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ABSTRACT 

 
 Data warehousing provides an excellent approach for any organization in 

transforming operational data into useful and reliable information to support the 

decision making process. The data warehouse must be structured according to the 

multidimensional format in order to facilitate business analysis by Online Analytical 

Processing (OLAP) or data mining tools. This multidimensional schema of the data 

warehouse allows an organization to have a business-oriented view of the data.  

Though, a number of research works have been carried out on how a 

multidimensional schema should be designed and managed, there is no systematic, 

well structured and comprehensive design process available yet. Hence, the overall 

objective of this research is to study the issues related to the design and management 

of the data warehouse schema and provide solutions that would assist in the 

improved design process.  

The design of the multidimensional schema in the literature is carried out 

either from the business requirements or data source. In several cases, the 

requirements are not well captured or the data source is not well understood. This 

may lead to several rounds of reconciliation and redesign. The existing work, though 

tried to automate the design process, they do not fully utilize the knowledge in the 

requirements and the source. Hence, in this research an ontology based 

multidimensional (OntoMD) schema design approach has been proposed. The 

OntoMD approach follows a hybrid methodology to reconcile both the requirements 

and the source. The proposed work generates the multidimensional schema 

automatically covering different phases of the data warehouse design. A design tool 

has been developed to carry out the steps of the OntoMD approach. To illustrate the 

proposed approach it has been applied to a case study, and the output is evaluated 

using schema quality metrics.   

The data warehouse schema may evolve during the design or at later stage of 

implementation The reasons for evolution are due to changes in business 
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requirements and the autonomous nature of the data sources. The existing works 

mainly handle the schema changes at the physical level, and hence results in high 

maintenance cost. And moreover, the impact of changes over the schema has not 

been much investigated.  To address these problems an ontology supported 

evolution approach (OntoEvol) has been proposed in this research. The OntoEvol 

approach allows the automatic restructuring of the data warehouse schema, when 

requirements or the source evolves. This approach also analyzes the impact of a 

change and performs automatic adaptation of the dependent entities. OntoEvol has 

been applied to a case study and also it is evaluated for its effectiveness to propagate 

changes and its efficiency to automatically adapt the dependent entities. 

To enhance the performance of the queries, the data warehouse schema 

needs to be partitioned during the design. Existing approaches on data warehouse 

schema partitioning provide algorithms for selecting optimal fragments or partitions. 

Other issues such as the dimension table selection, attributes selection, 

fragmentation of big dimension and partition management has only been partially 

explored. To solve these issues an optimized partitioning approach (ORP) has been 

proposed in this research. The ORP provides horizontal and mixed partitioning, and 

also it enables the partitions to be managed in case of query evolution. A case study 

has been used to illustrate and evaluate the ORP approach. The obtained results 

show that the application of ORP over the given data warehouse results in improved 

query performance. 

  Several comparisons are made for the proposed OntoMD, OntoEvol and 

ORP approaches with the existing methods. Here, the experimental results show a 

significant improvement in the performance on various parameters. Finally, the 

limitations of this research are identified and presented for further research.  
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

The data warehouse (DW) has been extensively used by large organizations 

for business analysis. It allows the top management to take critical decisions in order 

to improve their business. In support of the decision making process the DW 

integrates several heterogeneous data sources in multidimensional structures. As the 

DW involves a multifaceted environment, the design of the multidimensional 

schema and its management is a complex task, which is the focus of this research. 

This chapter gives an introduction to the basic concepts underlying in this 

research and the preface about the research work. Section 1.2 discusses the overview 

of DW system. The detailed information about the life cycle of a DW is given in 

section 1.3. Section 1.4 provides the details about the multidimensional model which 

represents the DW schema. Section 1.5 discusses the DW schema design and 

management aspects. The use of ontology for a DW is explained in section 1.6. 

Section 1.7 provides the motivation behind this research. The problem statement is 

described in section 1.8. Section 1.9 provides the objective of this research work. 

Section 1.10 outlines the research contribution. Finally, section 1.11 provides the 

organization of this thesis. 

1.2 AN OVERVIEW OF DATA WAREHOUSE SYSTEM 

Information is a very powerful asset that can provide significant benefits to 

any organization and a competitive advantage in the business world. The 

organizations have vast amounts of data but have found it increasingly difficult to 

access it and make use of it. The reason is that, the data is in many different formats, 

exists on many different platforms, and resides in many different file and database 
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structures (Poe et al., 1997). Hence, organizations have to write and maintain 

hundreds of programs that are used to extract, arrange, and integrate data for use by 

many different applications for analysis and reporting. This would typically require 

modification of the extract programs or development of new ones.  The data 

warehousing provides an excellent approach for transforming the vast amounts of 

data that exist in these organizations into useful and reliable information (March and 

Hevner, 2007). For business executives the data warehousing provides architectures 

and tools to systematically organize, as well as understand, and use their data to 

make strategic decisions (Cho and Ngai, 2003). It supports information processing 

by providing a solid platform of consolidated and historical data for analysis. Such 

systems are valuable tools in today’s competitive and fast-evolving world.  

