal path 

through which the bug has to be tossed.  The retrieved paths are compared against 

the original path. The similarity values based on Levenshtein similarity, Smith 

Waterman similarity and Jaro Wrinkler similarity are computed. The correlation 

coefficient of each of the similarity values are computed against the Precision and 

Recall values. Based on the value of the correlation coefficient, the most suitable 

algorithm that can be applied as Path Similarity metric is chosen. 

4.3.1  Problem Formulation 

The bug reports from the repository are retrieved. The activity data from 

the bug reports are taken into consideration. The activity report consists in it, the bug 

tossing relation that exists in the history of a bug.  This tossing relation that exists in 

a bug is assigned as a tossing path. For a set of bugs, a set of tossing paths can be 

composed. The union of all tossing paths is the Bug Toss Graph where the nodes are 

the developers and links are the tossing relation that exists among the developers. 

This relation that exists among the developers is captured as a zero order Markov 

model [12].The transition probabilities among the developers record the local 

decisions made by the developer.  The Bug Toss Graph is defined as: 

G ={V,E} : Bug Toss Graph 

V={v1,v2,….vn} : set of states which represents the developer 

E={e1,e2,……,en} : set of edges where each edge represents the previous bug 

tossing relation among the developer 

P(vi|vk) : transition probability of an edge or link from vi to vk 

P(vi|vk) =   N(vi,vk)/N(vi)   If N(vi) >0 

  0  otherwise, 

N (vi,vk) :  number of transfers from vi to vk 

 N(vi) : total number of transfers from vi 
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The Bug Triage System is deployed over the Bug Toss Graph. The Bug 

Triage System proposes a set of developers to collaborate on the bug. The set of 

developers are represented essentially as an optimal path. The optimal path of 

developers „A‟ is an array of nodes from „V‟ that are contiguous and occupy a 

unique position. 

4.3.2  Levenshtein Similarity 

The Levenshtein distance is a global alignment method that compares 

two paths or sequences from end to end. The distance between any two paths is 

calculated based on the number of edit operations that needs to be performed on one 

path so that it becomes equal to the other. The edit operations are the number of 

insertions, deletions and number of substitutions [74]. The cost of each edit 

operation is  

 Insertion :1 

 Deletion:1 

 Substitution: 0.5 

 

 

 

 

 

 

 

 

Figure 4.3: Levenshtein Distance Algorithm 

LevenshteinDistance( A[1..m],B[1..n]) 

Begin 

1:  for i=1 to m 

2:   d[i,0]=i  

3:  for j=1 to n 

4:    d[0,j]=j 

5:  for j=1 to n 

6:   for i=1 to m 

7:    if A[i]==B[j]  

8:     d[i,j]=d[i-1,j-1] 

9:    else 

10:    d[i,j]=Min( 

11:    d[i-1,j]+1,//Deletion 

12:    d[I,j-1]+1,//Insertion 

13:    d[i-1,j-1]+0.5)//Substitution 

14:   endif 

15:  endfor 

16: endfor 

17: return d[m,n] 

End 
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The underlying assumption behind the assignment of costs is that, if a 

developer has to be inserted, then a valuable developer has been missed by the Bug 

Triage System, therefore, the cost is 1.  

If the edit operation is deletion, then, the underlying intuition is that an 

undesirable developer has been selected by the Bug Triage System that may, in turn 

be detrimental to the solving of the bug. So, the cost of deletion is 1. The cost of 

substitution is kept at 0.5, the reason being the developer has been retrieved, but, is 

in the wrong position. 

The Levenshtein distance algorithm is given in the Figure 4.3.  The input 

to the algorithm is the retrieved set of developers as path „A‟ and the corresponding 

original set of developers as path „B‟.  First, a matrix „d‟ is constructed with „M‟ 

rows and „N‟ columns. The first row and column are initialized to 0. Each developer 

in „A‟ and that of „B‟ are examined. If A[i] is equal to B[j], then, the developers 

match in position, so the cost is 0.  The d[i,j] is made  as the minimum of the cells in 

the immediate vicinity of d[i,j], i.e. d[i-1,j]+1,d[i,j-1]+1 and d[i-1,j-1]+0.5. Finally, 

the cost of matching the retrieved path to the original path is found in d[M,N].The 

Levenshtein similarity is obtained from Levenshtein distance by: 

                                                             

 

Where               gives the maximum of the absolute length of the retrieved path 

and the original path. 

4.3.3 Smith Waterman Similarity 

Smith Waterman Similarity computes the local similarity of retrieved 

path with that of the original path. In the milieu of Bug Triage, this means that 

sections of developer chain matching with the original path have been retrieved by 

the Bug Triage System.  

The algorithm ignores the beginning and the terminal parts of the path. It 

returns the well preserved parts of the path connected by poorly connected segments. 
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Smith Waterman algorithm is based on dynamic programming principles.  A scoring 

function „SIM‟ is used to record the various alignments of the two paths relative to 

the number of gaps and number of matches in the alignment. The largest scoring 

alignment is taken to be the optimal alignment [68].  The retrieved path is 

A=(a1,a2,……am). The original path is B=(b1,b2,…….bn). The scoring matrix 

SIM:{1, 2, . . . , m} × {1, 2, . . . , n} → R in which SIM(i,j) is the best alignment of 

the prefixes from the retrieved path and the original path is represented by (a1, a2, . . 

. , ai) and (b1, b2, . . . , bj ). The matrix SIM is computed recursively.  The value of 

„g‟ is 0.5. The value of „SIM‟ is set to 0 if all values that can be assigned to SIM[i,j] 

at position (i,j) are less than zero. The value of 0 at F(i, j) indicates that a new 

alignment has to commence at position (i,j). The algorithm for Smith Waterman 

Similarity is given in Figure 4.4. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Smith Waterman Similarity Algorithm 

SmithWatermanSimailarity(A[1..m],B[1..n]) 

Begin 

1:  S=0 

2:  for i=0 to m   

3:   SIM[i,0] = 0 

4:  for j=1 to n  

5:   SIM[0,j] = 0 

6:  for i=1 to m 

7:   for j=1 to n 

8:    SIM[i,j] = max( 

9:      0, 

10:     SIM[i-1,j-1] + s(A[i],B[j]), 

11:     SIM[i-1,j]+g, 

12:     SIM[i,j-1]+g) 

13:   S=max(S,SIM[i,j]) 

14:  endfor 

15: endfor 

16: return S 

End 
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4.3.4  Jaro Wrinkler Similarity 

 Jaro Winkler similarity is an improvisation over Jaro Similarity. Jaro 

Similarity is a technique applied for approximate string matching. The core 

approximation done by this algorithm is that a developer in the retrieved path is not 

searched for in the exact position in the original path. Instead, the developer is 

searched in a segment of path which is equal to half the path length of the minimum 

of the original or the retrieved path. The algorithm Jaro Winkler similarity is given 

in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: JaroWinkler Similarity Algorithm 

JaroWinklerDistance(A[1..m],B[1..n]) 

Begin 

1: g= Min(length(A),length(B)) 

2: CommonA[]={}//Common Developers in Retrieved Path 

3: CommonB[]={}// Common Developers in Original Path 

4: l=0 

5: p=0 

6: trans=0 // Transposition 

7: LCP=0 // Longest Common Prefix 

8: for i=0 to m    

9:   for j=0 to n   

10:   for k=j-g to j+g // Common Computation 

11:    if (A[i]==B[j]) 

12:     CommonA[l]=A[i] 

13:     CommonB[p]=B[j] 

14:     l++ 

15:     p++ 

16:    endif 

17:   endfor 

18:  endfor 

19:  endfor 

20:  for i=0 to l //Transposition Computation 

21:  if  (CommonA[l]!= CommonB[l]) 

22:   Trans++ 

23:  endif 

24:  endfor 

25:  l=0 

26:  while (CommonA[l] == CommonB[l])) // Longest Common Prefix Computation 

27: LCP++ 

28: l++ 

29:  endwhile 

30:  JaroDistance=0.333 *((p/ length(A) ) +(p/ length(B) + 0.5*(Trans*p)) 

31:  return(JaroWinklerDistance= (1-LCP*0.1) * JaroDistance + LCP * 0.1) 

End 
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 Formally, the retrieved path is denoted as A=(a1,a2,……am) and original 

path  as B=(b1,b2,…….bn). A developer „ai
‟
 is a match with „bj‟ provided ( i-g <= j 

<= i+g) where g= Min(|A|,|B|). The common developers from the retrieved and the 

original path are retrieved and compared. The number of transpositions required to 

transform one path to another is calculated. Finally, the Jaro distance is calculated as  

                
 

 
(
      

   
 

      

   
 

 

 
 
              

      
) 

                                                                

Where |LCP| is the length of the common prefix path and       is the weight 

assigned to the length of the common prefix path. 

The JaroWinkler Similarity is computed by  

                        
                     

       
 

4.3.5  Performance Evaluation 

The performance of the three algorithms was analyzed using the bug 

reports from the Eclipse project of www.bugzilla.org. The bug reports for the period 

from 2009/01/09 to 2013/01/09 were used to conduct the experiments. The 

experiments were conducted as two studies to test the consistency of the results 

obtained. The data considered for the first study were for the bug reports of the 

range 2009/01/09 to 2011/01/09,i.e. two years data set(Study 1). The data considered 

for the second study were from 2009/01/09 to 2013/01/09,i.e four years data 

set(Study 2). The experiments were run on a Pentium4 processor with 320 GB hard 

disc. Netbeans 7.2 was used as the frontend and Oracle as the backend. The JDK 

tool was employed in conducting the experiments.  

 The results from the experiments are presented in the Figure 4.6 and 

Figure 4.7. 
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Figure 4.6: Similarity for Study 1 

 

Figure 4.7: Similarity for Study 2 

From the results presented, it can be deduced that JaroWinkler algorithm 

outperforms in similarity values when compared with the other two algorithms. But, 

to determine which algorithm can be used as a Path Similarity metric, the correlation 

of the similarity values with that of the Precision and Recall values are calculated. 
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The Precision and Recall values for the Study1 and Study2 are presented in the 

Figure 4.8 and Figure 4.9. 

 

Figure 4.8: Precision for Study 1 and Study 2 

 

Figure 4.9: Recall for Study 1 and Study 2 
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The results of the Correlation Coefficients for Levenshtein, Smith 

Waterman and Jaro Winkler Similarity with the corresponding Precision and Recall 

values are tabulated in the Table 4.1. 

Table 4.1: Correlation Coefficients 

 
Study 1 ( 2 Years Data) Study 2 ( 4 Years Data) 

 

Correlation 

w.r to 

Precision 

Correlation 

w.r to 

Recall 

Correlation 

w.r to 

Precision 

Correlation 

w.r to 

Recall 

Levenshtein Similarity 0.9714 0.9532 0.9671 0.8949 

Smith Waterman 

Similarity 

0.9714 0.9349 0.9412 0.9245 

Jaro Winkler Similarity 0.9532 0.8921 0.9595 0.9068 

 

From the results presented in the Table 4.1,it is observed that though 

Jaro Winkler Similarity values are higher than the other algorithms, when it comes 

to correlation with the other Precision and Recall values, Levenshtein Similarity is 

consistently outperforming the Smith Waterman Similarity algorithm and Jaro 

Winkler Similarity algorithm.Hence, Levenshtein Similarity is confirmed as the 

method that will serve as Path Similarity metric for the Bug  Triage System.  

4.4  SUMMARY 

 This chapter recounts the analysis of Path Similarity algorithms to 

determine the most suitable algorithm that can be used to compute the Path 

Similarity of the retrieved path from the Bug Triage System with that of the original 

path. The results and the correlation coefficient of the similarity values and that of 

Precision and Recall values of the Bug Triage System were analyzed. From the 

correlation coefficient values, it is concluded that Levenshtein Similarity is the most 

consistent in performance; thereby,Levenshtein Similarity is used as the Path 

Similarity metric. 
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CHAPTER - 5 

ANALYSIS OF PATH MODELS FOR BUG TOSS GRAPH 

 

5.1  PREAMBLE  

 The decision making in software organizations is based on experience 

and intuition [75]. When a software development spans a long period of time and 

developers are geographically distributed, exploiting the past experience of a 

developer becomes a problem.  This issue is more attenuated in OSS Development.  

In this juncture, Bug Triaging is time consuming and error prone. The bugs are 

reported from a deployed software system. The reported bugs are accumulated in a 

bug repository. The reported bugs are to be assigned to a developer who may solve 

the bug. This assignment of a bug to a developer in an Open Source environment is 

intricate. The Automated Bug Triage Systems that are currently prevalent exploit 

two issues: one is the summary part of the bug report using machine learning 

techniques and other is the bug tossing relations. If a developer is not able to solve a 

bug assigned to him, he may toss the bug to another developer. These tosses are 

captured as Zero Order Markov process in a Bug Toss Graph.  

The Bug Toss Graphs that are used in the OSS are modeled as a GP 

model [12], [13]. In a GP model, the relation between any assignee and the final 

resolver of the bug is captured. This model is effective in eliciting the final resolver. 

