

COMPREHENSIVE APPROACH FOR DATA

WAREHOUSE SCHEMA DESIGN AND

MANAGEMENT

A THESIS

submitted to Pondicherry University in partial

fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

M.THENMOZHI

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PONDICHERRY ENGINEERING COLLEGE

PUDUCHERRY – 605 014

INDIA

JANUARY 2015

ii

PONDICHERRY UNIVERSITY

PUDUCHERRY – 605 014

CERTIFICATE

 This is to certify that this thesis titled “COMPREHENSIVE

APPROACH FOR DATA WAREHOUSE SCHEMA DESIGN AND

MANAGEMENT” submitted by Mrs. M.THENMOZHI, Department of

Computer Science and Engineering, Pondicherry Engineering College, Puducherry,

India for the award of the degree of Doctor of Philosophy in Computer Science

and Engineering is a record of bonafide research work carried out by her under my

guidance and supervision.

 This work is original and has not been submitted, in part or full to this or

any other University / Institution for the award of any other degree.

Place: Puducherry Dr. K.VIVEKANANDAN

Date: (SUPERVISOR)

 Professor

 Department of Computer Science and

 Engineering

 Pondicherry Engineering College

 Puducherry – 605 014

 India.

iii

DECLARATION

 I hereby declare that this thesis titled “COMPREHENSIVE

APPROACH FOR DATA WAREHOUSE SCHEMA DESIGN AND

MANAGEMENT” submitted to the Department of Computer Science and

Engineering, Pondicherry Engineering College, Puducherry, India for the award

of the degree of Doctor of Philosophy in Computer Science and Engineering is

a record of bonafide research work carried out by me under the guidance and

supervision of Dr. K. Vivekanandan, Professor, Department of Computer

Science and Engineering, Pondicherry Engineering College and that this has not

formed the basis for the award of any other degree by any University / Institution

before.

Place: Puducherry M.THENMOZHI

Date:

iv

ABSTRACT

 Data warehousing provides an excellent approach for any organization in

transforming operational data into useful and reliable information to support the

decision making process. The data warehouse must be structured according to the

multidimensional format in order to facilitate business analysis by Online Analytical

Processing (OLAP) or data mining tools. This multidimensional schema of the data

warehouse allows an organization to have a business-oriented view of the data.

Though, a number of research works have been carried out on how a

multidimensional schema should be designed and managed, there is no systematic,

well structured and comprehensive design process available yet. Hence, the overall

objective of this research is to study the issues related to the design and management

of the data warehouse schema and provide solutions that would assist in the

improved design process.

The design of the multidimensional schema in the literature is carried out

either from the business requirements or data source. In several cases, the

requirements are not well captured or the data source is not well understood. This

may lead to several rounds of reconciliation and redesign. The existing work, though

tried to automate the design process, they do not fully utilize the knowledge in the

requirements and the source. Hence, in this research an ontology based

multidimensional (OntoMD) schema design approach has been proposed. The

OntoMD approach follows a hybrid methodology to reconcile both the requirements

and the source. The proposed work generates the multidimensional schema

automatically covering different phases of the data warehouse design. A design tool

has been developed to carry out the steps of the OntoMD approach. To illustrate the

proposed approach it has been applied to a case study, and the output is evaluated

using schema quality metrics.

The data warehouse schema may evolve during the design or at later stage of

implementation The reasons for evolution are due to changes in business

v

requirements and the autonomous nature of the data sources. The existing works

mainly handle the schema changes at the physical level, and hence results in high

maintenance cost. And moreover, the impact of changes over the schema has not

been much investigated. To address these problems an ontology supported

evolution approach (OntoEvol) has been proposed in this research. The OntoEvol

approach allows the automatic restructuring of the data warehouse schema, when

requirements or the source evolves. This approach also analyzes the impact of a

change and performs automatic adaptation of the dependent entities. OntoEvol has

been applied to a case study and also it is evaluated for its effectiveness to propagate

changes and its efficiency to automatically adapt the dependent entities.

To enhance the performance of the queries, the data warehouse schema

needs to be partitioned during the design. Existing approaches on data warehouse

schema partitioning provide algorithms for selecting optimal fragments or partitions.

Other issues such as the dimension table selection, attributes selection,

fragmentation of big dimension and partition management has only been partially

explored. To solve these issues an optimized partitioning approach (ORP) has been

proposed in this research. The ORP provides horizontal and mixed partitioning, and

also it enables the partitions to be managed in case of query evolution. A case study

has been used to illustrate and evaluate the ORP approach. The obtained results

show that the application of ORP over the given data warehouse results in improved

query performance.

 Several comparisons are made for the proposed OntoMD, OntoEvol and

ORP approaches with the existing methods. Here, the experimental results show a

significant improvement in the performance on various parameters. Finally, the

limitations of this research are identified and presented for further research.

vi

ACKNOWLEDGEMENT

I thank all those who directly or indirectly contributed to the completion of

this thesis. It is a pleasure to convey my gratitude to them all in my humble

acknowledgment.

First, I thank The Almighty for blessing, protecting and guiding me

throughout my research work.

I would like to express my deepest sense of gratitude to my supervisor

Dr. K. Vivekanandan, Professor, Department of Computer Science and

Engineering, Pondicherry Engineering College who offered his constant guidance,

support, and untiring help throughout the course of this thesis. I also thank him for

his continuous advice and encouragement during my research activities.

I sincerely thank Dr. D. Govindarajulu, Principal, Pondicheny Engineering

College and Dr. V. Prithiviraj, Former Principal, Pondicherry Engineering College

for granting permission and rendering support to carry out the research work.

I am grateful to my Doctoral Committee members Dr. S. Saraswathi,

Professor and Head, Department of Information Technology, Pondicherry

Engineering College and Dr. S. Siva Sathya, Associate Professor, Department of

Computer Science, Pondicherry University for their constructive comments on this

thesis.

I would like to express my thanks to Dr. S. Himavathi, Dean (Research),

Pondicherry Engineering College, for providing a peaceful working environment

during the research work in this institute.

My sincere thanks to Dr. D. Loganathan, Professor and Head, and former

Head of the Department, Professor Dr. N. Sreenath, Department of Computer

vii

Science and Engineering, Pondicherry Engineering College, for providing a peaceful

working environment and for their moral support in pursuing this research.

I also thank my colleagues of Department of Computer Science and

Engineering and Department of Information Technology, Pondicherry Engineering

College for their valuable suggestions.

I specially thank Dr. P. Salini and Ms. J. I. Sheeba for being very good

friends. Their critical remarks and suggestions have always been very helpful in

improving my skills and for strengthening my research work.

I acknowledge all my students for their help and support with a special

mention to G. Gayathree, R. Anandaraj and S. Rajasri.

I would also thank the Technical, Non-Technical staff members of

Department of Computer Science and Engineering, Pondicherry Engineering

College, for their support and cooperation.

My heartfelt gratitude to my parents, Mr. S. Muruganandam and

Mrs. M. Anbukkarasi who supported me the most through all my life and my

education.

Most importantly, I thank my beloved husband A. Shunmugasundaram

who is the source of inspiration for pursuing this research and my kids S.Thanuja

and S.Srijith for their love, which helped me to progress in my work.

Finally, I thank all my other friends and well wishers for their motivation

during my research.

M.Thenmozhi

viii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iv

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF ABBREVIATIONS xvii

1 INTRODUCTION 1

1.1 GENERAL 1

1.2 AN OVERVIEW OF DATA WAREHOUSE

 SYSTEM 1

1.3 DATA WAREHOUSE LIFE CYCLE 7

1.4 MULTIDIMENSIONAL MODEL 10

1.5 DATA WAREHOUSE SCHEMA DESIGN AND

 MANAGEMENT 12

1.6 ONTOLOGY FOR DATA WAREHOUSE DESIGN 15

1.7 MOTIVATION 16

1.8 PROBLEM STATEMENT 17

1.9 RESEARCH OBJECTIVES 18

1.10 RESEARCH CONTRIBUTIONS 19

1.11 ORGANIZATION OF THE THESIS 20

2 LITERATRUE REVIEW 22

2.1 INTRODUCTION 22

2.2 DATA WAREHOUSE SCHEMA DESIGN

 APPROACHES 23

 2.2.1 Traditional Approaches 24

 2.2.2 Ontology Based Approaches 26

 2.2.3 Comparitive Analysis of Schema Design

 Approaches 28

ix

CHAPTER NO. TITLE PAGE NO.

2.3 DATA WAREHOUSE SCHEMA EVOLUTION

 APPROACHES 33

 2.3.1 Schema Evolution Approaches 34

 2.3.2 Schema Versioning Approaches 35

 2.3.3 Comparitive Analysis of Schema Evolution

Approaches 37

2.4 DATA WAREHOUSE SCHEMA PARTITIONING

 APPROACHES 40

 2.4.1 Single Table Partitioning Approaches 41

 2.4.2 Referential Partitioning Approaches 42

 2.4.3 Comparitive Analysis of Schema Partitioning

Approaches 43

2.5 SUMMARY 46

3 ONTOLOGY BASED APPROACH FOR DATA

 WAREHOUSE SCHEMA DESIGN 47

3.1 INTRODUCTION 47

3.2 OntoMD: PROPOSED ONTOLOGY BASED

 MULTIDIMENSIONAL SCHEMA DESIGN

 APPROACH 48

 3.2.1 Representation of Business Requirements and

 Data Source 49

 3.2.2 Analysis of the Data Source 53

 3.2.3 Reconciliation of Data Source and

Requirements 55

 3.2.4 Derivation of Dimension Hierarchy 56

 3.2.5 Generation of Logical Schema 57

 3.2.6 Enrichment of the Logical Schema 58

 3.2.7 Physical Schema Construction 60

 3.3 THE ONTOMD TOOL 61

x

CHAPTER NO. TITLE PAGE NO.

 3.4 CASE STUDY: TPC-H 66

 3.5 RESULTS AND DISCUSSION 75

 3.5.1 Experimental Setup 76

 3.5.2 Schema Quality Metrics 76

 3.5.3 Result Analysis 77

 3.6 SUMMARY 82

4 ONTOLOGICAL APPROACH TO HANDLE

 DATA WAREHOUSE SCHEMA EVOLUTION 83

 4.1 INTRODUCTION 83

 4.2 OntoEvol: PROPOSED ONTOLOGICAL

EVOLUTION APPROACH 84

 4.2.1 Input Formalization 85

 4.2.2 Definition of Evolution Operators 87

 4.2.3 Change Information Extraction 89

 4.2.4 Change Identification 89

 4.2.5 Change Propagation 92

4.3 PROPOSED AUTOMATIC ADAPTATION 95

4.4 CASE STUDY : TPC-H 100

4.5 RESULTS AND DISCUSSION 109

 4.5.1 Experimental Setup 109

 4.5.2 Effectiveness Analysis 111

 4.5.3 Efficiency Analysis 113

4.6 SUMMARY 118

5 OPTIMIZATION OF DATA WAREHOUSE

 SCHEMA PARTITIONING TECHNIQUES 119

 5.1 INTRODUCTION 119

 5.2 ORP: PROPOSED OPTIMIZED REFERENTIAL

 PARTITIONING APPROACH 120

xi

CHAPTER NO. TITLE PAGE NO.

 5.2.1 Dimension Table and Attribute Selection 121

 5.2.2 Fragment Schema Construction 124

 5.2.3 Optimal Fragment Selection 126

 5.2.4 Optimized Mixed Fragmentation for

 Big Dimension 129

 5.2.5 Fact Fragmentation 131

 5.3 PROPOSED PARTITION MANAGEMENT

 FOR EVOLVING QUERIES 131

 5.4 CASE STUDY : SSB (TPC-H) 134

 5.5 RESULTS AND DISCUSSION 149

 5.5.1 Experimental Setup 149

 5.5.2 Analysis of Dimension Selection Methods 150

 5.5.3 Analysis of Fragment Selection Methods 151

 5.5.4 Analysis of Mixed Fragmentation

Techniques 155

 5.6 SUMMARY 157

6 CONCLUSION AND FUTURE WORK 159

 6.1 CONCLUSIONS 159

 6.3 FUTURE RESEARCH DIRECTIONS 162

 REFERENCES 163

 LIST OF PUBLICATIONS 172

xii

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

1.1 Differences between Operational Database System and

Data Warehouse 5

2.1 Comparison of Traditional Approaches 30

2.2 Comparison of Ontology Based Approaches 31

2.3 Comparison of Evolution Approaches 37

2.4 Comparison of Partitioning Approaches 44

3.1 Comparision of design Tools 65

3.2 MDC Derived after Source Analysis 70

3.3 Results after matching between requirement and source 71

3.4 Results for schema quality generated by ontology based approaches 78

4.1 Evolution Operators 88

4.2 Change Set 103

4.3 Multidimensional Type 105

4.4 DWO Changed Concepts 105

4.5 Query and View Adaptation 109

4.6 Affected and Corrected Operations 110

4.7 Impact Analysis 115

5.1 Dim_Selection Matrix 122

5.2 Attribute_Selection Matrix 124

5.3 Fragment Schema 125

5.4 Query Attribute Matrix (QAM) 130

5.5 SSB Queries 136

5.6 Parameter Values 138

5.7 DimSelection Matrix 138

5.8 Attribute_Selection Matrix 139

5.9 Attribute Values for Date Dimension 139

5.10 Fragment Schema for Date Dimension 140

xiii

TABLE NO. TITLE PAGE NO.

5.11 Initial Solution 140

5.12 Initial Solution with Merging 141

5.13 Genetic Algorithm Parameters 142

5.14 Optimal Fragment Schema 143

5.15 Optimal Fragment Schema with domain values 143

5.16 Partition Tables and Partition Attributes 143

5.17 Fragment Schema after merging 144

5.18 Sample QAM for Customer Dimension 146

5.19 Aggregate Cost for Partition Solutions 148

5.20 Vertical Partitions 148

5.21 Predicates for Horizontal Fragmentation 148

5.22 Fragment Schema for Horizontal Fragmentation 149

5.23 Optimal Schema for Horizontal Fragmentation 149

5.24 Results for Dimension Selection Methods 150

5.25 Results for Fragment Selection Methods 152

5.26 Results for Mixed Fragmentation Methods 155

.

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

 1.1 Data Warehouse Architecture 6

 1.2 Business Dimension Lifecycle 8

 1.3 Multidimensional Model 10

 1.4 Star Schema 11

 1.5 Snowflake Schema 12

 3.1 Proposed OntoMD Approach 49

 3.2 Data Warehouse Requirement Ontology 50

 3.3 Ontology Integration 52

 3.4 FactDim Algorithm 54

 3.5 DimHierarchy Algorithm 56

 3.6 Data Warehouse Ontology 58

 3.7 Physical Schema Construction 60

 3.8 Components of OntoMD Tool 62

 3.9 Requirement Specification for TPC-H 68

 3.10 Ontology for TPC-H schema 69

 3.11 Conceptual Schema Representation 72

 3.12 Data Warehouse Ontology for Logical Schema 73

 3.13 Mapping between Tables in Logical Schema and Queries 74

3.14 Logical Schema for Data Warehouse 75

3.15 Correctness Analysis 78

3.16 Completeness Analysis 79

3.17 Minimality Analysis 80

3.18 Traceability Analysis 80

3.19 Interpretability Analysis 81

4.1 OntoEvol System 84

4.2 DW Requirement Ontology 86

4.3 DW Ontology 87

xv

FIGURE NO. TITLE PAGE NO.

4.4 Algorithm FindClassType 90

4.5 Algorithm FindDPType 91

4.6 Algorithm FindOPType 92

4.7 Algorithm ApplyChangeAddition 93

4.8 Algorithm ApplyChangeDeletion 94

4.9 Algorithm ApplyChangeRename 95

4.10 Algorithm UpdateMapping 97

4.11 Algorithm QueryRewrite 99

4.12 Data Warehouse Requirement 102

4.13 Data Warehouse Schema Ontology 105

4.14 Mapping Adjustments 107

4.15 Query Rewriting 108

 4.16 View Rewriting 108

 4.17 Distribution of occurrence per kind of evolution

operations 110

 4.18 No. of Attributes Affected and Corrected Status 111

 4.19 No. of Tables Affected and Corrected Status 112

 4.20 Comparison of Evolution Approaches 112

 4.21 Comparision of Manual and Automated

Adaptation Cost for Mapping 116

 4.22 Comparision of Manual and Automated

Adaptation Cost for Queries 116

 4.23 Comparision of Manual and Automated

Adaptation Cost for Views 117

 5.1 Proposed ORP Approach 121

 5.2 Dim_Selection Algorithm 123

 5.3 Fragment Construction Algorithm 125

 5.4 GAHC Algorithm 127

 5.5 Partition Management 132

 5.6 Trigger Refragmentation 133

xvi

FIGURE NO. TITLE PAGE NO.

 5.7 SSB Data Warehouse Schema 135

 5.8 Cross over Operation 142

 5.9 Mutation Operation 142

 5.10 New Query 144

 5.11 Inmon’s Star Schema 145

 5.12 Attribute Sets 146

 5.13 Solutions after Attribute Clustering 147

 5.14 Comparison of Query Cost for Dimension Selection

Methods 151

 5.15 Comparison of Individual Query Execution Time

for Fragment Selection Algorithms 153

 5.16 Comparison of Overall Query Execution Time

for Fragment Selection Algorithms 153

 5.17 Comparison of Individual Query Cost

for Fragment Selection Algorithms 154

 5.18 Comparison of Overall Query Cost

for Fragment Selection Algorithms 154

 5.19 Comparison of Individual Query Execution Time

for Mixed Approaches 156

 5.20 Individual Query Cost

for Mixed Approaches 156

xvii

LIST OF ABBREVIATIONS

AMDO - Automating Multidimensional Design from

 Ontologies

API - Application Programming Interface

CAA - Cost of Automated Adaptation

ChAO - Change Annotation Ontology

CMA - Cost of Manual Adaptation

DBGEN - Data Generator

DBMS - Database Management System

DDL - Data Definition Language

DSO - Data Source Ontology

DW - Data Warehouse

DWA - Data Warehouse Administrator

DWE - Data Warehouse Evolution

DWO - Data Warehouse Ontology

DWRO - Data Warehouse Requirement Ontology

ETL - Extract Transform Load

GAHC - Genetic and Hill Climbing

GEM - Generating ETL and Multidimensional designs

GUI - Graphical User Interface

I/O - Inputs and Outputs

IDE - Integrated Development Environment

LUMB - Leigh University Benchmark

MDC - Multidimensional Concepts

MVTDW - Multiversion Trajectory Data Warehouse

OBDW - Ontology based Data Warehouse

OLAP - Online Analytical Processing

OntoEvol - Ontology based Evolution Approach

OntoMD - Ontology based Multidimensional Design

ORP - Optimization of Referential Partitioning

xviii

ORP-H - Optimization of Referential Partitioning - Horizontal

ORP-M - Optimization of Referential Partitioning - Mixed

OWL - Web Ontology Language

PA - Partition Attributes

PT - Partition Tables

QAM - Query Attribute Matrix

QAM - Query Attribute Matrix

RDF - Resource Description Framework

SQL - Structure Query Language

SSB - Star Schema Benchmark

TPC-H - Transaction Processing Council Benchmark H

TPP - Transaction Processing Performance

UML - Unified Modeling Language

XML - Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The data warehouse (DW) has been extensively used by large organizations

for business analysis. It allows the top management to take critical decisions in order

to improve their business. In support of the decision making process the DW

integrates several heterogeneous data sources in multidimensional structures. As the

DW involves a multifaceted environment, the design of the multidimensional

schema and its management is a complex task, which is the focus of this research.

This chapter gives an introduction to the basic concepts underlying in this

research and the preface about the research work. Section 1.2 discusses the overview

of DW system. The detailed information about the life cycle of a DW is given in

section 1.3. Section 1.4 provides the details about the multidimensional model which

represents the DW schema. Section 1.5 discusses the DW schema design and

management aspects. The use of ontology for a DW is explained in section 1.6.

Section 1.7 provides the motivation behind this research. The problem statement is

described in section 1.8. Section 1.9 provides the objective of this research work.

Section 1.10 outlines the research contribution. Finally, section 1.11 provides the

organization of this thesis.

1.2 AN OVERVIEW OF DATA WAREHOUSE SYSTEM

Information is a very powerful asset that can provide significant benefits to

any organization and a competitive advantage in the business world. The

organizations have vast amounts of data but have found it increasingly difficult to

access it and make use of it. The reason is that, the data is in many different formats,

exists on many different platforms, and resides in many different file and database

2

structures (Poe et al., 1997). Hence, organizations have to write and maintain

hundreds of programs that are used to extract, arrange, and integrate data for use by

many different applications for analysis and reporting. This would typically require

modification of the extract programs or development of new ones. The data

warehousing provides an excellent approach for transforming the vast amounts of

data that exist in these organizations into useful and reliable information (March and

Hevner, 2007). For business executives the data warehousing provides architectures

and tools to systematically organize, as well as understand, and use their data to

make strategic decisions (Cho and Ngai, 2003). It supports information processing

by providing a solid platform of consolidated and historical data for analysis. Such

systems are valuable tools in today’s competitive and fast-evolving world.

The DWs have been defined in many ways, making it difficult to formulate a

rigorous definition. The classical definition given by W.H. Inmon is “A DW is a

subject-oriented, integrated, time-variant, and nonvolatile collection of data in

support of the management decision-making process” (Inmon, 2005) . The four key

words, subject-oriented, integrated, time-variant, and nonvolatile, explained below,

distinguish DWs from other data repository systems, such as relational database

systems, transaction processing systems, and file systems.

 Subject oriented: A DW is organized around major subjects, such as orders,

customers, and sales. It mainly focuses on the modeling and analysis of data

for decision makers. Moreover, it provides a simple and concise view around

particular subject issues by excluding data that are not useful in the decision

support process.

 Integrated: The DW is constructed by integrating multiple, heterogeneous

data sources such as relational databases, on-line transaction records and flat

files. During integration the data are cleaned. This ensures consistency in

naming conventions, attribute measures and encoding structures among

different data sources.

3

 Time-variant: The time horizon for the DW is significantly longer than that

of operational database systems. That is, the operational database contains

the current value of the data, whereas the DW data provide information from

a historical perspective.

 Nonvolatile: The operational update of data does not occur in the DW

environment and it does not require recovery, and concurrency control

mechanisms. The two operations supported in DWs are: loading of data and

access of data.

1.2.1 Applications of Data Warehouse

Many organizations use DW information to support business decision making

activities (Chaudhuri and Dayal, 1997), which includes the following:

1) The analysis of customer buying patterns;

2) Repositioning products and managing product portfolios by comparing the

performance of sales by time and geographic regions in order to fine-tune

production strategy;

3) Analyzing business operations and looking for sources of profit;

4) Handling the customer relationships by making environmental corrections

and managing the cost of corporate assets.

A DW is also very useful from the point of view of heterogeneous database

integration. Various organizations typically collect diverse kinds of data and

maintain large databases from multiple, heterogeneous, autonomous and distributed

information sources. It is challenging to integrate such data, and provide easy and

efficient access to it (Chaudhuri and Dayal, 1997). Much effort has been spent in the

database industry and research community towards achieving this goal.

4

1.2.2 Comparison of Operational Database System and Data Warehouse

DWs have the distinguishing characteristic that they differ from the

operational database systems. The major task of operational database systems is to

perform online transaction and query processing (Chaudhuri and Dayal, 1997). Such

systems are called online transaction processing (OLTP) systems. The day-to-day

operations of an organization, such as purchasing, inventory, manufacturing,

banking, payroll, registration, and accounting are carried out by these systems. In

contrast a DW system serves users or knowledge workers in the role of data analysis

and decision making. For example, in financial services the DW can be used for risk

analysis, credit card analysis, and fraud detection. These systems can organize and

present data in various formats in order to accommodate the diverse needs of the

different users. Such systems are known as decision support systems (Berson and

Smith, 1997).

An operational database system contains current raw data, such as

transactions, which need to be consolidated before analysis. Whereas, the DW

contains historical data which are consolidated (such as aggregation and

summarization) from heterogeneous sources to facilitate business analysis (Conn,

2005). Moreover, the tables are in normalized form in operational database but the

DW contains de-normalized tables to provide fewer joins in order to improve the

query performance. Short and fast inserts and updates are initiated by end users in

case of operational database. Periodic long-running batch jobs refresh the data

within the DW.

An operational database is designed and tuned from known tasks and

workloads, for example, indexing and hashing using primary keys, searching for

particular records, and optimizing queries (Bog et al., 2011). On the other hand, DW

queries are often complex and involve the computation of large groups of data at a

summarized level. Thus, the separation of operational database systems from DW is

based on the difference in structure, content, and the use of data in these two

5

systems. Since the two systems provide quite different functionalities and require

different kinds of data, it is necessary to maintain them as separate systems

(Chaudhuri and Dayal, 1997; Kalnis and Papadias, 2001). The Table 1.1 summarizes

the difference between an operational database system and a DW.

Table 1.1 Differences between Operational System and Data Warehouse

Operational Database System Data Warehouse

Transaction Oriented Subject Oriented

Small (MB upto several GB) Large (GB upto several TB)

Current Data Historical Data

Normalized Table Structure De-Normalized Table Structure

Continuous Updates Batch Updates

Simple to Complex queries Usually Complex queries

1.2.3 Data Warehouse Architecture

The DW architecture encapsulates all the facets of an enterprise

environment. The architectures vary depending upon the specifics of an

organization's situation. The data for the DW come from operational systems of the

organization as well as from other external sources. It is populated with the data that

are extracted from operational systems and stored in an area called data staging area,

which are then cleaned, transformed and integrated. A presentation server is the

target machine on which the data is loaded from the data staging area. Here the data

is organized and stored for direct querying by end users, report writers and other

applications. Each component of the architecture (Kimball and Ross, 2002) is

represented in the Figure 1.1 and the tasks performed by them are explained below:

 Operational Source Systems These are the systems of record that capture the

transactions of the business. The main priorities of the operational systems are

processing performance and availability. The queries imposed over such systems

are simple, that are part of the normal transaction flow and severely restricted in

their demands on the operational system (Kimball and Ross, 2002).

6

 Figure 1.1 Data Warehouse Architecture

 Data Staging Area A data staging area is where the raw operational data are

extracted, cleaned, transformed (ETL) and combined so that it can be reported

on and queried by users (Kimball and Ross, 2002). The data staging area lies

between the operational source systems and the DW and is typically not

accessible to users. Extraction is the first step in the process of getting data into

the DW environment which involves reading and understanding the source data

and copying the data needed in the staging area for further manipulation. Once

the data is extracted in the staging area, there are numerous potential

transformations, such as cleansing the data, combining data from multiple

sources, de-duplicating data, and assigning warehouse keys. The final step of the

Extract, Trasform and Load (ETL) process is the loading of data in the DW

environment.

 Data Presentation The data presentation area is where the data is organized,

stored, and made available for direct querying by users, report writers, and other

analytical applications. The presentation area is typically referred to as a series

of integrated data marts. Data marts are smaller DWs, focusing on a small subset

of the enterprise data (Kimball and Ross, 2002). Typically each data mart is used

7

by a particular unit of the organization for various strategic analyses relevant to

its goals. Data is extracted from the corporate warehouse into the data mart

periodically and used for analysis.

 Data Access Tools The final major component of the DW environment is the

data access tool(s). All data access tools query the data in the DW’s presentation

area. Some of the user access tools are reporting and query tools, OLAP tools

and data mining tools (Kimball and Ross, 2002).

1.3 DATA WAREHOUSE LIFE CYCLE

The various activities of a DW such as design, development and

implementation are provided through the DW life cycle. This life cycle is called as

the Kimball life cycle or business dimension life cycle (Kimball 1998). Here, the

different tasks to be sequenced for a DW project are identified and activities that

need to happen concurrently are highlighted. It is essential that the different

activities in the life cycle need to be customized to address the unique needs of the

organization. Figure 1.2 shows the structure of the business dimension life cycle.

The different phases of the life cycle are explained below:

1. Project Planning: This phase includes the definition of system goals and

properties, assessment of the impact of organizational practices, an estimate

of costs and benefits, allocation of the required resources and a preliminary

plan for the project (Kimball, 1998).

2. Business Requirement Definition: This phase plays a vital role in making

designers fully understand the user needs in order to maximize the benefits

and profitability of the system under consideration. The designers at this

stage are involved in identifying the key-factors of the decision making

process and convert them into design specifications (Kimball, 1998).

Following the requirements three different architectures are carried out in

parallel such as data, technology and application.

8

Figure 1.2 Business Dimension Lifecycle

3. Data Architecture: First phase of this architecture includes dimensional

modeling, where the user requirements and analysis of the data source leads

to the structure of the DW. The result of this phase is a logical model

containing relationship with the source schema. The next phase of the data

track is the physical design. Here the logical model is transformed into the

physical model by considering the optimization and implementation factors

related to the selected database such as indexing and partitioning (Kimball,

1998). The final phase designing and developing data staging involves

extraction, transformation and loading of data from the source to the DW.

4. Technology Architecture: This architecture includes an architectural

design phase, which is based on the current technical specification for

business information systems and performance requirements set by users

(Kimball, 1998). The next phase includes product selection and installation

9

of hardware platform, ETL tools, database management system, data access

query tools, and reporting tools (Kimball, 1998).

5. Application Architecture: In this architecture, the user application

specification phase includes a collection of specification for the application

that provides end user with data access (Kimball, 1998). Along with this, the

assessment of reports, interactive data navigation and automatic knowledge

extraction are carried out. The next phase, user application development

involves setup and configuration of analysis tools selected during the product

selection phase (Kimball, 1998).

6. Deployment: Once the design and implementation tasks are completed this

phase is used to deploy the reports, query tools, and applications to the user

community (Kimball, 1998). The deployment is deferred until all the

training, documentation, and validated data are available for production

release. Deployment ensures the results of technology, data, and application

architectures are tested and fit together properly.

7. Maintenance and Evolution Phase: It begins once the system is deployed

into production and it ensures ongoing support with business users (Kimball,

1998). Technical operational tasks such as performance tuning, index

maintenance, usage monitoring, and system backup are done periodically by

technical experts. DW maintenance mainly concerns performance

optimization that must be periodically carried out. On the other hand, DW

evolution concerns keeping the DW schema up-to-date with respect to the

business domain and the business requirement changes.

The next life cycle iteration usually begins during the deployment of the

previous iteration. The whole process starts again when the business analysts and

designers gathers detailed requirements for the next highest priority business process

and creates the associated dimensional model. The incremental approach of the life

cycle is a fundamental element that delivers business value in a short period, while

building a long-term enterprise information resource (Kimball, 1998).

10

1.4 MULTIDIMENSIONAL MODEL

DWs have the distinguishing characteristic that they are mainly intended for

decision support applications. Hence the arrangement of data within the warehouse

is different from those adopted for operational information systems (Golfarelli et al.,

1998). For online transaction processing by an operational system, a data model

such as Entity Relationship (ER) model might be appropriate. To facilitate online

data analysis a DW requires a concise, subject-oriented schema. The most popular

data model for a DW is a multidimensional model (Golfarelli et al., 1998). It

provides both a mechanism to store data and a way for business analysis. Basic

components of the multidimensional model are facts, measures, dimensions and

hierarchies which are explained below:

A fact is a focus of interest for the decision-making process of an

organization. It typically corresponds to events occurring dynamically in the

enterprise world such as sales or orders (Golfarelli et al. 1998). Measures are

continuously valued attributes that describe the fact numerically (Golfarelli et al.

1998). For the business analysis their values are used for mathematic calculations

that include summation, average, minimum and maximum. Dimensions are mutually

independent parameters that describe the business process fact (Golfarelli et al. ,

1998). Every dimension has a discrete domain of possible values.

Figure 1.3 Multidimensional Model

11

The business process can be viewed at different levels of abstraction. Two or

more levels at different level of abstraction form a hierarchy. For example, in Figure

1.3 the product name is related to its category attribute through such a hierarchical

relationship. The hierarchies may also include descriptive attributes that contain

additional information about a level of the hierarchy. The multidimensional model

can exist in the form of a star schema, a snowflake schema, or a fact constellation

schema (Kimball and Ross, 1996; Moody and Kortnik, 2000).

 Star schema: The most common modeling paradigm is the star schema, in

which the DW contains a large central table called fact containing the bulk of

the data, with no redundancy, and a set of smaller dimension tables (Kimball

and Ross, 1996). A star schema for sales DW is shown in Figure 1.4. The

schema contains a central fact table for sales along with four dimensions,

namely, product, time, branch, and location. The fact table contains keys for

each of the four dimensions and with two measures, dollars sold and units

sold. Each dimension in the star schema is represented by only one table

which contains a set of attributes. For example, the item dimension table

contains the attribute set product_key, product_name, product_brand,

product_type and supplier_type. Moreover, the attributes within a dimension

table may form a hierarchy.