The DWs have been defined in many ways, making it difficult to formulate a 

rigorous definition. The classical definition given by W.H. Inmon is “A DW is a 

subject-oriented, integrated, time-variant, and nonvolatile collection of data in 

support of the management decision-making process” (Inmon, 2005) . The four key 

words, subject-oriented, integrated, time-variant, and nonvolatile, explained below, 

distinguish DWs from other data repository systems, such as relational database 

systems, transaction processing systems, and file systems.  

 Subject oriented: A DW is organized around major subjects, such as orders, 

customers, and sales. It mainly focuses on the modeling and analysis of data 

for decision makers. Moreover, it provides a simple and concise view around 

particular subject issues by excluding data that are not useful in the decision 

support process.  

 Integrated: The DW is constructed by integrating multiple, heterogeneous 

data sources such as relational databases, on-line transaction records and flat 

files. During integration the data are cleaned. This ensures consistency in 

naming conventions, attribute measures and encoding structures among 

different data sources.  



3 

 

 Time-variant: The time horizon for the DW is significantly longer than that 

of operational database systems. That is, the operational database contains 

the current value of the data, whereas the DW data provide information from 

a historical perspective.  

 Nonvolatile: The operational update of data does not occur in the DW 

environment and it does not require recovery, and concurrency control 

mechanisms. The two operations supported in DWs are: loading of data and 

access of data.  

1.2.1 Applications of Data Warehouse 

Many organizations use DW information to support business decision making 

activities (Chaudhuri and Dayal, 1997), which includes the following: 

1) The analysis of customer buying patterns;  

2) Repositioning products and managing product portfolios by comparing the 

performance of sales by time and geographic regions in order to fine-tune 

production strategy;  

3) Analyzing business operations and looking for sources of profit;  

4) Handling the customer relationships by making environmental corrections 

and managing the cost of corporate assets. 

A DW is also very useful from the point of view of heterogeneous database 

integration. Various organizations typically collect diverse kinds of data and 

maintain large databases from multiple, heterogeneous, autonomous and distributed 

information sources. It is challenging to integrate such data, and provide easy and 

efficient access to it (Chaudhuri and Dayal, 1997). Much effort has been spent in the 

database industry and research community towards achieving this goal. 

 



4 

 

1.2.2 Comparison of Operational Database System and Data Warehouse 

DWs have the distinguishing characteristic that they differ from the 

operational database systems. The major task of operational database systems is to 

perform online transaction and query processing (Chaudhuri and Dayal, 1997). Such 

systems are called online transaction processing (OLTP) systems. The day-to-day 

operations of an organization, such as purchasing, inventory, manufacturing, 

banking, payroll, registration, and accounting are carried out by these systems. In 

contrast a DW system serves users or knowledge workers in the role of data analysis 

and decision making. For example, in financial services the DW can be used for risk 

analysis, credit card analysis, and fraud detection. These systems can organize and 

present data in various formats in order to accommodate the diverse needs of the 

different users. Such systems are known as decision support systems (Berson and 

Smith, 1997).  

An operational database system contains current raw data, such as 

transactions, which need to be consolidated before analysis. Whereas, the DW 

contains historical data which are consolidated (such as aggregation and 

summarization) from heterogeneous sources to facilitate business analysis (Conn, 

2005). Moreover, the tables are in normalized form in operational database but the 

DW contains de-normalized tables to provide fewer joins in order to improve the 

query performance. Short and fast inserts and updates are initiated by end users in 

case of operational database. Periodic long-running batch jobs refresh the data 

within the DW.  

An operational database is designed and tuned from known tasks and 

workloads, for example, indexing and hashing using primary keys, searching for 

particular records, and optimizing queries (Bog et al., 2011). On the other hand, DW 

queries are often complex and involve the computation of large groups of data at a 

summarized level.  Thus, the separation of operational database systems from DW is 

based on the difference in structure, content, and the use of data in these two 
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systems. Since the two systems provide quite different functionalities and require 

different kinds of data, it is necessary to maintain them as separate systems 

(Chaudhuri and Dayal, 1997; Kalnis and Papadias, 2001). The Table 1.1 summarizes 

the difference between an operational database system and a DW. 