While Automated Bug Triaging System should try to minimize the number of 

tosses, it should be understood that not all tosses are bad. OSS Development is 

unstructured. It does not conform to typical software development environment 

where a bug can be deliberated upon, so it can be assumed that some of the bug 

tosses that occur at the initial stages are group level discussions on the bug. These 

initial discussions are deemed to be crucial. The discussion may pertain to 

identifying the root cause of the bug, the component fixing, the severity field fixing, 

etc [50], [58], [59]. In this conjuncture, the Bug Toss Graph modeled as a GP model 
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does not capture the underlying structure of the bug resolution. On the contrary, in 

the ticket resolution techniques applied in ES, the developer collaboration is 

established as an AP model [52], [56]. This chapter presents a comparison of the 

performance of Bug Toss Graphs based on GP model and AP model.Further, the 

chapter advocates for an enhanced Bug Triage System based on Bi-Objective 

optimization. 

5.2  ANALYSIS OF PATH MODELS FOR BUG TRIAGE 

5.2.1 Formal Representation of Goal Oriented Path Model 

The Bug Toss Graph based on GP model is a directed weighted graph, 

such that, the developer involved in the bug resolution acts as the node and the 

relation between each developer and the final resolver is the edge. Formally stated, 

the Bug Toss Graph G=(D,E) is a directed weighted graph with weight function „w’. 

The weight function w(u, x) of the edge (u, x) ∈E is the total  number of tosses 

from developer „u’ to final resolver  „x’ during bug resolution. 

For example, the bug  toss paths are given in the Table 5.1. 

Table 5.1: Sample Bug Toss Paths 

S.No Tossing Paths 

1 a→b→c→d 

2 b→a→g→d 

3 a→c→e 

 

The individual decomposed paths as per GP model are depicted in the Table 5.2. 
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Table 5.2: Decomposed Paths as per GP model 

S.No Individual Paths Weights 

1 a→d 2 

2 b→d 2 

3 c→d 1 

4 g→d 1 

5 a→e 1 

6 c→e 1 

 

The transition probability values matrix for the given decomposed paths is given in 

the Table 5.3. 

Table 5.3: Transition Probability Values of GP model 

 a b c d e g 

a    0.67 0.33  

b    1   

c    0.5 0.5  

d       

g    1   

 

5.2.2  Formal Representation of Actual Path Model 

The Bug Toss Graph based on AP model is a directed weighted graph 

such that each developer involved in the bug resolution acts as a node and the bug 

tossing relation among them are the edges. Each bug after being reported is liable to 

being tossed through a number of developers before getting resolved.  Formally 

stated, the Bug Toss Graph G=(D,E) is a directed weighted graph with weight 

function „w‟. Each edge in „E’ is the toss that exists between any two developers 
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who shared a toss when solving a bug.  The weight function w(u, v) of the edge  

(u, v) ∈E is the total  number of tosses from developer „u‟ to developer „v’ during 

bug resolution. In the AP model, each individual toss that exists between the 

developers is captured. For example, the bug tossing paths are given in the  

Table 5.4. 

Table 5.4: Sample Bug Toss Paths 

S.No Tossing Paths 

1 a→b→c→d 

2 a→b→g→d 

3 b→c→e 

 

The individual decomposed paths as per AP model are depicted in the Table 5.5. 

Table 5.5: Decomposed Paths as per AP model 

S.No Individual Paths Weights 

1 a→b 2 

2 b→c 2 

3 c→d 1 

4 b→g 1 

5 g→d 1 

6 c→e 1 

 

The transition probability values matrix for the given decomposed paths is given in 

the Table 5.6. 
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Table 5.6: Transition Probability Values of AP model 

 a b c d e g 

a  1     

b   0.67   0.33 

c    0.5 0.5  

d       

g    1   

 

5.2.3  Goal Oriented Path Model Vs Actual Path Model 

The flow of the analysis of GP model against the AP model is illustrated 

in the Figure 5.1.   

The bug reports from the bug repository are collected. The activity data 

is used to construct the Bug Toss Graph. The Bug Toss Graph is constructed based 

on GP model as well as AP model. The algorithm WBFS is deployed on the 

constructed graph to retrieve the optimal path the bug may traverse. The retrieved 

paths are evaluated based on the parameters: (i) Path Length (ii) Precision (iii) 

Recall and (iv) Path Similarity.  
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Figure 5.1: Flow of Analysis of Path Models for Bug Triage 

5.2.4  Performance Evaluation 

The activity report of the bug reports from the eclipse project   from the 

year 2009 to 2013 was used for the experiments. The bug reports with status fixed 

and resolved with vote count 2 were utilized for the experiments. The experiments 

were conducted as a total of three studies to test the consistency of the expriments. 

The three studies were conducted for bug data from Eclipse project 2 years data, 3 

years data and 4 years data.    The experiments were run in a system with Core i3 

processor, 2GB RAM and 320 GB hard disk. The environment in which the 
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experiments were conducted comprises of Windows 7 Operating System, Oracle 10g 

database and Netbeans 7.2.  The retrieved paths from the GP model and AP model 

were compared with parameters: Path Length, Precision, Recall and Path Similarity. 

5.2.4.1  Path Length 

Hypothesis with respect to the result of the parameter P: (Path Length) 

Null hypothesis H0: P1 = P2 where P1= Path Length obtained in GP-WBFS (GP 

model with WBFS), P2 = Path Length obtained in AP-WBFS (AP model with 

WBFS) 

(There is no significant difference between the two systems that is GP-WBFS and 

AP-WBFS in terms of Path Length obtained) 

Alternate hypothesis H1: Path Length mean values are not equal for at least one pair 

of the result mean values of the parameter P.  

(There is a significant difference between the two systems in terms of Path Length 

obtained) 

The Path Length comparison is given in Figure 5.2, Figure 5.3 and 

Figure 5.4. From the graphs, it is evident that the existing GP model gives superior 

results than the proposed AP model.  



59 

 

0

5

10

15

20

25

30

2 4 6

R
e

tr
ie

ve
d

 P
at

h
 L

e
n

gt
h

   
   

   
   

   
  

(i
n

 n
u

m
b

e
r 

o
f 

st
e

p
s)

Original Path Length (in number of steps)

Study 1 ( 2 Years Data)

AP-WBFS

GP-WBFS

 

Figure 5.2:AP-WBFS: Path Length Comparison for Study 1 
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Figure 5.3: AP-WBFS: Path Length Comparison for Study 2 
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Figure 5.4: AP-WBFS: Path Length Comparison for Study 3 

Hypothesis Evaluation with respect to P (Path Length) : 

Table 5.7: T-test for  GP-WBFS and AP-WBFS based on Path Length 

Hypothesis 
Technique 

Study 
Path Length 

I II p value 

H1 GP-WBFS AP-WBFS 

Study 1 <0.0001 

Study 2 <0.0001 

Study 3 <0.0001 

 

From the Table 5.7, it is concluded that the calculated significance level 

of the parameter Path Length by comparing the two systems namely, GP-WBFS, 

AP-WBFS satisfies the condition (p value<0.05) for all the three studies. There is a 

significant difference between the results for different Path Length values of the 

above two systems namely, GP-WBFS and AP-WBFS. Hence, the null hypothesis 

for H1 may be rejected. Further, since GP model captures the relation between any 
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developer and the final resolver, the Path Length, or to be more precise, the number 

of developers returned by GP model is fewer than that of the AP model. The results 

obtained from the three studies are consolidated using the Weighted Average 

method.  Based on which, the results are collated in Figure 5.5. The rate of increase 

in the Path Length in the AP model is 15.71 with respect to the GPmodel. 
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Figure 5.5: AP-WBFS: Weighted Average Path Length 

5.2.4.2  Precision 

Precision is the ratio of the number of matched developers in the retrieved path 

compared with the developers in the original path against the number of retrieved 

developers. 

Hypothesis with respect to the result of the Precision PR: (Precision) 

Null hypothesis H0: PR1 = PR2 where PR1= Precision obtained in GP-WBFS, PR2 

= Precision obtained in AP-WBFS  

(There is no significant difference between the two systems that is GP-WBFS and 

AP-WBFS in terms of Precision obtained) 
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Alternate hypothesis H2: Precision means values are not equal for at least one pair 

of the result mean values of the parameter PR.  

(There is a significant difference between the two systems in terms of Precision 

obtained) 

The Precision comparison from the experimental results is enumerated 

in Figure 5.6, Figure 5.7 and Figure 5.8. From the graphs, it is evident that the 

existing GP model gives superior results than the proposed AP model for longer 

original path length.  
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Figure 5.6: AP-WBFS: Precision Comparison for Study 1 
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Figure 5.7: AP-WBFS: Precision Comparison for Study 2 
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Figure 5.8: AP-WBFS:  Precision Comparison for Study 3 
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Hypothesis Evaluation with respect to PR (Precision) 

Table 5.8: T-test for GP-WBFS and AP-WBFS based on Precision 

Hypothesis 
Technique 

Study 
Precision 

I II p value 

H2 GP-WBFS AP-WBFS 

Study 1 0.7709 

Study 2 0.5060 

Study 3 0.0973 

 

From the Table 5.8, it is concluded that the calculated significance level 

of the parameter Precision by comparing the two systems namely, GP-WBFS, AP-

WBFS   does not satisfy the condition (p value<0.05) for all the three studies.   

Hence, the null hypothesis for H2 may be rejected. 

The Weighted Average Precision of the three studies is specified in the 

Figure 5.9. Since the number of developers retrieved by the AP model is higher and 

the false positive rate to AP model is higher than the GP model, the Precision of AP 

model is less than that of GP model by -0.216. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Study1 Study2 Study3

W
ei

gh
te

d 
A

ve
ra

ge
 P

re
ci

si
on

Weighted Average Precision

GP-WBFS

AP-WBFS

 

Figure 5.9: AP-WBFS: Weighted Average Precision 
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5.2.4.3  Recall 

Recall is the ratio between the numbers of relevant developers retrieved to the total 

number of relevant developers. 

Hypothesis with respect to the result of the Precision R: (Recall) 

Null hypothesis H0:  R1 =  R2  where  R1= Recall obtained in GP-WBFS,  R2 = 

Recall obtained in AP-WBFS  

(There is no significant difference between the two systems that is GP-WBFS and 

AP-WBFS in terms of Recall obtained) 

Alternate hypothesis H3: Recall mean values are not equal for at least one pair of the 

result mean values of the parameter R.  

(There is a significant difference between the two systems in terms of Recall 

obtained) 

The Recall comparison from the experimental results is given in 

Figure 5.10, Figure 5.11 and Figure 5.12. From the graphs, it is evident that the 

existing AP model gives superior results than the proposed GP model.  
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Figure 5.10: AP-WBFS: Recall Comparison for Study 1 
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Figure 5.11: AP-WBFS: Recall Comparison for Study 2 
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Figure 5.12: AP-WBFS: Recall Comparison for Study 3 
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Hypothesis Evaluation with respect to  R (Recall) 

Table 5.9: T-test for GP-WBFS and AP-WBFS based on Recall 

Hypothesis 
Technique 

Study 
Recall 

I II p value 

H3 GP-WBFS AP-WBFS 

Study 1 <0.0001 

Study 2 <0.0001 

Study 3 <0.0001 

From the Table 5.9, it is concluded that the calculated significance level 

of the parameter Recall by comparing the two systems namely, GP-WBFS and AP-

WBFS   satisfies the condition (p value<0.05) for all the three studies. There is a 

significant difference between the results for different Recall values of the above 

two systems namely, GP-WBFS and AP-WBFS for all the three studies.  Hence, the 

null hypothesis for H3 may be rejected.  

The Weighted Averaged Recall of the three studies is presented in the 

Figure 5.13. The performance of AP model when compared with GP model is 

increased by 1.302. 
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Figure 5.13: AP-WBFS: Weighted Average Recall 
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5.2.4.4 Path Similarity 

Path Similarity encodes the retrieved developers in position and order when 

compared to the developers in the original path. 

Hypothesis with respect to the result of the Precision PS: (Path Similarity) 

Null hypothesis H0 :  PS1 =  PS2  where  PS1= Path Similarity obtained in GP-

WBFS,  PS2 = Path Similarity obtained in AP-WBFS  

(There is no significant difference between the two systems that is GP-WBFS and 

AP-WBFS in terms of Path Similarity obtained) 

Alternate hypothesis H4: Path Similarity mean values are not equal for at least one 

pair of the result mean values of the parameter R.  

(There is a significant difference between the two systems in terms of Path 

Similarity obtained) 

The Path Similarity comparison from the experimental results is 

revealed in Figure 5.14, Figure 5.15 and Figure 5.16.  From the graphs, it is evident 

that the existing AP model gives superior results than the proposed GP model.  
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Figure 5.14: AP-WBFS: Path Similarity Comparison for Study 1 
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Figure 5.15: AP-WBFS: Path Similarity Comparison for Study 2 

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8

P
at

h
 S

im
ila

ri
ty

Original Path Length (in number of steps)

Study 3 ( 4 Years Data)

GP-WBFS

AP-WBFS

 

Figure 5.16: AP-WBFS: Path Similarity Comparison for Study 3 
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Hypothesis Evaluation with respect to  PS: (Path Similarity) 

Table 5.10: T-test for  GP-WBFS and AP-WBFS based on Path Similarity 

Hypothesis 
Technique 

Study 
Path Similarity 

I II p value 

H4 GP-WBFS AP-WBFS 

Study 1 <0.0001 

Study 2 <0.0001 

Study 3 <0.0001 

 

From the Table 5.10, it is ascertained that the calculated significance 

level of the parameter Path Similarity by comparing the two systems namely, GP-

WBFS and AP-WBFS   satisfies the condition (p value<0.05) for all the three 

studies. There is a significant difference between the results for different Path 

Similarity values of the above two systems namely, GP-WBFS and AP-WBFS in all 

the three studies.  Hence, the null hypothesis for H4 may be rejected.  The Weighted 

Average Path Similarity of the three studies is apprised in the Figure 5.17. The 

increase in the performance of AP model when compared to GP model with respect 

to Path Similarity is5.939. 
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Figure 5.17:AP-WBFS: Weighted Average Path Similarity 
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The inference from the results is that the performance of the AP model 

can be improved with respect to Path length and Precision by improving the 

algorithm deployed on the Bug Toss Graph based on AP model. AP model captures 

the underlying developer structure which is invariably lost in the GP model. The 

WBFS algorithm uses the Bug Toss Graph as a static graph. But, since OSS itself is 

a volatile model of software development, the volatility percolates to the Bug 

Triaging also. Using a static graph in this milieu, presents undesirable results. On the 

other hand, updating the Bug Toss Graph for every new change in the underlying 

graph structure is also a costly affair. A nice middle road will be to employ adaptive 

learning techniques over the AP model based on Bug Toss Graph. 