Figure 1.4 Star Schema

12

 Snowflake schema: The snowflake schema is a variant of the star schema

model. The major difference between the snowflake and star schema model

is that the dimension tables of the snowflake model may be kept in

normalized form to reduce redundancies. A snowflake schema for sales DW

is given in Figure 1.5.

The other type of schema used in DW context is the fact constellation schema.

This schema allows dimension tables to be shared between multiple fact tables. It is

used by few organizations since it can model multiple, interrelated subjects that span

the entire organization. On the other hand a star or snowflake schema is commonly

used for a data mart, which is a department subset of the DW that focuses on

selected subjects.

Figure 1.5 Snowflake Schema

1.5 DATA WAREHOUSE SCHEMA DESIGN AND MANAGEMENT

A DW creation process consists of five steps: pre-development activities,

architecture selection, schema creation, warehouse population, and DW maintenance

(Srivastava and Chen, 1999). The focus of this research is the schema creation and

its management. As DW schema involves a complex structure, its design and

management is different from that of the operational database system (Golfarelli and

Rizzi, 1998; H¨usemann et al., 2000; Luján-Mora and Trujillo, 2003).

13

1.5.1 Data Warehouse Schema Design

The design of the DW schema involves generating the multidimensional

model involving facts, measures, dimensions and levels. To generate the

multidimensional structure the designer of the DW generally follows conceptual,

logical and physical phases (Golfarelli and Rizzi, 1999). And few adopt a

requirement analysis as the starting phase of the design (Gardner, 1998). The

conceptual phase transforms the requirements into a conceptual schema representing

the multidimensional elements, the logical phase transforms the conceptual schema

to a logical representation involving the table and attributes of the multidimensional

structure, and the physical phase constructs the physical schema of the DW from the

logical representation with implementation constraints.

The existing research work on DW schema design are mainly driven by any of

the following methodologies (Winter and Strauch, 2004) to generate the DW

multidimensional schema:

 Supply-driven: These approaches are based on analyzing the operational

data sources in order to derive the multidimensional schema, while

requirements are considered later when the data is about to be analyzed.

 Demand-driven: These approaches focus on the information needs of

decision makers, and data sources are only taken into account when the data

is loaded into the DW.

 Hybrid: These approaches advocate the consideration of both data sources

and information requirements in the early stages of development.

1.5.2 Data Warehouse Schema Evolution

DW design is a continuous process and need to adapt to changes in its

environment (Bellahsene, 2002). The data sources which are incorporated in the DW

are autonomous in operation and they can change or evolve in terms of their

14

instances and schemas (Benitez-Guerrero et al., 2004). Moreover, the requirements

stated by the various stakeholders and developers frequently change owing to

numerous reasons (Rechy-Ramirez and Benitez-Guerrero, 2006). Hence, DW needs

to be managed whenever there is any change or update in the requirements or source

in order to fulfill the constraints and criteria allocated by the various people who

need the assistance of information preserved in the DW.

1.5.3 Data Warehouse Schema Partitioning

The DW integrates massive amounts of data from multiple sources and need

to process complex analytical queries for different access forms such as OLAP, data

mining and reporting tools. Hence, ensuring short query response is enormously

difficult and can only be achieved by certain optimization techniques. The

performance optimization techniques available in the literature are classified as i)

techniques applied during the DW design ii) techniques applied after the DW is

implemented (Bellatreche and Woameno 2009). Partitioning of the tables and

parallel processing are two examples of the first category. Materialized views,

indexes and data compression are applied during the exploitation of the DW and

belongs to the second category. The use of optimization techniques belonging to the

first category is more sensitive compared to those belonging to the second one as the

decision of using them is usually taken at the beginning stage of the DW

development (Golfarelli and Rizzi, 1999). The reason is, for instance, if the

partitioning applied for a DW is not well adapted then it would be costly and time

consuming to reconstitute the initial warehouse from the partitions. Whereas, the

indexes or materialized views selected for a DW identified as insufficient can be

dropped or replaced by other optimization techniques (Golfarelli and Rizzi, 1999).

Based on sensitivity and the carefulness of techniques belonging to the first category

it is essential to focus on partitioning of DW schema during the design for

performance optimization.

15

1.6 ONTOLOGY FOR DATA WAREHOUSE DESIGN

The semantic web is increasingly seen as a powerful infrastructure to build

reusable and sharable knowledge on the web (Berners-Lee et al., 2001). It provides

XML, RDF and OWL to describe web contents that enable automated information

access on the machine processable semantics of the information and service

(Gomez-Perez, 2004). Ontologies are the core of the semantic web for the reuse of

formalized knowledge. Ontology is the term referring to the shared understanding of

some domains of interest, which is often conceived as a set of classes (concepts),

relations, functions, axioms and instances (Gruber, 1993). Ontology is most

commonly defined as “a formal, explicit specification of a shared conceptualization”

(Gruber, 1993). The ontology is used to solve the problem of syntactic and semantic

heterogeneities that exist between different data sources (Cruz and Xiao, 2005). It is

also used to analyze the knowledge related to a specific field, model the relevant

concepts in a domain and facilitate the distinction of the different domain concept.

Ontology can bring benefits to data warehousing developments at different phases,

as it can enhance the semantics of data sources, integrate heterogeneous schemas,

automate ETL process and facilitate OLAP in data analysis (Pardillo and Mazón,

2011). In recent years, researchers have proposed various approaches to bring

ontology and data warehousing to solve several DW design issues.

The decision in using an ontology-based approach for DW, instead of using

another technology, for example a UML-based approach, lies in the fact that

ontologies may empower the automatization since they provide mechanisms to

formally specify the semantics of a domain using language such as Web Ontology

Language (OWL) on which models may be supported (Pardillo and Mazón, 2011).

The OWL is an international standard for encoding and exchanging ontologies

(Smith et al., 2004). The reason for choosing the OWL is that, it provides the system

with the means of not only representing information, but also for automatic

processing of that information (McGuinness and Van Harmelen, 2004). Another

reason is, it provides good support for reasoning. Reasoner or inference engine, is a

16

piece of software that can be used for automatic inference of the additional

knowledge concerning the rules specified by the ontology (Wang et al., 2004). Thus,

the ontology may be considered as an appropriate solution to confront with the main

challenge of the DW design.

1.7 MOTIVATION

The success of a DW system is dependent on the problem of designing and

modeling the DW structure. Existing approaches either concentrate on user

requirements or the data source for the DW schema design process. But it is often

encountered that, the information contained inside the data source systems may be

hidden among the multitude of data and its value is often understood only by a few

top experts. Moreover, an ambiguous definition of the user requirements occurs

when the users are unable to define their requirements precisely and clearly. Various

meanings of data (i.e. Attributes, Tables) make it difficult for integrating the user

requirements to the data sources. Thus, reconciliation of the appropriate semantics of

the user terms and data sources is important in generating the DW schema

accordingly.

 The DW schema once designed is never meant to be static. It evolves due to

changes in the data source or the requirements. As the DW is a complex

environment which consists of many layers it becomes costly and labor intensive to

propagate changes to the DW schema correctly and analyze its change impacts. The

amount of research into the impact of DW schema changes is much less

investigated. The impact of requirements changes upon DW models must often be

estimated manually by application experts and moreover, no automated restructuring

methods are available to the designer yet.

Another important issue related to the design and management is that, the

DW need to be tuned for performance using partitioning techniques before it is

populated from the data sources. In the DW context, a fact table can be partitioned

based on the fragmentation schemas of dimension tables using referential

17

partitioning. This type of fragmentation may dramatically increase the number of

fragments of the fact table and make their maintenance very costly. Moreover, the

choice of dimension tables and its attributes has greater impact on the query

performance. The existence of big dimension increases the complexity of

partitioning. And further, the changes in the queries require alteration of existing

partitions.

Thus, the motivation behind this research is that both the user requirements

and data source need to be considered at the early stage of the DW schema design.

And a thorough understanding of the requirements and the data source is essential,

to provide a successful design. Moreover, when there are changes in the business

domain it is necessary to handle the evolution of the DW schema through effective

design strategies. Finally, choosing an optimal partitioned schema is crucial during

the design stage, which enhances the performance of the DW after its

implementation.

1.8 PROBLEM STATEMENT

In literature, some research efforts have been proposed for the automation of

DW schema design using ontology. But these approaches do not fully utilize the

benefits of hybrid methodology, where the user requirements and data source needs

a thorough analysis. Moreover, these approaches do not cover the different phases of

DW design such as conceptual, logical, and physical. Hence, it is of great

importance to provide a formal, explicit, and well-defined way to represent all the

parameters and properties of the user requirements and data source to guide the

design task. Moreover, a full automation is essential covering all the phases of the

design which helps greatly in reducing the complexity involved and reduces the

dependency on an expert’s ability to perform the design task.

Owing to the changes in business needs the DW schema needs to evolve.

The existing approaches such as schema evolution or schema versioning handle

changes either in user requirements or the data source. They mainly concentrated on

18

DW schema restructuring at the physical level. This may induce high maintenance

costs, as any change in the DW schema structure has an impact on the dependent

modules. Hence, an effective approach is required which handles both requirements

and source changes as well analyze the impact of a change on the DW schema

structure and its dependent modules, before it is propagated at the physical level.

The schema partitioning technique applied during the DW design optimizes

the performance of the DW. As partitioning results in a large set of fragments,

existing works used evolutionary algorithms to select optimal fragments. The issues

related to the dimension table selection, attribute selection, optimal fragment

selection big dimension and query evolution have only been partially explored.

Thus, an optimal strategy is essential to improve the existing partitioning techniques.

1.9 RESEARCH OBJECTIVES

The main aim of this thesis is to provide a comprehensive approach that handles

the DW schema design and management in an effective and automated way. To

achieve this following are the objectives identified in the research work:

1. To provide a hybrid approach to automate the multidimensional schema

design using ontology which helps to reduce the burden of the designer to

perform a complex reconciliation of requirements and source, and redesign

involved during the different phases of the design process.

2. To handle DW schema evolution by providing an ontological supported

evolution and adaptation approach which propagate changes to the DW

schema, verify the impact of the change and automatically adjust the

dependent entities before implementing the changes at the physical level.

3. To provide optimized horizontal referential partitioning and mixed

partitioning to handle DW schema partitioning issues and also adapt the

existing partitions in case of evolving queries.

19

4. To evaluate the proposed approaches with the application to a case study and

analyze the obtained results by performing a comparison with existing

works.

1.10 RESEARCH CONTRIBUTIONS

To achieve the derived objectives this research work provides different solutions

to handle DW schema design, evolution, and partitioning issues. This helps the DW

designer or the DW administrator (DWA) to relive from the tedious task of design

and management of DW schema and it facilitates achieving it in an efficient and

automated way. Following are the three main contributions of the research work:

a) Hybrid approach to automate the multidimensional schema design

 A formal representation of the user requirements and data source is provided

through ontology which facilitates automatic reconciliation at the early stage

of the design.

 The proposed OntoMD approach provides identification of the

multidimensional elements and generation of the DW schema following the

conceptual, logical and physical phases of the design process.

 A tool is developed to offer graphical interfaces to the designer to facilitate

the use of the proposed hybrid multidimensional modeling approach of a

given business domain.

b) Ontological approach to handle evolution and its impact on DW schema

 A formal representation of the user requirements, data source and DW

schema is provided through ontology to facilitate the automation of the

evolution task.

 A new approach OntoEvol is proposed for the propagation of changes from

the requirements and data source to the DW schema at the ontological level.

20

 The proposed approach provides identification and adaptation of dependent

entities that are affected after the changes are propagated to the DW schema.

 A method to perform impact analysis of a change over the DW schema and

its dependent modules is provided.

c) Optimized approach to solve DW schema partitioning issues

 A Dimension table selection technique using multiple criteria is provided for

referential horizontal partitioning of DW schemas by the proposed ORP

approach.

 A formal fragmentation selection approach is developed using hybrid

evolutionary algorithms.

 An optimized mixed fragmentation is provided by ORP to solve the big

dimension problem in DW schema partitioning.

 The proposed ORP approach includes partition management to apply

refragmentation in case of evolving queries.

1.11 ORGANIZATION OF THE THESIS

The thesis is organized into six chapters as given below:

Chapter 1 provides a brief description of the basic concepts of the research

work, motivation of the research, problem statement, objectives and research

contributions.

Chapter 2 presents the review of related works and comparative study

between them. Existing traditional and ontology based approaches for

multidimensional schema design are discussed. The evolution approaches such as

DW schema evolution and schema versioning are described briefly. A review of

existing DW partitioning methods has been provided in this chapter.

21

Chapter 3 discusses the hybrid multidimensional modeling approach for

DW using ontology and the various steps involved. The implementation detail of

OntoMD tool which facilitates the automation of the design task is provided. The

proposed work applied to a case study is explained in detail. Details of the

evaluation applied to the proposed approach are discussed.

Chapter 4 elaborates the development of an ontological approach for

handling multidimensional schema evolution. It explains the various steps which use

ontology in order to handle the evolution task. A description of the method to handle

automatic adaptation after evolution is provided. Evaluations of the proposed

evolution approach along with impact analysis are detailed.

Chapter 5 deals with the proposed referential partitioning approach to

fragmentation selection problem. It presents the details of dimension selection

method and hybrid evolutionary algorithm to optimize horizontal referential

partitioning. The proposed optimized mixed fragmentation technique to solve the big

dimension problem is elaborated. The partition management used in case of query

evolution has been discussed. The evaluation of the proposed partitioning

approaches has also been given.

Chapter 6 provides the conclusion by summarizing the research work and

suggesting possible future enhancements.

22

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The DW data is modeled multidimensionally to facilitate complex

analysis and visualization of business information. Thus, the design of the

DW schema requires two important considerations. First, is the design of the

DW schema for the warehouse and second one deal with obtaining a schema

that satisfies maintenance and performance requirements. Generating the

DW schema involves identifying the multidimensional elements, and this

schema needs to be maintained when the business rules of an organization

evolve. Further, the schema is required to be tuned for performance

enhancement before it is implemented in order to optimize the end user

queries. This chapter provides a brief idea about the existing works available

in the literature on the DW schema design, its evolution and partitioning. A

comparative analysis of these works has been provided. It also presents the

limitations of the existing works which motivated to take up the research

work in this area.

Section 2.2 discusses about the DW schema design approaches. The

detail about DW schema evolution approaches has been provided in section

2.3. Section 2.4 provides the review of different evolution approaches

available in the literature. The summary about the literature survey has been

given in section 2.5.

23

2.2 DATA WAREHOUSE SCHEMA DESIGN APPROACHES

In this section a review of the existing research work on DW schema design

has been provided. DW schema design requires specialized design techniques which

consists of conceptual, logical and physical phases (Golfarelli and Rizzi, 1999).

The conceptual design allows having closer ideas about the ways that a user

can perceive an application domain (Malinowski and Zimányi, 2006). It aims at

deriving an implementation-independent and expressive conceptual schema for the

DW, starting from the user requirements and from the structure of the data source.

This step is considered as a key that ensures the success of the DW projects since it

defines the expressivity of the multidimensional schema (Golfarelli and Rizzi,

2009). The result of this step is a graphical notation which facilitates to the designer

and the user for understanding and managing the conceptual schema.

The logical design of the DW serves to define the structures to ensure an

efficient access to information. It can be presented as a multidimensional structure

that takes as input the conceptual schema representation, information requirements,

source systems, and non-functional requirements (Peralta and Ruggia, 2003). The

process of logical design involves arranging data into a series of logical relationships

called entities and attributes. An entity represents a table and an attribute is a

component of an entity that helps define the uniqueness of the entity. The logical

design results in a set of entities and attributes corresponding to fact tables and

dimension tables, and a model of operational data from the source into subject-

oriented information in the target DW schema.

Physical design deals with the effective way of storing and retrieving the

data from the DW. During the physical design the logical schema needs to be

converted into a description of a physical database structure using proper mapping

(Golfarelli and Rizzi, 1998). The physical design involves the creation of the

database objects like tables, columns, indexes, primary key, foreign keys, views,

sequences, etc. It addresses all the issues specifically related to the suite of tools

chosen for implementation such as partitioning, indexing and allocation.

http://docs.oracle.com/cd/B10500_01/server.920/a96520/glossary.htm#433184
http://docs.oracle.com/cd/B10500_01/server.920/a96520/glossary.htm#431980

24

According to Winter and Strauch 2004, the DW schema design approaches

mainly follow any of the following methodologies:

 Demand-driven: Also known as a requirement-driven or goal-driven

approach, focus on determining the end-user requirements to produce a

multidimensional schema. Only in the later stages, the output schema is

mapped onto the data sources.

 Supply-driven: Also known as data-driven approach, start from a detailed

analysis of the data sources to determine the multidimensional concepts.

End-user requirements are eventually considered in the later stages to filter

results obtained.

 Hybrid: Hybrid approach combines both frameworks, demand-driven and

supply-driven. Mostly, these approaches start with a demand-driven stage to

identify facts of interest followed by a supply-driven stage to identify its

dimensional concepts.

In literature, earlier approaches called traditional approaches used for DW

schema design provided a manual or semi-automatic way of constructing the

multidimensional schema through step-by-step guidelines. As the whole design task

relied on the knowledge and expertise of the designer, there was a need to provide

an automation of the design process. The latter approaches available in the literature

tried to provide an automation of the design task using ontology and they are

classified as ontological approaches. In the following sections a review of the

existing traditional and ontological approaches which follows either demand-driven,

supply-driven or hybrid methodology is presented along with a comparison study

between them.

2.2.1 Traditional Approaches

Prat et al., (2006) proposed a UML-based DW design method following the

three design phases such as conceptual, logical and physical. They use a set of meta-

models represented in UML and a set of transformations based on Object Constraint

25

Language (OCL) at each phase in order to facilitate semi-automation of their design

task. In the conceptual design the user requirements are represented in the form of

UML class diagram. The second step involves the mapping of the UML conceptual

model into a logical multidimensional schema. In the logical design phase the

enriched and transformed UML conceptual model is mapped into a logical schema.

The physical phase maps the multidimensional schema into a physical database

schema, depending on the target OLAP tool.

Song et al., (2007) proposed SAMSTAR method, which is a semi-automated

lexical method for generating STAR schemas from an entity-relationship diagram

(ERD) by analyzing its semantics as well as the structure. It mainly follows the

supply driven approach covering the conceptual and logical design phases.

Giorgini et al., (2008) presented an approach called GRAnD (Goal-oriented

Requirement Analysis for DWs). It is a goal-oriented approach to requirement

analysis for DWs based on the Tropos methodology (Bresciani et al., 2004). Their

approach could be considered as demand driven when only requirements are used to

derive the conceptual multidimensional model. It could also be considered as mixed

approach when both source and requirements knowledge is used. The GRAnD

adopts two different perspectives for requirement analysis: organizational modeling

and decisional modeling. The organizational modeling is centered on stakeholders

and decisional modeling focuses on the actors. After the requirement analysis the

next step derives the conceptual multidimensional model. In GRAnD, facts,

dimensions and measures identified during the requirements analysis is mapped

manually over the data sources.

Maz´on et al., (2009) proposed a framework based on the Model Driven

Architecture (MDA) for the development of a hybrid multidimensional model at the

conceptual and logical level. The approach uses the information requirements model

(Computation Independent Model, CIM) obtained from decision makers to derive

the conceptual multidimensional model of the DW (Platform Independent Model,

PIM). PIM is then reconciled with the data sources which are marked with its

multidimensional concepts to obtain hybrid PIM. By considering the deployment

26

platforms, several logical models are derived from this hybrid PIM as Platform

Specific Models (PSMs). The relations between models are implemented by using

the Query/View/ Transformations (QVT) language. Several transformations using

the Model to Text Transformation (Mof2Text) language are defined in order to

obtain the code for the implementation of the multidimensional model according to

each PSM.

Abelló and Romero (2010) presented an approach for supporting

multidimensional design based on Multidimensional Design by Examples (MDBE),

which is a semi-automated method to carry demand driven and supply driven in a

parallel way. The method uses end-user information requirements (expressed as

SQL queries) and the logical model of the data sources as inputs. It produces a

constellation schema from the data sources as output.

2.2.2 Ontological Based Approaches

The traditional approaches discussed so far mainly work with relational

sources, hence they use set of heuristic to derive multidimensional elements such as

facts and dimensions. But today, the information systems are dealing with semi-

structured and unstructured sources. These sources may lead to heterogeneous

problems which may affect the design output. The three heterogeneity issues that

normally arise are syntactic, structural and semantic (Pérez et al., 2008). Resolving

syntactic and structural issues may be done irrespective of the context, but semantic

issues are application dependent. In order to represent the concept of a domain

irrespective of the application, ontology began to be used. Ontology provides a way

to represent the concepts of a domain and automatic processing of the concepts.

Hence, the use of ontology for the DW design helps to solve the heterogeneity issues

that arise in the data sources (Gagnon, 2007) as well as provide automation of the

design task (Romero and Abelló, 2010). Following is a brief review of the

ontological approaches available in the literature:

Romero and Abelló (2010) presented a method called Automating

Multidimensional Design from Ontologies (AMDO). It follows a reengineering

27

process that derives the multidimensional schema from the data source represented

as ontology. The three constraints that are used to identify multidimensional

concepts in data source are: multidimensional model constraint, multidimensional

space arrangement constraint, summarization integrity constraint.The

multidimensional concepts obtained from the data source are filtered according to

certain filtering conditions.

Romero et al., (2011) presents a system called GEM (Generating ETL and

Multidimensional designs). The system provides designers with a semi-automatic

method for generating the conceptual multidimensional schema. It is also used to

derive a conceptual representation of the ETL processes that coordinate the data

flow from the data sources to the DW system. GEM uses a set of data sources

represented as OWL ontology and business requirements expressed in XML format.

It carries out the requirement validation by mapping it to the source. An ontology

subset is derived for each requirement and the multidimensional elements are tagged

for the concepts in the ontology.

Jovanovic et al., (2012) proposed a semi-automatic method called Ontology-

based DW REquirement evolution and integration (ORE), for constructing the

multidimensional schema. Their approach considers each requirement separately,

and incrementally builds the unified multidimensional schema satisfying the entire

set of requirements. The information requirements are validated against the available

data sources. The source subset satisfying the given requirements is interpreted with

the identified multidimensional knowledge. Here, the multidimensional

interpretations (MDI) satisfying the given set of information requirements are

considered as inputs. The ORE comprises four stages, namely matching facts,

matching dimensions, complementing the multidimensional design, and integration.

In all stages, they maintain a structure, called traceability metadata (TM), for

systematically tracing about the multidimensional design that is integrated at each

stage.

Selma et al., (2012) proposed a method, namely the ontology-based DW

(OBDW) and case tool for designing a DW multidimensional schema from

28

ontology-based database sources. They proposed a goal-oriented requirement model

based on which DW ontology is extracted from the global ontology representing the

sources. The DW ontology is annotated by the multidimensional concepts. The

multidimensional role of concepts and properties are identified and annotated over

the ontology, based on the analysis of the defined goals. The logical model of the

DW is generated by translating the annotated DW ontology.

2.2.3 Comparative Analysis of Schema Design Approaches

In this section a comparison of the traditional and ontological approaches is

provided along with a detailed summary of the main features of the design

approaches. Most of the features used for comparison represent the existence of the

corresponding feature through yes/no and other features have alternative values.

Comparison of Traditional Approaches

Table 2.1 presents the comparison of the traditional approaches. Analyzing

Table 2.1 it was found that, most of the approaches considered user requirements to

be the important aspect of constructing the multidimensional model. They are

classified as demand-driven or goal-driven. Giorgini et al., (2008) and Maz´on et al.,

(2009) used goal oriented and Prat et al., (2006) used UML diagram for

requirements representation. Here, the multidimensional elements such as fact,

measure, and dimension are identified from the user requirements. Hence, the main

limitation of the demand driven approaches is that, the results obtained depends on

the correctness and understanding of the requirements in hand. To handle this issue,

few approaches such as Prat et al., (2006) used data source at the end of the design

to produce the final model.

Few researchers realized that the knowledge contained in the data source to

be helpful for the schema design and its automation. These are called as supply

driven or data driven approaches. Relational sources are used by Giorgini et al.,

(2008) and Abelló and Romero (2010), ER diagram is used by Song et al., (2007) as

data source. Most of the approaches use different patterns or heuristics to identify

29

concepts likely to play a multidimensional element. Hence, the design experts might

require a well documented data source, otherwise the final model may be not be

derived accurately. Moreover, as user requirements are not considered by most of

the supply driven approaches, they produce exhaustive results in the final output,

which may not satisfy the end user goals.

Few supply driven approaches such as Song et al., (2007) consider user

requirements to filter the final results, but they perform the demand driven stage in a

manual way. Hence, the ideal scenario for deriving the DW schema would require a

hybrid approach, i.e., a combination of supply-driven and demand-driven stages.

Thus, the resulting multidimensional schema would satisfy user requirements and be

conciliated with the data sources simultaneously.

In literature only few approaches such as Giorgini et al., (2008) and Abelló

and Romero (2010) follow a hybrid methodology and try to automate the design

process. But, the degree of automation achieved is rather low. Specifically, these

approaches consist of a detailed requirements elicitation stage that need to be

performed manually and an automated analysis of the data sources. At the end of the

design, both stages are put in common by conciliating the data sources and

requirements. In these approaches the requirements elicitation stage leads the

process and the main design decisions are made in this step. The analysis of the data

sources is carried out only in a superficial manner.

Considering the different phases of design, most of the traditional approaches

such as Giorgini et al., (2008) and Abelló and Romero (2010) concentrate on

conceptual phase generating the conceptual schema and few carry out the

conceptual, logical and physical phases (Prat et al., 2006; Maz´on et al., 2009).

30

Table 2.1 Comparison of Traditional Approaches

Features
Prat et al.,

(2006)

Song et

al., (2007)

Giorgini et

al., (2008)

Maz´on et

al., (2009)

Romero

and Abelló

(2010)

Automation
Semi-

automatic
Semi-

automatic

Semi-

automatic

Semi-

automatic

Semi-

automatic

Design

Approach

Demand-

Driven
Supply-

Driven

Demand-

Driven &

Hybrid

Demand-

Driven
Hybrid

Requirement

Representation

UML

diagram -
i*

framework

i*

framework
SQL

Data source

Representation

-
ER -

diagram
Relational - Relational

Formal

Algorithm
No Yes No No Yes

Conceptual

Design
Yes Yes Yes Yes Yes

Logical Design Yes Yes No Yes No

Physical Design Yes No No Yes No

Quality

assessment
No No No No No

User Suggestion No Yes No No No

Tool Yes No Yes No Yes

Comparison of Ontological Approaches

Table 2.2 provides the comparison of the existing ontological approaches.

Like traditional approaches, the ontological approaches follow supply driven,

demand driven or hybrid methodology to perform the DW schema design.

31

Table 2.2 Comparison of Ontology Based Approaches

Features
Romero and

Abelló (2010)

Romero et

al., (2011)

Jovanovic et

al., (2012)

Selma et al.,

(2012)

Automation
Semi-

automatic

Semi-

automatic

Semi-

automatic

Semi-

automatic

Design

Approach
Supply-Driven

Demand-

Driven

Demand-

Driven

Demand-

Driven

Requirement

Representation
-

XML

Format

Natural

Language
Ontology

Data source

Representation
Ontology Ontology Ontology Ontology

Formal

Algorithm
Yes Yes No Yes

Conceptual

Design
Yes Yes Yes Yes

Logical Design No No No Yes

Physical Design No No No No

Quality

assessment
No Yes No No

User Suggestion Yes Yes No No

Tool Yes Yes No Yes

The supply driven approach AMDO (Romero and Abelló, 2010) used

ontology representation of the data source to automatically derive the

multidimensional elements. Here the results produced are exhaustive, and hence

some filtering function is required to filter the obtained results. Other ontological

approaches such as GEM (Romero et al., 2011) and OBDW (Selma et al., 2012)

used both user requirements and data source for the design process. Though these

approaches claim to use the hybrid methodology, they are not a pure hybrid as the

entire design process is driven by the user requirements. A thorough analysis of data

source is lagging in these approaches and moreover the knowledge contained in it is

used superficially.

32

To derive the multidimensional elements, most of these approaches (Romero

and Abelló 2010; Romero et al., 2011; Selma et al., 2012) provided a formal

algorithm. But considering the design phases, Romero and Abelló (2010), Romero et

al., (2011) and Jovanovic et al., (2012) proposed approaches cover only the

conceptual phase to produce the conceptual multidimensional schema and Selma et

al., (2012) proposed approach covers conceptual and logical phases.

In a real scenario there are multiple heterogeneous sources exists and to

utilize the knowledge in them, these sources need to be integrated into a single

source schema in order to carry the design task. Except Selma et al., (2012), other

approaches do not consider about the source integration. Even with this approach

they discussed only about the integration of ontology based databases (OBDBs) and

do not consider other type of data sources.

In order to provide a semi-automatic means of deriving the multidimensional

schema, the existing approaches managed to develop a prototype tool which would

facilitate the designer to perform the design process.

Limitations

1. Compared to demand-driven and supply driven approach, the hybrid

approaches provide a promising results for the DW schema design. However,

in the existing hybrid approaches the mechanisms through which to formally

match the data sources with user requirements in the early stages of the

design are not investigated so far.

2. In the hybrid methodology, the identification of multidimensional elements

(i.e., fact, dimensions, dimension hierarchy) in the data sources is a

mandatory previous step before reconciling requirements and data sources.

These elements are usually annotated in a manual (Giorgini et al., 2008) or

semiautomatic (Mazón and Trujillo, 2009; Song et al., 2007) manner from

the data sources using syntactic information (Lechtenbörger and Vossen,

2003) which is not enough for every scenario and prevents their total

automatization.

33

3. The quality of the schema designed need to be analyzed before it is carried

out for actual implementation. The existing approaches do not focus on

ensuring the schema quality in a formal way.

4. Though existing approaches provide tools to carry out the schema design,

they do not provide the required functionalities to fully automate the design

task.

Thus, in this research the proposed DW schema design approach considers

both the user requirements and data source at the early stage of the design. An

appropriate multidimensional model is generated by covering different phases of

the design in an automated way.

2.3 DATA WAREHOUSE SCHEMA EVOLUTION APPROACHES

Evolution in DW may be generated by change in data source schema and in

requirements. Following are the various reasons for changes happening in the data

source or user requirements:

1. Incorporation of new users or requirement in the system or creating new

versions (Rechy-Ramirez and Benitez-Guerrero, 2006).

2. Ambiguous or insufficient requirements during the development phase

(Body et al., 2002).

3. Periodical revisions done for the removal of bugs and redundancies (Bebel et

al., 2006).

4. Change in the requirements during the operational phase of the DW which

results in the structural evolution of the DW schema. (Rechy-Ramirez and

Benitez-Guerrero, 2006)

5. Reorganization of the DW schema during the operational phase of the DW as

a result of different design solutions that are decided upon. (Bebel et al.,

2006).

6. Change in the information source resulting in a new DW design.

34

The DW must evolve in reaction to the above mentioned reasons. Data

changes are monitored and propagated to a DW often by means of materialized

views (Chen et al., 2006; Sahpaski et al., 2009) and the history of data changes is

supported by applying temporal extensions (Eder et al,. 2002; Eder et al., 2006).

Whereas, source schema changes are often handled by applying schema evolution

(Benitez-Guerrero et al., 2004; Curino et al., 2009 ; Fan and Poulovassilis, 2004)

and schema versioning techniques (Bebel et al., 2006; Papastefanatos et al., 2007;

Rechy-Ramirez and Benitez-Guerrero, 2006 ; Sahpaski et al., 2009). In schema

evolution approaches historical DW states are lost as there is only one DW schema

that is being modified. In schema versioning approaches only historical versions of

data are maintained, whereas schema modifications are difficult to handle. Thus, the

DW evolution is classified into two main approaches, namely schema evolution and

schema versioning. In this section a brief review of these approaches has been

provided.

2.3.1 Schema Evolution Approaches

Benitez-Guerrero et al., (2004) proposed a Warehouse Evolution System

(WHES) that demonstrates a DW evolution model and its associated

multidimensional data definition language. WHES implements a set of translation

rules to provide one-to-one mapping between multidimensional schema and the

relational model. It also defines a set of propagation rules that modify the relational

model whenever a change occurs in the corresponding multidimensional model. The

authors have proposed 16 operators to modify the multidimensional schemas.