Table 1.1 Differences between Operational System and Data Warehouse 

Operational Database System Data Warehouse 

Transaction Oriented Subject Oriented 

Small (MB upto several GB) Large (GB upto several TB) 

Current Data Historical Data 

Normalized Table Structure De-Normalized Table Structure 

Continuous Updates Batch Updates 

Simple to Complex queries Usually Complex queries 

 

1.2.3 Data Warehouse Architecture 

The DW architecture encapsulates all the facets of an enterprise 

environment. The architectures vary depending upon the specifics of an 

organization's situation. The data for the DW come from operational systems of the 

organization as well as from other external sources.  It is populated with the data that 

are extracted from operational systems and stored in an area called data staging area, 

which are then cleaned, transformed and integrated. A presentation server is the 

target machine on which the data is loaded from the data staging area. Here the data 

is organized and stored for direct querying by end users, report writers and other 

applications. Each component of the architecture (Kimball and Ross, 2002) is 

represented in the Figure 1.1 and the tasks performed by them are explained below: 

 Operational Source Systems These are the systems of record that capture the 

transactions of the business. The main priorities of the operational systems are 

processing performance and availability. The queries imposed over such systems 

are simple, that are part of the normal transaction flow and severely restricted in 

their demands on the operational system (Kimball and Ross, 2002). 
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 Figure 1.1 Data Warehouse Architecture 

 Data Staging Area A data staging area is where the raw operational data are 

extracted, cleaned, transformed (ETL) and combined so that it can be reported 

on and queried by users (Kimball and Ross, 2002). The data staging area lies 

between the operational source systems and the DW and is typically not 

accessible to users. Extraction is the first step in the process of getting data into 

the DW environment which involves reading and understanding the source data 

and copying the data needed in the staging area for further manipulation. Once 

the data is extracted in the staging area, there are numerous potential 

transformations, such as cleansing the data, combining data from multiple 

sources, de-duplicating data, and assigning warehouse keys. The final step of the 

Extract, Trasform and Load (ETL) process is the loading of data in the DW 

environment.  

 Data Presentation The data presentation area is where the data is organized, 

stored, and made available for direct querying by users, report writers, and other 

analytical applications. The presentation area is typically referred to as a series 

of integrated data marts. Data marts are smaller DWs, focusing on a small subset 

of the enterprise data (Kimball and Ross, 2002). Typically each data mart is used 
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by a particular unit of the organization for various strategic analyses relevant to 

its goals. Data is extracted from the corporate warehouse into the data mart 

periodically and used for analysis. 

 Data Access Tools The final major component of the DW environment is the 

data access tool(s). All data access tools query the data in the DW’s presentation 

area. Some of the user access tools are reporting and query tools, OLAP tools 

and data mining tools (Kimball and Ross, 2002). 

1.3 DATA WAREHOUSE LIFE CYCLE 

The various activities of a DW such as design, development and 

implementation are provided through the DW life cycle. This life cycle is called as 

the Kimball life cycle or business dimension life cycle (Kimball 1998). Here, the 

different tasks to be sequenced for a DW project are identified and activities that 

need to happen concurrently are highlighted. It is essential that the different 

activities in the life cycle need to be customized to address the unique needs of the 

organization.  Figure 1.2 shows the structure of the business dimension life cycle. 

The different phases of the life cycle are explained below: 

1. Project Planning: This phase includes the definition of system goals and 

properties, assessment of the impact of organizational practices, an estimate 

of costs and benefits, allocation of the required resources and a preliminary 

plan for the project (Kimball, 1998). 

2. Business Requirement Definition: This phase plays a vital role in making 

designers fully understand the user needs in order to maximize the benefits 

and profitability of the system under consideration. The designers at this 

stage are involved in identifying the key-factors of the decision making 

process and convert them into design specifications (Kimball, 1998). 

Following the requirements three different architectures are carried out in 

parallel such as data, technology and application. 
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Figure 1.2 Business Dimension Lifecycle 

3. Data Architecture: First phase of this architecture includes dimensional 

modeling, where the user requirements and analysis of the data source leads 

to the structure of the DW. The result of this phase is a logical model 

containing relationship with the source schema. The next phase of the data 

track is the physical design. Here the logical model is transformed into the 

physical model by considering the optimization and implementation factors 

related to the selected database such as indexing and partitioning (Kimball, 

1998). The final phase designing and developing data staging involves 

extraction, transformation and loading of data from the source to the DW. 