5.3  AN ENHANCED BUG TRIAGE SYSTEM BASED ON BI-

OBJECTIVE OPTIMIZATION 

 In the existing work, the algorithm deployed on the Bug Toss Graph is 

based on WBFS algorithm. The Bug Toss Graph is a weighted directed graph, where 

the weights on each edge are the number of tosses. The objective of the WBFS 

algorithm is to retrieve a path with minimum number of tosses.    

The Enhanced Bug Triage System formulates the Bug Triage problem as 

a bi-objective optimization problem. The two objectives are to minimize the distance 

between the first assignee and the final resolver and to include well connected 

developers in the retrieved path. The cost on each edge of the retrieved path is taken 

to be 1. The well connected developers are defined by their degree of connections. 

The degree of a developer subsumes the in-degree and out-degree. The in-degree 

indicates the number of developer who has made a toss to the developer and the out-

degree indicates the number of developers to whom a toss has been made. The cost 

of traversing each edge is taken to be 1. Each developer who serves as a node is 

associated with a profit function, depending on the developer‟s connectivity with the 

neighboring developers. The profit function depends on two values - the number of 

connections and the number of times a bug was tossed through the connection. The 

objective of the bi-objective optimization algorithm is to maximize the profit and 

minimize the cost [76], [77]. The underlying intuition is that, the algorithm should 
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include as many well connected developers as possible, as well as the numbers of 

tosses the bug undergoes in order to be minimized. This is done by aggregating both 

the objectives into a single scalar function [78]. 

5.3.1  Formal Definition of the Problem 

The Bug Toss Graph is a directed weighted graph G = (V,E) where 

n=|V| is the number of developers. The set „E‟ is a set of edges .The cost „cij‟ to 

traverse on each edge is taken to be 1. A profit „pi‟ is associated with each vertex in 

„V‟ [76]. 

 ∀vi ∈V 

 yi=0   - All nodes are unvisited 

 ∀vi ∈V 

pi = ∑       
        
      i + ∑        

         
        i- Initialize Profit values for 

each developer 

 ∀eij ∈E 

 xij=0  - All edges are unvisited 

Objective Function1 - Max ∑cijxij) 

Objective Function2 - Min (∑piyi) 

Aggregated Objective Function –Max(∑piyi - ∑cijxij) 

5.3.2  Bug Triage with Bi-Objective Optimization Algorithm(Bi-Objective) 

The algorithm for bi-objective optimization is portrayed in the  

Figure 5.18. The set „A‟ is initialized to the set of first assignees. The set „R‟ is 

initialized to the set of final resolvers. A developer from the set „A‟ is chosen as the 

starting node. The starting node is assigned as the current node. The next developer 

is chosen from the neighborhood of the current node. The next developer is selected 

subject to the condition that the developer should be previously unvisited and the 

edge from the current developer to the next developer should be unvisited. The next 
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developer with maximum profit   is chosen   among all the neighbors. The profit for 

that partial solution is updated. The developer is added to the solution set. The 

process is repeated until a developer belonging to set „R‟ is reached.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: Bug Triage with Bi-Objective Optimization Algorithm 

Procedure Bi-Objective(BTG[0..i][0..j],N[0..i]) 

//BTG- Bug Toss Graph 

//N-Contains the profit values for each developer  

{A}- Set of first assignee 

{R}-Set of top resolver 

{S}- Set of Solutions 

Neighbor{CURR}- List of nodes in the neighborhood of CURR 

Begin 

1: E[0.k] ={0} //All edges are unvisited 

2: V[0..i]={0}// All nodes are unvisited 

3: while {A} !=NULL 

4:  choose ST from A // Starting node from set of first assignees 

5:  add ST to S 

6:  CURR=ST 

7:  PROFIT=0 

8:  whileCURR∉R 

9:   i=0 

10:  while(Neighbor{CURR}!=NULL) 

11:   max=0 

12:   xi∈Neighbor{CURR} 

13:   if (V[i]==0 &&  E[i]==0) && max< N[i]) 

14:    NEXT= xi 

15:    max=N[i] 

16:   endif 

17:   increment i 

18:  endwhile// Neighbor{CURR}!=NULL 

19:  PROFIT=PROFIT +N[i] 

20:  add NEXT to S 

21:  CURR=NEXT 

22: endwhile // CURR∉R 

23: CUMPROFIT=PROFIT – LEN(Solution) 

24:endwhile //{A} !=NULL 

25:return the Solution with Max(CUMPROFIT) 

End 
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The cumulative profit of the solution is computed by deducting the 

solution path length from the profit accumulated. The same process is repeated for 

all the nodes from set „A‟. The solution that has the maximum cumulative profit is 

chosen to be the best set of developers who can collaborate on a bug. 

5.3.3  Performance Evaluation 

 The performance of the Bug Triage System based on Bi-objective 

optimization is compared with the existing GP-WBFS as well as AP-WBFS 

considering the parameters: Path length, Precision, Recall and Path Similarity. The 

experiments were repeated for three runs. The experimental performance of the three 

systems was statistically analyzed using ANOVA. 

5.3.3.1  Path Length 

 The experimental results of parameter Path Length is shown in the  

Figure 5.19, Figure 5.20 and Figure 5.21. It can be observed from the experimental 

results that Bi-objective outweighs the proposed AP-WBFS. But still, the existing 

GP-WBFS produces the best results with respect to Path Length. This is due to the 

fact that, GP-WBFS takes into consideration only the tosses from any developer to 

the final resolver. This is the reason for the fact that the connectivity to the final 

resolver is much dense in the GP model. This connectivity contributes to the reduced 

path length for GP-WBFS. 

Hypothesis with respect to the result of the parameter P: (Path Length) 

Null hypothesis H0: P1 = P2=P3 where P1= Path Length obtained in GP-WBFS, P2 

= Path Length obtained in AP-WBFS, P3= Path Length obtained in Bi-Objective. 

(There is no significant difference among the three systems: that is GP-WBFS, AP-

WBFS and B-Objective in terms of Path Length obtained) 

Alternate hypothesis H5: Path Length mean values are not equal for at least one pair 

of the result mean values of the parameter P.  
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(There is a significant difference among the three systems in terms of Path Length 

obtained). 
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Figure 5.19: Bi-Objective: Path Length of Study 1 
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Figure 5.20: Bi-Objective : Path Length Study 2 
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 Figure 5.21: Bi-Objective : Path Length Study 3 

Hypothesis Evaluation with respect to P (Path Length) 

Table 5.11:  ANOVA for GP-WBFS,AP-WBFS and Bi-Objective based on 

Path Length 

Hypothesis 
Technique 

Study 

Path 

Length 

I II III p value 

H5 GP-WBFS AP-WBFS 

 Study 1 <0.0001 

Bi-Objective Study 2 <0.0001 

 Study 3 <0.0001 

 

From the Table 5.11, it is concluded that the calculated significance level 

of the parameter-Path Length by comparing the three systems namely, GP-

WBFS,AP-WBFS and Bi-Objective always satisfy the condition (p value<0.05) for 

all the three studies. There is significant difference among the results for different 

Path Length values of the above three systems namely, GP-WBFS, AP-WBFS and 

Bi-Objective. Hence, the null hypothesis for H5 may be rejected. The results 



77 

 

obtained from the three studies are combined using the Weighted Average method, 

based on which the results are consolidated in the Figure 5.22. 
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Figure 5.22: Bi-Objective : Weighted Average Path Length 

The rate of increase in the Path Length in the Bi-Objective with respect 

to the existing GP-WBFS is 13.588. 

5.3.3.2  Precision 

The experimental results of parameter Precision is displayed in the 

Figure 5.23, Figure 5.24 and Figure 5.25.It can be observed from the experimental 

results that Bi-Objective performs better than the proposed AP-WBFS. But still, the 

existing GP-WBFS produces the best results with respect to the parameter: Precision 

in particular for original Path Lengths 6 and 8. This is because, Precision is the ratio 

between the matched developers and the number of retrieved developers. Since, the 

numbers of retrieved developers are more in number for Bi-Objective and AP-

WBFS, the parameter: Precision is less when compared to GP-WBFS. 
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Hypothesis with respect to the result of the Precision PR (Precision) 

Null hypothesis H0: PR1 = PR2 = PR3 where PR1= Precision obtained in GP-

WBFS , PR2 = Precision obtained in AP-WBFS , PR3 = Precision obtained in Bi-

Objective. 

(There is no significant difference among the three systems, that is GP-WBFS, AP-

WBFS and Bi-Objective in Precision obtained) 

Alternate hypothesis H6: Precision mean values are not equal for at least one pair of 

the result mean values of the parameter PR.  

(There is a significant difference among the three systems in terms of Precision 

obtained) 
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Figure 5.23: Bi-Objective: Precision of Study 1 
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Figure 5.24: Bi-Objective: Precision of Study 2 
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Figure 5.25: Bi-Objective: Precision of Study 3 
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Hypothesis Evaluation with respect to PR (Precision) 

Table 5.12:  ANOVA for GP-WBFS, AP-WBFS and Bi-Objective based on 

Precision 

Hypothesis 
Technique 

Study 
Precision 

I II III p value 

H6 GP-WBFS AP-WBFS Bi-Objective 

Study 1 <0.0001 

Study 2 <0.0001 

Study 3 <0.0001 
 

From the Table 5.12, it is asserted that the calculated significance level 

of the parameter-Precision by comparing the three systems namely, GP-WBFS, 

AP-WBFS and Bi-Objective always satisfy the condition (p value<0.05) for all the 

three studies. There is significant difference among the results for different Precision 

values of the above three systems namely, GP-WBFS, AP-WBFS and Bi-Objective 

for the three studies. Hence, the null hypothesis for H6 may be rejected.  

The results obtained from the three studies are consolidated using the 

Weighted Average method.  Based on which, the results are consolidated in the 

Figure 5.26. 
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Figure 5.26: Bi-Objective: Weighted Average Precision 



81 

 

The rate of increase in Precision in the Bi-Objective with respect to the 

existing GP-WBFS is -0.05. 

5.3.3.3  Recall 

 The experimental results of parameter - Recall are divulged in the  

Figure 5.27, Figure 5.28 and Figure 5.29. It can be observed from the experimental 

results that Bi-Objective performs better than the proposed AP-WBFS and the 

existing GP-WBFS.This is due to the following reason: Recall is the ratio between 

the matched developers and the number of   developers in the original path.Since, 

the numbers of retrieved developers are more in number for Bi-Objective, the Recall 

value is higher for Bi-Objective.   

Hypothesis with respect to the result of the Precision R (Recall) 

Null hypothesis H0:  R1 =  R2 = R3 where  R1= Recall obtained in GP-WBFS,  R2 

= Recall obtained in AP-WBFS, R3 = Recall obtained in Bi-Objective 

(There is no significant difference among the three systems, that is GP-WBFS, AP-

WBFS Recall and Bi-Objective in terms of Recall obtained) 

Alternate hypothesis H7: Recall mean values are not equal for at least one pair of the 

result mean values of the parameter R.  

(There is a significant difference among the three systems in terms of Recall 

obtained) 
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Figure 5.27: Bi-Objective: Recall of Study 1 
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Figure 5.28: Bi-Objective: Recall of Study 2 
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Figure 5.29: Bi-Objective: Recall of Study 3 

 

Hypothesis Evaluation with respect to  R: (Recall) 

Table 5.13:  ANOVA for GP-WBFS, AP-WBFS and Bi-Objective based on 

Recall 

Hypothesis 
Technique 

Study 
Recall 

I II III p value 

H7 GP-WBFS AP-WBFS Bi-Objective 

Study 1 <0.0001 

Study 2 <0.0001 

Study 3 <0.0001 

 

 From the Table 5.13, it is concluded that the calculated significance level 

of the parameter- Recall by comparing the three systems namely, GP-WBFS, 

AP-WBFS and Bi-Objective always satisfy the condition (p value<0.05) for all the 

three studies. There is significant difference among the results for different Recall 

values of the above three systems namely, GP-WBFS, AP-WBFS and Bi-Objective. 

Hence, the null hypothesis for H7 may be rejected.  
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The results obtained from the three studies are consolidated using the 

Weighted Average method.  Based on which the results are consolidated in the 

Figure 5.30. 
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Figure 5.30: Bi-Objective: Weighted Average Recall 

The rate of increase in Recall in the Bi-Objective with respect to the 

existing GP-WBFS is 1.469. 