Papastefanatos et al., (2007) provides a framework for performing ETL

evolution for potential changes to data source of a DW. They use a graph model that

uniformly models relations, views, queries, ETL operations, and their significant

properties. The authors propose a set of rules to annotate the graph representing the

ETL workflow. The annotation contains actions that either blocks the event or

reshapes the graphs when a change event occurs. The change event along with the

annotation represents policy to be followed for the handling of a potential change.

35

Banerjee et al., (2009) contributes formalism for representing DW schemas

and determining the validity of schema evolution operators applied to a schema. The

schema evolution operators are the core features of a DW that are defined in the

generalized model. Here, the authors have summarized various schema evolution

operators based on change in dimension, change in fact and change to a cube. Along

with schema evolution the authors have proposed modeling extended hierarchy

semantics.

Solodovnikova and Niedrite (2011) proposed a framework DWE to support

DW evolution. It allows propagating different changes in DW, creating versions of

schemata and data semantics. This approach is user-centric, where users are

involved to design reports on multiple DW versions using user terms. The

operations of the framework are based on the metadata which is used to describe the

DW schema versions and to accumulate information about reports defined by users

on schema versions.

Thakur and Gosain (2011) present a theoretical framework called

DWEVOLVE to support DW evolution. The changes in the requirements specified

by the stakeholders as well as the developers are analyzed here. These changes are

then incorporated into the warehouse by performing appropriate additions, deletions

and updates. It consists of a module that cleans redundant or dirty data by employing

certain cleaning algorithms. To enhance the framework operation comprehensive

metadata support has been provided.

2.3.2 Schema Versioning Approaches

Rechy-Ramirez and Benitez-Guerrero (2006) proposed a Version-based

Evolution Model based on the bi-temporal schema versioning. In the model, the

granularity of versioning represents the multidimensional database version. Here

each version is formed by a multidimensional schema and a multidimensional

database which is conformed to the schema. Thus, when a change is made to a

multidimensional schema, a new multidimensional database version having a new

associated temporal pertinence is created. In addition to the evolution operators, the

36

authors have defined a SQL-like language. This allows the DW administrator to

express his/her evolution requirements.

Golfarelli et al., (2006) have proposed an approach to schema versioning and

formulating cross-version queries for DW. Their approach allows queries that cover

data across different schema versions. The authors have introduced a representation

of DW schemata as graphs of simple functional dependencies. They define algebra

of schema graph modification operations in order to create new schema versions.

The also discuss how augmented schemata can be introduced to speed up the cross-

version querying process.

Sahpaski et al., (2009) presented an approach for dynamically evolving the

design of the DW schema spanning across its multiple versions. An optimization of

the DW implementation schema design is provided by the authors by defining the

multiversion data cube and the multiversion implementation schema. They add the

multiversion implementation schema with its instances to the generalized solution

space of the optimization problem. They also introduce a new derivation procedure

and a new derivation cost constraint. The procedure is used for evolving the current

implementation schema to a new implementation.

Oueslati and Akaichi et al., (2011) proposed an approach called Multiversion

Trajectory Data Warehouse (MVTDW). The main goal of this approach is to

propose a solution, based on versioning approach which is able to handle structural

changes in order to keep track of the DW evolution. There are two types of schema

versioning used in this approach: real version and alternative version. The real

version is defined as a version that handles changes of the real world like changing

geographical borders of countries. The alternative version is defined as a version that

handles virtual business scenarios. The authors also proposed certain constraints that

have to be fulfilled to guarantee the integrity of the MVTDW.

Xuan et al., (2006) presented a solution for asynchronous versioning

problem for an ontology-based DW. This DW integrates ontology-based data

sources which are autonomous and heterogeneous. The data source contains local

37

ontologies which references a shared ontology by subsumption relationships. These

local ontologies change their schema as well as instances with respect to changes in

the environment. To manage ontology changes the authors proposed two different

solutions: ontology evolution and ontology revolution.

2.3.3 Comparitive Analysis of Schema Evolution Approaches

Table 2.3 provides the comparison of various DW evolution approaches. The

schema evolution approaches focus on updating the changes over the original

schema. Whereas the schema versioning approaches maintains the old schema and

creates the new version of the schema by updating the changes.

Table 2.3 Comparison of Evolution Approaches

E
x
is

ti
n

g

M
et

h
o
d

s

A
p

p
ro

a
ch

D
W

 S
ch

em
a

S
o
u

rc
e

C
h

a
n

g
e

R
eq

u
ir

em
en

t

C
h

a
n

g
e

E
v
o
lu

ti
o
n

O
p

er
a
to

rs

F
o
rm

a
l

M
et

h
o
d

A
u

to
m

a
ti

c

A
d

a
p

ta
ti

o
n

Im
p

a
ct

P
re

d
ic

ti
o
n

Benitez-

Guerrero et al.,

(2004)

Schema

Evolution
Relational Yes No Yes MDL No No

Papastefanatos

et al., (2007)

ETL

Evolution
Graph Yes No No Algorithm Yes Yes

Banerjee et al.,

(2009)

Schema

Evolution
Relational Yes No Yes Algorithm No No

Thakur and

Gosain (2011)

Schema

Evolution
Relational Yes Yes No - No No

Solodovnikova

and Niedrite

(2011)

Schema

Evolution

& Schema

Version

Logical &

Relational
Yes Yes No - Yes No

Rechy-Ramirez

and Benitez-

Guerrero (2006)

Schema

Version
Conceptual Yes No Yes SQL-Like No No

Golfarelli et al.,

(2006)

Schema

Version
Graph No Yes No

Schema

Modification

Algebra

No No

Sahpaski et al.,

(2009)

Schema

Version
Relational Yes No No - No No

Oueslati and

Akaichi et al.,

(2011)

Schema

Version
Relational Yes No Yes Algorithm Yes No

Xuan et al.,

2006

Schema

Version
Ontology Yes No No - No No

38

DW schema needs to evolve when business requirements are changed or

extended or a data source schema is adapted after changes. Most of the existing

work concentrates on handling source schema evolution and only few approaches

(Thakur and Gosain, 2011, Golfarelli et al., 2006) discuss about handling

requirement changes.

The three types of changes as given in the literature, that normally occur over

the DW schema are addition, deletion and rename. These changes are carried over

the multidimensional elements such as fact, fact attributes, measures, dimension,

dimension attributes, level, level attributes and fact-dimension relationship. In order

to perform these changes, different set of evolution operators are proposed by

several authors (Benitez-Guerrero et al., 2004; Rechy-Ramirez; Banerjee et al.,

2009; Oueslati and Akaichi et al., 2011). Apart from evolution operators certain

existing approaches (Benitez-Guerrero et al., (2004); Rechy-Ramirez and Benitez-

Guerrero (2006); Golfarelli et al., (2006); Papastefanatos et al., (2007); Banerjee et

al., (2009); Oueslati and Akaichi (2011)) provide formal methods such as algorithms

and SQL like languages to update the changes over the DW schema.

The existing approaches propagate the changes directly over the relational

schema of the DW except the works by Papastefanatos et al., (2007) and Golfarelli

et al., (2006), which handle the evolution over the graph representation of the

multidimensional schema. The change propagation is handled manually by these

works. Whereas, few works (Papastefanatos et al., (2007), Solodovnikova and

Niedrite (2011) and Oueslati and Akaichi et al., (2011)) tried to automate the

evolution task.

The DW schema is not an independent entity. When it evolves, it might have

an impact on its dependent modules such as ETL tasks, queries, views, etc. But

none of the existing approaches concentrate on the impact analysis and the cost of

handling changes over the DW schema.

39

Limitations

1. Most of the existing approaches either schema evolution or schema

versioning handled changes in the data source schema. Very few

concentrated on changes in business requirements, but they do not provide a

concrete way of handling these changes.

2. Evolution operators and formal methods such as algorithms and SQL-like

language are proposed by different authors to propagate changes over the

DW. Still, most of the approaches could not provide an automation of the

evolution task.

3. The changes are mostly updated over the relational schema of the DW.

Hence, such approaches might not produce a feasible solution to the

evolution process as they may incur high maintenance cost. Only a few

works over the conceptual or graph representation of the DW schema, but

they are found to provide a complex scenario in order to handle the

evolution.

4. From the existing works, it is observed that none of the approaches discussed

about the impact that the updated DW schema might bring to its dependent

entities. Papastefanatos et al., 2007 focus on impact analysis, but their main

concentration is on ETL evolution rather than DW schema evolution.

5. Finally, there is a lack of automated approach which might help the DW

designer to carry out the complex process of evolution in an efficient way.

The problem of managing changes on the schema level, which may be

demanded by changes either in the user requirements or in the sources has been

addressed by this research. An automated approach has been proposed to propagate

changes from user requirements or data source over the DW schema along with

adaptation of the dependent entities.

40

2.4 DATA WAREHOUSE SCHEMA PARTITIONING

APPROACHES

The DW schema needs to be partitioned for optimization of its performance

before it is implemented in the underlying database. Partitioning is the process of

splitting large relations (tables) into smaller ones so that the database needs to

retrieve only relevant data at a particular time (Bellatreche et al., 2000;

Papadomanolakis and Ailamaki, 2004). The two ways to partition a relation are:

horizontal and vertical (Sanjay et al., 2004). The horizontal partitioning involves

splitting the tuples (rows) of a relation and placing them into two or more relations

with the identical structure. Vertical partitioning involves splitting the attributes

(columns) of a relation and placing them into two or more relations linked by the

relation's primary key. The main advantages of partitioning are: it can significantly

impact the performance of the workload, i.e. the set of queries that executes against

the DW system by reducing the cost of accessing and processing data. Moreover, it

allows parallel processing of data by locating tuples where they are most frequently

accessed (Bellatreche et al., 2000).

Different partitioning modes have been proposed and supported by various

database systems. They are classified into two main types, based on the number of

participating tables in the partitioning process: single table partitioning and table

dependent partitioning. In case of single table partitioning, a table is partitioned

based only on its attributes. Thus, the partitioning is similar to primary horizontal

partitioning (Ozsu and Valduriez, 1999). In order to implement this partitioning,

several modes exist: Range, List, Hash, Round Robin (supported by Sybase),

Composite (Range-Range, Range- List, List-List, etc.) and Virtual Column

partitioning. The single table partitioning is well adapted for optimizing selection

operations, especially when partitioning key matches with selection attributes. In

case of table dependent partitioning, a table (usually called child) is partitioned

based on the fragmentation schemes of other tables (called parents). This type of

partitioning is feasible if there is a parent-child relationship between these two tables

(Eadon et al., 2008). To implement this partitioning, the two main modes that are

41

available are: Native Referential Partitioning and User-driven Referential

Partitioning.

In the native referential partitioning, a child table inherits the partitioning

characteristics of its parent table. It is supported by Oracle11G, by the use of a

native DDL. It optimizes selection and joins simultaneously. Hence, it is well

adapted for star join queries. User-driven referential partitioning is a manual

implementation of referential partitioning, i.e., it is implemented using the single

table partitioning. That is, a parent table is first horizontally partitioned on its

primary key, then the child table is split using the foreign key referencing the parent

table. This kind of partitioning has been used for designing parallel DWs and is not

well adapted for star join queries.

Thus, the partitioning approaches available in the literature can be classified

as a single table and referential partitioning. Single table partitioning, involves

fragmenting the fact table. Referential partitioning, involves fragmenting the fact

table with reference to fragments of dimension table(s). This section presents the

review of these existing partitioning approaches. When the DW table(s) is

partitioned, it generates large set of partitions or fragments. Hence selection of

optimal fragment has been the focus of several approaches that are discussed here.

2.4.1 Single Table Partitioning Approaches

Brkić et al., (2012) discussed the procedure for horizontal fragmentation of

DW tables. They argue that their procedure is suitable when there are multiple

independent organizational units that produce data of the same structure and which

are needed to be loaded into the consolidated fact table. In such case, in order to

ensure data quality factors such as completeness and timeliness, their proposed

method uses meta-data for horizontal fragmentation of the DW. They define certain

expression for completeness and timeliness of DW tables which is used to ensure the

quality of the DW after ETL operation. They also provide experimental results to

show how horizontal partitioning of the fact tables can improve the quality of the

warehouse when compared to the non partitioned warehouse.

42

Liu and Iftikhar (2013) presented the design method for modeling big

dimensions in a DW. In order to automate the DW modeling process they use OWL

ontology to describe the semantics of a big dimension. They consider the vertical,

horizontal and hybrid partitioning technologies for modeling big dimension. Their

approach streamlines the modeling process from conceptual to physical DW design.

Barr (2013) presented a work that deals with the problem of selecting the

horizontal fragmentation. It considers two objective functions to minimize that is,

the number of I/O between memory and disk during decisional queries and the

number of fragments while selecting the fragment. A scalar method called

compromise method has been used. It is responsible to optimize an objective

function which considers the second objective function as a constraint. The main

principle of the method is to transform a multi-objective problem into single

objective one under additional constraints. To realize the meaning of compromise of

the proposed multi-objective optimization method, here the results obtained using

Genetic Algorithm are collected. These results give the number of inputs/outputs

according to the number of fragments introduced. Thus, the horizontal fragments

that minimize both the number of I/O between memory and disk and number of

fragments are selected.

2.4.2 Referential Partitioning Approaches

Boukhalfa et al., (2009) proposed an architecture for the combined selection

of horizontal partitioning (HP) and bitmap join indexes (BJI) by exploiting their

similarities. Here the dimension table is partitioned using several attributes without

their restriction to be contained in a hierarchy. The fact table is partitioned based on

the partitioning of the dimension table. For a fragmentation schema generation, they

used genetic algorithm. To generate a configuration of BJI they used greedy

algorithm.

Mahboubi and Darmont (2009) proposed a technique which adapts derived

horizontal fragmentation techniques developed for relational DWs to the XML DW.

In their fragmentation methodology, first the primary horizontal fragmentation is

43

applied onto the warehouse dimensions using either the predicate construction

method or the affinity-based method. Both these methods, inputs selection

predicates from the query workload. The facts are finally fragmented according to

horizontal fragments obtained by applying either the predicate construction or

affinity-based method on dimensions. Fragmentation of facts is achieved by semi-

join operations based on a virtual key reference.

Dimovski et al., (2011) proposed a formal approach for horizontal

partitioning and its application for optimizing DW design in a cost-based method.

The horizontal partitioning is based on predicate abstraction which maps the domain

of a relation to be partitioned to an abstract domain following a finite set of arbitrary

predicates chosen over the whole concrete domain. In order to address the

optimization problem a minimal set of predicates for each relation is derived using

ComputeMin procedure. The chosen predicates are used to horizontally partition

some (or all) dimension relations of the DW with star schema. The fact relation is

partitioned by using the predicates specified on dimension relations. Finally, they

use genetic algorithms, known evolutionary heuristic, to find a suitable partition

which minimizes the query cost.

Bellatreche (2012) proposed a comprehensive procedure for referential

partitioning in the DW. First, it selects relevant dimension table(s) to partition the

fact table and they are associated with selection predicates. Each dimension table is

then partitioned using single table partitioning type. To generate partitioning scheme

of the chosen dimension tables, DBA chooses the hill climbing algorithm. Finally,

the fact table is partitioned using referential partitioning based on the fragmentation

schemes generated by the algorithm.

2.4.3 Comparitive Analysis of Schema Partitioning Approaches

Table 2.4 provides the comparison of different partitioning approaches

available for DW. These approaches aim to minimize the query execution time by

applying partitioning over the DW tables there by optimizing its performance.

Horizontal partitioning has been employed by most of the approaches. Boukhalfa et

44

al., (2009), Brkić et al., (2012), Liu and Iftikhar, (2013) and Barr (2013) applied

single table partitioning strategy in order to partition the fact table. Whereas,

Mahboubi and Darmont (2009) and Bellatreche (2012) followed referential

partitioning strategy, where the fact table is fragmented based on the fragmentation

of dimension table(s). They argue that referential partitioning improves query

performance as DW involves star join queries that related fact with the dimension

table.

Table 2.4 Comparison of Partitioning Approaches

E
x
is

ti
n

g

M
et

h
o
d

s

A
p

p
ro

a
ch

P
a
rt

it
io

n
in

g

D
im

en
si

o
n

S
el

ec
ti

o
n

A
tt

ri
b

u
te

 /

P
re

d
ic

at
e

S
el

ec
ti

o
n

F
ra

g
m

en
t

S
el

ec
ti

o
n

O
p

ti
m

iz
a
ti

o
n

A
lg

o
ri

th
m

A
u

to
m

a
ti

o
n

T
o
o
l

S
u

p
p

o
rt

Brkić et

al., 2012
Single Horizontal No No No No No No

Liu and

Iftikhar,

2013

Single

Horizontal

Vertical

Hybrid

No No No No Yes Yes

Barr 2013 Single
Horizontal

No No Yes

Genetic and

Pareto

Dominance

No No

Boukhalfa

et al., 2009
Referential Horizontal No No Yes Genetic No No

Mahboubi

and

Darmont

2009

Referential Horizontal No Yes No No- No No

Dimovski

et al., 2011
Referential Horizontal No Yes Yes Genetic No No

Bellatreche

2012
Referential Horizontal Yes No Yes

Hill

Climbing
Yes Yes

When partitioning is applied over the dimension or fact table the number of

fragments produced is very large depending on the chosen partitioning attributes.

Hence, the existing approaches such as Boukhalfa et al., (2009), Dimovski et al.,

45

(2011), Barr (2013) and Bellatreche (2012) used fragmentation selection algorithms

such as genetic and hill climbing algorithms to choose optimal fragments. The

selection of partitioning attributes is addressed by Mahboubi and Darmont (2009)

and Dimovski et al., (2011).

The DW involves multiple dimension tables, hence the choice of dimension

table affects the partitioning process. Bellatreche (2012) discussed about dimension

table selection method. Also, Bellatreche (2012) and Liu and Iftikhar (2013)

provided steps for automating their proposed method along with a prototype tool to

facilitate the partitioning process.

Limitations

1. None of the existing approaches focus on dimension table selection except

Bellatreche (2012). Hence, as the DW involves multiple dimension tables an

efficient selection method need to be developed.

2. Another important issue that needs attention is partitioning attribute selection,

which needs to be improved.

3. Most of the approaches follow horizontal partitioning assuming the dimension

tables to have a large set of records. But in reality, these tables may contain a

large set of attributes. Hence, a mixed partitioning i.e. horizontal and vertical

partitioning needs to be combined to fragment a big dimension. Liu and Iftikhar

(2013) discuss about traditional mixed partitioning without any partitioning

selection procedure involved.

4. The existing approaches, though provide a fragmentation selection method and

fragmentation selection algorithm, they do not provide an optimized result.

5. Finally, as the queries imposed over the DW evolves, the existing partitions need

to be altered, which has not been discussed in the existing methods.

This research solves the partitioning issues of DW schema by providing

optimization of the traditional partitioning techniques. It also enables the partitions

to be managed in case of query evolution.

46

2.5 SUMMARY

In this chapter the different approaches that exist in the DW schema design,

evolution and partitioning have been discussed. The existing schema design

approaches do not provide a formal mechanism to match the data sources with user

requirements. Further, a design method covering the conceptual, logical and physical

phases is required to produce the final model. The research works on DW evolution

handles data source changes at the physical level, which incurs high maintenance

cost. Manual adaptation of DW evolution needs a lot of effort and rework, hence

automatic adaptation of DW schema changes and its dependent modules is essential.

Related to DW schema partitioning the existing works proposed algorithms for

optimal fragment selection. Problems related to dimension and attribute selection,

fragmentation of big dimension and partition management has not been much

studied.

A detailed comparison of the existing approaches and their limitations are

presented in this chapter. From the survey, it is inferred that the DW project to be

successful, it is essential to provide an appropriate multidimensional schema which

facilitate to make critical business decisions. Thus, this research work focuses on the

issues existing in the DW schema design and its management. A comprehensive

approach has been developed in order to handle the problems that exist in the DW

schema design, evolution and partitioning.

47

CHAPTER 3

ONTOLOGY BASED APPROACH FOR DATA

WAREHOUSE SCHEMA DESIGN

3.1 INTRODUCTION

The DW, owned by an organization, integrates data from heterogeneous

sources to enable better decision making. To facilitate OLAP queries the data

within the DW is arranged in a multidimensional format. The design of the

multidimensional schema in literature has been carried out from requirements or

data source and is called as demand driven or supply driven approach,

respectively. As discussed in the previous chapter, the design of

multidimensional schema requires a hybrid methodology, utilizing the

knowledge contained both in requirements and the data source. Hence, in order

to ascertain that source system and the requirements are well understood, it is of

great importance to provide a formal, explicit, and well-defined way to represent

these entities. To facilitate such representation and to provide the automation of

multidimensional design the DW community has adopted ontology (Pardillo and

Mazón, 2011; Romero and Abelló, 2010; Selma et al., 2012). The existing

ontology-based approaches do not fully utilize the benefits of hybrid

methodology of the schema design. Moreover, these approaches do not cover

the different phases of DW design such as conceptual, logical, and physical.

Hence, to overcome the limitations of existing methods, the proposed work has

the following contributions:

48

1. Representation of business requirements in a formal way using ontology.

2. A thorough analysis of the data source to obtain the multidimensional

knowledge it contains.

3. Reconciliation of data source and requirements concepts to generate

conceptual model.

4. Generation of a logical model using schema transformation and design

rules.

5. Physical implementation of the generated schema to validate the quality

of the output.

Section 3.1 describes in detail about the proposed OntoMD approach for

DW schema design. The OntoMD tool developed based on the OntoMd

approach is explained in section 3.2. Section 3.3 provides the details of the

case study used for the application of OntoMD approach. The evaluation of

the proposed approach is given in section 3.5. The summary of this chapter is

provided in section 3.6.

3.2 OntoMD: PROPOSED ONTOLOGY BASED

MULTIDIMENSIONAL SCHEMA DESIGN APPROACH

This section describes the steps involved in the proposed ontology based

multidimensional (OntoMD) schema design approach. Figure 3.1 represents the

steps involved in the proposed approach. A hybrid methodology is followed here

for identifying the multidimensional concepts such as facts, measures,

dimensions and levels in order to construct the DW schema. To provide

automation of the design task, the requirements and the data source are

represented in OWL ontology format. Here, the data source is first analyzed to

derive the multidimensional concepts it contains. Next, the requirements are

matched with the identified multidimensional concepts to filter the required

elements of the conceptual schema. From the derived conceptual schema, the

49

logical schema is generated automatically. Finally, the logical schema is refined

using queries to facilitate the physical implementation.

Figure 3.1 Proposed OntoMD Approach

3.2.1 Representation of Business Requirements and Data Source

Like any software system, requirements play a major role in the DW design.

Among the several approaches that exist for DW requirement analysis, the goal-

oriented approach based on i* framework is found to be an efficient method (Gloria

et al., 2008; Inmon, 2005; Niedrite et al., 2007). The proposed OntoMD approach

assumes that a requirement analysis has been carried out earlier and the

corresponding requirement specification is available for the given business domain.

For automation of the design task, it is required to formalize the requirements

specification. At this stage, the usage of ontology is beneficial, and thus the

requirement ontology is constructed based on the i* framework for DW (Gloria et

al., 2008). This ontology captures the multidimensional elements of the business

domain through which the knowledge contained in the data source is retrieved.

Global
Ontology

DWRequirement
Ontology

Reconciliation

Schema
Transformation

Facts and
Dimension

Context and
Measures

Conceptual
Schema

Hierarchy
Derivation

Schema
Transformation
and Refinement

Logical
Schema

Physical
Schema

R
ep

re
se

n
ta

ti
o

n
 o

f
B

u
si

n
es

s
R

eq
u
ir

em
en

ts
 a

n
d

 D
at

a
S

o
u
rc

e

Data Source
Analysis

50

Figure 3.2 represents the graphical view of the concepts available in the

ontology. The DW requirements are represented in the form of goals. Three types of

goals that exist in the ontology are strategic goal, decision goal and information

goal. The strategic goals (for example, „„increase sales”) are the main objectives of

the business process. It has one or more decision goals (for example, „„determine

some kind of promotion”), which determines how a strategic goal can be achieved.

The decision goal in turn has set of information goals (for example, „„analyze

customer purchases”) to be satisfied. The information goal is used to represent sets

of information requirements of the DW. Each of the information requirements

contains resources which are defined by three multidimensional elements such as

business process (the business process to be analyzed), measures (process measures

under analysis) and context (context of analysis) of the business domain.

Figure 3.2 Data Warehouse Requirement Ontology

Formally, the DW requirement ontology (DWRO) can be defined as:

DWRO = {S, I, D, IR, BP, M, CN}, where,

Strategic Goal

Decision GoalGoal

Resource

Information Goal

Information
Requirement

Business Process

Context

Measure

is a

is a

is a

has

has

has

contains

definedBy

definedBy

definedBy

51

- S is a set of OWL classes representing the strategic goals;

- I is a set of OWL classes representing the information goals;

- D is a set of OWL classes representing the decision goals;

- IR is a set of OWL classes representing the information requirements;

- BP is a set of OWL classes representing business process;

- ME is a set of OWL classes representing measures;

- CN is a set of OWL classes representing the contexts.

The main advantage of the proposed requirement ontology is that when there

are any changes in the requirements during the design or at later stages, these

changes can be easily incorporated into the ontology. And thus, it facilitates for the

evolution of DW which has been discussed in the next chapter.

Once the requirements are formalized, the next step is to represent the data

source in an OWL ontology format and perform the required analysis to derive the

multidimensional concepts. As the data for the DW are derived from several sources

(e.g. Relational, XML, Text) each may have different syntax, semantic, and

structural representations. Hence, each source needs to be represented in an ontology

format. In order to obtain a unified view of these sources, the ontologies

representing them are mapped and merged (Noy and Musen, 2003) to form an

integrated ontology. The process of obtaining the integrated data source ontology is

given in Figure 3.3.

Different tools are available for converting a particular type of source to

OWL representation. A relational source can be converted to ontology using

DB2OWL (Cullo et al., 2007) tool. Similarly xml and text sources can be converted

to ontology representation using XML2OWL (Lacoste et al., 2011) and OntoLT

(Buitelaar et al., 2004) tools respectively. This integrated ontology is taken as input

to derive the DW schema.

52

Figure 3.3 Ontology Integration

The integrated data source is described by an ontology called as data source

ontology (DSO). DSO is the collection of classes, its data type properties, and object

properties which is defined as follows:

DSO = {C, DTP, OTP} where,

- C is a set of OWL classes;

- DP is a set of data type properties;

- OP is a set of object type properties.

For any dpi ∈DP, there exists a domain ci = D(dpi) where ci ∈C, and a range

cj = Rng(dpi) ∈DTxml where DT is the collection of XML Schema data types. For

any opi ∈OP, there exists domain ci = D(opi) and range cj = Rng(opi) where, ci, cj ∈

C, and i ≠ j.

Database
TextXML

Ontology

Ontology Mapping

Ontology Merging

Ontology Ontology

 Data
Source

Ontology

53

3.2.2 Analysis of the Data Source

To derive the multidimensional concepts (MDC) from the DSO, the

condition of C≠ ∅ is required. The MDC is represented as follows:

MDC= {FL, ML, DL} where,

- FL is a set of facts;

- ML is a set of measures;

- DL is a set of dimensions.

The ontology DSO is taken as input and the MDC are automatically derived

through source analysis. From ontology DSO, a concept is identified as fact if it

contains enough number of numerical properties. Hence, the concepts with a ratio of

numerical attributes greater than the specified threshold are derived as fact. The

numerical attributes become the measures of the fact through which a business

process is measured. For each fact identified the dimensions are derived by making

use of class subsumption and multidimensionality principle which is defined as: N

elements of fact are related to at-least and at-most one element of a dimension

through a relationship i.e. an object property.

In order to derive the MDC contained in the source, a formal algorithm has

been proposed. The pseudo code of the algorithm FactDim is given in Figure 3.4.

The various notations used in this algorithm have been explained in section 3.2.1.

The algorithm first derives the data properties of each class in the ontology. From

the available set of data properties the numerical data properties are derived using its

range value. The tn and tp represents total numeric data properties and total data

properties respectively, for a class (Steps 2 – 8).

54

Figure 3.4 FactDim Algorithm

Next, any ontology class having a ratio of numerical data properties (rnp)

greater than a given threshold is considered to be a fact concept. This ratio is

obtained by dividing tn by tp (Steps 10 – 13). The numerical data properties of the

obtained fact concept are derived as measures. Fact and measures are displayed to

the user (Step 14). From the obtained fact concept the dimensions are derived using

MDC. For all object properties of the fact class, the algorithm finds the range class.

Range class having 1:n relationship with the fact class is derived as dimension

concept. Each fact concept may have one or more dimensions (Steps 18 – 27). The

facts, measures, and dimension list are then displayed to the user.

Input : Ontology of the form O = {C,DP,OP}

Output : MDC = {FL,ML,DL}

1 for all classes ci C do

2 for all data properties ci .dpi DP do

3 rng := Rng(ci .dpi), rng DTxml

4 if isnumeric(rng) then

5 Add ci .dpi to MLi;

6 tn++;

7 end if

8 tp++;

9 end for

10 rnp =tn/tp;

11 if (rnp > =threshold) then

12 F= ci;

13 Add ci to FLi;

14 Print(F, ML);

15 Compute_dimension(ci);

16 end if

17 end for

18 Compute_dimension(ci)

19 for all object properties ci.opi OP do

20 cj:= Rng(ci.opi), ci C

21 if (cj!= null) then

22 if (ci.opi allValuesFrom cj &&

maxCardinality = = 1) then

23 Add cj to DLi;

24 end if

25 endif

26 end for

27 Print(DLi);

55

3.2.3 Reconciliation of Data Source and Requirements

This step involves in filtering the results obtained from data source analysis

using the requirements. The reason for reconciliation is that not all the MDC

obtained from the source is useful for business analysis. Hence, the requirement

knowledge is used to retrieve only the required concepts. The DWRO represented

in Figure 3.2 contains context and measures required for the business analysis. For

each information requirement, the context and measure are matched with the

obtained list of MDC, and the matched concepts are filtered accordingly. WordNet

algorithm (Howe, 2009) is used in order to resolve the syntactic and semantic

conflicts during the matching process. Following are the steps in the matching

process:

1. For each information requirement from requirements ontology, the

contexts and measures are retrieved.

i. A matching is performed using WorldNet matcher for the contexts

of DWO(CN), with the dimensions of MDC(DL) obtained from the

FactDim Algorithm

ii. A matching is performed using WorldNet matcher for measures of

DWO(M), with the measures of MDC(ML) obtained from the

FactDim Algorithm.

iii. For the successful matches, the corresponding MDC are retrieved.

iv. For any unsuccessful match the designer is informed and the

corresponding requirement is resolved for any ambiguity.

v. The matched results containing fact, measures, and dimensions are

displayed to the user as a conceptual schema.

Thus, the reconciliation step helps to gather the exact knowledge about the

business domain from requirements and source at the early stage of design.

56

3.2.4 Derivation of Dimension Hierarchy

In order to perform OLAP analysis, such as drill-down or roll-up operations,

it is essential to store different level of details within the DW. This step involves

finding out the granularity required for representing the dimensions. Having

different levels provides a deeper level of business analysis. From the results

obtained after reconciliation, the dimension hierarchy containing the levels is

computed for each dimension concept.

Figure 3.5 DimHierarchy Algorithm

The proposed DimHierarchy algorithm is used by OntoMD approach to

derive the dimension hierarchy. The steps of the algorithm are represented in Figure

3.5. The various notations used in this algorithm have been explained in section

3.2.1. DimHierarchy algorithm uses the input ontology DSO and dimension list DL

of MDC to compute the dimension hierarchy. Here, for each dimension class, the

dimension levels are computed. For all object properties of the dimension class, the

algorithm finds the range class (Steps 3-4). Range class having 1:n relationship or

Input : Ontology of the form O = {C,DP,OP}

Output : Dimension Hierarchy: DH

1 Compute_Hierarchy(DLi)

2 for each class ci DLi do

3 for all object properties ci.opi OP do

4 cj:= Rng(ci.opi), ci C

5 if(cj!= null && cj!=FLi)then

6 if (ci.opi allValuesFrom cj && maxCardinality = = 1) ||

 (ci.opi someValueFrom cj && maxCardinality = = 1)

then

7 Add cj to DHi;

8 end if

9 end if

10 end for

11 Print(DHi);

12 Compute_Hierarchy(DHi)

13 end foreach

57

1:1 relationship with the dimension class is derived as level (Steps 5-9). Each level

is recursively traversed to compute the dimension hierarchy.