4. Technology Architecture: This architecture includes an architectural 

design phase, which is based on the current technical specification for 

business information systems and performance requirements set by users 

(Kimball, 1998). The next phase includes product selection and installation 



9 

 

of hardware platform, ETL tools, database management system, data access 

query tools, and reporting tools (Kimball, 1998). 

5. Application Architecture: In this architecture, the user application 

specification phase includes a collection of specification for the application 

that provides end user with data access (Kimball, 1998). Along with this, the 

assessment of reports, interactive data navigation and automatic knowledge 

extraction are carried out. The next phase, user application development 

involves setup and configuration of analysis tools selected during the product 

selection phase (Kimball, 1998). 

6. Deployment: Once the design and implementation tasks are completed this 

phase is used to deploy the reports, query tools, and applications to the user 

community (Kimball, 1998). The deployment is deferred until all the 

training, documentation, and validated data are available for production 

release. Deployment ensures the results of technology, data, and application 

architectures are tested and fit together properly.  

7. Maintenance and Evolution Phase: It begins once the system is deployed 

into production and it ensures ongoing support with business users (Kimball, 

1998). Technical operational tasks such as performance tuning, index 

maintenance, usage monitoring, and system backup are done periodically by 

technical experts.  DW maintenance mainly concerns performance 

optimization that must be periodically carried out. On the other hand, DW 

evolution concerns keeping the DW schema up-to-date with respect to the 

business domain and the business requirement changes. 

The next life cycle iteration usually begins during the deployment of the 

previous iteration. The whole process starts again when the business analysts and 

designers gathers detailed requirements for the next highest priority business process 

and creates the associated dimensional model. The incremental approach of the life 

cycle is a fundamental element that delivers business value in a short period, while 

building a long-term enterprise information resource (Kimball, 1998). 
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1.4 MULTIDIMENSIONAL MODEL 

DWs have the distinguishing characteristic that they are mainly intended for 

decision support applications. Hence the arrangement of data within the warehouse 

is different from those adopted for operational information systems (Golfarelli et al., 

1998). For online transaction processing by an operational system, a data model 

such as Entity Relationship (ER) model might be appropriate. To facilitate online 

data analysis a DW requires a concise, subject-oriented schema. The most popular 

data model for a DW is a multidimensional model (Golfarelli et al., 1998). It 

provides both a mechanism to store data and a way for business analysis. Basic 

components of the multidimensional model are facts, measures, dimensions and 

hierarchies which are explained below:  

A fact is a focus of interest for the decision-making process of an 

organization. It typically corresponds to events occurring dynamically in the 

enterprise world such as sales or orders (Golfarelli et al. 1998). Measures are 

continuously valued attributes that describe the fact numerically (Golfarelli et al. 

1998). For the business analysis their values are used for mathematic calculations 

that include summation, average, minimum and maximum. Dimensions are mutually 

independent parameters that describe the business process fact (Golfarelli et al. , 

1998). Every dimension has a discrete domain of possible values. 

 
 

Figure 1.3 Multidimensional Model 
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The business process can be viewed at different levels of abstraction. Two or 

more levels at different level of abstraction form a hierarchy. For example, in Figure 

1.3 the product name is related to its category attribute through such a hierarchical 

relationship. The hierarchies may also include descriptive attributes that contain 

additional information about a level of the hierarchy. The multidimensional model 

can exist in the form of a star schema, a snowflake schema, or a fact constellation 

schema (Kimball and Ross, 1996; Moody and Kortnik, 2000).  

 Star schema: The most common modeling paradigm is the star schema, in 

which the DW contains a large central table called fact containing the bulk of 

the data, with no redundancy, and a set of smaller dimension tables (Kimball 

and Ross, 1996). A star schema for sales DW is shown in Figure 1.4. The 

schema contains a central fact table for sales along with four dimensions, 

namely, product, time, branch, and location. The fact table contains keys for 

each of the four dimensions and with two measures, dollars sold and units 

sold. Each dimension in the star schema is represented by only one table 

which contains a set of attributes. For example, the item dimension table 

contains the attribute set product_key, product_name, product_brand, 

product_type and supplier_type. Moreover, the attributes within a dimension 

table may form a hierarchy. 

 

Figure 1.4 Star Schema 
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 Snowflake schema: The snowflake schema is a variant of the star schema 

model. The major difference between the snowflake and star schema model 

is that the dimension tables of the snowflake model may be kept in 

normalized form to reduce redundancies. A snowflake schema for sales DW 

is given in Figure 1.5. 

The other type of schema used in DW context is the fact constellation schema. 

This schema allows dimension tables to be shared between multiple fact tables. It is 

used by few organizations since it can model multiple, interrelated subjects that span 

the entire organization. On the other hand a star or snowflake schema is commonly 

used for a data mart, which is a department subset of the DW that focuses on 

selected subjects. 