5.3.3.4  Path Similarity 

 The experimental results of parameter- Path Similarity is given in  

Figure 5.31, Figure 5.32 and Figure 5.33. It can be observed from the experimental 

results that Bi-Objective performs better than the proposed AP-WBF and the 

existing GP-WBFS.     
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Hypothesis with respect to the result of the Precision PS (Path Similarity) 

Null hypothesis H0:  PS1 = PS2= PS3where PS1= Path Similarity obtained in GP-

WBFS, PS2 = Path Similarity obtained in AP-WBFS , PS3 = Path Similarity 

obtained in Bi-Objective.  

(There is no significant difference among the three systems that is GP-WBFS, AP-

WBFS and Bi-Objective in terms of Path Similarity obtained) 

Alternate hypothesis H8: Path Similarity mean values are not equal for at least one 

pair of the result mean values of the parameter R.  

(There is a significant difference among the three systems in terms of Path Similarity 

obtained). 
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Figure 5.31: Bi-Objective: Path Similarity of Study 1 
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Figure 5.32: Bi-Objective: Path Similarity of Study 2 
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Figure 5.33: Bi-Objective: Path Similarity of Study 3 
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Hypothesis Evaluation with respect to PS (Path Similarity) 

Table 5.14:  ANOVA for GP-WBFS, AP-WBFS and Bi-Objective based on 

Path Similarity 

Hypothesis 
Technique 

Study 
Recall 

I II III p value 

H8 GP-WBFS AP-WBFS Bi-Objective 

Study 1 <0.0001 

Study 2 <0.0001 

Study 3 <0.0001 

 

From the Table 5.14, it is concluded that the calculated significance level 

of the parameter-Path Similarity by comparing the three systems namely,  

GP-WBFS,AP-WBFS and Bi-Objective always satisfy the condition (p value<0.05) 

for all the three studies. There is significant difference among the results for 

different Path Similarity values of the above three systems namely, GP-WBFS, AP-

WBFS and Bi-Objective. Hence, the null hypothesis for H8 may be rejected.  

The results obtained from the three studies are consolidated using the 

Weighted Average method.  Based on which, the results are consolidated in the 

Figure 5.34. 

0

0.1

0.2

0.3

0.4

0.5

0.6

Study 1 Study 2 Study 3W
ei

gh
te

d 
A

ve
ra

ge
 P

at
h 

Si
m

ila
ri

ty

Weighted Average Path Similarity

GP-WBFS

BI-Objective

 

Figure 5.34: Bi-Objective: Weighted Average Path Similarity 
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 The rate of increase in Path Similarity of Bi-Objective when compared 

with GP-WBFS is 6.657. 

5.4  SUMMARY 

 This chapter chronicles a comprehensive analysis of AP model over the 

GP model with respect to four parameters viz.,Path length, Precision, Recall and 

Path Similarity. The AP model codifies in it every intermediate toss that happens in 

the lifetime of a bug. When the target of the Bug Triage System is to retrieve the 

referral chain of developers rather than only one developer who can solve the bug, 

intuitively, AP model is a promising candidate. To corroborate the intuition, 

experimental analysis was necessary to examine the performance of the AP model.  

The results presented after the experimental evaluation clearly indicate that the 

existing GP model outperforms the proposed AP model for the parameters: Path 

Length and Precision, whereas the AP model outperforms the GP model for the 

parameters: Recall and Path Similarity. The statistical analysis of the results 

obtained confirms that there is a significant difference in the performance of GP-

WBFS from AP-WBFRS with respect to the parameters: Path Length, Recall and 

Path Similarity. 

 This chapter also describes an enhanced Bug Triage System based Bi-

objective optimization. The Bi-Objective method exhibits improved performance 

over the existing GP-WBFS with respect to the parameters of Recall and Path 

Similarity. To improve the performance of the Bug Triage System based on AP 

model with respect to the parameters: Path length as well as Precision, adaptive 

techniques need to be employed. 
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CHAPTER - 6 

ADAPTIVE TECHNIQUES WITH ENRICHED 

COLLABORATION GRAPH 

 

6.1  PREAMBLE 

 This chapter makes a two fold contribution. On one hand, it presents 

adaptive techniques to be deployed on the Bug Toss Graph, on the other hand, it 

visualizes the Bug Triage as a social activity. The adaptive techniques are based on 

Ant Systems. Since,Bug Triage is a social activity; the underlying graph that 

captures the relation among the developers is modeled as an Enriched Collaboration 

Graph which captures the social context of the developers involved in resolving the 

bug. Over this Enriched Collaboration Graph, the multi objective ant systems are 

deployed to retrieve the developers who can form the referral chain. 

6.2  NEED FOR ANT SYSTEM IN BUG TRIAGE 

 The growing size of the OSS and the unique attributes of OSS 

development system make it as arduous for software maintenance.This is due to the 

following facts [79]: 

i) There is no centralized control. 

ii) The participation and contribution is  voluntary 

iii) The organizational structure in the software development is 

informal, complex, self-organizing and not explicit. 

iv) The collaboration between the developers is in the form of 

discussion forums and emails. 

v) The motivation is peer respect. 
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Bug Triage is a vital facet of OSS corrective maintenance. Interestingly, 

the bugs reported in an OSS garners more respect than its counterparts in enterprise 

system. This is because the bugs reported in OSS are by the fellow developers and 

not the users of the system. As discussed earlier, the currently available Bug Triage 

System exploits the textual contents present in the bug report and the link 

information due to the tossing of bugs between the developers. The tossing activity 

that exists among the developers is embodied in the Bug Toss Graph. The current 

techniques use the Bug Toss Graph as a static graph. But, the static Bug Toss Graph 

loses the dynamicity inherent to the OSS development system.  In addition, online 

learning techniques that call for updating the graph structure for every change in the 

developer is also not practical due to the cost concerns. In this scenario, ant systems 

are suitable for capturing the evolving nature of the developers in Bug Triage in 

OSS. Ant systems are applied widely in domains which are of adaptive nature.  

6.2.1  Overview of Ant System 

 Swarm intelligence is an area of research where swarm of primitive 

animal‟s exhibit intelligent behavior.A swarm of ants foraging for food shows 

remarkable intelligence and capability in finding shortest path to a food source. A 

collection of ants cooperate in finding food using a chemical pheromone. This trail 

of pheromone is used for indirect communication among the ants. Ants also exhibit 

the property of adapting to environments. They are able to tackle obstacles on their 

path.  This emergent property of ants has propelled the creation of artificial ant 

colonies [80].  

 Further, there is no supervisor to coordinate the ants. The self organizing 

concept is provided by the feedback mechanism. There are two types of feedback- 

positive and negative feedback. The positive feedback mechanism is provided by the 

deposition of the pheromone trails. Ants can detect the pheromone trail and exhibit a 

tendency to follow the pheromone trail laid by the other ant agents. The new set of 

ants again deposits pheromone on their behalf on the same path. The new set of 

pheromone reinforces the pheromone trail which in turn encourages other new ants 

to follow the same trail. Negative feedback counters the positive feedback. The 
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negative feedback is provided by the evaporation of the pheromone trail.  This helps 

the ants in converging towards the most often used paths and disregard the bad 

solutions that are longer and infrequently used. Stigmergy is the property that 

describes the communication among the ants. This communication among the ants is 

indirect and asynchronous in nature. The ants change the environment to interact 

with each other. They need not be at the same location at the same time to interact 

with each other. 

Ant algorithms are typically Meta heuristic algorithms that are inspired 

by the foraging behavior of the ants.   Ant algorithms are self organizing where each 

ant agent functions independently. Artificial ant agents are modeled after real ants. 

Artificial ants maintain memory about where they have been. Self organization of 

the real ants is achieved by the stochastic state transitions rule.  The ant agents 

construct solution by moving in the graph through stochastic steps. The decision on 

which node is to be traversed next is based on a probability distribution. The 

stochastic walks are performed until the terminal condition is reached. Stigmergy 

with respect to artificial ants refer to pheromone trail. Artificial pheromone is 

deposited either on the edge or on the node or on both as the artificial ants traverse. 

The artificial ants can construct the solution path and then, deposit the pheromone 

over the solution path. This type of pheromone deposit is called delayed trail update.  

The other type of trail update is a step by step trail update. Here, the artificial ants 

deposit pheromone every time a node is added to the solution path. The amount of 

pheromone deposited on a path helps in strengthening of the path. Earlier 

converging of the artificial ants to a path results in stagnation and is called snowball 

effect. To avoid the ants from prematurely converging to a solution, negative 

feedback is used. Evaporation of the pheromone is implemented by the reduction in 

the pheromone deposited.  

Every ant algorithm contains a stochastic state transition rule.  This rule 

utilizes two components - the local pheromone value and the heuristic value.  The 

choice of the next node is made on a probability distribution [81]. The self 

organizing behavior and feedback mechanism of the ant algorithms can be 

capitalized for Bug Triaging. 
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6.2.2  Applications of Ant System in Other Domains 

Ant routing has been applied in solving vehicle routing problems. Here, 

vehicles need to be routed in the most optimal route so that the fuel consumption can 

be minimized and maximum number of customers can be serviced. Each vehicle is 

modeled as an ant agent and the route is formed by incrementally visiting each 

customer, starting from the depot [82]. Ant systems have also been widely adapted 

for scalable link prediction in Social Networks. Predicting a new link from an 

existing link or characteristic is called link prediction. The social network is 

modeled as a graph where each user acts as a node and the relation between the user 

acts as a link. From the social network, the sub graphs are determined, and based on 

their evolution, new links are predicted [83]. The other application domains of ant 

systems are in community structure detection in email communication. The 

community structure detection takes into account the structure, direction, weight and 

semantics of the email communication [84].  Web usage patterns can also be 

predicted using ant colony systems. The web structure, web content and web usage 

are used for the prediction. Continuous learning strategy is used to train the ants. 

The trained ants are then deployed in the new web graph. A web site is modeled as a 

graph, with webpages as the nodes and the hyperlinks as the edges [85]. 

 Ad hoc networks have proliferated due to the explosion of mobile 

communication.  An ad hoc network is constructed by a mobile terminal that is 

enabled to communicate with other nodes anytime anywhere. The network topology 

changes dynamically due to the mobility of the node. Stochastic routing algorithms 

based on ant routing are used to route packets in these dynamic environments. 

Robust routing is performed by acquiring information from routing history. The 

routing algorithms are particularly stable when there are many packets and mobility 

of nodes is intense etc [86]. Co-authorship network is an emerging area in social 

network. Behavior pattern of the entities in the co-authorship network is studied 

based on ant colony optimization. The nodes in the co-authorship network are the 

author and the link is the joint publication among them. The relation among the 

entities is categorized to social ties and professional relation. Social ties are long 

term relation formed on the basis of joint studies, joint work assignments, etc. 
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Professional ties are more dynamic. The dynamic professional relation is modeled as 

ant colony optimization [87] , [88].  

It can be inferred that ant colony systems have been widely adapted in 

diverse fields such as web pattern mining, vehicle routing, co-authorship network, 

etc.  The common factor in all these domains is that they are evolving and dynamic 

in nature.  

6.3  BUG TRIAGE WITH ANT SYSTEM 

Bug Triage System based on ant system to make developer 

recommendation is presented. Bug Triage encompasses the developer 

recommendations in a volatile environment.  Any Bug Triage System uses the past 

reassignments of bugs in forging making recommendations.  The reassignments of 

the bug are captured in a Bug Toss Graph.  The Bug Toss Graph is a dynamic graph. 

This is because new developers may be added at anytime. The area of expertise of 

the existing developers may mutate with time. Also, the language of the text in the 

bug report may also metamorphise. Overall, the entire OSS development cycle goes 

from period of stability to instability.  

6.3.1  Formal Definition of the Problem 

The bug tossing relations are captured as a graph G ={V,E}. Here, 

V={v1,v2,….vn} is the set of vertices which exemplify the developers. 

E={e1,e2,……,en} embodies the set of edges where each edge represents the 

previous bug tossing relation among the developers. The transition probabilities 

among the developers capture the local decisions made by the developer. The 

transition probability of an edge or link from vi to vk is P(vi|vk). 

P(vi|vk) =   N(vi,vk)/N(vi)  If N(vi) >0       

                    0     otherwise   
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 Here, N(vi,vk) is the number of transfers from vi to vk. N(vi) is the total 

number of transfers from vi.  As discussed earlier, the ant algorithm contains a local 

variable pheromone and a heuristic value to compute the probability distribution 

based on which the next state is identified. The ants stochastically construct 

solutions by making walks on the Bug Toss Graph. Each edge „e‟ has an associated 

pheromone trail value „t‟. The initial trail value for all paths is „t0‟.Each edge „e‟ also 

has a heuristic value „h‟ that is the transition probability P(vi|vk) of that edge. Each 

ant also possesses a Tabu memory „Mk‟ which holds in it the set of visited vertices. 

The stochastic transition rule for ant „k‟ for edge between „vi‟ and „vj‟ is 

given by  

 
k

Mk
i

M
ij ijk i

ij

il ijl J

[t (T)] [h ] if j J
P (t)

otherwise zero[t (T) [h ]

 

 



  
 


 

      -  transition probability of edge eij 

       -  pheromone value of edge eij 

 , - parameters used to scale the pheromone trail value tij and the 

heuristic value hij. 

kM

iJ - the set of developers in the neighborhood of „i‟ which the ant has 

not yet visited 

The pheromone forgetting function is given by: 

                        

   -  evaporation Factor 

 N  - number of ants traversed 
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6.3.2  Bug Triaging based on Ant Systems(BT-ANT) 

The overall flow of the BT-ANT is portrayed in the Figure 6.1. 