The conceptual model containing fact, measure, dimension, and

corresponding dimension hierarchy is presented to the designer for further

improvement. Based on the designer‟s choice the number of levels of a hierarchy is

retained.

3.2.5 Generation of Logical Schema

The logical design involves in defining the multidimensional structure for the

DW. Thus, in this step of the OntoMD approach the logical schema is derived from

the conceptual model. Here, the logical schema is represented in ontology format as

given in Figure 3.6. The following transformation rules are followed to construct

the DW Ontology (DWO) representing the logical schema:

1. The concept fact is represented as a fact class.

2. Measure concepts become measurable properties of the fact class.

3. The attribute that relate the fact to dimension concepts becomes the

object property.

4. The attributes of fact concept are represented as data properties of the

fact class.

5. The dimension concepts are represented as separate dimension class.

6. The attributes of each dimension concept become the data properties of

the dimension class.

7. For each level concept, a separate class is created with the properties.

Similar to DWRO, the advantage of maintaining the logical schema as

ontology is that it can support for future evolution of the DW. The DWO can be

formally defined as given below:

58

DWO = {F,FP,M,D,DIP,RP,L,LP} where,

- F is a set of OWL classes representing the fact;

- FP is a set of data properties representing the fact properties;

- M is a set of data properties representing the measures of the fact;

- D is a set of OWL classes representing the dimensions;

- DIP is a set of data properties representing the dimension properties;

- RP is a set of object properties representing the relationship between

facts and dimensions and between dimension and level;

- L is a set of OWL classes representing the levels;

- LP is a set of data properties representing the level properties.

Figure 3.6 Data Warehouse Ontology

3.2.6 Enrichment of the Logical Schema

Before the logical schema is implemented at the physical level, it is further

refined in order to satisfy the user needs. For the refinement of the logical schema,

the dimensions may be de-normalized and unnecessary attributes can be removed as

per the requirements. At this stage, the queries are written based on the

requirements. In the refinement process, first the tables involved are extracted from

the from clause of each query. These tables are then verified with the classes in the

Fact Class

Dimension Class

Level Class

has range
has

has

Fact Data

 Property

Dimension Data

Property

Level Data Property

has

has

has

Fact-Dim Object

Property

Dim-Level Object

Property

has domain

has domain

has range

59

DWO representing the logical schema. The following design rules are applied based

on the mapping between the queries and the DWO concepts:

1. When two or more classes in the DWO are mapped to a single table in

the query then the classes are merged.

i.e. if ci,cj ti then merge (ci,cj)

2. When a single class in the DWO is mapped to two or more tables in the

query then split operation is performed over the class.

i.e. if ci ti ,tj then split(ci)

3. When no mapping exists for a class in the DWO to tables in the query

then the corresponding class in DWO is dropped.

i.e. if ¬ci (ti) then drop(ci)

4. When no mapping exists for a table in the query to classes in the DWO

then the table is added as a new class to the DWO.

i.e if ¬ti (ci) then add(ti)

Where, ci,cj ∈ C i.e classes in DWO and ti ∈ T i.e tables in the queries.

A similar operation for refining the attributes needs to be performed. For this

the fields contained in the where clause of the queries and the table properties in the

DWO are mapped as follows:

1. When no mapping exists for a data property in the DWO to the attributes

in the query, then the data property is dropped.

i.e. if ¬dpi (ai) then drop(dpi)

2. When no mapping exists for an attribute in the query to the data

properties in the DWO then the attribute is added to the DWO.

i.e. if ¬ai (dpi) then add(ai)

60

Where, dpi ∈ DP i.e data property in DWO and ai ∈ A i.e attribute in the

queries. After refining DWO using the above operations, the final logical schema for

the DW can be generated and represented using graphical notation.

3.2.7 Physical Schema Construction

The final step of OntoMD involves in transformation of logical to physical

schema. The physical schema of the DW is defined as follows:

PS = {T,A} Where,

- T is a set of tables representing facts, dimensions and levels;

- A is a set of attributes of the table;

- ti is a table in T;

- ai is an attribute in A.

Figure 3.7 Physical Schema Construction

Input : DWO

Output : Relational Data Warehouse

1 for each class ci DWO do

2 Create table ti from ci;

3 Create the primary key ai of ti;

4 end for

5 for each data property dpi DP do

6 cj := Dom(dpi);

7 Find table tj;

8 rng := Rng(dpi);

9 Create ai from dpi and add to tj;

10 end for

11 for each object properties opi OP do

12 cj := Dom(opi);

13 Find table ti

14 ci := Rng (opi)

15 Find table ti

16 Add attribute ai as foreign key to tj

17 Add foreign key constraint to ai

which references to primary key of ti

18 end for

61

From the DWO the physical schema is created in the underlying database

using the steps defined in Figure 3.7. The notations used in this algorithm have been

explained in section 3.2.1. A table is created for every class in the ontology, with the

same name as the OWL class. An attribute representing the primary key is added

into this table (Steps 1-4). For all data type properties the domain and the range

classes are obtained. An attribute is created with the same name as the data type

property. The attribute is added to the table which is mapped to the domain class,

and the attribute data type is obtained from the range of the data type property (Steps

5-10).

For an object type property, a foreign key relationship is created between the

table that maps the domain class and the table that maps the range class. An attribute

is added to the table that maps the domain class and the foreign key constraint is

added to this attribute as well (Steps 11-18).

Thus, the OntoMD approach, starting from ontology representation of

requirements and data source automatically derives the DW multidimensional

schema following conceptual, logical and physical phases of the design. In order to

enable the DW designer to construct the schema an OntoMD tool has been

developed which is explained in the next section.

3.3 THE ONTOMD TOOL

This section presents the details about the proposed OntoMD tool for DW schema

design. The OntoMD tool follows the steps of OntoMD approach systematically and

generates the multidimensional schema effectively. This tool assists the designer to

reconcile the knowledge in the requirements and the sources at the early stage of

design. It also helps to overcome the difficulties in the design process and develop a

DW schema in the underlying database following conceptual, logical and physical

phases of the DW design. Various components of the OntoMD tool, technology and

tools required for implementation of OntoMD tool and comparison with existing

tools are discussed in this section.

62

3.3.1 Components

Figure 3.8 represents the three main components of OntoMD tool which are

explained below:

Ontology Representation: The two main inputs of the design process are

the requirements and source which are represented in ontology format. The DWRO

is constructed from requirement specification using Protégé (Ontology, 2007) which

is an ontology editing tool. The local ontologies representing different sources are

integrated to DSO using Prompt tool (Noy and Mason, 2003), ontology mapping and

merging plug-in for Protégé (Ontology, 2007). Prompt and Protégé are included as

plug-ins for the OntoMD tool.

Figure 3.8 Components of OntoMD Tool

Ontology Parsing: For performing Source analysis, the DSO is taken as

input. Jena API is used for parsing the ontology and to derive the facts, measures,

and dimensions based on FactDim algorithm given in section 3.2.2. The results are

then displayed to the user. To reconcile the requirements and the source Wordnet

matcher is used. WordNet (Howe, 2009) matching algorithms take the MDC from

Requirement

Representation

Data Source

Integration

Source

Analysis

WordNet

Matcher

Dimension

Hiearchy

Conceptual To

Logical

Logical To

Physical

Ontology Representation

Ontology Parsing

Schema Transformation

63

requirements and source. The matched MDC are derived and displayed to the user.

The designer can derive the different levels of a dimension based on his choice. To

derive the dimension hierarchy Jena API is used for parsing the source ontology

based on the DimHierarchy algorithm given in section 3.3.4. The conceptual schema

elements with dimension hierarchy are displayed in the graphical notation.

Schema Transformation: To derive the logical schema, this component

takes the conceptual schema elements as input and represents the fact and dimension

in DWO format. The refinement rules explained in section 3.2.6 applied to the

logical schema are implemented using Java and Jena API. From the logical schema

i.e. DWO, the relational schema is constructed in the underlying database using the

physical schema construction steps given in section 3.2.7, which is implemented

using Jena API.

3.3.2 Implementation Support

In this section, the general technologies, programming languages and

development tools that are used during the implementation process are briefed

below:

 Net Beans 6.9.1 as development environment – IDE

The complete development of the tool is realized inside Net Beans 6.9.1. The

reason of choosing this development tool can be mainly justified by the fact

that it has better support for drag and drop GUI development.

 Java

For implementation of OntoMD tool, Java programming language has been

used. Java is a general-purpose, concurrent, class-based, object-

oriented computer programming language that is specifically designed to

have as few implementation dependencies as possible. The main reason

behind this choice is its platform-independent and portable nature.

64

 OWL - Web Ontology Language

Inside the OntoMD tool, ontologies are chosen for representing the

requirements and the data source. As the system needs to read and infer

relations from the data source, OWL has been chosen for representing the

ontology. The advantage of OWL is that it provides the system with the

means of only representing information, but also for automatic processing of

that information.

 Jena API:

For reading and parsing the ontology represented in OWL, JENA (Semantic

Web Framework for Java) has been chosen for the OntoMD tool. JENA is

open source technology and it represents a Java framework for building

Semantic Web applications. It provides a Java programmatic environment

for both creation and parsing of various Semantic Web Standards (RDF,

RDFS, OWL etc.).

 Protégé

Protégé is a free, open-source platform that supports the creation,

visualization, and manipulation of ontologies in various representation

formats. It is added as a plug-in to OntoMD tool for editing the ontologies.

 WordNet

WordNet is a large lexical database of English. Nouns, verbs, adjectives and

adverbs are grouped into sets of cognitive synonyms (synsets), each

expressing a distinct concept. Synsets are interlinked by means of

conceptual-semantic and lexical relations. It is used for finding out the

syntactic and semantic relatedness between terms from requirements and

data source ontologies.

65

3.3.3 Comparison of OntoMD with existing tools

A comparison of OntoMD tool with existing tools for DW schema design is

given in this section. The various features that are compared are represented in Table

3.1. The main advantage of the proposed OntoMD tool is that it provides a thorough

analysis of data source and a formal way of mapping requirements with it to derive

the multidimensional model for the DW. The proposed tool provides a good level of

automation covering different stages of the design. The relational schema for the

DW is automatically constructed from the ontology representation. The user or

designer suggestions are utilized while refining the requirements and choosing the

dimension hierarchy.

Table 3.1 Comparison of Design Tools

Tool Features AMDO Tool GEM Tool OBDWD Tool OntoMD tool

Source Analysis Yes No No Yes

Requirements and

Source Mapping
No Yes Yes Yes

Automation of each

design Phase
No No No Yes

Relational Schema

Construction
No No Yes Yes

User Suggestion No Yes No Yes

Thus, the proposed tool based on the OntoMD approach improves the design

task in a significant way. To illustrate the practical application and to evaluate the

proposed OntoMD approach and the corresponding OntoMD tool, the Transaction

Processing Council Benchmark H (TPC-H for short) has been chosen (Council,

2008). For the given business domain, the DW schema is generated by applying the

various steps of OntoMD approach which has been explained in the following case

study.

66

3.4 CASE STUDY – TPC-H

The TPC-H is a decision support benchmark developed by the TPP Council

(Council, 2005). This benchmark was designed to represent a real-world information

system and have been widely chosen for its industry-wide relevance. It consists of a

set of tables and business oriented ad hoc queries. TPC-H does not represent the

activity of any particular business segment, but rather any industry which, sell, or

distribute a product worldwide, for example, food distribution, parts, suppliers, etc.

(Council, 2005). The purpose of this benchmark is to reduce the diversity of

operations found in an information analysis application, while retaining the

application's essential performance characteristics.

The TPC-H schema represents ordering and selling activity and it consists of

tables such as Lineitem, Orders, Partsupp, Part, Supplier, Customer, etc. Various

business analysis that can be performed over the TPC-H domain are profit and

revenue analysis, pricing and promotions analysis, Supply and demand analysis etc.

In this section, a detailed discussion is given for each step of OntoMD

approach explained in section 3.2, that are applied to the case study. Based on the

obtained results the proposed approach is evaluated, which has been provided in the

next section. Following are the steps considered for the given TPC-H domain:

1. Representation of Business Requirements and Data Source

2. Analysis of the Data Source

3. Reconciliation of Data Source and Requirements

4. Derivation of Dimension Hierarchy

5. Generation of Logical Schema

6. Enrichment of the Logical Schema

67

3.4.1 Representation of Business Requirements and Data Source

The requirement specification is derived from the high-level descriptions of

the business questions available in TPC-H. A sample of the descriptions is given

below:

 Measure the revenue increase by eliminating various ranges of discounts

in given product order quantity intervals shipped in a given year;

 Compare revenues for certain product classes and suppliers in a certain

region, grouped by more restrictive product classes and all years of

orders;

 Retrieve total revenue for lineorder transactions within a given region in

a certain time period, grouped by customer nation, supplier nation and

year;

 Analyze the profit change in a certain time period, grouped by supplier

nation and product category.

For the proposed OntoMD approach it is assumed that the requirement

specification is available, which has been already derived using goal-oriented

requirement analysis. Figure 3.9 represents the ontology format of the requirement

specification for profit and revenue analysis.

The strategic goal of the given business domain is to “increase profit for

items shipped”. In order to achieve this goal, the decision goals that are to be taken

are “increase revenue for customer orders” and “increase revenue for parts sold”. In

order to satisfy the given decision goals, it is necessary to have information goals

such as “study revenue based on customer and order date” and “study revenue based

on parts sold, supplier and date”.

Based on the information goals, different analysis needs to be performed,

such as “analyze revenue based on customer”, “analyze revenue based on supplier”,

and so on. Here, the context is “customer” and measure is “revenue” for the

68

information requirement “analyze revenue based on customer”. Similarly, for other

information requirements, the contexts and measures can be obtained.

Figure 3.9 Requirement Specification for TPC-H

69

Figure 3.10 Ontology for TPC-H schema

Strategic goals, decision goals, information goals, and information

requirements along with contexts and measures are represented as classes of the

requirement ontology as explained in section 3.2.1. Once the requirements are

specified, the next step is to analyze the data source to derive the MDC. An

integrated ontology representing the data sources is available for the TPC-H domain.

The graphical representation of TPC-H schema ontology (Skoutas et al., 2009) is

shown in Figure 3.10.

70

3.4.2 Analysis of the Data Source

In order to perform the source analysis, the TPC-H schema ontology is taken

as input and the MDC are automatically derived using the FactDim Algorithm given

in section 3.2.2. The MDC such as facts, measures, and dimensions obtained after

source analysis are given in Table 3.2.

Table 3.2 MD Concepts Derived after Source Analysis

Fact Measures Dimensions Fact Measures Dimensions

Orders

Orders_o_totpriceATRIBUT

Orders_o_orderkeyATRIBUT

Orders_o_orderstatusATRIBUT

Orders_o_shippriorityATRIBUT

Orders_o_orderpriorityATRIBUT

Orders_o_custkeyATRIBUT

- Individual Individual_i_idnumATRIBUT -

EUNation EUNation_eu_eukeyATRIBUT -
Parts

Parts_p_sizeATRIBUT

Part_p_retailpriceATRIBUT

Part_p_partkeyATRIBUT

-

LegalEntity LegalEntity_le_regnumATRIBUT - Partsupp

Partsupp_ps_suppkeyATRIBUT

Partsupp_ps_supplycostATRIBUT

Partsupp_ps_partkeyATRIBUT

Partssupp_ps_availqtyATRIBUT

Parts

LineItem

Lineitem_l_returnflagATRIUT

Lineitem_l_quantityATRIBUT

Lineitem_l_taxATRIBUT

Lineitem_l_linenumberATRIBUT

Lineitem_l_extendedpriceATRIBUT

Lineitem_l_suppkeyATRIBUT

Lineitem_l_partskeyATRIBUT

Lineitem_l_discountATRIBUT

Lineitem_l_orderkeyATRIBUT

Orders

Partsupp
Nation

Nation_n_nationkeyATRIBUT

Nation_n_regionkeyATRIBUT
Region

NonEuNation NonEUNation_neu_neukeyATRIBUT - Customer

Customer_c_nationkeyATRIBUT

Customer_c_phoneATRIBUT

Customer_c_accbalATRIBUT

Customer_c_cuskeyATRIBUT

Orders

Nation

Supplier

Supplier_s_phoneATRIBUT

Supplier_s_accbalATRIBUT

Supplier_s_suppkeyATRIBUT

Supplier_s_nationkeyATRIBUT

Nation

Partsupp

Region Region_r_regionkeyATRIBUT Area

Area Area_a_areakeyATTRIBUT -

71

By setting the threshold value greater than 0 for the ratio rnp in FactDim

Algorithm, concepts with one or more numerical properties are derived as fact. For

the TPC-H schema ontology 13 facts are obtained, such as Orders, LineItem,

Supplier, etc. Concepts related to the fact with at-least and at-most one object

property is derived as dimensions.

For example, Orders and Partsupp are derived as dimensions for the fact

LineItem. After the source is analyzed, the MDC derived are presented to the

designer. Here, it is observed that properties such as phone_number, return_flag,

etc., are also included as measure concepts as they belong to numerical category.

Hence, the results need to be filtered according to the requirements, as all the

concepts may not be useful for constructing the DW schema.

3.3.3 Reconciliation of Data Source and Requirements

This step is used to reconcile the results obtained in the previous step with

the requirements from requirement ontology. From Table 3.1, the fact LineItem

consisting of the measures ExtendedPrice and Discount along with dimensions

Orders and Partsupp matches with the measures ExtendedPrice and Discount given

in the requirement ontology. The results after matching are shown in Table 3.3.

Context such as Customer, Nation, Supplier, Part available in the requirements are

not obtained in the filtered result. As these concepts also need to be included in the

DW schema, the levels of each dimension are extracted in the next step.

Table 3.3 Results after matching between requirement and source concepts

Fact Measure Dimension

LineItem
Lineitem_l_extendedpriceATRIBUT

Lineitem_l_discountATRIBUT

Orders

Partsupp

72

3.4.3 Derivation of Dimension Hierarchy

For dimension Orders and Partsupp, the computed hierarchy is shown in

Figure 3.11. Customer class having n:1 relationship with Orders dimension becomes

the first level. By means of recursively traversing Customer class, Nation is derived

as the second level for Orders dimension. In a similar manner, the levels of Partsupp

dimension are obtained. At this stage, the designer can choose the levels to be

included in the conceptual schema based on the requirements. As the requirement

contains Customer, Nation, for Orders dimension and Part, Supplier, Nation and

Region for Partsupp dimension, these levels are considered for the DW schema

representation. The resulting conceptual schema is shown in Figure 3.10. Here,

LineItem is the fact concept, ExtendedPrice and Discount are the measure of the

fact, and Orders and Partsupp along with the levels forms the dimension hierarchy.

Figure 3.11 Conceptual Schema Representation

Fact:LineItem
Measure:
ExtendedPrice
Measure:Discount

Dimension:
Orders

Level:
Customer

Level:
Nation

Dimension:
Partsupp

Level:
Part

Level:
Supplier

Level:
Nation

Level:
Region

73

3.4.4 Generation of Logical Schema

Following conceptual representation, the logical schema is derived using the

steps given in section 3.2.4. Figure 3.12 represents the generated DWO representing

the logical schema.

Figure 3.12 Data Warehouse Ontology for Logical Schema

3.4.5 Enrichment of the Logical Schema

In order to refine the logical schema, the queries based on the information

requirements are used. For the case study, the Star Schema Benchmark (SSB)

queries (O‟Neil et al., 2007) are used. SSB is a variation of the TPC-H benchmark,

which models the DW for the TPC-H schema. For the TPC-H example, the mapping

between logical schema tables to query tables is shown in Figure 3.13. Here, the

LineItem and Orders table from logical schema are mapped to Line Order table

LINEITEM (FACT)

Line_l_parsupptkey (FK)
Line_l_orderkey (FK)
Line_l_tax
Line_l_extendedprice
Line_l_quantity
Line_l_discount
Line_l_commitdate
Line_l_returnflag
Line_l_shipmode
Line_l_linestatus
Line_l_shipinstuct
Line_l_receiptdate
Line_l_shipdate

NATION
(LEVEL)

Nation_n_nationkey(PK)
Nation_n_comment

PART
(LEVEL)

Part_p_partkey (PK)
Part_p_name
Parts_p_size
Part_p_mfgr
Part_p_category
Part_p_brand
Part_p_color
Part_p_type
Part_p_container
Part_p_retailprice

ORDERS
(DIMENSION)

Order_o_orderkey (PK)
Order_o_cuskey (FK)
Order_o_orderpriority
Order_o_totprice
Order_o_orderdate
Order_o_shippriority
Order_o_orderstatus
Order_o_commnet

SUPPLIER
(LEVEL)

Supplier_s_suppkey (PK)
Supplier_s_nationkey
(FK)
Supplier_s_name
Supplier_s_address
Supplier_s_phone
Supplier_s_accbal
Supplier_s_comment
Supplier_s_nation
Supplier_s_region

CUSTOMER
(LEVEL)

Customer_c_cuskey (PK)
Customer_c_nationkey (FK)
Customer_c_mktsegment
Customer_c_name
Customer_c_address
Customer_c_phone
Customer_c_accbal
Customer_c_comment
Customer_c_nation
Customer_c_region

PARTSUPP
(DIMENSION)

Partsupp_ps_partsuppkey (PK)
Partsupp_ps_partkey (FK)
Partsupp_ps_partkey (PK)
Partsupp_ps_supplycost
Partsupp_ps_comment
Partsupp_ps_availqty
Partsupp_ps_suppkey

REGION
(LEVEL)

Region_r_regionkey(PK)
Region_r_name
Region_r_comment

NATION
(LEVEL)

Nation_n_nationkey (PK)
Nation_n_regionkey(FK)
Nation_n_comment

74

contained in the query. Thus, they can be merged to form a single table. The table

Partsupp in the logical schema is not available in the query. Hence, Partsupp can be

dropped while constructing the final DW schema. The table Date, involved in the

query and not available in the logical schema can be kept as a separate dimension

table in the final schema. Similar steps can be followed for other mappings. The

designer may also need to filter the attributes, as the final schema does not involve

all the attributes available. Like table matching, attributes matching can be

performed to derive the required result.

Figure 3.13 Mapping between Tables in Logical Schema and Queries

 After the logical schema is refined using the above operations, the final

logical schema is generated. Figure 3.14 shows the DWO representing the logical

schema produced by the proposed approach. After merging LineItem and Orders

table, the Line Order is obtained as the fact table. Similarly, Customer, Part,

Supplier, and Date become the dimension table. The primary key and foreign keys

are represented for each table of the logical schema. The physical schema can be

LineItem

Order

Cutomer

Customer_Nation

Partsupp

Part

Supplier

Supplier_Nation

Supplier_Region

LineOrder

Date

Customer

Part

Supplier

Tables in DW

Schema

Tables in

Queries

75

automatically constructed from DWO using the steps given in section 3.2.7 and can

be evaluated for its quality as discussed in the following section.

Figure 3.14 Logical Schema for Data Warehouse

3.5 RESULTS AND DISCUSSION

This section discusses about the experimental setup for evaluating the

effectiveness of the proposed approach along with the schema quality parameters

used for the evaluation. Further, the results obtained with the proposed OntoMD

proposed is compared with other approaches such as AMDO (Romero and Abelló,

2010), GEM (Romero et al., 2011) and OBDW (Selma et al., 2012).

LINEORDER (FACT)

LineOrder_l_linenumber (PK)
LineOrder_l_suppkey (FK)
LineOrder_l_orderkey (FK)
LineOrder_o_custkey (FK)
LineOrder_l_partskey (FK)
LineOrder_l_tax
LineOrder_l_extendedprice
LineOrder_l_quantity
LineOrder_l_discount
LineOrder_l_commitdate
LineOrder_l_returnflag
LineOrder_l_shipmode
LineOrder_l_linestatus
LineOrder_l_shipinstuct
LineOrder_l_receiptdate
LineOrder_l_shipdate
LineOrder_ps_supplycost
LineOrder_o_orderpriority
LineOrder_o_totprice
LineOrder_o_orderdate
LineOrder_o_shippriority
LineOrder_o_orderstatus
LineOrder_o_commnet

DATE

(DIMENSION)

Date_d_datekey (PK)
Date_d_date
Date_d_week
Date_d_month
Date_d_year

PART

(DIMENSION)

Part_p_partkey (PK)
Part_p_name
Parts_p_size
Part_p_mfgr
Part_p_category
Part_p_brand
Part_p_color
Part_p_type
Part_p_container
Part_p_retailprice

CUSTOMER

(DIMENSION)

Customer_c_cuskey (PK)
Customer_c_mktsegment
Customer_c_name
Customer_c_address
Customer_c_phone
Customer_c_accbal
Customer_c_comment
Customer_c_nation
Customer_c_region

SUPPLIER

(DIMENSION)

Supplier_s_suppkey (PK)
Supplier_s_name
Supplier_s_address
Supplier_s_phone
Supplier_s_accbal
Supplier_s_comment
Supplier_s_nation
Supplier_s_region

76

3.5.1 Experimental Setup

To evaluate the proposed approach in terms schema quality three different

domains, TPC-H, EU-Car Rental (Frias et al., 2003), and LUMB (Guo et al., 2005)

are used. TPC-H benchmark has been explained in section 3.3. EU-Car Rental

provides an integrated data source schema, and a set of business requirements for the

car rental domain. The supporting schema contains information, such as,

rental_agreement, customer, branch, reservation etc. The LUBM is composed of

several data sources and a global schema available in an ontology format on a

university's domain with concepts such as Undergraduate Student, Assistant

Professor etc. and 14 test queries. The DW schemas for these three domains are

generated using the OntoMD tool.

In order to validate the schema generated, the physical schema is constructed

in the Oracle11G DBMS. In order to execute the queries the DW is populated using

the data generator available for each domain.

3.5.2 Schema Quality Metrics

The effectiveness of the proposed approach is evaluated in terms of the quality

of the output schema generated. Following are the parameters used to verify the DW

schema quality (Vassiliadis, 2000):

1. Correctness: Final inspection of DW schema for each entity and its

corresponding ones in the sources.

 Correctness =

 …... (3.)

Where, TE is the total number of entities and NUM is the number of

unmatched entities.

2. Completeness: Final inspection of DW schema for useful entities in the

sources, not represented in the DW schema.

77

 Completeness =

 …... (3.2)

Where, TE is the total number of entities and NNU is the number of non-useful

entities.

3. Minimality: Final inspection of DW schema for undesired redundant

information.

 Minimality =

 …... (3.3)

Where, TE is the total number of entities and NR is the number of redundant

entities.

4. Traceability: Inspection of DW schema for inability to cover user

requirements.

 Traceability =

 …... (3.4)

Where, TE is the total number of entities and NNR is the number of entities not

covered the requirements.

5. Interpretability: Mapping of conceptual to logical entities and from logical

to physical entities.

 Interpretability =

 …... (3.5)

Where, TE is the total number of entities and NNT is the number of non-

traceable entities.

3.5.3 Result Analysis

The values of the given schema quality parameters are computed for the

generated DW schema for the three given domains. The results are compared for the

proposed OntoMD approach with the existing approaches. Table 3.4 provides the

obtained results for each quality metric.

78

Table 3.4 Results for schema quality generated by ontology based

approaches

Schema Quality Metrics Domains AMDO GEM OBDW OntoMD

Correctness %

TPC-H 85 89 90 100

CAR-RENTAL 86 87 89 100

LUMB 84 85 90 100

Completeness %

TPC-H 78 83 85 98

CAR-RENTAL 75 82 87 98

LUMB 75 83 85 97

Minimality %

TPC-H 82 85 90 100

CAR-RENTAL 80 86 89 100

LUMB 80 85 89 100

Traceability %

TPC-H 75 86 100 100

CAR-RENTAL 73 84 100 100

LUMB 75 86 100 100

Interpretability %

TPC-H 72 80 87 95

CAR-RENTAL 70 82 88 96

LUMB 70 80 88 95

Figure 3.15 presents the comparison of correctness metrics of ontology-

based approaches for the three domains. A formal reconciliation of requirements and

data source has been carried out by the proposed OntoMD approach. Hence, the

correctness achieved is 100% as the DW schema entities produced have a mapping

with the corresponding source schema entities for all three domains.

Figure 3.15 Correctness Analysis

75

80

85

90

95

100

105

AMDO GEM OBDWSD OntoMD

C
o
rr

ec
tn

es
s

P
er

ce
n

ta
g
e

Ontology-based Approaches

TPC-H

CAR_RENTAL

LUMB

79

The useful entity in the source schema not present in the DW schema for

TPC-H domain is customer type in customer dimension, hence the achieved

completeness is 98%. From the Figure 3.16 it was observed that the results for

completeness metrics for other domains are also better when compared to the

existing approaches.

Figure 3.16 Completeness Analysis

Figure 3.17 analyses the effectiveness of the approaches in terms of

minimizing the redundant entities in the output schema. The proposed approach

performs filtering of the required MDC from the source. Hence, the DW schema

produced by OntoMD does not contain any redundant entities and thus the

minimality achieved is 100% for the given domains.

0

20

40

60

80

100

120

AMDO GEM OBDWSD OntoMD

C
o
m

p
le

te
n

es
s

P
er

ce
n

ta
g
e

Ontology-based Approaches

TPC-H

CAR_RENTAL

LUMB

80

Figure 3.17 Minimality Analysis

From the Figure 3.18 it has been observed that the OBDW and the proposed

OntoMD achieved traceability as 100% for the three domains. The reason is that

these two approaches successfully execute the given set of queries, which in turn

satisfy the given set of requirements.

Figure 3.18 Traceability Analysis

0

20

40

60

80

100

120

AMDO GEM OBDWSD OntoMD

M
in

im
a
li

ty
 P

er
ce

n
ta

g
e

Ontology-based Approaches

TPC-H

CAR_RENTAL

LUMB

0

20

40

60

80

100

120

AMDO GEM OBDWSD OntoMD

T
ra

ce
ab

il
it

y
 P

er
ce

n
ta

g
e

Ontology-based Approaches

TPC-H

CAR_RENTAL

LUMB

81

In the proposed OntoMD design approach, most of the entities from

conceptual to logical and, logical to physical schema could be traced and hence it

could achieve 92% as interpretability for TPC-H domain. This result is

comparatively high as shown in Figure 3.19, when compared to existing approaches

for the given domains.

Figure 3.19 Interpretability Analysis

From the above results it has been observed that the OBDW approach and

proposed work provide good results compared to other approaches. The proposed

work outperforms OBDW and other approaches w.r.t correctness, completeness and

minimality, and interpretability. The following inference is made from the Figure

3.15 to Figure 3.19:

i. The proposed OntoMD achieve 10% more result for correctness when

compared to OBDW, 13% more than GEM and 15% more result than

AMDO.

ii. For completeness OntoMD produce 13% better results compared to

OBDW, 16% more than GEM and 22% more result than AMDO.

0

20

40

60

80

100

120

AMDO GEM OBDWSD OntoMD

In
te

rp
re

ta
b
il

it
y
 P

er
ce

n
ta

g
e

Ontology-based Approaches

TPC-H

CAR_RENTAL

LUMB

82

iii. In case of minimality OntoMD achieve 10% more result when compared

to OBDW, 53% more than GEM and 19% more result than AMDO.

iv. OntoMD and OBDW achieve same results for traceability. Whereas,

OntoMD produce 14% more result when compared to GEM and 25%

more than AMDO.

v. For interpretability OntoMD produce 13% better results compared to

OBDW, 16% more than GEM and 22% more result than AMDO.

3.6 SUMMARY

In this chapter the proposed ontology-based approach for the DW schema design

has been described. In this approach, utilizing semantic web tools such as ontology,

a conceptual design phase has been used, which aimed at reconciliation of MDC

present in requirements and data source in a formal way. The resulting conceptual

schema was then mapped into a logical multidimensional schema, followed by an

enrichment of this schema using SQL queries. Based on the proposed

implementation, a tool called OntoMD was developed to facilitate the designer for

the design task. The design method was applied to a case study. In order to validate

the proposal, the physical schema was implemented using TPC-H benchmark and

other domains. By comparing the proposed work with existing approaches, it was

inferred that the OntoMD produced a good level of automation of the design task. It

helps to reduce the burden of designer to perform manual reconciliation and

redesign involved during the design process. Moreover, the quality of the output

generated by the proposed approach outperforms the existing ontological

approaches. In the next chapter, the focus is on the impact of changes in data source

and business requirements of the DW schema and its dependent entities.