 

Figure 1.5 Snowflake Schema 

1.5 DATA WAREHOUSE SCHEMA DESIGN AND MANAGEMENT 

A DW creation process consists of five steps: pre-development activities, 

architecture selection, schema creation, warehouse population, and DW maintenance 

(Srivastava and Chen, 1999). The focus of this research is the schema creation and 

its management. As DW schema involves a complex structure, its design and 

management is different from that of the operational database system (Golfarelli and 

Rizzi, 1998; H¨usemann et al., 2000; Luján-Mora and Trujillo, 2003).    



13 

 

1.5.1 Data Warehouse Schema Design 

The design of the DW schema involves generating the multidimensional 

model involving facts, measures, dimensions and levels. To generate the 

multidimensional structure the designer of the DW generally follows conceptual, 

logical and physical phases (Golfarelli and Rizzi, 1999). And few adopt a 

requirement analysis as the starting phase of the design (Gardner, 1998). The 

conceptual phase transforms the requirements into a conceptual schema representing 

the multidimensional elements, the logical phase transforms the conceptual schema 

to a logical representation involving the table and attributes of the multidimensional 

structure, and the physical phase constructs the physical schema of the DW from the 

logical representation with implementation constraints.  

The existing research work on DW schema design are mainly driven by any of 

the following methodologies (Winter and Strauch, 2004) to generate the DW 

multidimensional schema: 

 Supply-driven: These approaches are based on analyzing the operational 

data sources in order to derive the multidimensional schema, while 

requirements are considered later when the data is about to be analyzed. 

 Demand-driven: These approaches focus on the information needs of 

decision makers, and data sources are only taken into account when the data 

is loaded into the DW. 

 Hybrid: These approaches advocate the consideration of both data sources 

and information requirements in the early stages of development. 

1.5.2 Data Warehouse Schema Evolution  

DW design is a continuous process and need to adapt to changes in its 

environment (Bellahsene, 2002). The data sources which are incorporated in the DW 

are autonomous in operation and they can change or evolve in terms of their 
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instances and schemas (Benitez-Guerrero et al., 2004). Moreover, the requirements 

stated by the various stakeholders and developers frequently change owing to 

numerous reasons (Rechy-Ramirez and Benitez-Guerrero, 2006). Hence, DW needs 

to be managed whenever there is any change or update in the requirements or source 

in order to fulfill the constraints and criteria allocated by the various people who 

need the assistance of information preserved in the DW.  

1.5.3 Data Warehouse Schema Partitioning 

The DW integrates massive amounts of data from multiple sources and need 

to  process complex analytical queries for different access forms such as OLAP, data 

mining and reporting tools. Hence, ensuring short query response is enormously 

difficult and can only be achieved by certain optimization techniques. The 

performance optimization techniques available in the literature are classified as i) 

techniques applied during the DW design ii) techniques applied after the DW is 

implemented (Bellatreche and Woameno 2009). Partitioning of the tables and 

parallel processing are two examples of the first category. Materialized views, 

indexes and data compression are applied during the exploitation of the DW and 

belongs to the second category. The use of optimization techniques belonging to the 

first category is more sensitive compared to those belonging to the second one as the 

decision of using them is usually taken at the beginning stage of the DW 

development (Golfarelli and Rizzi, 1999). The reason is, for instance, if the 

partitioning applied for a DW is not well adapted then it would be costly and time 

consuming to reconstitute the initial warehouse from the partitions. Whereas, the 

indexes or materialized views selected for a DW identified as insufficient can be 

dropped or replaced by other optimization techniques (Golfarelli and Rizzi, 1999). 

Based on sensitivity and the carefulness of techniques belonging to the first category 

it is essential to focus on partitioning of DW schema during the design for 

performance optimization. 
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1.6 ONTOLOGY FOR DATA WAREHOUSE DESIGN 

The semantic web is increasingly seen as a powerful infrastructure to build 

reusable and sharable knowledge on the web (Berners-Lee et al., 2001). It provides 

XML, RDF and OWL to describe web contents that enable automated information 

access on the machine processable semantics of the information and service 

(Gomez-Perez, 2004). Ontologies are the core of the semantic web for the reuse of 

formalized knowledge. Ontology is the term referring to the shared understanding of 

some domains of interest, which is often conceived as a set of classes (concepts), 

relations, functions, axioms and instances (Gruber, 1993). Ontology is most 

commonly defined as “a formal, explicit specification of a shared conceptualization” 

(Gruber, 1993). The ontology is used to solve the problem of syntactic and semantic 

heterogeneities that exist between different data sources (Cruz and Xiao, 2005). It is 

also used to analyze the knowledge related to a specific field, model the relevant 

concepts in a domain and facilitate the distinction of the different domain concept. 