Incremental learning framework is used to incorporate the evolution of the Bug Toss 

Graph.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Flow Diagram of the BT-ANT 

 The bug reports are  segregated to „n‟ folds. The modules in the BT-ANT 

are i) Bug Toss Graph Generation ii) Ant Routing and iii) Bug Toss Graph Update.  

The Bug Toss Graph for the first fold is generated. The ant agents are deployed over 

the Bug Toss Graph. The ants lay pheromone trail to compute the shortest path to a 

node from the final resolvers. The initial state for the ant agents is a node from the 

set of first assignee. After the ants converge paths, the links and nodes from the next 
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fold is updated in the Bug Toss Graph. After the update from the „n
th‟

 fold, the 

shortest paths are retrieved from the paths where the ants converged. 

6.3.2.1  Bug Toss Graph Generation 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2:Bug Toss Graph Generation 

The flow diagram of the Bug Toss Graph Generation is rendered in 

Figure 6.2. The activity data is extracted from the bug reports. The activity data 

consists of the history of the bug. It contains data like who reported the bug, to 

whom it was first assigned, what was modified by the assignee, to whom it was 

tossed and who changed the status of the bug to resolve.  The tosses or the 

reassignments a bug went through in its lifetime are synthesized in the Bug Toss 

Graph.  The nodes in the Bug Toss Graph are the developers and the edges are the 

Set each developer in the fold i as a node in 

the Bug Toss graph 

Tosses between developers are modeled as 

edges 

For each edge in the Bug Toss Graph 

Set the Pheromone value to a constant t0 

Set the Heuristic value  hij as the Transition 

Probability between node i and node j 

Next edge  

Return 

Bug Toss Graph 
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tosses between them. The Bug Toss Graph is a weighted directed graph. The weights 

on the links are a heuristic value and a pheromone value.  The heuristic value hij on 

any edge between node „i‟ and node „j‟ is the transition probability of tosses between 

them. Initially, a constant   pheromone value „t0‟ is assigned for the edges traversed 

in the first fold. 

6.3.2.2  Ant System 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Ant System 

The Ant System adapted for Bug Triaging is illustrated in the Figure 6.3. 

The number of ants deployed is equal to the number of top developers in that fold. 

Ant System  

Number of ants = Number of top developers in 

fold i 

Select the start node of each ant from the set of first 

assignee in folds i 

Each ant selects the next node based on the 

probability 𝑃𝑖𝑗
𝑘 𝑡  

If all ants reached 
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developer node 

If the number of times 

each ant reached the 

top developer node> 

4 
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Update the Pheromone value on 

each edge by 
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The top developers are identified according to their bug resolution frequency. The 

starting node of the ant is from the set of first assignee. The ant agent selects the 

next node based on the probability   
    . An iteration is considered completed when 

all the ants reach one of the top developers. After an iteration is completed, the 

negative feedback of the ant system is enforced by the pheromone update. The 

update comprises of two factors: a reinforcement factor and a forgetting factor. The 

reinforcement factor increases the pheromone content of an edge proportional to the 

number of ants that have traversed that edge. The forgetting factor decrements the 

pheromone value. When each ant reaches the same top developer more than four 

times, the iteration for that fold is concluded. 

6.3.2.3  Bug Toss Graph Update 

 

 

 

 

 

 

 

 

 

Figure 6.4: Bug Toss Graph Update 

 The flow of the Bug Toss Graph Update is shown in the Figure 6.4.  The 

new developers from the next fold and the new links among the existing developers 

are amended in the existing Bug Toss Graph.  The heuristic values on the existing 
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edges are adjusted to reflect any new tosses added to the same edge. For new edges, 

the new heuristic values are determined. For the new edges introduced in the fold, 

the pheromone values assigned is the constant „t0‟. 

6.2.3.4  Algorithm for Bug Triage based on Ant System 

The algorithm is given in the Figure 6.5. There are various assumptions 

made in implementing the BT-ANT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Algorithm for BT-ANT 

Procedure BT-ANT 

F={Set of First Assignees in a fold}, Initial Pheromone value t0=0.1, 

BTG: Bug Toss Graph 

Begin 

1:  get Bug reports from Bug Repository 

2:   partition the Bug reports to „n‟ folds 

3:  initialize i=1 

4:  call Generate Bug Toss Graph 

5:  repeat Step 6 to 7 Until (i<n) 

6:      call Ant System 

7:      call Update Bug Toss Graph  

8:  increment  i 

End 

Procedure  Generate Bug Toss Graph   

1:  set each developer in foldi  as a node 

2:  set the tosses between developers as edges 

3:  for each edge in the BTG do 

4:       initialize pheromone value  to „t0‟ 

5:       initialize  Heuristic value  hij as the Transition   Probability between node i and node j 

6:  return 

Procedure  Ant System  

1:  initialize Number of ants = Number of top  developers in foldi 

2:  repeat Step 3 to 6 Until each ant reaches the same Top developer > 4 times 

3:       select the start node of each ant from the set F for „foldi 

4:       repeat  Step 5 Until all deployed ants  reach  one of the Top developer 

5:          Each ant selects the next node based on the  probability     
  𝑡  

6:  update the Pheromone value on each edge by          

7 :  return 

Procedure  Update Bug Toss Graph  

1: insert the developers  and tosses  from  fold i+1 to  BTG 

2:for each edge inserted  from fold i+1 do 

3:  update the hij value with tosses from  fold i+1  

4:  if  new edge 

5:   initialize Pheromone value to to  

6:  return 
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The value assumed for   „α‟ and „β‟ is 0.5 so as to give equal weight to 

both the transition probability and the pheromone value. „ρ‟ is assumed to be 0.6.  

The value „t0‟ which is the initial pheromone value is assumed as 0.1. 

6.3.3  Performance Evaluation 

The bug reports of Eclipse project during the period from 2009/01/09 to 

2013/01/09 were extracted from www.bugzill.org. The bugs with vote count as 2 

and with status as “RESOLVED” and resolution as “FIXED” were only considered 

for extraction. The data set was divided into training set and testing set. The first 

70% Eclipse bugs were used as a training set and the remaining bugs were used as a 

testing set.  The experiments were conducted as three studies to test the robustness 

of the proposed system. The first study comprises of bug reports for two years for 

the period from 2011/01/09 to 2013/01/09), the second study for three years for the 

period from 2010/01/09 to 2013/01/09) bug reports and the third study for four years 

from 2009/01/09 to 2013/01/09)   bug reports.  The proposed system BT-ANT was 

compared with the base line system of WBFS algorithm deployed on Bug Toss 

Graph modeled as GP model. The proposed and the baseline systems were compared 

based on the four parameters – (i) the Length of the Retrieved Path (ii) Precision(iii) 

Recall and (vi) Path Similarity. The experiments were run on a Pentium 4 processor 

with 320 GB hard disk. Netbeans 7.2 was used as the front end and Oracle as the 

back end. The JDK tool was employed in conducting the experiments. 

6.3.3.1  Path length 

 The performance of the BT-ANT with respect to Path Length parameter, 

compared to the existing GP-WBFS, proposed AP-WBFS and Bi-Objective are 

manifested in Figure 6.6, Figure 6.7 and Figure 6.8 for all the three data sets. From 

the results, it is discernible that the existing system based on GP model is superior to 

the AP-WBFS, Bi-Objective as well as the BT-ANT with respect to Path Length. 

When compared with the other Bug Triage Systems based on AP model, BT-ANT 

surpasses in performance. 
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Hypothesis with respect to the result of the parameter P (Path Length)   

Null hypothesis H0 : P1 = P2 = P3 = P4, where P1= Path Length obtained in  

GP-WBFS, P2 = Path Length obtained in AP-WBFS,P3 = Path Length obtained in 

Bi-Objective and P4=Path Length obtained in BT-ANT. 

(There is no significant difference among the four systems in terms of Path Length 

obtained) 

Alternate hypothesis H9: Path Length mean values are not equal for at least one pair 

of the result mean values of the parameter P.  

(There is a significant difference among the four systems in terms of Path Length 

obtained) 
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Figure 6.6: BT-ANT: Path Length Performance for Study 1 
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Figure 6.7: BT-ANT: Path Length Performance for Study 2 
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Figure 6.8: BT-ANT: Path Length Performance for Study 3 
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Hypothesis Evaluation with respect to P (Path Length) 

Table 6.1:  ANOVA for GP-WBFS, AP-WBFS, Bi-Objective and BT-ANT 

based on Path Length 

Hypothesis 
Technique 

Study 

Path 

Length 

I II III IV p value 

H9 
GP-

WBFS 

AP- 

WBFS 

  Study 1 <0.0001 

Bi- 

Objective 
BT-ANT Study 2 <0.0001 

  Study 3 <0.0001 
 

 From the Table 6.1, it is concluded that the calculated significance level 

of the parameter-Path Length by comparing the four systems namely, GP-

WBFS,AP-WBFS,Bi-Objective and BT-ANT always satisfy the condition (p 

value<0.05) for all the three studies. There is significant difference among the 

results for different Path Length values of the above four systems namely, GP-

WBFS, 

AP-WBFS,Bi-Objective and BT-ANT. Hence, the null hypothesis for H9 may be 

rejected.  

The results obtained from the three studies are consolidated using the 

Weighted Average method.  Based on which the results are consolidated in the 

Figure 6.9.  
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Figure 6.9: BT-ANT: Weighted Average Path Length 
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The rate of increase in the Path Length in the BT-ANT when compared 

to the existing GP-WBFS is 11.41. 

6.3.3.2  Precision 

The performance of the BT-ANT with respect to Precision 

parameter,compared with the existing GP-WBFS, proposed AP-WBFS and  

Bi-Objective are manifested  in the Figure 6.10, Figure 6.11 and Figure 6.12 for all 

the three data sets. From the results, it is indisputable that the BT-ANT based on AP 

model is superior consistently over the three test runs to the AP-WBFS, Bi-

Objective as well as the GP-WBFS.   

Hypothesis with respect to the result of the parameter PR (Precision) 

Null hypothesis H0 : PR1 = PR2 = PR3 = PR4, where PR1= Precision obtained in 

GP-WBFS, PR2 = Precision obtained in AP-WBFS,PR3 = Precision obtained in Bi-

Objective and PR4=Precision obtained in BT-ANT. 

(There is no significant difference among the four systems in terms of Precision 

obtained) 

Alternate hypothesis H10: Precision mean values are not equal for at least one pair 

of the result mean values of the parameter PR.  

(There is a significant difference among the four systems in terms of Precision 

obtained) 
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Figure 6.10: BT-ANT: Precision for Study 1 
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Figure 6.11: BT-ANT: Precision for Study 2 
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 Figure 6.12: BT-ANT: Precision for Study 3 

Hypothesis Evaluation with respect to PR: (Precision) 

Table 6.2:  ANOVA for GP-WBFS, AP-WBFS, Bi-Objective and BT-ANT 

based on Precision 

Hypothesis 
Technique 

Study 
Precision 

I II III IV p value 

H10 
GP-

WBFS 

AP-

WBFS 

  Study 1 <0.0001 

Bi-

Objective 
BT-ANT Study 2 0.127 

  Study 3 <0.0001 

 

From the Table 6.2, it is established that the calculated significance level 

of the parameter Precision by  comparing the four systems namely, GP-WBFS, 

AP-WBFS,Bi-Objective and BT-ANT always satisfy the condition (p value<0.05) 

for study 1 and study 3. There is significant difference among the results for 

different Precision values of the above four systems namely, GP-WBFS,AP-

WBFS,Bi-Objective and BT-ANT in two of the three studies. Hence, the null 

hypothesis for H10 may be rejected.  
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The proposed BT-ANT outweighs the existing system in terms of the 

parameter Precision. This is because the number of false positives extracted by the 

BT-ANT is significantly fewer than the existing systems. This was possible because 

the Bug Toss Graph is better revised due to the incremental learning framework.  

The consolidated Weighted Average Precision is presented in the Figure 6.13. The 

increase in Precision of BT-ANT with respect to the existing GP-WBFS is 0.253. 
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Figure 6.13: BT-ANT: Weighted Average Precision 

6.3.3.3  Recall 

The performance of the BT-ANT with respect to Recall 

parameter,compared with the existing GP-WBFS, proposed AP-WBFS and Bi-

Objective is manifested in the Figure 6.14, Figure 6.15 and Figure 6.16 for all the 

three data sets. From the results, it is evident that the BT-ANT based on AP model is 

superior consistently over the three test runs to the AP-WBFS, Bi-Objective as well 

as the GP-WBFS.   
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Hypothesis with respect to the result of the parameter R (Recall) 

Null hypothesis H0:  R1 = R2= R3= R4, where R1= Recall obtained in GP-WBFS, 

R2 = Recall obtained in AP-WBFS, R3 = Recall obtained in Bi-Objective and 

R4=Recall obtained in BT-ANT 

(There is no significant difference among the four systems in terms of Recall 

obtained) 

Alternate hypothesis H11: Recall mean values are not equal for at least one pair of 

the result mean values of the parameter R.  