83

CHAPTER 4

ONTOLOGICAL APPROACH TO HANDLE DATA

WAREHOUSE SCHEMA EVOLUTION

4.1 INTRODUCTION

DWs tend to evolve, due to changes in data sources and business requirements

of users. Both these changes result in DW schema evolution. These changes are

handled either by just updating it in the DW structure (Benitez-Guerrero et al., 2004;

Curino et al., 2009), or it is developed as a new version (Bebel et al., 2006;

Sahpaski et al., 2009).

Existing approaches in DW schema evolution concentrate on source changes

and few over requirements changes. As these changes are updated at the physical

level of the DW schema, it may induce high maintenance costs and complex OLAP

server administration. Moreover, any change in the DW schema structure may have

an impact on its dependent entities. Existing research over DW evolution do not

focus on the impact analysis. In this research an ontological approach to automate

the evolution (OntoEvol) of the DW schema has been proposed. This method assists

the DW designer to handle evolution and also analyze the change impact, based on

which decision can be made to carry out the changes at the physical level.

Section 4.2 of this chapter provides the details about the proposed approach

along with the steps involved. The automatic adaptation part of the proposed system

has been detailed in section 4.3. Application of the OntoEvol approach to a case

study has been explained in section 4.4. Section 4.5 provides the evaluation of the

proposed approach and comparison with existing approaches. Summary of the

chapter is provided in section 4.6.

84

4.2 OntoEvol: PROPOSED ONTOLOGICAL EVOLUTION

APPROACH

This section describes the formal approach that has been developed for

managing the DW schema evolution using ontology. When data source and

requirements evolves the DW schema need to be updated in order to provide up-to-

date information to users. Before making structural changes to the existing DW

physical schema the proposed work provides a method for updating the conceptual

representation of the schema. Hence, the data source schema, requirements and DW

schema are represented in ontology format. Given information about the changes in

the data source or requirements, the proposed OntoEvol approach produces the

updated version of the DW schema at the conceptual level, and based on the impact

of change the DW physical schema is constructed.

Figure 4.1 OntoEvol System

Figure 4.1 represents the steps followed in the proposed approach. By making

use of the ontological representation of the inputs, automation (semi- automation) of

the evolution task has been achieved. In the schema evolution part of the OntoEvol

approach, the changes that occurred at the data source or requirements are extracted

DWRO

DSOIn
p

u
t

F
o

rm
al

iz
at

io
n

LOG

Change Information
Extraction

CHANGE
SET

DWO

Change
Identification

Change
Propagation

Schema Evolution

IMPACT
COST

DW
SCHEMA

MAPPING

QUERIES

VIEWS

Dependent
Entities

Im
p

ac
t

A
n
al

y
si

s

Physical Schema
Construction

Automatic Adaptation

Rewrite Entities

85

from the corresponding ontology representation. The type of change and the element

affected by the change are derived and the change is propagated to the DW schema.

As the DW schema changes, it affects the dependent entities such as the mapping

between data source and DW schema, queries and views.

In the automatic adaptation part of the proposed system the impact of a given

change on the dependent entities is analyzed. The impact of a change is obtained by

calculating the cost of mapping adjustment, query rewriting and view rewriting.

Based on the total cost obtained the DW administrator can make a decision to

perform the changes at the physical level. Finally, from the DW ontology the new

version of the DW physical schema is constructed automatically in the underlying

database. The automatic adaptation part of the proposed system has been discussed

in section 4.3. Following are the steps of the schema evolution part of the proposed

approach which has been detailed in this section:

1. Input Formalization

2. Definition of Evolution Operators

3. Change Information Extraction

4. Change Identification

5. Change Propagation

4.2.1 Input Formalization

This step presents the formalization of inputs of the proposed method in order to

standardize and to ensure the correctness of the DW evolution process. OWL

ontology is used to describe the semantics of different entities involved in the

methodology. The reason for using OWL as the utility, instead of XML, UML or

others, is that OWL supports automatic processing of information represented in the

ontology. Thus, the data source, requirements and the DW schema are described in

the OWL ontology format. As explained in section 3.2.1 of Chapter 3 these entities

are formally represented using ontology concepts as given below:

86

The data source ontology (DSO) is the collection of classes, data type

properties, and object properties which is defined as follows:

DSO = {C, DP, OP} where,

- C is a set of OWL classes;

- DP is a set of data properties;

- OP is a set of object properties.

The DW requirement ontology (DWRO) can be defined as:

DWRO = {S, I, D, IR, BP, M, CN} where,

- S is a set of OWL classes representing the strategic goals;

- I is a set of OWL classes representing the information goals;

- D is a set of OWL classes representing the decision goals;

- IR is a set of OWL classes representing the information requirements;

- BP is a set of OWL classes representing business process;

- ME is a set of OWL classes representing measures;

- CN is a set of OWL classes representing the contexts.

The graphical representation of the DWRO is given in Figure 4.2.

Figure 4.2 Data Warehouse Requirement Ontology

Strategic Goal

Decision GoalGoal

Resource

Information Goal

Information
Requirement

Business Process

Context

Measure

is a

is a

is a

has

has

has

contains

definedBy

definedBy

definedBy

87

The formal and graphical representation of DW ontology (DWO) explained in

section 3.2.5 of chapter 3 used to represent the DW schema has been reproduced

below. The DWO can be formally defined as given below:

DWO = {F, FP, M, D, DIP, RP, L, LP}, where,

- F is a set of OWL classes representing the fact;

- FP is a set of data properties representing the fact properties;

- M is a set of data properties representing the measures of the fact;

- D is a set of OWL classes representing the dimensions;

- DIP is a set of data properties representing the dimension properties;

- RP is a set of object properties representing the relationship between facts

and dimensions and between dimension and level;

- L is a set of OWL classes representing the levels;

- LP is a set of data properties representing the level properties.

The graphical representation of the DWO is given in Figure 4.3.

Figure 4.3 Data Warehouse Ontology

4.2.2 Definition of Evolution Operators

The proposed approach defines a set of evolution operators to represent the type

of change that occurs over the DW schema. The three possible type of changes that

Fact Class

Dimension Class

Level Class

has range
has

has

Fact Data

 Property

Dimension Data

Property

Level Data Property

has

has

has

Fact-Dim Object

Property

Dim-Level Object

Property

has domain

has domain

has range

88

occur over the DW schema are: addition, deletion and rename. The

multidimensional elements of DW such as Fact, Dimension, Measures, Levels, Fact

Properties, Dimension Properties etc., are subject to change. As the proposed system

uses DWO to represent a DW schema when new changes are carried over the

ontology, it requires additional changes to be executed. For example, addition of a

new dimension i.e., dimension class to the DWO requires addition of its data

property and object property. The type of change, element changed and additional

changes are given in Table 4.1.

Table 4.1 Evolution Operators

Type of

Change
DW Schema Elements

Equivalent

Ontology Concept

Changed

Elementary

Changes

Addition

Table

(Fact, Dimension)
Class

Add Data Property

Add Object Property

Attribute

(Measure, Descriptive)
Data Property

Add Property

Domain

Add Property Range

Relationship

(Primary Key, Foreign

Key)

Object Property

Add Property

Domain

Add Property Range

Deletion

Table

(Fact, Dimension)
Class

Delete Data Property

Delete Object

Property

Attribute

(Measure, Descriptive)
Data Property

Delete Property

Domain

Delete Property

Range

Relationship

(Primary Key, Foreign

Key)

Object Property

Delete Property

Domain

Delete Property

Range

Rename

Table

(Fact, Dimension)
Class

Rename Class

 (If required)

Attribute

(Measure, Descriptive)
Data Property

Rename Data

Property

(If required)

Relationship

(Primary Key, Foreign

Key)

Object Property

Rename Object

Property

 (If required)

89

4.2.3 Change Information Extraction

The data source schema may be modified, for example, due to the addition of a

relation or deletion of an attribute. The changes in the original data source schema

are carried over the DSO to enable the evolution task. This is done by means of

ontology editing tool such as protégé (Ontology, 2007). Similarly, the requirements

of the DW may change, for example, the addition of a new business analysis

perspective i.e. a new dimension. As the proposed approach maintains the

requirements in ontology format, the changes can be easily incorporated over the

DWRO using protégé (Ontology, 2007).

The proposed system begins by extracting any change that has recently occurred

over either DSO or the DWRO. The OntoEvol system uses Change Annotation

Ontology (ChAO) (Ontology, 2007) which acts as a log to capture the changes that

has happened to the ontology. The concept changed (name of the concept), concept

type (multidimensional element type) and change type (addition, deletion or rename)

are retrieved from ChAO.

4.2.4 Change Identification

This step involves the identification of the multidimensional type of an element

when the change type is addition. When a new concept is added to the DSO or

DWRO, before it is propagated over the DWO, its multidimensional type has to be

identified. For example, when a new class is added to the DSO, it may act as a fact,

dimension or level in the DW schema. According to the designer's choice before the

new class is added to the DWO, its multidimensional type is identified using the

proposed algorithm FindClassType given in Figure 4.4. The notations used in this

algorithm are given in section 4.2.1.

90

Figure 4.4 Algorithm FindClassType

The algorithm takes DSO, the new concept changed and the multidimensional

lists (MDList) containing FactList, DimList and LevelList of DWO as inputs. First,

the algorithm finds whether the class ci is a fact, for this the range class of ci is

obtained. If the range class exists in DSO and it belongs to DimList, ci is likely to be

a fact. The data properties of ci are derived and checked whether it contains enough

numerical properties to qualify as a fact. If ci has n:1 relationship with range class,

then it is identified as fact (steps 2-15). To find whether ci is a dimension, the

FindClassType (DSO, ConceptChanged, MDList)

1 for all ci C do

2 if ci == ConceptChanged then

3 if (Rng(ci.opi)!= null && Rng(ci.opi) DimensionList))then

4 for all data properties ci .dpi DP do

5 rng := Rng(ci .dpi), rng DTxml

6 if isnumeric(rng) then
7 tn++;

8 end if

9 end for

10 if tn>threshold then

11 cj:= Rng(ci.opi), ci C

12 if (ci.opi allValueFrom cj && maxCardinality = = 1) then
13 ci =FactClass

14 end if

15 endif

16 else if (Domain(ci.opi)! =null && Domain(ci.opi) FactList) then
17 cj= Domain(ci.opi)

18 if (cj.opi allValueFrom ci && maxCardinality = = 1) then
19 ci =DimensionClass

20 end if

21 else if (Domain(ci.opi)! =null && Domain(ci.opi) (DimList ||

LevelList)) then
22 ci = LevelClass

23 endif

24 end if

25 end if

26 end if

27 end for

91

domain class of ci is obtained. If the domain class cj belongs to FactList then ci is

likely to be a dimension. If the domain class ci has 1:n relationship with fact then ci

is identified as a dimension (steps 16-20). To find whether ci is a level, the domain

class of ci is obtained. If the domain class cj belongs to DimList or LevelList then ci

is identified as a level (steps 17-23).

The next algorithm FindDPType given in Figure 4.5 checks whether the concept

added is a data property and identifies it as a fact property, dimension property or

level property. It takes DSO, the new property added and the MDList such as

FactList, DimList and LevelList of DWO as inputs. From the DSO for the newly

added data property dpi, its domain d is obtained (Step 2-3). If d is in FactList then

the concept added is identified as fact property (Steps 4-5). If d is in DimList then it

is identified as dimension property (Steps 6-7). If d belongs to LevelList then the

concept is identified as level property (Steps 8-9).

Figure 4.5 Algorithm FindDPType

Finally, to identify an object property that is added, the proposed algorithm

FindOPType is used. This algorithm checks whether the concept added is an object

FindDPType (DSO,ConceptChanged, MDList)

1 for all dpi DP do

2 if dpi == ConceptChanged then

3 d= Domain(dpi)

4 if dFactList then

5 dpi=FactProperty

6 else if d= DimList then

7 dpi=DimensionProperty

8 else

9 dpi=LevelProperty

10 end if

11 end if

12 end if

13 end if

14 end for

92

property and identifies it as a fact relation, dimension relation or a level relation. The

domain d and range r of the newly added object property opi is obtained. If d is a

fact belonging to FactList and r is a dimension belonging to DimList then concept

added is identified as fact-dimension relation. If d is a dimension and r is a fact then

the concept added is identified as dimension-fact relation. If d is a dimension and r

is a level, then the concept added is identified as dimension-level relation. The steps

of FindOPType are given in Figure 4.6.

Figure 4.6 Algorithm FindOPType

4.2.5 Change Propagation

Once the changes are extracted and the type of change is identified, the next

step involves in propagating the changes to the DW schema. Depending on the type

of change three algorithms are proposed to apply changes over the DWO. In these

algorithms, various notations are used which has been explained in section 4.2.1.

FindOPType (DSO,ConceptChanged, MDList)

1 for all opi OP do

2 if opi == ConceptChangedt hen

3 d=Domain(opi)

4 r= Rng(opi)

5 if (d (FactList) && r (DimensionList) then

6 opi=FactDiemensionRelation

7 else if (d (DimensionList) && r (FactList) then

8 opi=DiemensionFactRelation

9 else if (d (DimensionList) && r (LevelList) then

10 opi=DiemensionLevelRelation

11 end if

12 end if

13 end if

14 end if

15 end for

93

If the type of change is addition, the multidimensional element is identified

using the previous step. For propagating the addition change, the proposed algorithm

ApplyChangeAddition given in Figure 4.7 is used. In this algorithm, if the concept

type is a class, then the list of data properties and object properties are retrieved for

the class. The new class is added to the DWO and for each data property its range

and domain are included. Similarly, for each object property its range and domain

are included (Steps 1-6). If the concept type is a data property, the new data property

is added to the corresponding class in DWO and its range and domain are included

(Steps 7-10). If the concept type is an object property, the new object property is

added to the class in DWO and its range and domain are included accordingly (Steps

11-14).

Figure 4.7 Algorithm ApplyChangeAddition

ApplyChangeAddition(DWO, Concept, ConceptType)

1 if Concept _Type ==Class then

2 c=Concept

3 Add cC in O

4 Get DP and OP

5 AddDP(c,DP)

6 AddOP(c,OP)

7 else if Concept _Type ==DataProperty then

8 dp= Concept

9 Get c of dp

10 AddDP(c,dp)

11 else if Concept _Type ==ObjectProperty then

12 op= Concept

13 Get c of op

14 AddDP(c,OP)

15 end if

16 end if

17 end if

18 AddDP(c,dp)

19 Add ci .dpDP

20 Set Rng(c.dp)

21 Set Dom(c.dp)

22 end

23 AddOP(c,op)

24 Add c.op OP

25 Set Rng(c.op)

26 Set Dom(c.op)

27 end

94

For propagating the deletion change, the proposed ApplyChangeDeletion

algorithm given in Figure 4.8 is used. If the concept type is a class, then the class is

deleted from DWO. The corresponding data properties and object properties of the

class are also deleted (Steps 1-10). If the concept type is data property or object

property, it can be directly deleted from the given class (Steps 11-20).

Figure 4.8 Algorithm ApplyChangeDeletion

For propagating the rename change, the proposed algorithm

ApplyChangeRename given in Figure 4.9 is used. If the concept type is a class, the

old concept is deleted and the new concept name is included in the ontology (Steps

1-7). Similar step is followed if the concept type is a data property or an object

property (Steps 8-21).

ApplyChangeDeletion(DWO, Concept, Concept _Type)

1 if Concept _Type ==Class then

2 c=Concept

3 Delete c C in O

4 for all data properties c.dpi DP do

5 Delete c.dpi

6 end for

7 for all object properties ci.opi OP do

8 Delete c.opi

9 end for

10 end if

11 if Concept _Type == DataProperty then

12 dp= Concept

13 Get c of dp

14 Delete c.dp

15 end if

16 if Concept _Type == ObjectProperty then

17 op= Concept

18 Get c of op

19 Delete c.op

20 end if

95

Figure 4.9 Algorithm ApplyChangeRename

4.3 PROPOSED AUTOMATIC ADAPTATION

The important part of the OntoEvol system is to find the dependent entities that

are affected by the DW schema change and adapt them accordingly. As DW involves

a complex structure, there are different entities available which are dependent on

each other. Hence, changes in a particular entity may affect others. One such entity is

the mapping that exists between the data source and DW schema, through which the

DW is populated.

When data source schema modifies its structure the DW schema also gets

updated, thus, the mapping between them becomes invalid. Queries and views which

are based on the DW schema are the other entities which become invalid due to

ApplyChangeRename(DWO, OldConcept,NewConcept, Concept _Type)

1 if Concept _Type ==Class then

2 for all ci C do

3 if ci == OldConcept then

4 Add NewConcept

5 Delete ci

6 end if

7 end for

8 else if Concept _Type ==DataProperty then

9 for all dpi DP do

10 if dpi == OldConcept then

11 Add NewConcept

12 Delete dpi

13 end if

14 end for

15 else if Concept _Type ==ObjectProperty then

16 for all opi OP do

17 if opi == OldConcept then

18 Add NewConcept

19 Delete opi

20 end if

21 end for

22 end if

23 end if

24 end if

96

changes. In order to analyze the impact of a recent change and to maintain the DW

system in a consistent state, it is necessary to adapt these entities.

The proposed system maintains a mapping between the DSO and DWO. When

the mapping becomes invalid due to recent changes the system performs mapping

adjustments between them. The queries which worked over the previous schema may

not work for the new DW schema. Hence, a query rewriting is performed. Finally,

the views maintained for the schema also becomes invalid, hence the views

definitions are updated automatically. For each of the dependent entities discussed,

the cost of updating them is computed. Based on the adaptation cost, the DW

administrator can make an analysis of the impact of different changes over the DW

schema and create the physical schema as required.

4.3.1 Mapping Adjustments

 The UpdateMapping Algorithm given in Figure 4.10 has been proposed to

perform the mapping adjustments. The changed concepts are obtained for DSO and

DWO from the log entries. ChAO which acts as a log is used for storing the changes

happening in the ontologies. Mappings are then established only for the changed

resources. The previous mappings between these two ontologies are updated at the

completion of the algorithm. DSO, DWO, mapping file and changed concepts are

given as input to the algorithm. It produces the updated mapping file together with

the number of entities affected and corrected as the output.

In the algorithm, first the changed concepts are obtained from log and read

into CH for DSO and DWO (steps 1-6). If the type of change is addition, the

similarities between the changed resources are computed for DSO and DWO (steps

6-10). If the change type is deletion, the concepts are searched in the mapping file

and the corresponding mapping is removed (steps 11-13).

97

For a renamed concept the mapping entity is obtained and the concepts are

renamed using information from the log, i.e., the old concept name and its mapping

are deleted and the new concept name along with the mapping is added (steps 14-16).

Finally the mapping file is updated with new mapping information. The total no. of

entities affected and corrected is computed.

Figure 4.10 Algorithm UpdateMapping

Algorithm UpdateMapping

Input: Ontologies DSO and DWO for mapping reconciliation, Ontology change

information from ChAO of both ontologies, i.e., CH1 for DSO and CH2 for

DWO.

Output: Updated Mapping, Number of mappings affected and corrected.

1 if CH ∩ CH. DSO.ChAO.NewChange then

2 CH1 = CH.ChAO

3 end if

4 if CH ∩ CH.DWO.ChAO.NewChange then

5 CH2 = CH.ChAO

6 end if

7 if ChAO.NewChange.ChangeType = ADDITION then

8 NewMap ←Similarity(CH1,CH2)

9 Execute.update(MappingsFile, NewMap)

10 Count=Count+1

11 else if ChAO.NewChange.ChangeType = DELETION then

12 Execute.update(MappingsFile, DeleteMap(CH1, CH2))

13 Count=Count+1

14 else if ChAO.NewChange.ChangeType = RENAME then

15 Execute.update(MappingsFile, RenameMap(CH1_Old, CH2_Old,

CH1_New, CH2_New))

16 Count=Count+1

17 else

18 Print(“No Change”)

19 end if

20 end if

21 end if

98

4.3.2 Query Rewriting

 As the DW schema has evolved the queries imposed previously need to be

rewritten to work over the new DW schema. The proposed QueryRewriting

algorithm given in Figure 4.11 is used by the OntoEvol to rewrite the queries. From

the DWO, for a particular change, the concept changed, concept type and change

type are retrieved. These are given as input to the algorithm. It produces the

rewritten query, number of queries affected and corrected as the output.

If the concept type is a class and change type is addition, then the concept

changed (fact, dimension or level) is updated in the FROM clause of the query

(Steps 1-5). If the concept type is a class and change type is deletion or rename, then

the FROM clause of the query is modified accordingly (Steps 6-9). If the concept

type is a data property and change type is addition, then the concept changed (fact

property, dimension property or level property) is updated in select, where, groupby

or orderby clause of the query (Steps 14-17). If the concept type is a data property

and change type is deletion or rename, then the concept changed (fact property,

dimension property or level property) is updated in select, where, groupby or

orderby clause of the query (Steps 15-22).

4.3.3 View Rewriting

A view is a virtual table in the DW defined by a query. It is mainly used

when data security is required and when data redundancy is to be kept to the

minimum while maintaining data security. When the underlying data source and

DW changes its schema structure the views may become invalid. Hence, one

important issue is to maintain the view consistency upon any structural changes. In

order to find the number views affected and to rewrite the view definition, the steps

given for query rewriting is applied. The changes are then automatically propagated

to the DWO.

99

Figure 4.11 Algorithm QueryRewrite

QueryRewrite(DWO, ConceptChanged, Concept Type, ChangeType,QueryWorkload)

1 if Concept Type ==Class then

2 c = ConceptChanged

3 if ChangeType = =Addition then

4 Get suggestion from user

5 RewriteQuery in FROM clause with c

6 else if (ChangeType = = Deletion | ChangeType = = Rename) then

7 RewriteQuery in FROM clause with c

8 end if

9 end if

10 Count++

11 else if Concept Type ==DataProperty then

12 dp = ConceptChanged

13 d= Domain(dp)

14 if ChangeType = =Addition then

15 Get suggestion from user

16 SearchQuery for d

17 RewriteQuery in SELECT |WHERE |GROUPBY | ORDERBY clause

 with dp

18 else if (ChangeType = = Deletion | ChangeType = = Rename) then

19 SearchQuery for d

20 RewriteQuery in SELECT |WHERE |GROUPBY clause with dp

21 end if

22 end if

23 Count++

24 end if

25 end if

100

4.3.4 Impact Analysis

 The impact of a particular set of changes imposed on the DW schema is

obtained by computing the adaptation cost of the dependent entities. In the proposed

approach the mapping, queries and views are adapted automatically. The automatic

adaptation cost is given as a sum of number of changes propagated on the DW

schema and cost of manually discovering and adjusting entities that escaped the

automation. The details of the adaptation cost have been discussed in section 4.5.2.

Based on the adaptation cost the DWA may decide to construct the DW schema at

the physical level.

4.3.5 Data Warehouse Schema Construction

The final step of OntoEvol system involves in the transformation of DWO to

physical schema in the underlying database. For the physical schema construction of

the DW the steps defined in section 3.2.7 of Chapter 3 are considered.

 Thus, the Schema Evolution and Automatic adaptation part of the

proposed OntoEvol approach effectively propagate and adapt to the given changes in

requirements or the data source. For the illustration and evaluation of the proposed

OntoEvol approach the TPC-H case study has been used, which is explained in the

following section.

4.4 CASE STUDY: TPC-H

The details of TPC-H benchmark has been discussed in section 3.4 of

Chapter 3. The various steps involved in the OntoEvol approach explained in section

4.3 are applied to the case study. Using the results obtained the proposed approach is

evaluated, which has been given in the next section.

For the case study, the data source schema, DW requirements and the DW

schema represented in ontology format are taken as inputs. For data source schema

and DW requirements, the DSO and DWRO based on TPC-H benchmark discussed

101

in section 3.2.1 of Chapter 3 are considered. The DW schema is taken from the

DWO which has been derived from the proposed OntoMD approach discussed in

section 3.2.5 of Chapter 3. Any change that happened in the DSO or DWRO are

retrieved from the log and represented as change set. If the change type is addition,

for individual change in the change set, its multidimensional type is identified.

Based on the changes over DWO, any dependent entities affected are automatically

adapted by the OntoEvol approach. Following are the steps applied for the case

study:

1. Representation of Inputs

2. Change Identification

3. Change Propagation

4. Adaptation of dependent entities

4.4.1 Representation of Inputs

Once the inputs, data source schema, DW requirements and DW schema are

available in ontology format, the proposed evolution system begins by considering a

recent change either in the DSO or DWRO. For example, in the TPC-H domain, to

increase the profit for the items shipped, a new decision goal “Increase Revenue

through promotions” has been added in the requirements and its information goal is

identified as “Study Revenue by Customer Promotions” and information

requirements as “Analyze Revenue based on Customer for a given Promotions”.

The context for the new information requirement is “Customer” and “Promotions”.

The measures for analyzing Revenue are “ExtendedPrice” and “Discount”. This new

requirement is added to the DWRO which is shown in Figure 4.12.

102

C
on

te
xt

D
at

e

St
ra

te
gi

c
G

oa
l

 In
cr

ea
se

 P
ro

fit
 fo

r

Ite
m

s
Sh

ip
pe

d

D
ec

isi
on

 G
oa

l

In
cr

ea
se

R
ev

en
ue

 fo
r

O
rd

er
s

D
ec

isi
on

 G
oa

l

In
cr

ea
se

R
ev

en
ue

 fo
r

Pa
rts

 S
ol

d

In
fo

rm
at

io
n

G
oa

l

St
ud

y
R

ev
en

ue
 b

y

O
rd

er
s,

 P
er

io
d

In
fo

rm
at

io
n

G
oa

l

St
ud

y
R

ev
en

ue
 b

y

Pa
rts

 S
ol

d,
 P

er
io

d

In
fo

rm
at

io
n

R
eq

ui
re

m
en

t

A
na

ly
se

 R
ev

en
ue

 fo
r a

gi
ve

n
Pe

rio
d

In
fo

rm
at

io
n

R
eq

ui
re

m
en

t

A
na

ly
se

 R
ev

en
ue

 b
as

ed

on
 C

us
to

m
er

 O
rd

er
s

fo
r

a
gi

ve
n

Pe
rio

d

In
fo

rm
at

io
n

R
eq

ui
re

m
en

t

A
na

ly
se

 R
ev

en
ue

 b
as

ed
 o

n

C
us

to
m

er
 O

rd
er

s,
 C

us
to

m
er

,

C
us

to
m

er
 N

at
io

n
fo

r a
 g

iv
en

Pe
rio

d

In
fo

rm
at

io
n

R
eq

ui
re

m
en

t

A
na

ly
se

 R
ev

en
ue

 b
as

ed

on
 P

ar
ts

In
fo

rm
at

io
n

R
eq

ui
re

m
en

t

A
na

ly
se

 R
ev

en
ue

 b
as

ed

on
 P

ar
ts

 fo
r a

 g
iv

en

Pe
rio

d

M
ea

su
re

Ex
te

nd
ed

Pr
ic

e

D
isc

ou
nt

C
on

te
xt

O
rd

er
s

C
us

to
m

er

D
at

e

C
on

te
xt

O
rd

er
s

C
us

to
m

er

N
at

io
n

D
at

e

C
on

te
xt

Pa
rts

C
on

te
xt

Pa
rts

D
at

e

M
ea

su
re

Ex
te

nd
ed

Pr
ic

e

D
isc

ou
nt

M
ea

su
re

Ex
te

nd
ed

Pr
ic

e

D
isc

ou
nt

M
ea

su
re

Ex
te

nd
ed

Pr
ic

e

D
isc

ou
nt

M
ea

su
re

Ex
te

nd
ed

Pr
ic

e

D
isc

ou
nt

D
ec

isi
on

 G
oa

l

In
cr

ea
se

 R
ev

en
ue

th
ro

ug
h

Pr
om

ot
io

ns

In
fo

rm
at

io
n

G
oa

l

St
ud

y
R

ev
en

ue
 b

y

C
us

to
m

er
,

Pr
om

ot
io

ns

In
fo

rm
at

io
n

R
eq

ui
re

m
en

t

A
na

ly
se

 R
ev

en
ue

 b
as

ed

on
 C

us
to

m
er

 fo
r a

 g
iv

en

Pr
om

ot
io

ns

C
on

te
xt

C
us

to
m

er

Pr
om

ot
io

ns

M
ea

su
re

Ex
te

nd
ed

Pr
ic

e

D
isc

ou
nt

F
ig

u
re

 4
.1

2
 D

a
ta

 W
a

re
h

o
u

se
 R

e
q

u
ir

e
m

e
n

t

103

As new requirement has been included for the business analysis, the data

source is verified for the existence of this information. In addition to the above

changes in the requirements, the other change that has occurred over the DSO is

given in Table 4.2.

Table 4.2 Change Set

Data Source Change
Data Source Ontology

Change
Entity Changed

ADDITION

Table Class Promotion

Attribute Data Property Promotion _p_id

Attribute Data Property Promotion _p_name

Attribute Data Property Promotion _p_category

Attribute Data Property Promotion _p_subcategory

Attribute Data Property Promotion _p_cost

Attribute Data Property Promotion _p_begdate

Attribute Data Property Promotion _p_enddate

Attribute Data Property Promotion _p_total

RENAME

Attribute Data Property OldName:Customer_c_comment ,

NewName:Customer_c_feedback

Attribute Data Property OldName:Part_p_category,

 NewName: Part_p_model

DELETION

Attribute Data Property Customer_c_mktsegment

Attribute Data Property Part_p_container

4.4.2 Change Identification

This step identifies the multidimensional type when the change type is

addition. The algorithms FindClassType and FindDPType explained in section 4.2.4

are applied to derive the multidimensional type for the class “Promotions” and its

data properties. As the class “Promotions” added to DSO has 1:n relationship with

existing fact “LineItem”, it is identified as a dimension. Thus, the properties of the

class “Promotions” becomes the descriptive data properties of the dimension

“Promotions” according to algorithm FindDPType. Table 4.3 gives the details of

multidimensional type for the added entities that are to be propagated to the DWO.

104

Table 4.3 Multidimensional Type

Data Source Ontology

Change

Entity Changed Multidimensional Type

Class Promotions Dimension Class

Data Property Promotion _p_id Dimension Data Property

Data Property Promotion _p_name Dimension Data Property

Data Property Promotion _p_category Dimension Data Property

Data Property Promotion _p_subcategory Dimension Data Property

Data Property Promotion _p_cost Dimension Data Property

Data Property Promotion _p_begdate Dimension Data Property

Data Property Promotion _p_enddate Dimension Data Property

Data Property Promotion _p_total Dimension Data Property

 Table 4.4 DWO Changed Concepts

4.4.3 Change Propagation

Table 4.4 presents the changes that are propagated over the DWO. For

adding the dimension class “Promotions”, its domain, range and data properties are

DW Ontology Change Change Applied

ADDITION

Dimension Class Add Promotions Add Domain: Add Range:

Dimension Data Property Add Promotion _p_id Add Domain: Promotion Add Range: Integer

Dimension Data Property Add Promotion _p_name Add Domain: Promotion Add Range: String

Dimension Data Property Add Promotion _p_category Add Domain: Promotion Add Range: String

Dimension Data Property Add Promotion _p_subcategory Add Domain: Promotion Add Range: String

Dimension Data Property Add Promotion _p_cost Add Domain: Promotion Add Range: Double

Dimension Data Property Add Promotion _p_begdate Add Domain: Promotion Add Range: Date

Dimension Data Property Add Promotion _p_enddate Add Domain: Promotion Add Range: Date

Dimension Data Property Add Promotion _p_total Add Domain: Promotion Add Range: Double

RENAME

Dimension Data Property Delete Name:Customer_c_comment ,

Add Name:Customer_c_feedback

- -

Dimension Data Property Delete Name:Part_p_category,

 Add Name: Part_p_model

- -

DELETION

Dimension Data Property Customer_c_mktsegment Delete Domain: Customer Delete Range: String

Dimension Data Property Part_p_container Delete Domain: Part Delete Range: String

105

added. For adding a dimension data property, for example, “Promotion p_id”, its

corresponding domain and range are included in the DWO. For renaming the data

property of Customer dimension, for example, “Customer_c_comment”, its old

name is deleted and new name is added as “Customer_c_feedback”. And, for

deleting the data property of Customer dimension, for example,

“Customer_c_mktsegment”, its domain and range are deleted from the DWO. Figure

4.13 represents the final DWO after the changes are applied.