Ontology can bring benefits to data warehousing developments at different phases, 

as it can enhance the semantics of data sources, integrate heterogeneous schemas, 

automate ETL process and facilitate OLAP in data analysis (Pardillo and Mazón, 

2011). In recent years, researchers have proposed various approaches to bring 

ontology and data warehousing to solve several DW design issues.  

The decision in using an ontology-based approach for DW, instead of using 

another technology, for example a UML-based approach, lies in the fact that 

ontologies may empower the automatization since they provide mechanisms to 

formally specify the semantics of a domain using language such as Web Ontology 

Language (OWL) on which models may be supported (Pardillo and Mazón, 2011). 

The OWL is an international standard for encoding and exchanging ontologies 

(Smith et al., 2004). The reason for choosing the OWL is that, it provides the system 

with the means of not only representing information, but also for automatic 

processing of that information (McGuinness and Van Harmelen, 2004). Another 

reason is, it provides good support for reasoning. Reasoner or inference engine, is a 
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piece of software that can be used for automatic inference of the additional 

knowledge concerning the rules specified by the ontology (Wang et al., 2004). Thus, 

the ontology may be considered as an appropriate solution to confront with the main 

challenge of the DW design. 

1.7 MOTIVATION 

The success of a DW system is dependent on the problem of designing and 

modeling the DW structure. Existing approaches either concentrate on user 

requirements or the data source for the DW schema design process. But it is often 

encountered that, the information contained inside the data source systems may be 

hidden among the multitude of data and its value is often understood only by a few 

top experts. Moreover, an ambiguous definition of the user requirements occurs 

when the users are unable to define their requirements precisely and clearly. Various 

meanings of data (i.e. Attributes, Tables) make it difficult for integrating the user 

requirements to the data sources. Thus, reconciliation of the appropriate semantics of 

the user terms and data sources is important in generating the DW schema 

accordingly. 

  The DW schema once designed is never meant to be static. It evolves due to 

changes in the data source or the requirements. As the DW is a complex 

environment which consists of many layers it becomes costly and labor intensive to 

propagate changes to the DW schema correctly and analyze its change impacts. The 

amount of research into the impact of DW schema changes is much less 

investigated. The impact of requirements changes upon DW models must often be 

estimated manually by application experts and moreover, no automated restructuring 

methods are available to the designer yet. 

Another important issue related to the design and management is that, the 

DW need to be tuned for performance using partitioning techniques before it is 

populated from the data sources. In the DW context, a fact table can be partitioned 

based on the fragmentation schemas of dimension tables using referential 
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partitioning. This type of fragmentation may dramatically increase the number of 

fragments of the fact table and make their maintenance very costly. Moreover, the 

choice of dimension tables and its attributes has greater impact on the query 

performance. The existence of  big dimension increases the complexity of 

partitioning. And further, the changes in the queries require alteration of existing 

partitions. 

Thus, the motivation behind this research is that both the user requirements 

and data source need to be considered at the early stage of the DW schema design. 

And a thorough understanding of the requirements and the data source is essential, 

to provide a successful design. Moreover, when there are changes in the business 

domain it is necessary to handle the evolution of the DW schema through effective 

design strategies. Finally, choosing an optimal partitioned schema is crucial during 

the design stage, which enhances the performance of the DW after its 

implementation. 

1.8 PROBLEM STATEMENT 

In literature, some research efforts have been proposed for the automation of 

DW schema design using ontology. But these approaches do not fully utilize the 

benefits of hybrid methodology, where the user requirements and data source needs 

a thorough analysis. Moreover, these approaches do not cover the different phases of 

DW design such as conceptual, logical, and physical. Hence, it is of great 

importance to provide a formal, explicit, and well-defined way to represent all the 

parameters and properties of the user requirements and data source to guide the 

design task. Moreover, a full automation is essential covering all the phases of the 

design which helps greatly in reducing the complexity involved and reduces the 

dependency on an expert’s ability to perform the design task. 

Owing to the changes in business needs the DW schema needs to evolve. 

The existing approaches such as schema evolution or schema versioning handle 

changes either in user requirements or the data source. They mainly concentrated on 
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DW schema restructuring at the physical level. This may induce high maintenance 

costs, as any change in the DW schema structure has an impact on the dependent 

modules. Hence, an effective approach is required which handles both requirements 

and source changes as well analyze the impact of a change on the DW schema 

structure and its dependent modules, before it is propagated at the physical level. 