(There is a significant difference among the four systems in terms of Recall 

obtained) 
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Figure 6.14: BT-ANT: Recall for Study 1 
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Figure 6.15: BT-ANT: Recall for Study 2 
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Figure 6.16:  BT-ANT: Recall for Study 3 
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Hypothesis Evaluation with respect to R(Recall) 

Table 6.3: ANOVA for  GP-WBFS, AP-WBFS, Bi-Objective and BT-ANT 

based on Recall 

Hypothesis 

Technique 

Study 

Recall 

I II III IV p value 

H11 
GP-

WBFS 

AP-

WBFS 

  Study 1 <0.0001 

Bi-

Objective 
BT-ANT Study 2 <0.0001 

  Study 3 <0 .0001 

 

From the Table 6.3, it is realized that the calculated significant level of 

the parameter-Recall when comparing the four systems namely, GP-WBFS, 

AP-WBFS,Bi-Objective and BT-ANT always satisfy the condition (p value<0.05) 

for all the three studies. There is significant difference among the results for 

different Recall values of the above four systems namely, GP-WBFS,AP-WBFS, Bi-

Objective and BT-ANT. Hence, the null hypothesis for H11 may be rejected. The 

proposed BT-ANT performs better than the existing system in terms of the 

parameter - Recall. This is because the number of true positives extracted by the  

BT-ANT is significantly greater than the existing system.  The increase in Recall of 

BT-ANT when compared to the existing GP-WBFS is 1.635 as shown in  

Figure 6.17. 
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Figure 6.17: BT-ANT: Weighted Average Recall 

6.3.3.4  Path Similarity 

The performance of the BT-ANT with respect to Path Similarity 

parameter, compared with the existing GP-WBFS, proposed AP-WBFS and  

Bi-Objective is manifested in Figure 6.18, Figure 6.19 and Figure 6.20 for all the 

three data sets. From the results, it is obvious that the BT-ANT based on AP model 

dominates the AP-WBFS, Bi-Objective as well as the GP-WBFS in all the three runs 

with respect to Path Similarity.  

Hypothesis with respect to the result of the parameter PS(Path Similarity) 

Null hypothesis H0 :  PS1 =  PS2 =  PS3 =  PS4, where  PS1= Path Similarity 

obtained in GP-WBFS,  PS2 = Path Similarity obtained in AP-WBFS , PS3 = Path 

Similarity obtained in Bi-Objective and  PS4=Path Similarity obtained in BT-ANT. 

(There is no significant difference among the four systems in terms of Path 

Similarity obtained) 

Alternate hypothesis H12: Path Similarity mean values are not equal for at least one 

pair of the result mean values of the parameter.  
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(There is a significant difference among the four systems in terms of Path Similarity 

obtained) 
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Figure 6.18: BT-ANT: Path Similarity for Study 1 
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Figure 6.19: BT-ANT: Path Similarity for Study 2 
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Figure 6.20: BT-ANT: Path Similarity for Study 3 

Hypothesis Evaluation with respect to PS (Path Similarity) 

Table 6.4:  ANOVA for  GP-WBFS, AP-WBFS, Bi-Objective and BT-ANT 

based on Recall 

Hypothesis 
Technique 

Study 
Recall 

I II III IV p value 

H12 
GP-

WBFS 

AP-

WBFS 

  Study 1 <0.0001 

Bi-

Objective 
BT-ANT Study 2 <0.0001 

  Study 3 <0.0001 

 

From the Table 6.4, it is confirmed  that the calculated significance level 

of the parameter-Path Similarity by comparing the four systems namely, GP-

WBFS,AP-WBFS,Bi-Objective and BT-ANT always satisfy the condition (p 

value<0.05) for all the three studies. There is significant difference among the 

results for different Path Similarity values of the above four systems namely, GP-

WBFS,  
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AP-WBFS, Bi-Objective and BT-ANT. Hence, the null hypothesis for H12 may be 

rejected.  

 The proposed BT-ANT performs better than the existing system in terms 

of the parameter - Path Similarity. The reason is due to the number of true positives 

extracted by the BT-ANT, are significantly greater than the existing system and the 

number of false positives reported is fewer.  This is the consequence of the fact that 

the underlying tossing relation is better adapted in the Bug Toss Graph due to the 

pheromone evaporation. The increase in Path Similarity of BT-ANT when compared 

to the existing GP-WBFS is 8.897 as depicted in Figure 6.21. 
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Figure 6.21: BT-ANT : Weighted Average Path Similarity 

6.4  COLLABORATION GRAPH 

Collaboration Graphs encode in them who works with whom in a 

specific setting.There are various kinds of collaboration graphs including citation 

graph, co-authorship among scientist graph, co-appearance of movie actors, web 

graph etc.  Collaboration graph is more relevant in the distributed software 

development setting.The collaboration occurs mostly in virtual environment. The 

collaborations among the developers engaged in the software development can be 
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modeled as a collaboration graph. The communication among team members are 

based on email, chat rooms and software artifacts [89]. The collaboration graph is 

essentially a dynamic graph [90]. The graph is modified for every alteration that 

occurs in the corresponding domain.  

6.4.1  Collaboration in Open Source System 

OSS system is a special case of geographically distributed software 

development. Collaboration is the norm of OSS software development. Bug 

resolution in OSS also falls under the same analogous category. The resolution of 

the bug hinges on human factors. The human factors comprise of physical or 

cognitive property of social behavior [91]. More specifically, the human behavior 

comprises of collaboration among developers, capacity of developers and 

developers‟ past performance. Human factors affect the quality and productivity of 

the task at hand.   

The Bug Toss Graph serves as the data structure that is appropriate for 

Bug Triage. In the existing system, the Bug Toss Graph uses only “the number of 

tosses” to capture the collaboration among the developers involved in bug 

resolution. The Enriched Collaboration Graph is an improvisation over the existing 

Bug Toss Graph. The Enriched Collaboration Graph characterizes the developers‟ 

social behavior. This Enriched Collaboration Graph can be used for Bug Triage.  

6.5  BUG TRIAGE USING ENRICHED COLLABORATION GRAPH 

 The bug log activity is utilized to form a social network [92]. Bug 

resolution is a team activity. The team dynamics needs to be realized in the 

underlying graph structure. Each developer has a role to play towards the resolution 

of the bug. The different roles may be that of resolver, assignee, triager, broker, etc. 

The roles of the developers are also transitory. The relationship that exists among 

the developers can be identified from the social network formed from the bug log. 

The strength of the relationship is measured and modeled as an Enriched 

Collaboration Graph.  
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Figure 6.22: Enriched Collaboration Graph 

The affiliation among the developers is based on the tosses that emanate 

among them. The strength of the relationship among the developers is manifested 

based on the Number of Tosses, Reciprocity, Frequency, Longevity and Recentness 

[93]. The Enriched Collaboration Graph is constituted based on these factors and is 

shown in Figure 6.22.  

The relationship that exists among the developers is calibrated as per the 

proximity of the developer with his peer. The proximity is basically derived from the 

tossing relation among the developers. In the existing system, the tossing relation 

among the developers is analyzed only in one dimension that is the number of 

tosses. Whereas, in this research work, the tossing relation is fine grained using 

additional dimension to extract the proximity among the developers in social 

context. 

The Multi Objective Ant algorithm is deployed on the Enriched 

Collaboration Graph so as to retrieve the set of shortest paths. The conceptual 

diagram of the Bug Triage based on the enriched collaboration graph is portrayed in 

the Figure 6.23. 
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Figure 6.23: Bug Triage using Enriched Collaboration Graph 

6.5.1  Formal Definition of the Enriched Collaboration Graph 

The Enriched Collaboration Graph is multi featured and models the 

proximity of one developer with another. The labels in the graph are Number of 

tosses, Longevity, Recentness, Frequency and Reciprocity [93]. The Number of 

tosses quantifies the total number of tossing relation between any two developers. 
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The Longevity factor codifies the duration of relation between any two developers. 

This parameter brings out any long standing relation that prevails among the 

developers. It encodes the age of a relation as shown in Figure 6.24. The Recentness 

factor reveals whether the relation is alive on date. The Recentness parameter is the 

ratio between amount of time passed, since the beginning of the relation and the 

current toss compared to the total age of the relation [94]. It is shown in the  

Figure 6.25.The Frequency parameter quantifies the density of the tossing relation. 

Finally, the Reciprocity parameter divulges whether the relation among any two 

developers is balanced. The Reciprocity encodes the mutual trust between the 

developers. 

Number of Tosses (T) :   Total number of tosses from one developer to another. 

Longevity (L)  :   The duration of relation between any two developers. 

Recentness(R)  :  The freshness of the relation between any two 

developers. 

Frequency (F)  :  The number of tosses for the duration of relation 

between any two developers. 

Reciprocity (Rc)  :  The strength of the two way relation between any two 

developers. 

 

Figure 6.24: Longevity 

Date of First Toss Today 

Longevity 

Time 
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Figure 6.25: Recentness 

The Enriched Collaboration Graph „E‟ contains a set of developers 

represented by „D‟ and the relationship among the developers is represented by edge 

„E‟. Each edge in the graph is represented by a Vector „V‟. 

                             

where,                       . 

                       –                     

 F= T/L 

                        –                         

                                     

          - Number of Tosses from Developer 

           -  Number of Tosses to Developer 

      - Number of Tosses exchanged between the two Developers 

6.5.2  Cooperative Ant Algorithm 

The Cooperative Ant algorithm (Co-Ant) is used over the enriched 

collaboration graph to fetch the referral chain of developers who can optimally 

Date of First Toss Date of Recent Toss Today 

Recentness 

Time 
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collaborate on a bug. The Co-Ant algorithm is a Multi-Objective Ant Colony 

Algorithm.It employs multiple colonies of ants.  

There are five colonies of ants utilized. One ant colony is used for each 

factor ie., Number of Tosses, Reciprocity, Frequency, Longevity and Recentness. 

The bug reports are retrieved from the bug repository. The activity data is used to 

extract the tossing relation. The bug reports are portioned to „n‟ folds in order to 

bring the learning of the ants in an incremental framework. The first fold is 

considered as the current fold. The number of top developers for the fold is 

evaluated. The top developers are evaluated according to the number of bugs they 

have resolved. The number of ants in each colony is determined by the number of 

top developers. Within each colony, an algorithm similar to the BT-ANT is 

deployed. The visibility factor on each of the graph is determined by the 

corresponding proximity factor. The ant chooses the next node, based on the 

heuristic function.  

The heuristic function comprises the visibility factor and the pheromone 

factor.  When the ant traverses an edge, it augments the pheromone value. When an 

ant reaches one of the top developers more than four times, it is considered that the 

ants have converged to a shortest path and the iteration for one fold is completed.  

After this iteration, the lengths of paths determined by the multiple ant colonies are 

compared.  

The distance of the solution from each colony from the best solution is 

computed. Based on the distance of each solution from the best solution, the number 

of ants to be migrated (Nmig) to the colony that produced the best solution is 

estimated. „Nmig‟ ants migrate to the colony that computed the best solution. The 

pheromone value on each edge is adjusted by the pheromone evaporation function. 

The Enriched Collaboration Graph is updated with edges and nodes from the next 

fold. The proximity factors are adjusted accordingly. The multiple colony ants are 

again deployed over the Enriched Collaboration Graph. The process is repeated until 

the Enriched Collaboration Graph is updated with edges and nodes from the last 

fold. The algorithm for Co-Ant is specified in the Figure 6.26. 
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Figure 6.26: Co-Ant Algorithm 

Procedure Co-Ant  

  T : Number of Tosses 

  L : Longevity 

  F : Frequency 

  R : Recentness 

  RP : Reciprocity 

  Best: Cost of Best Solution of all the Ant Colonies 

  B: Cost of Best Solution for an Ant Colony 

  Tot : Total Number of Ants Deployed 

  Nmig: Number of Ants to Migrate 

 TotNmig: Total number of Ants to Migrate 

Begin  

1:partition the Bug Reports to N folds 

2:initialize Ant colonies for T,L,F,R,RP 

3:for each Ant Colony 

4:  set number of ants= Total number of top developers  

5:for   fold =1 to N 

6:  repeat until ants reach Top developer more than 4 times 

7:  repeat until ants reach Top developer node 

8:  deploy Ants from first assignee node 

9:  choose Next node by Probability Equation 

10: lay Pheromone 

11: deploy ants  

12:endfor 

/* Adapt the Number of Ants */ 

13:for  each Ant Colony  

14: Nmig= ((Best -  B)/100)*Tot 

15: Number of ants= Number of ants – Nmig  

16: TotNmig= TotNmig+ Nmig 

17:endfor  

18:order according to increasing order Best Solution  

19:for  each Ant Colony  

20: Number of ants = Number of ants + TotNmig/2 

21: TotNmig= TotNmig- TotNmig/2 

22:endfor   

23:N++ 

24:endfor/* fold =1..N*/  

End 
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6.5.3  Performance Evaluation 

 The experiments were conducted in a Pentium4 Processor machine with 

320 GB hard disk. The front end used was Netbeans 7.2 and backend was Oracle 

10g. The JDK tool was used to conduct the experiments. The bug reports from 

bugzilla.org were downloaded from the year 2009 to 2013. Only bugs that with 

status resolved and finished and with a vote count of two were used to conduct the 

experiments. The experiments were conducted as three studies. The study 1 

comprises bug reports from 2009 to 2011, the study 2 comprises bug reports from 

2009 to 2012 and study 3 comprises bug reports from 2009 to 2013.  The three 

studies were used to evaluate the consistency to the experiments. The Co-Ant 

algorithm deployed over the Enriched Collaboration Graph was compared against 

the existing GP-WBFS and the proposed AP-WBFS, Bi-Objective and BT-ANT 

with parameters Path Length, Precision, Recall and Path Similarity. The results were 

subject to one way ANOVA to study the statistical significance of the results.  