Figure 4.13 Data Warehouse Schema Ontology

LINEORDER (FACT)

LineOrder_l_linenumber (PK)
LineOrder_l_suppkey (FK)
LineOrder_l_orderkey (FK)
LineOrder_o_custkey (FK)
LineOrder_l_partskey (FK)
LineOrder_l_tax
LineOrder_l_extendedprice
LineOrder_l_quantity
LineOrder_l_discount
LineOrder_l_commitdate
LineOrder_l_returnflag
LineOrder_l_shipmode
LineOrder_l_linestatus
LineOrder_l_shipinstuct
LineOrder_l_receiptdate
LineOrder_l_shipdate
LineOrder_ps_supplycost
LineOrder_o_orderpriority
LineOrder_o_totprice
LineOrder_o_orderdate
LineOrder_o_shippriority
LineOrder_o_orderstatus
LineOrder_o_commnet

DATE
(DIMENSION)

Date_d_datekey (PK)
Date_d_date
Date_d_week
Date_d_month
Date_d_year

PART
(DIMENSION)

Part_p_partkey (PK)
Part_p_name
Parts_p_size
Part_p_mfgr
Part_p_model
Part_p_brand
Part_p_color
Part_p_type
Part_p_container
Part_p_retailprice

CUSTOMER
(DIMENSION)

Customer_c_cuskey (PK)
Customer_c_mktsegment
Customer_c_name
Customer_c_address
Customer_c_phone
Customer_c_accbal
Customer_c_feedback
Customer_c_nation
Customer_c_region

SUPPLIER (DIMENSION)

Supplier_s_suppkey (PK)
Supplier_s_name
Supplier_s_address
Supplier_s_phone
Supplier_s_accbal
Supplier_s_comment
Supplier_s_nation
Supplier_s_region

PROMOTIONS
(DIMENSION)

Promotion_p_ id(PK)
Promotion_p_name
Promotion_p_category
Promotion_p_subcategory
Promotion_p_cost
Promotion_p_begdate
Promotion_p_enddate
Promotion_p_total

106

4.4.4 Adaptation of dependent entities

This step involves in adapting the dependent entities, after the changes in the

change set given in Table 4.2 has been successfully propagated over DWO. The

Customer and Part dimension classes are affected by the changes and a new

dimension class Promotions has been included in DWO.

i. Mapping Adjustments

In order to update the mapping between DSO and DWO, the proposed

algorithm UpdataMapping is used by the OntoEvol approach. Figure 4.14 represents

the mapping rewritten for the Customer dimension class. As the data property

Mktsegment has been removed from DSO and from DWO, the corresponding

mappings between these concepts are removed from the mapping document. The

data property Comment in the DSO is renamed as Feedback which has been updated

in the DWO. Hence, the mapping between Comment from DSO to DWO is deleted

and a new mapping for the data property Feedback is added between DSO to DWO.

Similar steps are applied for other changes involved in the change set.

ii. Query and View Rewriting

The SSB (O’Neil et. al., 2007) queries and views are used in order to verify

query and view rewriting performed by the OntoEvol approach. For example, in the

change set given in Table 4.2, the data property p_category from Part dimension

class is renamed as p_model. Using the QueryRewrite Algorithm the select, where,

groupby and orderby clause in the queries are searched. As the Query 2.1, Query 4.2

and Query 4.3 contain the data property p_category it is renamed as p_model.

Similarly, View 4 and View 5 are affected by the addition, deletion and rename

operations given in the change set.

107

Figure 4.14 Mapping Adjustments

Figure 4.15 and Figure 4.16 represents a sample query and view rewriting

that has been executed by the proposed adaptation system. In Query 4.3 shown in

Figure 4.15, the p_container attribute has been removed, the p_category attribute

has been renamed as p_model and a new attribute pr_category of Promotions table

has been added. In View 5, shown in Figure 4.16, the p_category attribute has been

renamed as p_model. In Table 4.5 the details about the query and view affected and

corrected for individual change has been given.

SrcContext

s.Customer

SrcContext

s.Name

SrcContext

s.Address

SrcContext

s.Phone

SrcContext

s.Accbal

SrcContext

s.Nation

SrcContext

s.Region

SrcContext

s.Comment

TrgContext

t.Address

TrgContext

t.Phone

TrgContext

t.Accbal

TrgContext

t.Nation

TrgContext

t.Region

TrgContext

s.Customer

Deletion

Operation

SrcContext

s.Mktsegment
Deletion

Operation
TrgContext

s.Mktsegment

TrgContext

t.Name

TrgContext

t.Comment

TrgContext

t.Feedback
TrgContext

t.FeedbackAddition

Operation

108

Figure 4.15 Query Rewriting

Figure 4.16 View Rewriting

Q4.3 select d_year, s_city, p_container, sum

(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = 'AMERICA'

and s_nation = 'UNITED STATES'

and (d_year = 1997 or d_year = 1998)

and p_category = 'MFGR#14'

group by d_year, s_city, p_container order by

d_year, s_city, p_container

Q4.3 select d_year, s_city, p_container pr_category,

sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, promotions,

lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and lo_promoid=pr_promoid

and c_region = 'AMERICA'

and s_nation = 'UNITED STATES'

and (d_year = 1997 or d_year = 1998)

and p_model = 'MFGR#14'

group by d_year, s_city, p_container, pr_category

order by d_year, s_city, p_container, pr_category

Before Query

Rewriting
After Query

Rewriting

V5. create view profit(d_year, s_nation, c_region,

s_region, p_category, profit) as

select d_year, s_nation, c_region, s_region,

p_category, sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

group by d_year, s_nation, c_region, s_region

,p_category order by d_year, s_nation, p_category

V5. create view profit(d_year, s_nation, c_region,

s_region, p_category, profit) as

select d_year, s_nation, c_region, s_region, p_model,

sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

group by d_year, s_nation, c_region, s_region

,p_model order by d_year, s_nation, p_model

Before View

Rewriting

After View

Rewriting

109

Table 4.5 Query and View Adaptation

Data Source

Ontology

Change

Entity Changed Query Affected

and Corrected

View Affected

and Corrected

ADDITION

Class Promotion Q4.1, Q4.2 and

Q4.3

V4,V5

Data Property Promotion _pr_id Q4.1, Q4.2 and

Q4.3

-

Data Property Promotion _pr_name -

Data Property Promotion _pr_category Q4.1, Q4.2 and

Q4.3

V4,V5

Data Property Promotion _pr_subcategory - -

Data Property Promotion _pr_cost - V4,V5

Data Property Promotion _pr_begdate -

Data Property Promotion _pr_enddate -

Data Property Promotion _pr_total - V4,V5

RENAME

Data Property OldName:Customer_c_comment

,

NewName:Customer_c_feedback

- -

Data Property OldName:Part_p_category,

 NewName: Part_p_model

Q2.1, Q4.2 and

Q4.3

V4,V5

DELETION

Data Property Customer_c_mktsegment Q4.2 -

Data Property Part_p_container Q4.3 -

4.5 RESULTS AND DISCUSSION

In this section the experimental setup for the evaluation of the proposed

approach is provided. The evaluation is carried out in terms of its effectiveness to

correctly propagate the changes over the DW schema and its efficiency to adapt the

dependent entities. Further, a comparative analysis of the proposed OntoEvol

approach and existing approaches has been given.

4.5.1 Experimental Setup

In order to analyze the effectiveness, different change set is considered by the

proposed approach. Each change set consists of elementary changes. One such

change set is given in Table 4.2 and its propagation over the DWO has been

explained in the case study. The set of evolution operations or changes that are

110

considered in the TPC-H source schema includes, addition of attributes and table,

renaming of attributes and table, and, deletion of attributes and table. A total of 143

evolution operations were encountered and the distribution of occurrence per kind of

operation is shown in Figure 4.17.

Figure 4.17 Distribution of occurrence per kind of evolution operations

In Table 4.6, the results are summarized for different kinds of events. It is

observed that most of the activities are affected by attribute additions and renaming,

since these kinds of operations are the most common in the given scenario. Most

important, it is observed that the proposed evolution approach can effectively adapt

activities to the examined kinds of operations.

Table 4.6 Affected and Corrected Operations

Evolution Event

Type
Total Affected Total Corrected

Attribute Addition 50 49

Attribute Deletion 20 20

Attribute Rename 52 51

Table Addition 4 4

Table Deletion 2 2

Table Rename 15 14

50

20

52

4 2

15

Attribute Addition

Attribure Deletion

Attribute Rename

Table Addition

Table Rename

Table Deletion

111

4.5.2 Effectiveness Analysis

The effectiveness of OntoEvol approach is derived using the following

metrics:

Figure 4.18 shows the comparison of no. of attributes affected and that are

corrected by using the proposed approach. Here, it is observed that the system

achieved 98% effectiveness for attribute addition, 100% for attribute deletion and

98% for attribute rename.

Figure 4.18 No. of Attributes Affected and Corrected Status

The comparison of no. of tables affected and corrected by using the proposed

approach is given in Figure 4.19. From the figure it is observed that the system

achieved 100% effectiveness for table addition, 100% for table deletion and 93% for

table rename.

0

10

20

30

40

50

60

Addition Deletion Rename

N
o
.
O

f
A

tt
ri

b
u

te

Change Type

Affected

Corrected

112

Figure 4.19 No. of Tables Affected and Corrected Status

Figure 4.20 shows the comparison of the proposed approach with existing

evolution approaches in terms of its effectiveness to correctly propagate the changes

over the DW schema. From the Figure 4.20, it is observed that the OntoEvol

approach achieved 98% of effectiveness when compared to existing DWE

(Solodovnikova and Niedrite, 2011) and MVTDW (Oueslati and Akaichi et al.,

2011) approaches which produced 80% and 85% effectiveness respectively, for the

evolution task.

Figure 4.20 Comparison of Different Evolution Approaches

0

2

4

6

8

10

12

14

Addition Deletion Rename

N
o
.
o
f

T
a
b

le
s

Change Type

Affected

Corrected

20

40

60

80

100

120

140

DWE MVTDW OntoEvol

T
o
ta

l
N

o
.
o
f

E
n

ti
ti

es
 A

ff
ec

te
d

a
n

d
 C

o
rr

ec
te

d

Evolution Approaches

Affected

Corrected

113

4.5.2 Efficiency Analysis

In order to evaluate the efficiency of the proposed OntoEvol approach the

cost of manually adapting the dependent entities for different change set is compared

with the proposed ontological approach. The manual effort comprises of detection,

inspection and where necessary the rewriting of affected entities by an event.

Human effort for manual handling of an entity e, for a change c, is expressed as:

…... (4.1)

Where,

AX = No. of Mapping/Query/View entity e, affected per change c, that is

manually detected.

RX = No. of Mapping/Query/View entity e, affected per change c, which

must be manually adjusted.

For a set of changes C, and a set of manually adapted entities E, the overall

cost of manual adaptation is given as:

…... (4.2)

Automatic handling of the dependent entities using the proposed ontological

approach is quantified as a sum of no. of changes imposed on the DW schema CS,

and cost of manually discovering and adjusting entities AMC that escape the

automation Ed. The latter cost AMC is expressed as:

…... (4.3)

Thus, the overall cost of automated adaptation is given by,

…... (4.4)

 RX AX MC
c
e

c
e

c

e

Cc Ee

c
e

 CMA MC

 Cc dEe

c

eMC AMC

AMCCS CAA

114

For example, the Table 4.2 represents the sample change set CS1, whose

adaptation cost has been given in Table 4.6 along with the adaptation cost for other

change sets. The total no. of changes CS, propagated over the DW schema is 13 for

CS1. For each change, i.e. evolution operation, the no. of mapping, query and view

entities affected are computed. Here, TAX is total mapping affected, which is 13 and

TRX is total mapping rewritten manually, which is 15 for the entire CS1. Hence, the

total manual effort MC is computed as 28. Thus, the overall cost of manual

adaptation, CMA is 28. In order to compute automatic adaptation cost by using the

OntoEvol system, CS is added with the no. of entities that escaped automation Ed,

which is 2 for the given mapping. Thus, the overall cost of automatic adaptation

CAA for the given mapping is 15. Similarly, the values of CMA and CAA can be

computed for query and view entities for the change set CS1. In order to compute

the efficiency of the OntoEvol system, various change sets are imposed over the DW

schema and the adaptation cost computed are given in Table 4.7.

Where,

TAX – Total no. of Mapping/Query/View entities affected per change c, by

event an e, which is manually detected.

TRX – Total no. of Mapping/Query/View per change c, which must be

manually re-written.

TMC – Total human effort for manual handling of schema evolution for a

change c, over an entity e.

CS – No. of changes imposed on the DW schema.

AMC – Cost for automated handling of schema evolution for a change c,

over an entity e.

CMA – The overall cost of manual adaptation to the change c,

for an entity e.

CAA – The overall cost of automatic adaptation to the change c,

for an entity e.

115

Table 4.7 Impact Analysis

Change

Set

Entity Manual and Automatic Adaptation Cost

TAX TRX TMC CS AMC CMA CAA

CS1
Mapping 13 15 28 13 2 28 15

Query 14 14 28 13 3 28 16

View 10 10 20 13 2 20 15

CS2
Mapping 15 19 34 15 2 34 17

Query 12 12 24 15 0 24 15

View 9 9 18 15 0 18 15

CS3
Mapping 18 20 40 14 2 38 16

Query 12 12 24 14 2 24 16

View 10 10 20 14 0 20 14

CS4
Mapping 16 20 36 15 0 36 15

Query 13 13 26 15 0 26 15

View 10 10 20 15 0 20 15

CS5
Mapping 14 16 30 12 4 30 16

Query 10 10 20 12 0 20 12

View 10 10 20 12 2 20 14

CS6
Mapping 20 20 40 17 2 40 19

Query 14 14 28 17 3 28 20

View 10 10 20 17 2 20 10

CS7
Mapping 15 17 32 13 0 32 13

Query 12 12 24 13 0 24 13

View 10 10 20 13 2 20 15

CS8
Mapping 18 20 40 17 2 38 19

Query 10 10 20 17 0 20 17

View 10 10 20 17 0 20 17

CS9
Mapping 12 12 24 12 0 24 12

Query 8 8 16 12 0 16 12

View 8 8 16 12 0 16 12

CS10
Mapping 14 16 30 15 2 30 17

Query 9 9 18 15 0 18 15

View 10 10 20 15 2 20 17

116

The following Figure 4.21 graphically represents the impact of evolution on

mapping. A comparative analysis is made between the existing manual adaptation

approach and automated adaptations using the proposed OntoEvol approach for

various change sets. It has been observed that mapping adjustments using the

ontological approach resulted in an average of 53% minimal cost compared to the

manual adaptation.

 Figure 4.21 Comparision of Manual and Automated

Adaptation Cost for Mapping

Figure 4.22 Comparision of Manual and Automated

Adaptation Cost for Queries

0

5

10

15

20

25

30

35

40

45

A
d

a
p

ta
ti

o
n

 C
o
st

Change Set

CMA

CAA

0

5

10

15

20

25

30

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10

A
d

a
p

ta
ti

o
n

 C
o
st

Change Set

CMA

CAA

117

The Figure 4.22 graphically represents the impact of evolution on queries

with a comparison of manual adaptation cost and automated adaptation cost for

various change sets. It has been observed that query rewriting using the ontological

approach resulted in an average of 67% minimal cost compared to the existing

manual adaptation.

The following Figure 4.23 graphically shows the impact of evolution on

views with a comparative cost of manual adaptation approach and automated

adaptation using the proposed ontological approach for various change sets. It has

been observed that view rewriting using proposed approach resulted in an average of

74% minimal cost compared to the manual adaptation.

Figure 4.23 Comparision of Manual and Automated

Adaptation Cost for Views

From the above Figures 4.21 to 4.23, it is found that the automated cost

(CAA) of adaptation to Mapping, Query and View produced by the OntoEvol

system is comparatively less than that of the manual cost of adaptation (CMA) used

by the existing schema evolution approaches.

0

5

10

15

20

25

A
d

a
p

ta
ti

o
n

 C
o
st

Change Set

CMA

CAA

118

Using the obtained results it has been inferred that the proposed approach

achieved better results when compared to the existing evolution approaches.

i. The proposed OntoEvol system achieved 13% better results in effectively

propagating the given set of changes when compared to the existing

MVTDW (Oueslati and Akaichi et al., 2011) approach and 17% better than

DWE (Solodovnikova and Niedrite, 2011) approach.

ii. In case of efficiency to adapt the dependent entities such as mapping,

queries and view, for the given change sets, the proposed OntoEvol system

provided 62% minimal cost when compared to the manual adaptation.

4.6 SUMMARY

The DW is considered as the core component of the modern decision support

systems. As the information sources and business requirements from which the DW

is derived, frequently change, it may have its impact on the DW schema. The

existing works on DW evolution, such as schema versioning and schema evolution

mainly concentrate on changing the schema structure at the physical level. The

proposed approach handles evolution of the DW schema at the ontological level.

The ontological representation of the data source, requirements and DW schema

helps to provide automation of evolution task. The impact that the evolution has

brought over the DW schema is analyzed. Based on the adaptation cost the DW

designer is left with the choice of carrying the changes at the existing physical

schema of the DW or create a new version of the schema from ontology.

 Compared to existing approaches, the effectiveness of the proposed

approach is better in handling the changes over the DW schema. Moreover, the

proposed ontological approach provides minimal adaptation cost when compared to

the manual adaptation of the dependent entities. Thus, current chapter focused on

managing the schema when requirements or the data source evolved. Another issue

in the DW design is to manage the schema for performance optimization which is

the focus of the next chapter.

119

CHAPTER 5

OPTIMIZATION OF DATA WAREHOUSE SCHEMA

PARTITIONING TECHNIQUES

5.1 INTRODUCTION

Partitioning is a design technique applied to the DW schema for dividing a single

table into two or more partitions (fragments), thus improving query performance and

optimizing resource utilization. As the DWA can manage only a limited set of

fragments in the underlying database it is essential to select only optimal set of

fragments during the design, which can reduce the overall query execution cost. The

existing approaches on DW schema partitioning adopted evolutionary approaches

such as genetic algorithm, as fragmentation selection is an optimization problem

involving large search space (Boukhalfa et al., 2009, Dimovski et al., 2011 and

Bellatreche, 2012).

 Apart from fragment selection, there are several issues that exist during

partitioning, which has not been much addressed in the literature. The dimension

table selection is an important factor in order to referentially partition a fact table.

Moreover, when the given business scenario contains a big dimension, involving

large number of attributes, then the appropriate fragmentation technique needs to be

applied to partition the dimension. As the fragmentation selection involves a

complex problem of selecting optimal fragments from the given set of large

fragments, the existing evolutionary algorithms need to be improved for better

results. Further, the existing partitions need to be managed when the business

analysis need changes, as the query imposed over the DW may evolve. The

proposed approach on DW schema partitioning focus on solving the discussed

issues.

120

This chapter presents the details of the proposed optimized referential

partitioning (ORP) approach. Section 5.2 presents the different steps involved in

ORP and discusses each of them in detail. To handle evolving queries the partition

management of the ORP approach has been discussed in section 5.3. To apply ORP

approach SSB case study has been used which is explained in section 5.4. The

details of evaluation carried out for the proposed approach and the comparative

study with existing methods have been discussed in section 5.5. Summary of the

chapter has been provided in section 5.6.

5.2 ORP: PROPOSED OPTIMIZED REFERENTIAL

PARTITIONING APPROACH

In this section the proposed ORP approach has been described in detail. A

DW modeled as a star schema is considered for partitioning, which consists of set of

D dimension tables and a fact table F, which need to be referentially partitioned in

order to minimize the cost of a given set of queries Q. The DWA can maintain a

maximum of N number of fragments in the underlying database. The proposed

method offers the DW designer to partition a fact table with respect to the chosen

dimension table(s). The steps involved in the proposed referential partitioning are

given in Figure 5.1.

In order to automate the partitioning process, the ORP approach uses

ontology representation of the DW schema. Using the DW schema ontology (DWO)

and the query workload Q, the first step involves in the selection of appropriate

dimension and its attributes. With the chosen dimension and its attributes a fragment

schema is constructed. This fragment schema, having integer representation for the

values of the attributes forms one of the possible solutions for fragmentation. From

this initial solution several other solutions are generated, and the optimal set of

fragments is obtained by the proposed hybrid algorithm. Based on optimal fragment

schema the dimension table(s) is horizontally fragmented. The fact table is

fragmented with reference to the fragments of dimension tables. For a DW schema

involving big dimension, the table is vertically partitioned by applying attribute

121

clustering and for each vertical fragment generated, the above discussed horizontal

partitioning is applied.

Figure 5.1 Proposed ORP Approach

5.2.1 Dimension Table and Attribute Selection

The DW schema may involve a large number of dimension tables. When the

number of dimension table fragments is more, the number of fact fragments

becomes large. Hence, the choice of dimension table and its attributes has an impact

on the number of fragments that is generated. To select the appropriate number of

dimension tables and attributes for partitioning, a dim_selection matrix and an

attr_selection matrix are constructed in this step. The format of the dim_selection

matrix is shown in Table 5.1. The rows of the matrix represent the dimension tables

and the column represents the parameters which are used as the selection criteria for

the dimensions. The three parameters used in the proposed approach are: frequency,

attributes and size.

Dimension and
Attributes Selection

Fragment Schema
Construction

Optimal Fragment
Selection

GAHC

Attribute Clustering Fragmentation

Horizontal Partitionig

Vertical Partitioning

Query
Workload

DWO

Fact Fragmentation

Query
Workload

O
p

ti
m

iz
e
d

M
ix

e
d

F
r
a
g

m
e
n

ta
ti

o
n

122

Table 5.1 Dim_Selection Matrix

Parameters

Dimension

Frequency Attributes Size

D1 n n-3 n-1

D2 n-1 n n

D3 n-2 n-2 n-3

Dn n-3 n-1 n-2

The frequently used table when partitioned reduces the query execution time.

Hence, the first parameter is the frequency of the dimension table, which is obtained

from the query workload. The second parameter is the attributes, which represent

the total number of attributes of a dimension table in the query workload Q.

Choosing a dimension table with large number of attributes in the queries for

partitioning, has an impact on the query execution. The third parameter is the size of

the dimension table. Partitioning a large table would reduce the query execution

time. Based on the values of each parameter, the individual dimension is assigned a

score. Dimension having higher values for a parameter gets high score, i.e. n, which

is the total number of dimensions available. These scores occupy the cells of the

dim_selection matrix. The rows of the matrix are added to calculate the total score

for a dimension. Using this matrix the DWA can select one or more dimensions

having high scores for partitioning process.

The three parameter values explained above are obtained automatically using

the proposed algorithm DimSelection which is given in Figure 5.2. The algorithm

takes DWO representing the DW schema and the query workload Q as inputs. It

produces the values of the three parameters for each dimension as the output. For

each class in DWO, the algorithm first checks if it is a dimension

class (Steps 1-2).

123

Figure 5.2 Dim_Selection Algorithm

Next, for each of the dimension class the values of the parameters are

obtained. In order to calculate the frequency value the dimension class name is

searched in the from clause of each query belonging to the query workload Q, and its

total count is obtained (Steps 3-9). To find the number of attributes, i.e. attributes

value, each data property of the dimension class is searched in the select, where,

groupby and orderby clause of the queries (Steps 10-18). The size of the dimension

is obtained from the underlying database where the physical table is stored (Steps

19-21).

DimSelection(DWO, MDList, Q)

1 for all ci C do

2 if ciDimensionList then

3 //find table_frequency

4 for each qj in Q

5 if ci in FROM clause then
6 Fcount++;

7 end if

8 end for
9 ci .frequency=Fcount;

10 //find attr_frequency

11 for all ci.dpi DP do

12 for each qj in Q

13 if ci.dpi in SELECT |WHERE |GROUPBY | ORDERBY

clause then
14 Acount++;

15 end if

16 end for

17 end for
18 ci .attributes=Acount;

19 // find table_size

20 Connect to DB

21 ci.size =Execute Query(select avg_row_len*num_rows from
 dba_tables)

22 end if

23 end for

124

After the selection of dimension, the attributes for partitioning are derived by

constructing the attr_selection matrix. For each of the dimension tables selected

using dim_selection matrix, the attr_selection matrix is constructed as given in

Table 5.2. The rows of the matrix represent the attributes of the chosen dimension

and columns represent each query. If a particular attribute exists in the select, where,

groupby or oderby clause of the queries, the cell value is represented as 1 or 0

otherwise. Using this matrix the DWA can choose one or more attribute present in

the queries as partitioning attribute.

Table 5.2 Attribute_Selection Matrix

Queries

Attributes

Q1 Q2 Q3

A1 1 0 1

A2 0 1 0

A3 1 1 0

An 0 1 1

5.2.2 Fragment Schema Construction

Once the dimension table and its attributes are chosen for partitioning using

the previous step, the next step involves the construction of the fragment schema.

This schema represents the partition of the selected dimension table. The Table 5.3

shows the format of the fragment schema. The rows of the schema represent the

attributes and columns represent the attribute’s domain values. Based on the domain

values of a particular attribute, the cells are filled with integer numbers from 1, 2,

3… N. The reason for using integer representation for the fragment schema is that, it

is given as input for the proposed hybrid evolutionary algorithm to select optimal

fragments.

125

Table 5.3 Fragment Schema

Values

Attributes

Domain

A1 1 2 -

A2 1 2 3

A3 1 2 3

An 1 2 -

Figure 5.3 Fragment Construction Algorithm

FragmentConstruction (DWO, Selected_Dim, Selected_attr)

1 for all ci C do

2 if ci Selected_Dim then

3 for all ci.dpi DP do

4 if ci.dpi Selected_attr then

5 rng := Rng(dpi);

6 if (rng=“Integer”) | (rng=“Date”) then

7 Get predicates of dpi;

8 N=count(predicates);

9 else

10 Get values of dpi from ti;

11 N=count(values);

12 end if

13 k=1;

14 for m 1 to N

15 Fragment[n][m]=k++;

16 end for

17 n++;

18 end if

19 end for

20 end if

21 end for

126

The fragment schema is constructed using the proposed algorithm given in Figure

5.3. The DWO, list of dimensions and a list of attributes selected are given as input

to the algorithm. It produces the fragment schema as the output. For each class in the

DWO, if the class is the selected dimension, its data properties representing the

attributes of the dimension are retrieved (Steps 1-3). For each of the data property,

the range is obtained from the DWO (Steps 4-5). If the range value is “integer” or

“date” then the predicates of the data property (attribute) is obtained from the user

(Steps 6-8). A predicate represents a pure boolean expression over the attributes of a

relation and constants of an attribute’s domain. For other range values such as

“string”, the values are obtained from its corresponding table in the underlying

database (Steps 9-12). The total number of values of the data property is computed.

Based on the total count, the cells of the fragment schema are represented with

integer numbers (Steps 13-17).

5.2.3 Optimal Fragment Selection

Depending on the attributes chosen for partitioning the number of partitions

or fragments might be very large. If mi is the number of fragments of the dimension

table Di, and g is the total number of dimension tables fragmented, then the total

number of fragments N of the fact table is:

As the DWA can manage only a limited set of fragments in the underlying

database it is essential to select only optimal set of fragments which can reduce the

overall query execution cost. The cost of a query is computed based on the number

of disk I/Os. As fragmentation selection is an optimization problem involving large

search space the existing works adopted heuristic approaches such as genetic

algorithm and hill climbing algorithm. Hill climbing is an optimization technique

which belongs to the family of local search (Selman et al., 2006). Genetic algorithms

(GAs) are a general methodology for searching a discrete solution space in a way

that is similar to the process of natural selection procedure in biological systems

127

(Mitchell 1998). Hill climbing search that uses only one solution can easily miss

some promising areas of the search space, and thus it may get stuck in a local

optimum. And genetic algorithms show lower solution quality with increasing

problem size. In the proposed work on referential partitioning a hybrid genetic and

hill climbing algorithm has been proposed in order to overcome the limitation of

individual algorithms and improve the final solution.

Figure 5.4 GAHC Algorithm

1 Initialize the parameters:
2 population_size, max_generation;

3 Generate initial population P randomly with generation=1;
4 Apply HillClimbing for initial population

5 while generation <= max_generation do

6 Create new population P1;
7 Use a fitness function F to evaluate each individual in P;

8 for i=1 to population_size
9 Select two parents from P;
10 Perform crossover;
11 Perform mutation;
12 Place the new offspring into P1;

13 end for

14 for i=1 population_size
15 Apply HillClimbing for new population P1
16 Compute the fitness value for the new population P1

17 end for

18 Merge new offspring from P1 with old offspring from P

19 Select the fittest offspring and pace into P1 such that Size(P1) =N
20 P= P1;
21 generation =generation + 1;

22 end while

128

The proposed approach combines the principles of genetic and hill climbing

algorithms where genetic algorithm is efficient at finding the best solution patterns

and hill climbing is exploited to quickly tune solutions to reach local optimum. The

steps of hybrid GAHC (genetic algorithm with hill climbing) are given in Figure 5.4.

At initiation the GAHC algorithm creates a set of random valid individuals

(fragment schema) called initial population. The hill climbing algorithm starts with

an individual chosen randomly from the initial population. It then attempts to find a

better solution by incrementally changing (by step size) a single element of the

individual. The original solution is replaced with the resultant if it has better fitness

and then the step size is doubled. But, when the resultant does not have better fitness

the step size is halved. Now, when the individual is at a local optimum the stepping

begins again on the next individual. Upon reaching a local optimum for the

individual, a new solution is randomly chosen from the initial population and hill

climbing begins again. For every iteration the best prior solution is remembered.

From the obtained initial population the genetic principles are applied. First,

the fitness of an individual (fragment schema) is measured using a cost function.

Individuals (fragment schemas) are selected from the initial population for the

crossover operation based upon their fitness values. The crossover occurs by mixing

the two solutions together to produce two new individuals (fragment schemas).

Next, the individual (fragment schema) is allowed to mutate in each generation,

which changes the individual. The proposed algorithm continues with the process of

several hill climbing iterations followed by genetic-principles iteration. After a

certain number of iterations, the algorithm converges to a set of solutions to the

problem at hand. Once the population has converged and no more offspring

(fragment schema) produced is noticeably different from those in previous

generations the algorithm terminates. The proposed GAHC algorithm applied for

fragmentation selection has been explained in the case study given in section 5.4.3.

http://en.wikipedia.org/wiki/Incremental_heuristic_search

129

The quality of a solution is given by the fitness value is calculated by the

Query cost. The cost for each fragment schema (estimating the number of

inputs and outputs required for executing the set of queries) are computed using the

cost model:

Query Cost = {(Size of each fact fragment) * (Length of each instance of fact)}

 / Page size of the disk. ……(5.1)

5.2.4 Optimized Mixed Fragmentation for Big Dimension

The previous steps described ORP approach with horizontal fragmentation

(ORP-H) for partitioning fact table with reference to the chosen dimension table. In

certain scenario the dimension table may be wider, i.e., it may involve a large set of

attributes which is called a big dimension (Costa and Madeira 2004). Hence,

applying horizontal partitioning alone might not be effective. In the proposed work,

optimized mixed (hybrid) fragmentation (ORP-M) approach has been developed to

solve the big dimension problem. In the mixed fragmentation the big dimension is

fragmented vertically based on the columns (attributes), followed by a horizontal

fragmentation on each vertical fragment.

A vertical fragmentation of a relation R produces fragments F1, F2, . . . , Fn

each of which contains a subset of R’s attributes. Compared to horizontal

fragmentation, vertical fragmentation is inherently more complicated. When the

horizontal partition consisting of n simple predicates the possible minterms is 2
n
 and

some of them can be ruled out by existing constraints. Whereas, in vertical

partitioning for m non-primary key attributes, the number of possible fragments is

equal to B(k) (= the kth Bell number), i.e., the number of partitions of a set with m

members. For example B(15) = 10
9

(Ozsu and Valduriez 1999). In vertical

fragmentation attributes usually accessed together are placed in one fragment and

hence there is a need for some measure that would define more precisely how

closely the attributes are related. Hence, in the proposed approach the information

about the attributes are collected in the Query Attribute Matrix (QAM).

130

For the given query workload Q which is executed over relation R consisting

of attributes (A1, . . . , An) the QAM denotes which query uses which of the

attributes. The rows represent workload queries and columns represent attributes

from Q. In general terms QAM (i, j) is set to one if Qi includes attribute Ai and to

zero otherwise as shown in Table 5.4.