The schema partitioning technique applied during the DW design optimizes 

the performance of the DW. As partitioning results in a large set of fragments, 

existing works used evolutionary algorithms to select optimal fragments. The issues 

related to the dimension table selection, attribute selection, optimal fragment 

selection big dimension and query evolution have only been partially explored. 

Thus, an optimal strategy is essential to improve the existing partitioning techniques. 

1.9 RESEARCH OBJECTIVES 

The main aim of this thesis is to provide a comprehensive approach that handles 

the DW schema design and management in an effective and automated way. To 

achieve this following are the objectives identified in the research work: 

1. To provide a hybrid approach to automate the multidimensional schema 

design using ontology which helps to reduce the burden of the designer to 

perform a complex reconciliation of requirements and source, and redesign 

involved during the different phases of the design process. 

2. To handle DW schema evolution by providing an ontological supported 

evolution and adaptation approach which propagate changes to the DW 

schema, verify the impact of the change and automatically adjust the 

dependent entities before implementing the changes at the physical level. 

3. To provide optimized horizontal referential partitioning and mixed 

partitioning to handle DW schema partitioning issues and also adapt the 

existing partitions in case of evolving queries. 



19 

 

4. To evaluate the proposed approaches with the application to a case study and 

analyze the obtained results by performing a comparison with existing 

works. 

1.10 RESEARCH CONTRIBUTIONS 

To achieve the derived objectives this research work provides different solutions 

to handle DW schema design, evolution, and partitioning issues. This helps the DW 

designer or the DW administrator (DWA) to relive from the tedious task of design 

and management of DW schema and it facilitates achieving it in an efficient and 

automated way. Following are the three main contributions of the research work: 

a) Hybrid approach to automate the multidimensional schema design 

 A formal representation of the user requirements and data source is provided 

through ontology which facilitates automatic reconciliation at the early stage 

of the design. 

 The proposed OntoMD approach provides identification of the 

multidimensional elements and generation of the DW schema following the 

conceptual, logical and physical phases of the design process. 

 A tool is developed to offer graphical interfaces to the designer to facilitate 

the use of the proposed hybrid multidimensional modeling approach of a 

given business domain. 

b) Ontological approach to handle evolution and its impact on DW schema 

 A formal representation of the user requirements, data source and DW 

schema is provided through ontology to facilitate the automation of the 

evolution task. 

 A new approach OntoEvol is proposed for the propagation of changes from 

the requirements and data source to the DW schema at the ontological level. 
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 The proposed approach provides identification and adaptation of dependent 

entities that are affected after the changes are propagated to the DW schema. 

 A method to perform impact analysis of a change over the DW schema and 

its dependent modules is provided. 

c) Optimized approach to solve DW schema partitioning issues 

 A Dimension table selection technique using multiple criteria is provided for 

referential horizontal partitioning of DW schemas by the proposed ORP 

approach. 

 A formal fragmentation selection approach is developed using hybrid 

evolutionary algorithms. 

 An optimized mixed fragmentation is provided by ORP to solve the big 

dimension problem in DW schema partitioning. 

 The proposed ORP approach includes partition management to apply 

refragmentation in case of evolving queries. 

1.11 ORGANIZATION OF THE THESIS 

The thesis is organized into six chapters as given below: 

Chapter 1 provides a brief description of the basic concepts of the research 

work, motivation of the research, problem statement, objectives and research 

contributions. 

Chapter 2 presents the review of related works and comparative study 

between them. Existing traditional and ontology based approaches for 

multidimensional schema design are discussed. The evolution approaches such as 

DW schema evolution and schema versioning are described briefly. A review of 

existing DW partitioning methods has been provided in this chapter. 
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Chapter 3 discusses the hybrid multidimensional modeling approach for 

DW using ontology and the various steps involved. The implementation detail of 

OntoMD tool which facilitates the automation of the design task is provided. The 

proposed work applied to a case study is explained in detail. Details of the 

evaluation applied to the proposed approach are discussed. 

Chapter 4 elaborates the development of an ontological approach for 

handling multidimensional schema evolution. It explains the various steps which use 

ontology in order to handle the evolution task. A description of the method to handle 

automatic adaptation after evolution is provided.  Evaluations of the proposed 

evolution approach along with impact analysis are detailed. 

Chapter 5 deals with the proposed referential partitioning approach to 

fragmentation selection problem. It presents the details of dimension selection 

method and hybrid evolutionary algorithm to optimize horizontal referential 

partitioning. The proposed optimized mixed fragmentation technique to solve the big 

dimension problem is elaborated. The partition management used in case of query 

evolution has been discussed. The evaluation of the proposed partitioning 

approaches has also been given. 