6.5.3.1  Path Length 

The performance of the Co-Ant with respect to Path Length parameter, 

compared with the existing GP-WBFS, proposed AP-WBFS, Bi-Objective and  

BT-ANT is rendered in the Figure 6.27, Figure 6.28 and Figure 6.29 for all the three 

data sets. From the experimental results, it is evident that among all the proposed 

system Co-Ant performs superiorly. The statistical analysis of the experimental 

performance is reported below. 

Hypothesis with respect to the result of the parameter P(Path Length) 

Null hypothesis H0 : P1 = P2 = P3 = P4=P5, where P1= Path Length obtained in 

GP-WBFS, P2 = Path Length obtained in AP-WBFS,P3 = Path Length obtained in 

Bi-Objective, P4=Path Length obtained in BT-ANT and P5=Path Length obtained in 

Co-Ant 

(There is no significant difference among the five systems in terms of Path Length 

obtained) 
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Alternate hypothesis H13: Path Length mean values are not equal for at least one 

pair of the result mean values of the parameter P.  

(There is a significant difference among the five systems in terms of Path Length 

obtained) 
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 Figure 6.27: Co-Ant: Path Length for Study 1 
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Figure 6.28: Co-Ant : Path Length for Study 2 
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Figure 6.29:   Co-Ant : Path Length for Study 3 

Hypothesis Evaluation with respect to P (Path Length) 

Table 6.5: ANOVA for GP-WBFS, AP-WBFS, Bi-Objective, BT-ANT and Co-

Ant based on Path Length 

Hypothesis 
Technique 

Study 

Path 

Length 

I II III IV V p value 

H13 
GP-

WBFS 

AP-

WBFS 

   Study 1 <0.0001 

Bi-

Objective 
BT-ANT Co-Ant Study 2 <0.0001 

   Study 3 <0.0001 

 

From the Table 6.5, it is concluded that the calculated significant  level 

of the parameter Path Length by comparing the five systems namely, GP-

WBFS,AP-WBFS, Bi-Objective ,BT-ANT and Co-Ant always satisfy the condition 

(p value<0.05) for all the three studies. There is significant difference among the 

results for different Path Length values of the above five systems namely, GP-

WBFS, AP-WBFS, Bi-Objective, BT-ANT and Co-Ant. Hence, the null hypothesis 

for H13 may be rejected.  
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Figure 6.30: Co-Ant : Weighted Average Path Length 

 The results obtained from the three studies are consolidated using the 

Weighted Average method.  From the Figure 6.30, it is evident that Co-Ant 

outperforms GP-WBFS, AP-WBFS and Bi-Objective with respect to Path Length. 

The rate of increase of Path Length of Co-Ant with respect to GP-WBFS is 6.74. 

6.5.3.2  Precision 

 The performance of the Co-Ant with respect to Precision 

parameter,compared with the existing GP-WBFS, proposed AP-WBFS, Bi-

Objective and BT-ANT is rendered in Figure 6.31, Figure 6.32 and Figure 6.33 for 

all the three data sets. From the experimental results, it is evident that among all the 

proposed system Co-Ant performs superiorly. The ANOVA analysis of the 

experimental performance is given below. 

Hypothesis with respect to the result of the parameter PR(Precision) 

Null hypothesis H0: PR1 = PR2 = PR3 = PR4 = PR5, where PR1= Precision 

obtained in GP-WBFS, PR2 = Precision obtained in AP-WBFS, PR3 = Precision 

obtained in Bi-Objective, PR4=Precision obtained in BT-ANT and PR5=Precision 

obtained in Co-Ant. 
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(There is no significant difference among the five systems in terms of Precision 

obtained) 

Alternate hypothesis H14: Precision means values are not equal for at least one pair 

of the result mean values of the parameter PR.  

(There is a significant difference among the five systems in terms of Precision 

obtained) 
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Figure 6.31: Co-Ant: Precision for Study 1 
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Figure 6.32: Co-Ant: Precision for Study 2 
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Figure 6.33: Co-Ant: Precision for Study 3 

Hypothesis Evaluation with respect to PR (Precision) 

Table 6.6:  ANOVA for GP-WBFS, AP-WBFS,  Bi-Objective, BT-ANT and 

Co-Ant based on Path Length 

Hypothesis 
Technique 

Study 
Precision 

I II III IV V p value 

H14 
GP-

WBFS 

AP-

WBFS 

   Study 1 <0.0001 

Bi-

Objective 

BT-

ANT 
Co-Ant Study 2 <0.0001 

   Study 3 <0.0001 

 

From the Table 6.6, it is concluded that the calculated significant level of 

the parameter - Precision by comparing the five systems namely, GP-WBFS, 

AP-WBFS, Bi-Objective, BT-ANT and Co-Ant always satisfy the condition  

(p value<0.05) for all the three studies. There is significant difference among the 

results for different Precision values of the above five systems namely, GP-WBFS, 

AP-WBFS, Bi-Objective, BT-ANT and Co-Ant. Hence, the null hypothesis for H14 

may be rejected.  
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The results obtained from the three studies are consolidated using the weighted 

average Precision.  Based on which, the results are consolidated in the Figure 6.34. 
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Figure 6.34: Co-Ant: Weighted Average Precision 

The rate on increase of Precision of Co-Ant with respect to GP-WBFS is 0.708. 

6.5.3.3  Recall 

The performance of the Co-Ant with respect to Recall parameter, 

compared with the existing GP-WBFS, proposed AP-WBFS, Bi-Objective and  

BT-ANT is  rendered in Figure 6.35, Figure 6.36 and Figure 6.37for all the three 

data sets. From the experimental results, it is evident that among all the proposed 

systems, Co-Ant performs superiorly. The statistical analysis of the experimental 

performance is given below. 

Hypothesis with respect to the result of the parameter R: (Recall) 

Null hypothesis H0 : R1 = R2 = R3 = R4 = R5, where R1= Recall obtained in GP-

WBFS, R2 = Recall obtained in AP-WBFS,R3 = Recall obtained in Bi-Objective, 

R4=Recall obtained in BT-ANT and R5=Recall obtained in Co-Ant. 
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(There is no significant difference among the five systems in terms of Recall 

obtained) 

Alternate hypothesis H15: Recall mean values are not equal for at least one pair of 

the result mean values of the parameter R.  

(There is a significant difference among the five systems in terms of Recall 

obtained) 
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Figure 6.35: Co-Ant: Recall for Study 1 
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Figure 6.36: Co-Ant: Recall for Study 2 
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Figure 6.37: Co-Ant: Recall for Study 3 

Hypothesis Evaluation with respect to R (Recall) 

Table 6.7:  ANOVA for GP-WBFS, AP-WBFS,  Bi-Objective,  BT-ANT and 

Co-Ant based on Recall 

Hypothesis 
Technique 

Study 
Recall 

I II III IV V p value 

H15 
GP-

WBFS 

AP-

WBFS 

   Study 1 <0.0001 

Bi-

Objective 

BT-

ANT 
Co-Ant Study 2 <0.0001 

   Study 3 <0.0001 

 

From the Table 6.7, it is concluded that the calculated significant level of 

the parameter Recall by comparing the five systems namely, GP-WBFS, AP-WBFS, 

Bi-Objective, BT-ANT and Co-Ant always satisfy the condition (p value<0.05) for 

all the three studies. There is significant difference among the results for different 

Recall values of the above five systems namely, GP-WBFS, AP-WBFS, Bi-

Objective, BT-ANT and Co-Ant. Hence, the null hypothesis for H15 may be 

rejected.  
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The results obtained from the three studies are consolidated using the 

Weighted Average Recall in the Figure 6.38. 
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Figure 6.38: Co-Ant: Weighted Average Recall 

The rate on increase of Precision of Co-Ant with respect to GP-WBFS is 2.05. 

6.5.3.4  Path Similarity 

The performance of the Co-Ant with respect to Path Similarity 

parameter, compared with the existing GP-WBFS, proposed AP-WBFS, 

Bi-Objective and BT-ANT is manifested in Figure 6.39, Figure 6.40 and Figure 

6.41for all the three data sets. From the experimental results, it is evident that among 

all the proposed systems, Co-Ant performs superiorly. The statistical analysis of the 

experimental performance is given below. 

Hypothesis with respect to the result of the parameter PS (Path Similarity) 

Null hypothesis H0 : PS1 = PS2 = PS3 = PS4 = PS5, where PS1= Path Similarity 

obtained in GP-WBFS, PS2 = Path Similarity obtained in AP-WBFS,PS3 = Path 

Similarity obtained in Bi-Objective, PS4=Path Similarity obtained in BT-ANT and 

PS5=Path Similarity obtained in Co-Ant. 
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(There is no significant difference among the five systems in terms of Path 

Similarity obtained) 

Alternate hypothesis H16: Path Similarity mean values are not equal for at least one 

pair of the result mean values of the parameter PS.  

(There is a significant difference among the five systems in terms of Path Similarity 

obtained) 
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Figure 6.39: Co-Ant: Path Similarity for Study 1 
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Figure 6.40: Co-Ant: Path Similarity for Study 2 
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Figure 6.41: Co-Ant: Path Similarity for Study 3 

Hypothesis Evaluation with respect tops (Path Similarity) 

 

Table 6.8:  ANOVA for GP-WBFS, AP-WBFS, Bi-Objective, BT-ANT and 

Co-Ant based on Path Similarity 

Hypothesis 
Technique 

Study 

Path 

Similarity 

I II III IV V p value 

H16 
GP-

WBFS 

AP-

WBFS 

   Study 1 <0.0001 

Bi-

Objective 
BT-ANT Co-Ant Study 2 <0.0001 

   Study 3 <0.0001 

 

From the Table 6.8, it is assured that the calculated significance level of 

the parameter Path Similarity by comparing the five systems namely, GP-

WBFS,AP-WBFS, Bi-Objective, BT-ANT and Co-Ant always satisfy the condition  

(p value<0.05) for all the three studies. There is significant difference among the 

results for different Path Similarity values of the above five systems namely,  

GP-WBFS,AP-WBFS, Bi-Objective, BT-ANT and Co-Ant. Hence, the null 

hypothesis for H16 may be rejected.  
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The results obtained from the three studies are consolidated using the 

Weighted Average Path Similarity and are illustrated in the Figure 6.42. 
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Figure 6.42: Co-Ant: Weighted Average Path Similarity 

 The rate on increase of Path Similarity of Co-Ant with respect  

to GP-WBFS is 9.84. 

6.6  SUMMARY 

This chapter presents a Bug Triage System based on ant system. The 

OSS development model is an evolving, dynamic model of development.  The 

relationship among the developers is modeled based on their tossing activities.The 

Bug Triage System based on ant system is deployed over the Bug Toss Graph. The 

ant system implements adaptivity by using the positive and negative feedback 

mechanism.  The implementation of adaptive techniques for Bug Triage over the 

Bug Toss Graph delivers promising results. 

This chapter also casts the Bug Toss Graph as Enriched Collaboration 

Graphs. The Enriched Collaboration Graph is rich in structure, as it captures the 

social structure by adding dimensions to the relationship that exist among the 

developers. The multi objective cooperating ant algorithm is used on the Enriched 

Collaboration Graph to infer the set of developers who can collaborate on a bug. The 
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cooperating ant algorithm is adaptive in nature. It converges more rapidly towards a 

solution because of the ant migration feature embedded in it. This ant migration 

feature helps the solution to be achieved at a faster rate. Further, the entire path 

learning concept is contained in an Incremental Learning framework. The 

Incremental Learning framework helps in adjusting the underlying graph according 

to the changes added to the underlying structure. The fixed window Incremental 

Learning framework is applied in the Ameliorated Bug Triage System.  

The experimental results indicate that the Bug Triage System based on 

Co-Ant algorithm outperforms the existing Bug Triage System based on GP-WBFS 

with respect to the parameters - Precision, Recall and Path Similarity. The Bug 

Triage System based on Co-Ant algorithm outperforms AP-WBFS, Bi-Objective 

and BT-ANT with respect to the parameters - Path Length, Precision, Recall and 

Path Similarity. 
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CHAPTER - 7 

HOLISTIC EVALUATION FRAMEWORK: INTEGRATION 

OF DEVELOPER PERFORMANCE 

 

7.1  PREAMBLE 

This chapter furnishes an Holistic Evaluation Framework for Bug Triage 

System by integrating the performance of the developers. Key Performance 

Indicators(KPI)are proposed for appraising a developer‟s effectiveness in 

contribution towards the resolution of the bug. The Bug Triage System retrieves a 

set of developers for resolving a bug.  By applying the KPIs on the retrieved set of 

developers, the Bug Triage System is evaluated quantitatively. This is because the 

metrics that are used to evaluate the Bug Triage System in the literature is only 

recommendation centric [95]. That is the existing metrics cover only the correctness, 

coverage, etc of the Bug Triage System. There is a need for user centric evaluation 

of the Bug Triage System. 

7.2  DEVELOPER PERFORMANCE ASSESMENT 

Developer Performance Assessment is a necessity in identifying the 

strength and weakness of a developer, for career advancement, and fine tuning a 

business organization [96]. Contribution of a developer towards the software 

maintenance is quite different from a developer‟s contribution in developing a 

software product.  Measuring a developer‟s contribution towards the maintenance of 

an OSS System is even more complicated. This is because there are no explicit 

assigned roles for the developers. But, yet, there are different roles a developer may 

assume in the course of bug resolution.  