Table 5.4 Query Attribute Matrix (QAM)

 Attributes

Queries

A1 A2 A3 An

Q1 1 0 0 0

Q2 0 1 0 0

Q3 0 1 1 0

Qn 0 1 0 1

The next step is to derive fragments that optimize data access for a given set of

queries. As vertical fragments are built from attributes it is necessary to cluster the

attributes with respect to the query workload. Following steps are used to cluster the

attributes:

1. Find the attributes set W contained in the same queries from QAM.

2. Add the primary key of the table to each set.

3. Remove the duplicate sets.

4. Construct the execution tree:

i. Include unused attributes and primary key of the table as root.

ii. Extend tree by adding possible sets.

iii. Repeat steps i and ii, until all attributes are included in one leaf.

5. Each leaf of the tree represents a valid candidate attribute clustering solution.

6. Rank the solutions in increasing order based on their aggregate costs.

7. Remove the solutions whose costs are larger than the cost of No Partition.

8. Based on the ranking choose the best solution.

131

Based on the chosen solution the vertical fragments are constructed. The next

step involves partitioning each fragment further applying horizontal fragmentation.

For each vertical fragment it is necessary to select the attributes and its

corresponding predicates based on which the horizontal partitioning is performed.

As the possible number of fragments produced is large, the fragmentation selection

is carried out by using the proposed hybrid GAHC algorithm described in the

previous step.

5.2.5 Fact Fragmentation

Using the proposed horizontal or mixed partitioning, the dimension table(s) are

fragmented. The optimal fragment schema is chosen using the GAHC algorithm

which is then partitioned by applying Range, List or Hash partitioning modes.

Finally, based on this partition the fact table is referential partitioned in the

underlying database.

The existing partitions need to be altered when the business analysis needs

changes as new queries need to be imposed over the DW. Hence, the proposed

approach provides a partition management component which monitors the DW

query evolution and informs the DWA to perform the refragmentation as required.

5.3 PROPOSED PARTITION MANAGEMENT FOR EVOLVING

QUERIES

In this section the proposed partition management for the ORP approach has

been described. New queries arise due to changes in the business needs. Based on

the frequency of the new queries, the existing partitions need to be adapted. This

part of the proposed approach monitors the DW in order to collect statistics about

queries, it detects any changes in query patterns and informs the DWA to trigger the

refragmentation process. The Figure 5.5 represents the various steps involved in the

partition management, which are explained in this section.

132

Figure 5.5 Partition Management

5.3.1 Query Analyzer

The first step involves analyzing a new query and inform the DWA for any

alteration required in the existing partitions. In order to perform this task,

information about the existing partitions, attributes of each partition and its values

are maintained. The procedure given in Figure 5.6 is followed by the query analyzer.

It works based on the following three cases to alert for the refragmentation process:

Case 1: When new values or predicates not in existing partitions exist in the query.

Case 2: When new attributes not in existing partitions exist in the query.

Case 3: When new table not in existing partitions exists in the query.

When new query q enters the existing query workload Q, then its frequency

value FR is updated. As the same query appears repeatedly and when its frequency

becomes greater than the threshold value, the query analyzer triggers the

refragmentation (Steps 1-3). Here, the table names are first retrieved from the select

clause of the query q (Step 4). When a table Ti in the query belongs to the

partitioned table (PT) list, then the attributes of the partition are retrieved from the

Query Analyzer

New
Query

Partition
Info

Alter Partition Schema Cost Analyzer

Refragment

DWA

Cost
Model

133

where clause of the query. If this attribute Ti.Ai, is available in the partitioned

attributes (PA) then its new value or its new predicate needs to be included in the

existing partition. But if the attribute Ti.Ai is not available in the partitioned

attributes (PA) then refragmentation needs to be carried out for the table Ti with

attribute Ai (Steps 5-12). When a table Ti in the query is not contained in a

partitioned table (PT) list, then new fragmentation is triggered for this table Ti (Steps

13-16).

Figure 5.6 Trigger Refragmentation

5.3.2 Alter Partition Schema

When an alert is received for refragmentation, the designer or the DWA

performs the modification of the schema of the received partition. The

refragmentation may involve the addition of new fragmentation attribute or the

alteration of an attribute’s domain value or predicates. The two main operations that

Trigger Refragment(Q, PT, PA)

1 Get new query q.

2 Update frequency of q; FR=FR+1;

3 if FR>FRThreshold then

4 for each Ti in select clause of q

5 if Ti ϵ PT then

6 for each Ti.Ai in where clause of Q

7 if Ti.Ai ϵ PA then

8 Refragment_NewValue (Ti, Ai,Value);

9 else

10 Refragment_NewAttribute (Ti, Ai,Value);

11 end if

12 end for

13 else

14 Obtain Ti.Ai in where clause of Q

15 Fragmentation(Ti,Ti.Ai,Value);

16 end if

17 end for

18 end if

134

are performed for modification over the partition schema are SPLIT and MERGE.

The SPLIT operation divides the given partition to two separate partitions. And the

MERGE is involved in merging two partitions into a single partition.

5.3.3 Cost Analyzer

This part of the management module calculates the cost of a partition schema

before and after the alteration using the cost model given in equation 5.1. If the cost

after alteration exceeds a certain cost threshold and the number of manageable

fragments exceeds the fragmentation threshold, then the DWA can decide to retain

the old partition. Otherwise, the altered schema of the partition is chosen for

fragmentation.

5.3.4 Refragmentation

The final step executes the required alteration over the table partition in the

underlying database. Thus, the proposed approach could adapt the existing partitions

when the query imposed over the DW evolves.

 In the proposed approach, the ORP along with the partition management

provides an improved and automated (semi-automated) way of performing DW

schema partitioning and its management in order to enhance the query performance.

Following section discusses SSB (O’Neil et al., 2007) case study in order to

illustrate the steps involved in the ORP and to evaluate the proposed approach.

5.4 CASE STUDY – SSB (TPC-H)

The SSB benchmark is a variation of TPC-H benchmark. SSB is the DW schema

for TPC-H domain. The SSB is a Sales DW schema which consists of the

LineOrder, Customer, Date, Part and Supplier tables. The DW schema is given in

Figure 5.7. The experimental setup and the evaluation of the proposed approach

using the obtained results are discussed in section 5.5. Following are the steps of the

135

proposed ORP approach explained in section 5.2 and 5.3 which are applied to the

case study:

1. Dimension Table and Attributes Selection

2. Fragment Schema Construction

3. Optimal Fragment Selection using GAHC

4. Fact Fragmentation

5. Partition Management

6. Optimized Mixed Fragmentation for Big Dimension

Figure 5.7 SSB Data Warehouse Schema

The SSB queries are used in the experiment for retrieving the results in the

Sales DW and these queries are also used for computing the query execution time

and query cost. The list of queries is given in Table 5.5.

136

Table 5.5 SSB Queries

Q.No. Queries Description

Q1.1

select sum(lo_extendedprice*lo_discount) as revenue from

lineorder, date where lo_orderdate = d_datekey and d_year =

1998 and lo_discount between1 and 3 and lo_quantity < 25;
Quantifies the amount

of revenue increase

that results from

eliminating certain

companywide

discounts in a given

percentage range for

products shipped in a

given year.

Q1.2

select sum(lo_extendedprice*lo_discount) as revenue from

lineorder, date where lo_orderdate = d_datekey and

d_yearmonthnum = 199801 and lo_discount between4 and 6

and lo_quantity between 26 and 35;

Q1.3

select sum(lo_extendedprice*lo_discount) as revenue from

lineorder, date where lo_orderdate = d_datekey and

d_weeknuminyear = 6 and d_year = 1998 and lo_discount

between 5 and 7 and lo_quantity between 26 and 35;

Q2.1

select sum(lo_revenue), p_brand1 from lineorder, date, part,

supplier where lo_orderdate = d_datekey and lo_partkey =

p_partkey and lo_suppkey = s_suppkey and p_category =

'MFGR#12' and s_region = 'AMERICA' and

d_yearmonthnum = 199801group by p_brand1 order by

p_brand1;
Compares revenue for

some product classes,

for suppliers in a

certain region, grouped

by more restrictive

product classes and all

years of orders.

Q2.2

select sum(lo_revenue), p_brand1 from lineorder, date, part,

supplier where lo_orderdate = d_datekey and lo_partkey =

p_partkey and lo_suppkey = s_suppkey and p_brand1

between 'MFGR#2221' and 'MFGR#2228' and s_region =

'ASIA' and d_yearmonthnum = 199801 group by p_brand1

order by p_brand1;

Q2.3

select sum(lo_revenue), d_year, p_brand1 from lineorder,

date, part, supplier where lo_orderdate = d_datekey and

lo_partkey = p_partkey and lo_suppkey = s_suppkey and

p_brand1 = 'MFGR#2221' and s_region = 'EUROPE' group

by d_year, p_brand1 order by d_year, p_brand1;

Q3.1

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue

from customer, lineorder, supplier, date where lo_custkey =

c_custkey and lo_suppkey = s_suppkey and lo_orderdate =

d_datekey and c_region = 'ASIA' and s_region = 'ASIA' and

d_year >= 1992 and d_year <= 1995 group by c_nation,

s_nation, d_year order by d_year asc, revenue desc;

137

Q3.2

select c_city, s_city, d_year, sum(lo_revenue) as reve-nue

from customer, lineorder, supplier, date where lo_custkey =

c_custkey and lo_suppkey = s_suppkey and lo_orderdate =

d_datekey and c_nation = 'UNITED STATES' and s_nation =

'UNITED STATES' and d_year >= 1992 and d_year <= 1995

group by c_city, s_city, d_year order by d_year asc, revenue

desc;

Provides revenue

volume for lineorder

transactions by

customer nation and

supplier nation and

year within a given

region, in a certain

time period.

Q3.3

select c_city, s_city, d_year, sum(lo_revenue) as reve-nue

from customer, lineorder, supplier, date where lo_custkey =

c_custkey and lo_suppkey = s_suppkey and lo_orderdate =

d_datekey and (c_city='UNITED KI1' or c_city='UNITED

KI5');

Q3.4

select c_city, s_city, d_year, sum(lo_revenue) as reve-nue

from customer, lineorder, supplier, date where lo_custkey =

c_custkey and lo_suppkey = s_suppkey and lo_orderdate =

d_datekey and (c_city='UNITED KI1' or c_city='UNITED

KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5')

and d_yearmonth = 'Dec1997' group by c_city, s_city, d_year

order by d_year asc, revenue desc;

Q4.1

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as

profit from date, customer, supplier, part, lineorder where

lo_custkey = c_custkey and lo_suppkey = s_suppkey and

lo_partkey = p_partkey and lo_orderdate = d_datekey and

c_region = 'AMERICA' and s_region = 'AMERICA' and

(p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by

d_year, c_nation order by d_year, c_nation;

Measures the

aggregate profit as

(revenue – supplycost)

group by year, nation

and by product

category.

Q4.2

select d_year, s_nation, p_category, sum(lo_revenue -

lo_supplycost) as profit from date, customer, supplier, part,

lineorder where lo_custkey = c_custkey and lo_suppkey =

s_suppkey and lo_partkey = p_partkey and lo_orderdate =

d_datekey and c_region = 'AMERICA' and s_region =

'AMERICA' and (d_year = 1997 or d_year = 1998) and

(p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by

d_year, s_nation, p_category order by d_year, s_nation,

p_category;

Q4.3

select d_year, s_city, p_brand1, sum(lo_revenue -

lo_supplycost) as profit from date, customer, supplier, part,

lineorder where lo_custkey = c_custkey and lo_suppkey =

s_suppkey and lo_partkey = p_partkey and lo_orderdate =

d_datekey and c_region = 'AMERICA' and s_nation =

'UNITED STATES' and (d_year = 1997 or d_year = 1998)

and p_category = 'MFGR#14' group by d_year, s_city,

p_brand1 order by d_year, s_city, p_brand1;

138

5.4.1 Dimension Table and Attributes Selection

The first step involves the selection of dimension table and attributes

involved in the Sales schema. The DW schema ontology given in section 3.4.5 of

Chapter 3 is considered for SSB Schema. This DWO and the SSB queries are given

as input to DimSelection algorithm. For each dimension in the ontology the values

of the parameters such as frequency, attributes and size are obtained. These values

are given in Table 5.6. Based on the values, the scores for the dimension are

included in the dim_selection matrix. The rows of the matrix are added and the total

score for each dimension is shown in the Table 5.7.

Table 5.6 Parameter Values

Dimension Frequency Attributes Size

Customer 7 4 30,000

Supplier 10 4 2000

Part 6 5 50,000

Date 13 4 2555

Table 5.7 DimSelection Matrix

Dimension Frequency Attributes Size Total Score

Customer 2 3 3 8

Supplier 3 3 1 7

Part 1 4 4 9

Date 4 3 2 9

The user can select one or more dimensions based on the scores. For

example, if the Date dimension is selected for horizontal partitioning, its attributes

need to be chosen. From the given set of SSB queries the attribute_selection matrix

for the Date dimension is constructed as shown in Table 5.8. The 16 attributes of

Date dimension are represented as A to P. According to the matrix, the d_datekey,

d_year, d_yearmonthnum and d_weeknuminyear are the attributes available in the

query. Based on the frequency the d_year and the d_yearmonthnum attributes are

chosen for fragmentation.

139

Table 5.8 Attribute_Selection Matrix

 Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 FREQ

A 1 1 1 1 1 1 1 1 1 1 1 1 1 PK

B

C

D

E 1 1 1 1 1 1 1 1 1 9

F 1 1 1 3

G

H

I

J

K 1 1

L

M

N

O

P

5.4.2 Fragment Schema Construction

The construction of fragment schema based on the chosen dimension table

and its attributes is performed in this step. The domain values of the chosen

attributes are obtained and based on these values the fragment schema is constructed

as explained in section 5.2.2. The fragment schema holds integer values to represent

the domain number. Table 5.10 represents the fragment schema for the Date

dimension. The total possible fragments are 16 (4x4) for this dimension table as

each attribute has 4 predicate values.

Table 5.9 Attribute Values for Date Dimension

Attribute Name Values

d_year 1992-1993 1994-1995 1996-1997 1998

d_yearmonthnum
199201-

199312

199401-

199512

199601-

199712

199801-

199812

140

Table 5.10 Fragment Schema for Date Dimension

Attribute Name Domains

d_year 1 2 3 4

d_yearmonthnum 1 2 3 4

5.4.3 Optimal Fragment Selection using GAHC

In order to apply the proposed GAHC algorithm to find the optimal number of

fragments, the problem solution can be represented as given in Table 5.11. The

following are the steps of the proposed algorithm:

i. Initialization: Ten initial solutions (fragmentation schemes) are produced

randomly which is the population on which the algorithm works. A sample

fragmentation schema is given in Table 5.11. The total number of

generations is initialized 10, 50, 100 for each experiment. The threshold

value is set, which is the maximum number of fragments N managed by the

database.

Table 5.11 Initial Solution

Attribute Name Domains

d_year 1 2 3 4

d_yearmonthnum 1 2 3 4

ii. Evaluation: The fitness value for each and every fragmentation scheme is

computed using the cost model given in equation 5.1.

iii. Hill Climbing: For each individual in the initial population hill climbing is

applied. The number of fragments (N) generated by the individual is

obtained. If N is greater than the threshold, then the sub domains in the

fragment code (schema) of the individual are merged. For example the sub

domains 1 and 2 of d_yearmonthnum can be merged as shown in Table 5.12.

If N is lesser than the threshold, then the sub domains in the fragmentation

code of the individual are splitted. After applying merge or split operations

the fitness of the individual is calculated. When the individual has a higher

141

fitness than the original individual, it is retained for further improvements.

After certain iterations when no further improvements are seen the hill

climbing is terminated. The above steps are repeated for other individuals in

the initial population.

Table 5.12. Initial Solution with Merging

Attribute Name Domains

d_year 1 2 3 4

d_yearmonthnum 1 2 3 4

iv. Genetic Operations:

a. Selection: Roulette wheel method is used in this algorithm. The two

individuals with highest fitness value are chosen.

b. Crossover: New individual is created by crosses of the selected

individuals. Here one-point crossover mechanism is used to give the

same chances to the attributes with high and low number of sub

domains. Figure 5.8 is an example for crossover operation.

c. Mutation: It involves in modifying the cells (genes) in the individual

to obtain a new individual. Figure 5.9 is an example for mutation

operation.

d. New population: The fitness value for each and every fragment is

computed using the given cost model. These fragments form the new

set of population.

v. Termination: If the termination condition is not satisfied, then the whole

process is repeated. After a certain number of iterations the algorithm

converges and the optimal fragmentation schema is obtained. The Table 5.13

represents the genetic algorithm parameters used in the proposed approach.

142

Figure 5.8 Cross over Operation

Figure 5.9 Mutation Operation

Table 5.13 Genetic Algorithm Parameters

Parameters Values

Population Size 10

Maximum Generations 10, 50, 100

Encoding Mechanism Decimal Encoding

Crossover One point crossover

Selection Roulette Wheel Method

5.4.4 Fact Fragmentation

After running the GAHC algorithm for fragmentation selection the optimal

fragmentation schema is given in Table 5.14 that is used to partition the Sales DW.

The corresponding domain values for the fragment schema are shown in Table 5.15.

Attribute Sub Domains

d_yearmonthnum 2 2 3 3

Attribute Sub Domains

d_yearmonthnum 1 2 3 4

Attribute Sub Domains

d_yearmonthnum 1 2 3 3

Attribute Sub Domains

d_yearmonthnum 2 2 3 4

Attribute Sub Domains

d_yearmonthnum 2 2 3 4

Attribute Sub Domains

d_yearmonthnum 2 2 3 3

143

Range partitioning can be applied for Date dimension table using d_year

attribute and d_yearmonthnum attributes. Based on the partitions the LineOrder fact

table can be referentially partitioned in the Oracle11G DBMS.

Table 5.14 Optimal Fragment Schema

Attribute Name Domains

d_year 1 1 3 4

d_yearmonthnum 1 1 1 4

Table 5.15 Optimal Fragment Schema with domain values

Attribute Name Values

d_year 1992-1995 1996-1997 1998 -

d_yearmonthnum 199201-199712 199801-199812 - -

5.4.5 Partition Management

This part of ORP maintains information about existing partitions and

performs the required alteration when new query arises. Table 5.16 provides the

details of partition tables PT, and its corresponding partition attributes PA. For

example, when a new query given in Figure 5.10 enters the query workload and its

frequency is greater than the query frequency threshold FR, the existing partitions

are verified by the query analyzer. According to the given query the partitions P0

and P1 are affected. Here, from the where clause of the query the d_year attribute

has predicate as 1992-1997. Hence, the partitions P0 and P1 can be combined by

performing the MERGE operation over these partitions.

Table 5.16 Partition Tables and Partition Attributes

Partition

Table (PT)
PT0 PT1 PT2 PT3 PT4

 Partition

 Attribute
d_year d_year d_year d_yearmonthnum d_yearmonthnum

Attribute

Value
1992-1995 1996-1997 >1998 199201-199712 199801-199812

144

Figure 5.10 New Query

The resultant fragment schema after the modification is given in Table 5.17.

The cost analyzer computes the cost of the new fragment schema using the cost

model. As the computed cost is lesser than the cost threshold the partitions are

merged at the physical level.

Table 5.17 Fragment Schema after merging

Attribute Name Values

d_year 1991-1997 1998

5.4.6 Optimized Mixed Fragmentation for Big Dimension

The SSB schema does not contain big dimension. Hence, the star schema of

the Inmon’s sales data mart (Inmon, 2005) has been used for applying the proposed

partitioning technique (ORP-M) for big dimension. The data mart consists of a fact

table and four dimension tables: Date Dimension, Product Dimension, Store

Dimension and Customer Dimension as shown in Figure 5.11. Here the Customer

dimension consists of 53 attributes which is chosen as the big dimension for

partitioning. The DW has been populated using synthetic data set. A set of 8 OLAP

queries are considered which are available for the star schema.

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue from customer, lineorder, supplier,
date where lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate = d_datekey and

c_region = 'ASIA' and s_region = 'ASIA' and d_year >= 1992 and d_year <= 1997 group by
c_nation, s_nation, d_year order by d_year asc, revenue desc;

145

146

Vertical partitioning explained in section 5.2.4 is performed over customer

dimension by splitting the big dimension table into multiple tables, each of which

contains different number of columns. To apply attribute clustering the QAM i.e

query attributes matrix is constructed. The customer dimension attributes are given

as (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10….A53) = (CustomerId, FirstName,

CountryLanguage, CustomerAge, DrivingLicense, PurchaseProduct, Purchaseyear,

PurchaseQuantity, CustomerCountry, CustomerContinent, etc.)

Table 5.18 Sample QAM for Customer Dimension

Queries A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Q1 1 1 1

Q2 1 1 1

Q3 1 1 1 1

Q4 1 1 1

Q5 1 1 1

Q6 1 1 1

Q7 1 1 1 1

Q8 1 1 1

Table 5.18 shows the QAM constructed for sample attributes of the

customer dimension. The attribute sets formed using the QAM is given in Figure

5.12. After the attribute clustering is applied over the obtained sets using attribute

clustering tree, the different possibilities of solutions for partitioning are given in

Figure 5.13. For solutions S1 to S8 the query cost is estimated using the given cost

model and the aggregate cost is shown in Table 5.19. From the table it is observed

that S2 and S8 are the best solutions to vertically partition the customer table for the

given set of sample attributes. The vertical partitions are represented in Table 5.20.

Figure 5.12 Attribute Sets

147

F
ig

u
r
e
 5

.1
3

 S
o

lu
ti

o
n

s
 a

ft
e
r
 A

tt
r
ib

u
te

 C
lu

s
te

r
in

g
S4

S6
S8

{A
1,A

6}

{A
1,A

6}
{A

1,A
2,A

4}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

4,A
5}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

4,A
7}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

4,A
5}

{A
1,A

7,A
8,A

10
}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

4,A
5}

{A
1,A

7,A
8}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

4,A
7}

{A
1,A

7,A
8}

{A
1,A

6}
{A

1,A
3,A

8,A
9}

{A
1,A

4,A
7}

{A
1,A

7,A
8,A

10
}

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

4,A
5}

{A
1,A

7,A
8}

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

4,A
5}

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

4,A
5}

{A
1,A

7,A
8,A

10

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

4,A
7}

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

4,A
7}

{A
1,A

7,A
8}

{A
1,A

6}
{A

1,A
3,A

10
}

{A
1,A

4,A
7}

{A
1,A

7,A
8,A

10
}

S1

S2

S3
S5

S7

148

Table 5.19 Aggregate Cost for Partition Solutions

Solution
Estimated Query Cost Aggregate

Cost Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

S1 9 49 98 9 49 44 90 9 44.63

S2 9 42 88 9 44 44 87 9 41.50

S3 9 47 98 9 49 47 90 9 44.75

S4 9 44 80 9 43 43 82 9 39.88

S5 22 49 84 20 49 44 90 22 47.50

S6 9 46 87 9 45 45 88 9 42.25

S7 24 49 98 22 43 43 98 29 50.75

S8 9 44 84 9 43 43 84 9 40.63

Table 5.20 Vertical Partitions

Vertical

Partition 2

Vertical

Partition 2

Vertical

Partition 3

Vertical

Partition 4

CustomerId CustomerId CustomerId CustomerId

PurchaseProduct CountryLanguage CustomerAge PurchaseYear

 PurchaseQuantity PurchaseYear PurchaseQuantity

 CustomerCountry CustomerContinent

In order to horizontally fragment each vertical partition the attributes need to

be selected along with the corresponding predicates to be used for fragmentation.

For example, to fragment vertical partition 3 represented in Table 5.20, the

fragmentation attributes are CustomerAge and PurchaseYear. The predicates of the

attributes are obtained from the given specification which is given in Table 5.21.

Based on the obtained predicates the fragmentation schema of the Vertical Fragment

3 (Customer) is shown in Table 5.22.

Table 5.21 Predicates for Horizontal Fragmentation

Attribute Name Values

Age <38 38-48 48-58 >58

PurchaseYear <2000 2000-2005 2005-2007 2007-2009

149

Table 5.22 Fragment Schema for Horizontal Fragmentation

Attribute Name Domains

Age 1 2 3 4

PurchaseYear 1 2 3 4

Based on the fragmentation schema given in Table 5.22 the total number of

fragments is 16. The proposed GAHC algorithm is applied in order to find an

optimal fragment schema which generates fragments, such that the overall query

cost is minimized. As the fragment schema given in Table 5.23 gives the minimal

query cost it is chosen as the optimal fragment.

Table 5.23 Optimal Schema for Horizontal Fragmentation

Attribute Name Values

Age <38 38-48 48-58 >58

PurchaseYear <2000 2000-2005 2005-2009 -

For partitioning the fact table, horizontal fragmentation has been applied to

the Customer dimension using range partitioning mode for Age and PurchaseYear

attributes. Based on these partitions the fact table Sales are referentially partitioned

in Oracle11G DBMS.

5.5 RESULTS AND DISCUSSION

In this section, the experimental setup for evaluating the proposed approach is

given. The results obtained are analyzed by providing a comparison of the proposed

approach with the existing partitioning techniques. The comparative analysis is

performed for the dimension selection methods, fragmentation selection algorithms

and mixed fragmentation techniques.

5.5.1 Experimental Setup

An experimental study has been conducted to evaluate the proposed ORP

strategy which performs referential partitioning for a given DW schema. The SSB

schema has been used which is a Sales DW schema. The fact table LineOrder

150

contains 6,00,000 records, the dimension tables Customer has 30,000 records, Date

has 2,555 records, Part has 50,000 records and Supplier has 2000 records. The

experiments have been conducted using Oracle11G which supports referential

partitioning. The dataset of SSB benchmark is created and populated using its data

generator called DBGEN that enables the generation of synthetic data. This

warehouse has been installed under Oracle 11g on a Pentium 1.8 GHz (with a

memory of 256 mu, 60Go) running under windows XP pro.

5.5.2 Analysis of Dimension Selection Methods

The first experiment compares the quality of each parameter: frequency,

attributes and size for dimension selection with the proposed matrix based selection.

For each parameter the proposed referential partitioning is applied with different

values of the threshold N. Where, N is the number of generated fragments to be

managed in the underlying database. This N value is varied to 10, 20, 50 and 100 for

each experiment. Here, it is assumed that the maximum threshold value is 100. The

cost of evaluating the SSB queries is computed for the generated fragment schemas

using the cost model given in equation 5.1. Table 5.24 summarizes the obtained

results.

Table 5.24 Results for Dimension Selection Methods

Dimension

Selection Methods

Fragments

(10)

Fragments

(10)

Fragments

(10)

Fragments

(10)

Frequency 17500000 14900000 17560000 17595000

Attributes 21700000 21750000 21700000 21800000

Size 21700000 21750000 21700000 21800000

Matrix_Based 17500000 14900000 17560000 17595000

151

From the Figure 5.14 it was observed that the matrix based selection

produces minimal I/O cost for queries when compared to individual parameter for

the dimension selection. In the given scenario, the Date dimension chosen by the

matrix based selection is also given by the frequency parameter.

Hence, both results are same. Regarding the threshold values, it was

observed that increasing the number of fragments does not reduce the query cost.

Having the N value as 50 or 100 gives the same results. The reason is that,

increasing the number of fragments might result in large number of join operations

in the queries, which results in increased query cost.

Figure 5.14 Comparison of Query Cost for Dimension Selection Methods

5.5.3 Analysis of Fragment Selection Methods

The SSB queries are executed over the Non_Partitioned DW and partitions

generated by partitioned hill climbing (Partitioned_HC), partitioned genetic

algorithm (Partitioned_GA), and the proposed GAHC algorithms. The results

obtained for query execution time and query cost are given in Table 5.25.

0

5000000

10000000

15000000

20000000

25000000

10 20 50 100

Q
u

er
y
 C

o
st

Fragment Threshold

Frequency(Date

Dimension)

Attributes(Part

Dimension)

Size(Part Dimension)

Matrix Based(Date

Dimension)

152

Table 5.25 Results for Fragment Selection Methods

Q
u

er
ie

s

 Query Execution Time

 (ms)
 Query Cost

N

o
n

_
P

a
rt

it
io

n
ed

P

a
rt

it
io

n
ed

_
H

C

P

a
rt

it
io

n
ed

_
G

A

 P

a
rt

it
io

n
ed

_
G

A
H

C

 N

o
n

_
P

a
rt

it
io

n
ed

 P

a
rt

it
io

n
ed

_
H

C

 P

a
rt

it
io

n
ed

_
G

A

P

a
rt

it
io

n
ed

_
G

A
H

C

Q1.1 1789 1012 912 550 40800000 22000000 20000000 14500000

Q1.2 1845 1078 978 512 40100000 22050000 20010000 14900000

Q1.3 1678 1048 948 570 41500000 22700000 20005000 14560000

Q2.1 2189 1102 987 620 42900700 25800000 21008900 15595000

Q2.2 2235 1120 963 642 42700000 25000000 21000000 15500000

Q2.3 2412 1245 925 678 42800000 25050000 21310000 15900000

Q3.1 2190 1289 890 680 44990000 26700000 22005000 15560000

Q3.2 2213 1156 994 758 45990000 25800000 22008900 16595000

Q3.3 2460 1208 915 730 44790000 25000000 22006000 16540000

Q3.4 2372 1345 973 719 43790000 26050000 22005000 16530000

Q4.1 2864 1652 1082 806 45990000 26700000 22000000 17506000

Q4.2 2850 1521 1041 816 45890000 26700000 22004000 17507000

Q4.3 2812 1420 1090 860 47790000 25800000 22003000 17500000

Figure 5.15 provides the comparison for the individual query execution time

when different fragment selection algorithms are applied. The proposed hybrid

GAHC algorithm utilizing the advantages of hill climbing and genetic algorithm

features selects the best optimal fragment schemas from the given search space.

Hence the individual query execution time for the GAHC based partition is minimal

for the given workload when compared to the partitions generated by existing

fragment selection algorithms. The total query execution time when GAHC is

applied is 8941 ms when compared to Non_Partitioned, Partitioned_HC and

153

Partitioned_GA which produced 299909 ms, 16196 ms and 12698 ms respectively

as given in Figure 5.16.

Figure 5.15 Comparison of Individual Query Execution Time

for Fragment Selection Algorithms

Figure 5.16 Comparison of Overall Query Execution Time

for Fragment Selection Algorithms

In order to study the query cost for different partitioning techniques, the

queries are executed over the fragment schemas generated and the cost is computed

using the given cost model. From the Figure 5.17 it is observed that the fragment

0

500

1000

1500

2000

2500

3000

3500

Q
1
.1

Q
1
.2

Q
1
.3

Q
2
.1

Q
2
.2

Q
2
.3

Q
3

.1

Q
3
.2

Q
3
.3

Q
3
.4

Q
4

.1

Q
4
.2

Q
4
.3

E
x
ec

u
ti

o
n

 T
im

e
in

 m
s

Queries

Non_Partitioned

Partitioned_HC

Partitioned_GA

Partitioned_GAHC

0

5000

10000

15000

20000

25000

30000

35000

Q
u

er
y
 E

x
ec

u
ti

o
n

 T
im

e
(m

s)

Partiotion Selection Methods

Non_Partitioned

Partitioned_HC

Partitioned_GA

Partitioned_GAHC

154

schemas produced by GAHC gives minimal cost for individual queries. The reason

is that, the number of I/Os required for executing the queries is minimal due to the

optimal partition schema generated by the proposed GAHC partitioning technique.

The overall cost of the given query is thus minimized when compared to

Non_Partitioned, Partitioned_HC and Partitioned_GA as shown in Figure 5.18.

Figure 5.17 Comparison of Individual Query Cost

for Fragment Selection Algorithms

Figure 5.18 Comparison of Overall Query Cost

for Fragment Selection Algorithms

0

10000000

20000000

30000000

40000000

50000000

60000000

Q
1

.1

Q
1

.2

Q
1

.3

Q
2

.1

Q
2

.2

Q
2

.3

Q
3

.1

Q
3

.2

Q
3

.3

Q
3

.4

Q
4

.1

Q
4

.2

Q
4

.3

Q
u

er
y
 C

o
st

Queries

Non_Partitioned

Partitioned_HC

Partitioned_GA

Partitioned_GAHC

0

100000000

200000000

300000000

400000000

500000000

600000000

Q
u

er
y
 C

o
st

Partitioning Methods

Non_Partitioned

Partitioned_HC

Partitioned_GA

Partitioned_GAHC

155

5.5.4 Analysis of Mixed Fragmentation Techniques

The big dimension, i.e. customer dimension of Inmon’s sales DW is

partitioned using the traditional mixed fragmentation approach and the proposed

ORP-M approach. By executing the queries over the partitioned dimension table and

its corresponding fact table, the query execution time and query cost that are

obtained are summarized in Table 5.26.