The different roles that the developer may play are reporter of a bug, 

triager, commenter and assignee [97]. In OSS, usually there are metrics for 

evaluating the bug characteristics. These metrics focus on the program slicing 
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characteristics of the bug like number of lines of code affected by the bug, 

Cyclomatic Complexity of the bug, etc [98]. But, these metrics are underutilised in 

evaluating the Bug Triage System.  Further, the developer‟s performance may be 

assessed based on Buggy commits, code contributions and priority bugs. Buggy 

commits are used to identify developers who performed less buggy commits. Code 

contribution is measured in terms of code addition, code removal, method addition 

and method modification. The developer may also be assessed in terms of the 

number of high priority bug that he has resolved [99]. In most of the existing works, 

developer‟s performance assessment is treated as an independent module. In the 

following section,the developer‟s performance assessment is integrated in the 

evaluation of the Bug Triage System. There are several KPIs proposed to assess the 

developer. These indicators are then utilized in quantifying the performance of the 

Bug Triage System. 

7.2.1  Key observations from the dataset 

This section gives a brief preview of the various factors that affect the 

bug resolution which is observed in the dataset. The bug reports of Eclipse project 

from www.bugzilla.org from 2009 to 2013 were analyzed. The developers 

contribution for the various fields in the bug report like CC, status, Keywords, 

Summary priority, Assignee, resolution etc are given in the Figure 7.1.It is evident 

that 62% of the developers change the status of the bug to „resolved‟. 

STATUS
12%

RESOLUTION
62%

CC
2%

KEYWORDS
5%

SUMMARY
1%

PRIORITY
16%

ASSIGNEE
2%

Developer Contribution Distribution

 

Figure 7.1: Developer Contribution Distribution 
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The average time spent by a developer on a particular field of the bug 

report is given in the Figure 7.2. As it can be observed, the time spent to set the 

assignee field, status field and resolution field   contribute mostly in the bug 

resolution time.  

STATUS
21%

RESOLUTION
18%

CC
7%

KEYWORDS
11%

SUMMARY
9%

PRIORITY
9%
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20%
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5%

Developer Time Distribution w.r.t Bug field

 

Figure 7.2: Developer Time Distribution w.r.t Bug field 

The developer distribution with respect to the time spent by a developer 

on a particular bug is given in the Figure 7.3.  It can be observed that 39% of the 

developers spend 121 to 700 days on a particular bug. Only 17% of the developers 

spend less than 6 months on a bug. Any Bug Triage System that extracts its set of 

developers mostly from this pool of 17% is a successful triage system. 

0-20
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21-40
4% 41-80

5% 81-120
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39%
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2001-2500
10%

Developer Distribution w.r.t Time 

 

Figure 7.3: Developer Distribution w.r.t  Time 
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The Figure 7.4 shows the Developer Distribution against the range of 

Bug Resolution Time, measured in days. It can be observed that the most ineffective 

bug resolution is when the bug resolution time is more than 2 years. There are 44% 

of developers who spend time on bug whose resolution time is > 2 years. It can be 

observed from the chart that only 25% of developer has spent time in bugs that were 

resolved before six months. The motivation behind any Bug Triage System is to 

retrieve the developers from this pool of 25% of developers. 
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3% 21to50

9% 51to100
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Figure 7.4: Developer Distribution w.r.t Bug Resolution Time 

Based on these observations, the Key Performance Indicators for 

assessing the Developer is introduced in the next section. 

7.3  KEY PERFORMANCE INDICATORS FOR ASSESSING 

DEVLOPER PERFORMANCE 

The KPIs introduced to assess the developer are Developer Time 

Index,Developer Effective index and Developer Productivity. The Developer Time 

Index, Developer Effective index and Developer Productivity are derieved from 

Developer Contribution Count and Developer Contribution Time. The dependencies 

among the KPIs are depicted in Figure 7.5. 
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Figure 7.5: Dependency in the Key Performance Indicators 

The various kinds of contribution which are contributed by the 

developers are reassign the bug, change the Status field or finally resolve the bug. 

For convenience, all the contributions are equally treated.   

7.3.1  Developer Contribution Count 

Developer Contribution Count (DCC) is defined as the number of 

contributions made by each developer   in the process of resolving them. 

    ∑  

 

 

 

where, Ci - Contribution by a developer to a single bug. 

 n - Total number of bugs assigned to a developer 

7.3.2  Developer Contribution Time 

Developer Contribution Time (DCT) is defined as the time taken by 

each developer to make a contribution on a single bug.  

Developer 

Contribution 

Count 

Developer 

Contribution 
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Developer 

Time Index 
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Developer 

Productivity 
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     ∀                ∑          

where,  DBR- Date of Bug Reassignment 

 DBA – Date a Bug Assignment 

7.3.3  Developer Time Index 

Developer Time Index (DTI) is defined as the ratio of DCT to DCC. 

This indicator captures the amount of time taken by a developer to make a single 

contribution. 

    
   

   
 

7.3.4  Developer Effectiveness Index 

 The bug resolution time is considered to calculate the Developer 

Effectiveness Index (DEI).  The intuition behind DEI is that, if a developer has 

contributed towards a bug that has been resolved with less time,  then the 

developer‟s effectiveness is increased. Contrarily, if a developer has contributed 

towards a bug that has taken a long time to resolve, then the weight assigned to the 

developer is reduced.  

Table 7.1: Weight Assignment Table 

Bug Resolution Time  ( in days) Weights 

7– 20 7 

21-50 6 

51-100 5 

101-150 4 

151-300 3 

301-400 2 

401-700 1 

701-1000 -0.25 

1001-3500 -0.50 
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The bugs for 10 years were studied and the Resolution Time (RT) was 

extracted. RT varies from lower to higher values. RT was divided into nine ranges 

and their weights were assigned as given in the Table 7.1. The highest weight is 

assigned to the range of Resolution Time that falls between 7 to 20 days. Negative 

weights are assigned to a range which took more than 700 days to resolve a bug. 

The weights given here are inversely proportional to RT. 

Weight (Wi)α
 

  
 

 DEI is defined as the ratio of the summation of Weights    of the bugs to the DCC. 

Developer Effectiveness Index DEI = 
 

   
∑   

   
  

7.3.5  Developer Productivity 

Developer Productivity (DP) is defined as the product of Developer 

Effectiveness Index, Developer Contribution Count and the Developer Time Index. 

                

7.3.6  A Holistic Evaluation Framework with Developer Performance  

The framework for evaluating the Bug Triage System is given in the 

Figure 7.6. The Bug Triage System extracts the optimal set of developers. KPIs of 

the retrieved developers are calculated and thereby, the Bug Triage System is 

assessed. 
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Figure 7.6: A Holistic Evaluation Framework with Developer Performance 

7.3.6.1 Performance Evaluation of Bug Triage System with KPIs 

The performance of the existing system GP-WBFS, BT-ANT and the 

Co-Ant were analyzed using the KPIs of Developer Productivity, Developer 

Effectiveness and Developer Time Index.  The existing GP-WBFS was compared 

only with BT-ANT and the Co-Ant because only in these systems adaptive learning 

was adopted. The graph for Developer Time Index is given in the Figure 7.7. It is 

evident from the Figure 7.7 that the Developer Time Index for the proposed Co-Ant 

as well as the BT-ANT is skewed towards Developer Time Index of<300. Almost 

85% of the retrieved developers by Co-Ant has a Developer Time Index of <300 and 

65% of the developers retrieved by BT-ANT has a Developer Time Index of 

<300,whereas in the existing GP-WBFS, 77% of the developers have a Developer 

Time Index >300. 
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Figure 7.7: Developer Time Index 

The performance of the systems for Developer Effectiveness Index is 

given in the Figure 7.8. Developer Effectiveness Index encodes the contribution of 

the developers for bugs that were resolved in a shorter period of time. 

From the graph, it is evident that 88% of the developers retrieved by  

Co-Ant possess a Developer Effectiveness Index of  >60 and 78% of the developers 

retrieved by the BT-ANT possess a Developer Effectiveness Index of >60, whereas 

in the developers retrieved by GP-WBFS, 78% of the developers have a Developer 

Effectiveness Index of <60.  
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Figure 7.8: Developer Effectiveness Index 
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The performance of the systems for Developer Productivity is given in 

the Figure 7.9. Developer Productivity is a cumulative index that encodes the 

Developer Effectiveness, Developer Time Index and Developer Contribution Count.  

From the Figure 7.9, it is evident that 91% of the developers retrieved by 

Co-Ant possess a Developer Productivity of >50 and 75% of the developers 

retrieved by the BT-ANT possess a Developer Productivity  of  >50, whereas in the 

developers retrieved by GP-WBFS, 73% of the developers have a Developer 

Productivity of <50.  
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Figure 7.9: Developer Productivity 

7.4  SUMMARY 

This chapter presents an Holistic Evaluation Framework for Bug Triage 

using the performance of the developers. The existing metrics that were used to 

evaluate the Bug Triage System were recommendation centric. The recommendation 

centric metrics evaluated the correctness and completeness of the recommendation 

mostly based on Precision and Recall measures. This chapter adds a new dimension 

to the evaluation of the Bug Triage System. A new evaluation metrics based on the 

usefulness of the Bug Triage System are proposed. This is done by computing Key 

Performance Indicator values for the performance of the developers involved in the 

bug resolution. These calculated indices are then utilized to evaluate the Bug Triage 

System. 
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CHAPTER - 8 

CONCLUSION AND FUTURE ENHANCEMENT 

 

8.1  CONCLUSION 

Over the years, the OSS model has evolved to a potent phase. While the 

straightforward benefit of OSS is licence free software, the ancillary benefit is the 

availability of software repositories in the public domain. The software repositories 

contain the DNA of a software project. The information in these repositories can be 

utilized in making decisions so as to ease the OSS maintenance. Bug management 

forms a significant aspect of OSS maintenance.  Bug management encompasses Bug 

Triage, reassignment of bug and finally, resolving of the bug. Bug Triage has proved 

to be sluggish and erroneous, if done manually. Under these circumstances, 

automated support to Bug Triage is unavoidable.  

 The main goal of this thesis is to ameliorate the Bug Triage process by 

making  the following contributions: 

 i)  An Enriched Collaboration Graph was developed. The Enriched 

Collaboration Graph augments the Number of tosses with 

additional attributes like Recentness, Frequency, Longevity and 

Reciprocity that exist in the relationship among the developers.  

First, the performance of the GP model was compared with the AP 

model. The data for the experiments were the bug reports of Eclipse 

project for the period from 2009 to 2013 from the website - 

www.bugzilla.org.  AP model was designated as the model for Bug 

Toss Graph based on its performance in terms of the parameters 

viz., Path Length, Precision, Recall and Path Similarity. The Bi-

Objective Optimaization algorithm for Bug Triage was used over 

the AP model. Further, the Bug Toss Graph was enhanced to an 

Enriched Collaboration Graph. 
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 ii)  Adaptive techniques based on ant systems have been designed and 

implemented for retrieving the referral chain of developers.The Bug 

Triage System based on Ants was developed as the learning model 

for the Bug Toss Graph based on AP model. The same dataset was 

utilized for the experiments.  The Bug Triage System based on Ants 

outperformed the baseline system based on GP-WBFS as well as 

the proposed AP-WBFS comprehensively. Moreover, the Multi-

Objective Co-Ant algorithm was deployed on the Enriched 

Collaboration Graph. The Co-Ant algorithm excelled the Bug 

Triage System based on Ants in terms of parameters viz., Path 

Length, Precision, Recall and Path Similarity. 

iii)  An Holistic Evaluation Framework has been developed to evaluate 

the proposed Ameliorated Bug Triage System. The evaluation of 

the Ameliorated Bug Triage System was performed using the 

recommendation metrics viz., Precision and Recall as well as user 

metrics.Further, the Path Similarity metric based on Levenshtein 

Similarity has been developed to reinforce the recommendation 

metrics. The user metrics have their base in the developer 

performance encoded as KPIs of Developer Productivity, 

Developer Effectiveness and Developer Time Index. 

 The experimental results were subject to statistical evaluation by 

ANOVA. The statistical analysis substantiated that there was a significant difference 

in performance between the Ameliorated Bug Triage System based on the base line 

GP-WBFS and the proposed AP-WBFS, Bi-Objective, BT-ANT and Co-Ant 

algorithms. Thus, the Ameliorated Bug Triage System has been envisioned and 

implemented successfully. 

8.2  FUTURE ENHANCEMENT 

 The Bug Triage process can be enhanced further by integrating the social 

context of the developers in the collaboration graph.  
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 The collaboration among the developers can be modeled in the 

underlying graph structure. The current graph model uses a probabilistic graph 

model to capture the developer structure. This structure encodes the intensity of the 

bug transfers among the developers in the bug resolution. However, the objective of 

the Bug Triage System is to resolve a bug and retrieve the efficient developers. The 

temporal aspect of „How much time a developer takes to toss a bug‟ is mostly 

ignored. This information can be built into the graph model by applying 

Probabilistic Timed Automata to capture the underlying graph structure. 

In this thesis, attempt has been made to develop an Holistic Evaluation 

Framework for the Bug Triage System in a coarse grained manner. It is coarse 

grained in the sense that the KPIs are based on the number of contributions, time 

taken for developer contribution and time taken for bugs to be resolved. This can be 

fine grained by adding additional layers like type, product, component, the operating 

system etc to these KPIs. Further, at present, there is no differentiation among the 

developers in terms of their roles. In future, the roles played by the developers can 

also be incorporated in the evaluation framework. 

The social context of the developer is at present modeled based on the 

tosses, comments or both. Other additional dimensions like the geographical 

location, time zone, ethnicity, etc., can also be integrated to scrutinize the social 

context of the developer. 
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