Table 5.26 Results for Mixed Fragmentation Techniques

 Q

u
er

ie
s

Query Execution Time

(ms)
 Query Cost

T

ra
d

it
io

n
a
l

M
ix

ed

A

p
p

ro
a
ch

O

R
P

-M
 A

p
p

ro
a
ch

T

ra
d

it
io

n
a
l

M
ix

ed

 A

p
p

ro
a
ch

O

R
P

-M
 A

p
p

ro
a
ch

Q1 4458 2058 2130000 1015300

Q2 8634 5632 5389000 3109000

Q3 3812 1914 1338900 1036500

Q4 9972 6970 5723800 4013800

Q5 3056 1055 2114000 1170000

Q6 7945 5846 5812000 2112200

Q7 4012 2017 3764100 1934700

Q8 1082 482 2753900 1445900

Figure 5.19 compares the individual query execution time (in ms) for the

proposed ORP-M approach with the traditional mixed fragmentation. The proposed

ORP-M uses optimized vertical partition based on attribute clustering followed by

the horizontal partition of the vertical fragment. Hence, the partition generated by

the ORP-M approach is optimal for executing the queries compared to the existing

approach. Thus, from the figure 5.19 it is observed that ORP-M gives 25976 ms as

156

total query execution time, which is minimal compared to the traditional mixed

approach which gives a total of 42597 ms.

Figure 5.19 Comparison of Individual Query Execution Time

for Mixed Approaches

The comparison of individual query cost for the given set of queries when

applied to the mixed fragmentation approaches is given in Figure 5.20. The ORP-M

performs better when compared to the traditional mixed approach.

Figure 5.20 Comparison of Individual Query Cost

for Mixed Approaches

0

2000

4000

6000

8000

10000

12000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
u

er
y
 E

x
ec

u
ti

o
n

 T
im

e
(m

s)

Queries

Traditional Mixed

Approach

ORP-M Approach

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
u

er
y

C

o
st

Queries

Traditional

Mixed Approach

ORP-M

Approach

157

From the obtained results it has been observed that the proposed ORP approach

helps in reducing the query execution time and query cost when compared to

existing partitioning techniques. Following inferences are made from the results

show in Figure 5.15 to Figure 5.20:

i. The ORP-H approach optimized with matrix based dimension selection and

hybrid GAHC for fragment selection performs better compared to existing

approaches. Hence it could achieve 30% of reduced query execution time

when compared to Partitioned_GA, 45% reduction compared to

Partitioned_HC and 70% of reduction compared to Non_Partitioned

approach.

ii. When comparing the query cost, ORP-H approach produces minimal cost.

That is, 30% minimum cost compared to Partitioned_GA, 36% and 63%

minimum compared to Partitioned_HC and Non_Partitioned approaches

respectively.

iii. Comparing proposed ORP-M with the traditional mixed approach, the

proposed approach provided 40% reduced query execution and 45%

minimum query cost. The proposed mixed fragmentation could achieve

better results as the vertical fragmentation is optimized with attribute

clustering and horizontal fragmentation by adopting the proposed ORP-H

approach.

5.6 SUMMARY

Partitioning plays an important role during the design of DW which helps to

improve the performance of star join queries. As DW schema involves fact-

dimension relationship referential partitioning gives greater benefits in terms of

query performance when compared to single table partitioning. The selection of

dimension and maintaining manageable numbers of fragments/partitions are the

main issues of referential partitioning.

158

The proposed ORP approach provides a matrix based method, which uses

multiple selection parameters for choosing the best dimension table(s) for

partitioning. Based on the number of attributes and the values of the chosen

dimension the number of possible fragments would be large. Hence the ORP

approach provides hybrid GAHC (genetic and hill climbing) algorithm for optimal

fragment selection based on the given cost model. The GAHC algorithm solves the

limitations of the existing fragment selection algorithms and generates a valid set of

fragments. With reference to the dimension fragments the fact table is partitioned

horizontally.

The ORP-H is applied for horizontal fragmentation of the dimension table.

Whereas, for partitioning a big dimension table ORP provides a mixed

fragmentation (ORP-M) which involve optimized vertical partition using attribute

clustering followed by the horizontal partition of the vertical fragment. The

proposed ORP approach also provides facilities for refragmentation of existing

partitions in case of evolving queries. It monitors the DW for changes in query

pattern and informs the DWA for triggering the refragmetnation process.

The ORP is evaluated by applying it to a case study of SSB sales DW

schema. The experiments are conducted for the existing and the proposed approach

for DW schema partitioning. The obtained results are compared and it has been

observed that the proposed approach provides better performance in terms of

reducing query execution time and query cost.

159

CHAPTER 6

CONCLUSION AND FUTURE ENHANCEMENTS

The DW schema provides a multidimensional representation of the data

integrated from several operational sources. As the DW involves a multifaceted

environment the design and management of the multidimensional schema becomes a

complex task. Hence, the overall objective of this research is to study the different

issues that exist in this task and provide an improved solution for each. This chapter

gives the conclusions of the research work with the research contributions and then

outlines the possible future enhancement.

6.1 CONCLUSIONS

The first issue explored is the design of the multidimensional DW schema.

The existing approaches tried to provide automation of the design task either from

requirements or data source, but the results were not satisfactory. A new hybrid

approach was developed utilizing both the requirements and data source knowledge

to derive the multidimensional schema. It provides automation of the design task

covering conceptual, logical and physical design phases by a formal representation

of the requirements and data source concepts in ontology format. Experiments were

conducted and the results show that the newly developed OntoMD approach

outperforms the existing approaches in a significant way.

The second issue explored is the evolution of the DW schema for a changing

business scenario. The existing methods on DW evolution handles schema changes

at the physical level, hence it has an impact on the maintenance cost. Moreover,

these methods failed to provide an automatic adaptation of dependent entities when

the DW schema evolves. Thus, the cost of manual adaptation of the entities is high.

A new method OntoEvol was developed which eliminates the deficiency of existing

methods. The proposed method allows the propagation of changes from the

requirements or the data source to the DW schema at the ontological level. And also,

it provides an automatic adaptation of the dependent entities. The experiments

160

showed that the OntoEvol could effectively propagate the changes when compared

to existing methods.

The final issue explored is to enhance the performance of referential

partitioning of the DW schema. The existing works on partitioning focused only on

fragment selection methods. They were not focused on the other problem exist in

DW schema partitioning. Hence, a new optimized referential partitioning technique

ORP was developed to provide improved solution for dimension table selection,

attribute selection, fragment selection, big dimension fragmentation and query

evolution. Comparisons were made with existing partitioning methods. The results

show a significant improvement in query performance when ORP is applied for

referential partitioning.

Following conclusion were derived based on the comparison of the proposed

solutions with the existing approaches:

i. The newly proposed OntoMD approach could efficiently generate the

multidimensional schema by the reconciliation of the knowledge contained

in the data source and the requirements using ontology.

ii. In the OntoMD approach any ambiguity in the requirements is eliminated at

the early stage of the conceptual design.

iii. It gives step by step guideline to generate the conceptual, logical and

physical schema of the DW.

iv. An OntoMD tool was proposed in order to facilitate the designer to perform

the design task in an automated way.

v. The DW schema quality generated by the OntoMD approach is better when

compared the quality of schema produced by existing design approaches.

OntoMD produce 13 to 15% improvement for correctness, 13 to 20%

improvement for completeness, 10 to 19% improvement for minimality, 14

to 25% improvement for traceability and 13 to 22% improvement for

interpretability metrics when compared to existing approaches.

161

vi. To handle evolution the newly proposed OntoEvol approach provides

different evolution operators to propagate requirements as well as the source

changes, automatically over the DW schema.

vii. The impact of a particular change is evaluated by the proposed approach

before it is implemented at the physical level.

viii. The mapping between source and the DW, queries and views which are

affected by a change are automatically adapted in the proposed OntoEvol

approach.

ix. Compared to the existing evolution methods, the proposed OntoEvol

approach has more effectiveness in propagating the changes over the DW

schema. It produced 13% better results when compared to the existing

MVTDW approach and 17% better than DWE approach.

x. The cost of automatic adaptation of dependent entities of the OntoEvol is

minimal compared to the manual cost of adaptation. It could produce 62%

minimal cost when compared to the manual adaptation.

xi. The ORP approach proposed optimizes the referential partitioning technique.

In ORP-H, the best dimension(s) and its attributes are chosen for horizontal

partitioning through matrix based selection.

xii. In the proposed ORP-M, the big dimension is partitioned, where the attribute

clustering tree is used for choosing the vertical fragments on which the

horizontal fragmentation is applied. This provides an optimized mixed

fragmentation.

xiii. In ORP, a hybrid GAHC algorithm is developed to choose the optimal

fragments and a refragmentation is applied in case of evolving queries.

xiv. The proposed ORP-H approach, thus minimizes the query execution time by

30% when compared to Partitioned_GA and 45% when compared to

Partitioned_HC. It also minimizes the query cost by 36% when compared to

Partitioned_GA and 63% when compared to Partitioned_HC.

xv. The proposed ORP-M approach minimizes query execution time by 40%

and query cost by 45% when compared to the traditional mixed

fragmentation technique.

162

Thus, in this research the developed approaches and techniques for the DW

schema design and its management could solve several issues and provide promising

results compared to the existing works.

The main focus of this research is to provide a systematic platform for any

organization to handle the expensive and time consuming task of DW schema design

and its management. Taking advantage of the ontology the DW designer can

resolve the ambiguity present in the data source as well as the requirements and

build the unified multidimensional schema. Hence, this research can provide an

organization with a DW structure, that derives huge business benefits by providing

accurate analysis of the past results, find correlations in the data available, and

present information in a user-friendly way to business users.

6.2 FUTURE RESEARCH DIRECTIONS

There are several possibilities for the improvement of this research work. The

OntoMD approach which generates simple dimension hierarchies could be further

extended to form multiple dimension hierarchies. In case of DW evolution, the

history of changes over the schema needs to be maintained as different versions.

Hence, the OntoEvol can be further extended to support version management.

Further, the OntoEvol and ORP approaches can be integrated into the OntoMD

tool such that the designer or administrator of the DW is given with a single point of

access to design and management of the schema. As the design of ETL has received

attention in recent research works, an integration of the DW schema and ETL design

process can be carried out by ontology and other semantic web tools. Another

interesting line of research is to design a data mart from the DW using ontology,

where a data mart represents the subset of the DW and focused on specific function

of the enterprise.

163

REFERENCES

1. Abelló, A., & Romero, O. (2010). Automatic validation of requirements to

support multidimensional design. Data & Knowledge Engineering, Vol. 69

(9), pp. 917-942.

2. Banerjee, S., & Davis, K. C. (2009). Modeling data warehouse schema

evolution over extended hierarchy semantics. In Journal on Data Semantics

XIII, Springer, Berlin Heidelberg, pp. 72-96.

3. Barr, M. (2013) Bi-Objective Optimization Based on Compromise Method

for Horizontal Fragmentation in Relational Data Warehouses. International

Journal of Machine Learning and Computing (IJMLC), Vol.3(3), pp. 250-

254.

4. Bębel, B., Królikowski, Z., & Wrembel, R. (2006). Formal approach to

modelling a multiversion data warehouse. Bulletin of the Polish Academy of

Sciences. Technical Sciences, Vol. 54 (1), pp. 51-62.

5. Bellahsene, Z. (2002). Schema evolution in data warehouses. Knowledge and

Information Systems, Vol. 4(3), pp. 283-304.

6. Bellatreche, L. (2012). Dimension Table Selection Strategies to Referential

Partition a Fact Table of Relational Data Warehouses. Recent Trends in

Information Reuse and Integration, pp. 19-41.

7. Bellatreche, L., & Woameno, K. Y. (2009). Dimension table driven approach

to referential partition relational data warehouses. In Proceedings of the

ACM twelfth international workshop on Data warehousing and OLAP,

ACM, pp. 9-16.

8. Bellatreche, L., Karlapalem, K., Mohania, M., & Schneider, M. (2000). What

can Partitioning do for Your Data Warehouses and Data Marts?. In Database

Engineering and Applications Symposium, International, IEEE Computer

Society, pp. 437-437.

9. Benitez-Guerrero, E., Collet, C., & Adiba, M. (2004). THE WHES

APPROACH TO DATA WAREHOUSE EVOLUTION. e-Gn osis. Vol.

2Art.

164

10. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic

web. Scientific American, Vol. 284 (5), pp. 28-37.

11. Berson, A., & Smith, S. J. (1997). Data warehousing, data mining, and

OLAP. McGraw-Hill, Inc..

12. Body, M., Miquel, M., Bédard, Y., & Tchounikine, A. (2002). A

multidimensional and multiversion structure for OLAP applications. In

Proceedings of the 5th ACM international workshop on Data Warehousing

and OLAP, ACM, pp. 1-6.

13. Bog, A., Sachs, K., & Zeier, A. (2011). Benchmarking database design for

mixed OLTP and OLAP workloads. In Proceedings of the 2nd ACM/SPEC

International Conference on Performance engineering, ACM, pp. 417-418.

14. Boukhalfa, K., Bellatreche, L., & Alimazighi, Z. (2009). HP&BJI: A

combined selection of data partitioning and join. In New Trends in Data

Warehousing and Data Analysis, Springer US, pp. 1-23.

15. Brkić, L., Baranović, M., & Mekterović, I. (2012). Improving the

completeness and timeliness by horizontal fragmentation of data warehouse

tables. In Proceedings of the 11th international conference on

Telecommunications and Informatics, Proceedings of the 11th international

conference on Signal Processing, World Scientific and Engineering

Academy and Society (WSEAS), pp. 76-81.

16. Buitelaar, P., Olejnik, D., & Sintek, M. (2004). A protégé plug-in for

ontology extraction from text based on linguistic analysis. In The Semantic

Web: Research and Applications, Springer Berlin Heidelberg, pp. 31-44.

17. Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., &

Wilkinson, K. (2004, May). Jena: implementing the semantic web

recommendations. In Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, ACM, pp. 74-83.

18. Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and

OLAP technology. ACM Sigmod record, Vol. 26 (1), pp. 65-74.

19. Chen, S., Zhang, X., & Rundensteiner, E. A. (2006). A Compensation-Based

Approach for View Maintenance in Distributed Environments. IEEE

165

Transactions on Knowledge and Data Engineering, Vol. 18 (8), pp. 1068-

1081.

20. Cho, V., & Ngai, E. W. (2003). Data mining for selection of insurance sales

agents. Expert systems, Vol. 20(3), pp. 123-132.

21. Conn, S. S. (2005). OLTP and OLAP data integration: a review of feasible

implementation methods and architectures for real time data analysis. In

SoutheastCon, 2005. Proceedings. IEEE, pp. 515-520.

22. Council, T. P. P. (2005). Transaction processing performance council. Web

Site, http://www. tpc. org.

23. Council, T. P. P. (2008), TPC-H benchmark specification [Online].

Available: www.tpc.org/tpch/

24. Cruz, I. F., & Xiao, H. (2005). The role of ontologies in data integration.

International journal of engineering, intelligent systems for electrical

engineering and communications, Vol. 13 (4), pp. 245-252.

25. Cullot, N., Ghawi, R., & Yétongnon, K. (2007). DB2OWL: A Tool for

Automatic Database-to-Ontology Mapping. In 15th Italian Symposium on

Advanced Database Systems (SEBD), pp. 491-494.

26. Curino, C., Moon, H. J., & Zaniolo, C. (2009). Automating database schema

evolution in information system upgrades. In Proceedings of the 2nd

International Workshop on Hot Topics in Software Upgrades, ACM, pp. 1-5.

27. Dimovski, A., Velinov, G., & Sahpaski, D. (2011). Horizontal partitioning

by predicate abstraction and its application to data warehouse design.

In Advances in Databases and Information Systems, Springer Berlin

Heidelberg, pp. 164-175.

28. Eadon, G., Chong, E. I., Shankar, S., Raghavan, A., Srinivasan, J., & Das, S.

(2008). Supporting table partitioning by reference in oracle. In Proceedings

of the 2008 ACM SIGMOD international conference on Management of

data, ACM, pp. 1111-1122.

29. Eder, J., Koncilia, C., & Kogler, H. (2002). Temporal data warehousing:

business cases and solutions. In 4
th

 International Conference on Enterprise

Information Systems (ICEIS), pp. 81-88.

166

30. Eder, J., Koncilia, C., & Wiggisser, K. (2006). Maintaining temporal

warehouse models. In Research and Practical Issues of Enterprise

Information Systems, Springer US, pp. 21-30.

31. Fan, H., & Poulovassilis, A. (2004). Schema evolution in data warehousing

environments–a schema transformation-based approach. In Conceptual

Modeling–ER 2004, Springer Berlin Heidelberg, pp. 639-653.

32. Frias, L., Queralt, A., & Ramon, A. O. (2003). EU-Rent car rentals

specification.

33. Gagnon, M. (2007). Ontology-based integration of data sources.

InInformation Fusion, 2007 10th International Conference on IEEE, pp. 1-8.

34. Gardner, S.(1998). Building the data warehouse. Comm. ACM, Vol. 41 (9),

pp. 52–60.

35. Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A goal-oriented

approach to requirement analysis in data warehouses. Decision Support

Systems, Vol. 45 (1), pp. 4-21.

36. Glorio, O., Pardillo, J., Mazón, J. N., & Trujillo, J. (2008). Dawara: An

eclipse plugin for using i* on data warehouse requirement analysis. In

International Requirements Engineering (RE'08). 16th IEEE, pp. 317-318.

37. Golfarelli, M., & Rizzi, S. (1998). A methodological framework for data

warehouse design. In Proceedings of the 1st ACM international workshop on

Data warehousing and OLAP, ACM, pp. 3-9.

38. Golfarelli, M., & Rizzi, S. (1999). Designing the data warehouse: Key steps

and crucial issues. Journal of Computer Science and Information

Management, Vol. 2(3), pp. 88-100.

39. Golfarelli, M., & Rizzi, S. (2009). Data warehouse design: Modern

principles and methodologies. McGraw-Hill, Inc..

40. Golfarelli, M., Lechtenbörger, J., Rizzi, S., & Vossen, G. (2006). Schema

versioning in data warehouses: Enabling cross-version querying via schema

augmentation. Data & Knowledge Engineering, Vol. 59 (2), pp. 435-459.

41. Golfarelli, M., Maio, D., & Rizzi, S. (1998). The dimensional fact model: a

conceptual model for data warehouses. International Journal of Cooperative

Information Systems, Vol. 7 (02n03), pp. 215-247.

167

42. Gomez-Perez, A., Fernández-López, M., & Corcho-Garcia, O. (2004).

Ontological engineering. Computing Reviews, Vol. 45 (8), pp. 478-479.

43. Gruber, T. R. (1993). A translation approach to portable ontology

specifications. Knowledge acquisition, Vol. 5 (2), pp. 199-220.

44. Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL

knowledge base systems. Web Semantics: Science, Services and Agents on

the World Wide Web, Vol. 3(2), pp.158-182.

45. Howe, D. C. (2009). Rita wordnet. Java based API to access Wordnet.

[Online]. Available: http://www.rednoise.org/rita/wordnet/documentation/

46. Hüsemann, B., Lechtenbörger, J., & Vossen, G. (2000). Conceptual data

warehouse design. In Proc. of the International Workshop on Design and

Management of Data Warehouses (DMDW), pp. 3–9.

47. Inmon, W. H. (2005). Building the data warehouse. John wiley & sons.

48. Jovanovic, P., Romero, O., Simitsis, A., & Abelló, A. (2012). ORE: an

iterative approach to the design and evolution of multi-dimensional schemas.

In Proceedings of the fifteenth international workshop on Data warehousing

and OLAP, ACM, pp. 1-8.

49. Kalnis, P., & Papadias, D. (2001). Proxy-server architectures for OLAP.

In ACM SIGMOD Record, ACM, Vol. 30 (2), pp. 367-378).

50. Kimball, R. (Ed.). (1998). The data warehouse lifecycle toolkit: expert

methods for designing, developing, and deploying data warehouses. John

Wiley & Sons.

51. Kimball, R., & Ross, M. (1996). The Data Warehouse Toolkit., John

Wiley&Sons. Inc., New York.

52. Kimball, R., & Ross, M. (2002). The data warehouse toolkit: the complete

guide to dimensional modelling. US: John Wiley & Sons.

53. Lacoste, D., Sawant, K. P., & Roy, S. (2011). An efficient XML to OWL

converter. In Proceedings of the 4th India software engineering conference,

ACM, pp. 145-154.

54. Lechtenbörger, J., & Vossen, G. (2003). Multidimensional normal forms for

data warehouse design. Information Systems, Vol. 28 (5), pp. 415-434.

168

55. Liu, X., & Iftikhar, N. (2013). Ontology-Based Big Dimension Modeling in

Data Warehouse Schema Design. In Business Information Systems, Springer

Berlin Heidelberg, pp. 75-87.

56. Luján-Mora, S., & Trujillo, J. (2003). А Comprehensive Method for Data

Warehouse Design. In Proc. of the 5th Intl. Workshop on Design and

Management of Data Warehouses (DMDW’03), Berlin, Germany, pp. 1.1–

1.14.

57. Mahboubi, H., & Darmont, J. (2009). Enhancing xml data warehouse query

performance by fragmentation. In Proceedings of the 2009 ACM symposium

on Applied Computing, ACM, pp. 1555-1562.

58. Malinowski, E., & Zimányi, E. (2006). Hierarchies in a multidimensional

model: From conceptual modeling to logical representation. Data &

Knowledge Engineering, Vol. 59(2), pp. 348-377.

59. March, S. T., & Hevner, A. R. (2007). Integrated decision support systems:

A data warehousing perspective. Decision Support Systems, Vol. 43(3), pp.

1031-1043.

60. Mazón, J. N., & Trujillo, J. (2009). A hybrid model driven development

framework for the multidimensional modeling of data warehouses!. ACM

SIGMOD Record, 38(2), pp. 12-17.

61. McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology

language overview. W3C recommendation, 10 (10), 2004.

62. Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

63. Moody, D. L., & Kortink, M. A. (2000, June). From enterprise models to

dimensional models: a methodology for data warehouse and data mart

design. In Proceedings of the Second Intl. Workshop on Design and

Management of Data Warehouses (DMDW), p. 5.

64. Niedrite, L., Solodovnikova, D., Treimanis, M., & Niedritis, A. (2007).

Goal-Driven Design of a data warehouse based business process analysis

system. In Proceedings of the 6th Conference on 6th WSEAS Int. Conf. on

Artificial Intelligence, Knowledge Engineering and Data Bases, pp. 243-249.

169

65. Noy, N. F., & Musen, M. A. (2003). The PROMPT suite: interactive tools

for ontology merging and mapping. International Journal of Human-

Computer Studies, Vol 59 (6), pp. 983-1024.

66. O’Neil, P., O’Neil, E. J., & Chen, X. (2007). The star schema benchmark

[Online]. Available: http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF

(Accessed 12 November 2013).

67. Ontology, P. (2007). Knowledge Acquisition System [Online]. Available:

http://protege. stanford. edu.

68. Oueslati, W., & Akaichi, J. (2011). A multiversion trajectory data warehouse

to handle structure changes. International Journal of Database Theory and

Application, Vol. 4 (2), pp. 35-49.

69. Ozsu, M. T., & Valduriez, P. (1999) Principles of Distributed Database

Systems, Prentice Hall, Upper Saddle River, NJ, 2nd edition, 1999.

70. Papadomanolakis S. and Ailamaki A. (2004) Autopart: Automating schema

design for large scientific databases using data partitioning. In Proceedings

of the 16th International Conference on Scientific and Statistical Database

Management (SSDBM 2004), pp. 383–392.

71. Papastefanatos, G., Vassiliadis, P., Simitsis, A., & Vassiliou, Y. (2007).

What-if analysis for data warehouse evolution. In Data Warehousing and

Knowledge Discovery, Springer Berlin Heidelberg, pp. 23-33.

72. Pardillo, J., & Mazón, J. N. (2011). Using ontologies for the design of data

warehouses. International Journal of Database Management Systems, Vol.

3 (2), pp. 73-87.

73. Peralta, V. and Ruggia, R., 2003. Using Design Guidelines to improve Data

Warehouse logical Design [Online]. Available:

ttp://www.fing.edu.uy/inco/grupos/csi/esp/Cursos/cur

74. Pérez, J. M., Berlanga, R., Aramburu, M. J., & Pedersen, T. B. (2008).

Integrating data warehouses with web data: A survey. Knowledge and Data

Engineering, IEEE Transactions on, Vol. 20 (7), pp. 940-955.

75. Poe, V., Brobst, S., & Klauer, P. (1997). Building a data warehouse for

decision support. Prentice-Hall, Inc..

170

76. Prat, N., Akoka, J., & Comyn-Wattiau, I. (2006). A UML-based data

warehouse design method. Decision Support Systems, Vol. 42(3), pp. 1449-

1473.

77. Rechy-Ramirez, E. J., & Benitez-Guerrero, E. (2006). A model and language

for bitemporal schema versioning in Data Warehouses. In Computing, 2006.

CIC'06. 15th International Conference on IEEE, pp. 309-314.

78. Romero, O., & Abelló, A. (2010). A framework for multidimensional design

of data warehouses from ontologies. Data & Knowledge Engineering, Vol.

69 (11), pp. 1138-1157.

79. Romero, O., Simitsis, A., & Abelló, A. (2011). GEM: requirement-driven

generation of ETL and multidimensional conceptual designs. In Data

Warehousing and Knowledge Discovery, Springer Berlin Heidelberg, pp.

80-95.

80. Sahpaski, D., Velinov, G., Jakimovski, B., & Kon-Popovska, M. (2009).

Dynamic evolution and improvement of data warehouse design. In

Informatics, 2009. BCI'09. Fourth Balkan Conference in IEEE, pp. 107-112.

81. Sanjay A., Narasayya V. R., and Yang B. (2004) Integrating vertical and

horizontal partitioning into automated physical database design. In

Proceedings of the ACM SIGMOD International Conference on

Management of Data, pp. 359–370.

82. Selma, K., Ilyès, B., Ladjel, B., Eric, S., Stéphane, J., & Michael, B. (2012).

Ontology-based structured web data warehouses for sustainable

interoperability: requirement modeling, design methodology and tool.

Computers in Industry. Vol. 63(8), pp-799–812.

83. Selman, B., and Gomes, C. (2006). Hill-climbing search. In Encyclopedia of

Cognitive Science, John Wiley & Sons.

Skoutas, D., Simitsis, A., & Sellis, T. (2009). Ontology-driven conceptual

design of ETL processes using graph transformations. In Journal on Data

Semantics XIII, Springer Berlin Heidelberg, pp. 120-146.

84. Smith, M. K., Welty, C., & McGuinness, D. L. (2004). OWL Web Ontology

Language Guide. W3C [Online]. Available: http://www.w3.org/TR/owl-

guide/.

171

85. Solodovnikova, D., & Niedrite, L. (2011). Evolution-oriented user-centric

data warehouse. In Information Systems Development, Springer, New York,

pp. 721-734.

86. Song, I. Y., Khare, R., & Dai, B. (2007). SAMSTAR: a semi-automated

lexical method for generating star schemas from an entity-relationship

diagram. In Proceedings of the ACM tenth international workshop on Data

warehousing and OLAP, ACM, pp. 9-16.

87. Srivastava, J., & Chen, P. Y. (1999). Warehouse creation-a potential

roadblock to data warehousing. IEEE Transactions on Knowledge and Data

Engineering, Vol. 11(1), pp. 118-126.

88. Thakur, G., & Gosain, A. (2011). DWEVOLVE: a requirement based

framework for data warehouse evolution. ACM SIGSOFT Software

Engineering Notes, Vol. 36 (6), pp. 1-8.

89. Van Harmelen, F., and McGuinness, D. (2003). OWL Web Ontology

Language Overview [Online]. Available: http://www.w3.org/TR/2003/WD-

owl-features-20030331.

90. Wang, X. H., Zhang, D. Q., Gu, T., & Pung, H. K. (2004). Ontology based

context modeling and reasoning using OWL. In Pervasive Computing and

Communications Workshops, 2004. Proceedings of the Second IEEE Annual

Conference on IEEE, pp. 18-22.

91. Winter, R., & Strauch, B. (2004). Information requirements engineering for

data warehouse systems. In Proceedings of the 2004 ACM symposium on

Applied computing, ACM, pp. 1359-1365.

92. Xuan, D. N., Bellatreche, L., & Pierra, G. (2006). A versioning management

model for ontology-based data warehouses. In Proceedings of the 8th

international conference on Data Warehousing and Knowledge Discovery ,

Springer-Verlag, pp. 195-206.

172

LIST OF PUBLICATIONS

International Journals

1. M. Thenmozhi, K. Vivekanandan, “An Ontology based Hybrid Approach to

Derive Multidimensional Schema for Data warehouse”, International

Journal of Computer Application, Vol. 54, No.8, ISSN (Online): (0975 –

8887) pp. 36-42, September 2012.

2. M. Thenmozhi, K. Vivekanandan, “A Tool for Data Warehouse

Multidimensional Schema Design using Ontology”, International Journal of

Computer Science Issues, Vol. 10, Issue 2, No. 3, ISSN (Print): 1694-0814 |

ISSN (Online): 1694-0784, pp.161–168, March 2013.

3. M. Thenmozhi , K. Balachandar, and K. Vivekanandan. "An Ontology

Mapping Maintenance Approach Using Change History Log in Ontology

Based Data Integration." CiiT International Journal of Data Mining and

Knowledge Engineering, Vol. 5, No. 7, ISSN(Online): 0974 –

9578,ISSN(Print):0974-9683, pp. 292-300, 2013.

4. M. Thenmozhi, and K. Vivekanandan. "A Combined Algorithm for Data

Warehouse Fragmentation Selection. “ International Journal of Engineering

Science and Technology, Vol. 6 No.5, ISSN : 0975-5462, pp. 240-253, May

2014.

5. M. Thenmozhi and K. Vivekanandan, “An Ontological Approach to Handle

Multidimensional Schema Evolution for Data Warehouse”, International

Journal of Database Management Systems, Vol. 6, No.3, ISSN : 0975 –

5985, pp. 33-52, June 2014.

6. M. Thenmozhi, K. Vivekanandan. " A Mixed Fragmentation Approach for

Solving Big Dimension Problem in Data Warehouse ",International Journal

of Engineering Research & Technology, Vol. 3 - Issue 6, ISSN: 2278-0181,

pp. 1984-1900, June - 2014.

7. M. Thenmozhi and K. Vivekanandan,” Data Warehouse Schema Evolution

and Adaptation Framework Using Ontology ” International Journal on

173

Computer Science and Engineering, Vol. 6 No.07, ISSN: 0975-3397, pp.

232-246, Jul 2014.

8. M. Thenmozhi and K. Vivekanandan,” A Hybrid Multidimensional

Modeling Approach for Data Warehouse Using Ontology” Inderscience,

International Journal of Business Information Systems. (accepted)

International Conferences

1. M. Thenmozhi, K. Vivekanandan, “A Semi-automatic Approach to Update

Mapping for Ontology Evolution”, Proceedings of Second International

Conference on Computational Intelligence and Information Technology, CIIT

2012, LNICST, ISSN: 1867-8211, pp. 131–136, December 2012.

2. Thenmozhi M, Vivekanandan K and Gayathree G, “A-Semi Automatic

Approach to Handle Data Warehouse Schema Evolution using Ontology”

Proceedings of Fourth International Joint Conference – AET 2013, NCR

(Elsevier), pp. 55-65, December 2013, India.

3. M. Thenmozhi and K. Vivekanandan,” A Combined Heuristic Approach for

Horizontal Partitioning of Data Warehouse” IEEE International Conference

on Advances in Engineering and Technology - 2014. ISBN No.: 978-1-4799-

4949-6 (accepted)

4. M. Thenmozhi and K. Vivekanandan,” A Comparative Analysis of

Fragmentation Selection Algorithms for Data Warehouse Partitioning”,

IEEE International Conference on Advances in Engineering &Technology

Research ISBN No.: 978-1-4799-6393-5/14 (accepted)

	THESIS_FRONT.pdf
	CHAPTER _1.pdf
	CHAPTER 2.pdf
	CHAPTER 3.pdf
	CHAPTER 4.pdf
	CHAPTER 5.pdf
	CHAPTER 6.pdf
	Full_References.pdf