Chapter 6 provides the conclusion by summarizing the research work and 

suggesting possible future enhancements. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION  

The DW data is modeled multidimensionally to facilitate complex 

analysis and visualization of business information. Thus, the design of the 

DW schema requires two important considerations. First, is the design of the 

DW schema for the warehouse and second one deal with obtaining a schema 

that satisfies maintenance and performance requirements.  Generating the 

DW schema involves identifying the multidimensional elements, and this 

schema needs to be maintained when the business rules of an organization 

evolve. Further, the schema is required to be tuned for performance 

enhancement before it is implemented in order to optimize the end user 

queries. This chapter provides a brief idea about the existing works available 

in the literature on the DW schema design, its evolution and partitioning. A 

comparative analysis of these works has been provided. It also presents the 

limitations of the existing works which motivated to take up the research 

work in this area. 

Section 2.2 discusses about the DW schema design approaches. The 

detail about DW schema evolution approaches has been provided in section 

2.3. Section 2.4 provides the review of different evolution approaches 

available in the literature. The summary about the literature survey has been 

given in section 2.5. 
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2.2 DATA WAREHOUSE SCHEMA DESIGN APPROACHES 

In this section a review of the existing research work on DW schema design 

has been provided. DW schema design requires specialized design techniques which 

consists of conceptual, logical and physical phases (Golfarelli and Rizzi, 1999). 

The conceptual design allows having closer ideas about the ways that a user 

can perceive an application domain (Malinowski and Zimányi, 2006). It aims at 

deriving an implementation-independent and expressive conceptual schema for the 

DW, starting from the user requirements and from the structure of the data source. 

This step is considered as a key that ensures the success of the DW projects since it 

defines the expressivity of the multidimensional schema (Golfarelli and Rizzi, 

2009). The result of this step is a graphical notation which facilitates to the designer 

and the user for understanding and managing the conceptual schema. 

The logical design of the DW serves to define the structures to ensure an 

efficient access to information. It can be presented as a multidimensional structure 

that takes as input the conceptual schema representation, information requirements, 

source systems, and non-functional requirements (Peralta and Ruggia, 2003). The 

process of logical design involves arranging data into a series of logical relationships 

called entities and attributes. An entity represents a table and an attribute is a 

component of an entity that helps define the uniqueness of the entity. The logical 

design results in a set of entities and attributes corresponding to fact tables and 

dimension tables, and a model of operational data from the source into subject-

oriented information in the target DW schema. 

Physical design deals with the effective way of storing and retrieving the 

data from the DW. During the physical design the logical schema needs to be 

converted into a description of a physical database structure using proper mapping 

(Golfarelli and Rizzi, 1998). The physical design involves the creation of the 

database objects like tables, columns, indexes, primary key, foreign keys, views, 

sequences, etc. It addresses all the issues specifically related to the suite of tools 

chosen for implementation such as partitioning, indexing and allocation. 

http://docs.oracle.com/cd/B10500_01/server.920/a96520/glossary.htm#433184
http://docs.oracle.com/cd/B10500_01/server.920/a96520/glossary.htm#431980
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According to Winter and Strauch 2004, the DW schema design approaches 

mainly follow any of the following methodologies: 

 Demand-driven: Also known as a requirement-driven or goal-driven 

approach, focus on determining the end-user requirements to produce a 

multidimensional schema. Only in the later stages, the output schema is 

mapped onto the data sources.  

 Supply-driven: Also known as data-driven approach, start from a detailed 

analysis of the data sources to determine the multidimensional concepts. 

End-user requirements are eventually considered in the later stages to filter 

results obtained.  

 Hybrid: Hybrid approach combines both frameworks, demand-driven and 

supply-driven. Mostly, these approaches start with a demand-driven stage to 

identify facts of interest followed by a supply-driven stage to identify its 

dimensional concepts. 

In literature, earlier approaches called traditional approaches used for DW 

schema design provided a manual or semi-automatic way of constructing the 

multidimensional schema through step-by-step guidelines. As the whole design task 

relied on the knowledge and expertise of the designer, there was a need to provide 

an automation of the design process. The latter approaches available in the literature 

tried to provide an automation of the design task using ontology and they are 

classified as ontological approaches. In the following sections a review of the 

existing traditional and ontological approaches which follows either demand-driven, 

supply-driven or hybrid methodology is presented along with a comparison study 

between them.  

2.2.1 Traditional Approaches 

Prat et al., (2006) proposed a UML-based DW design method following the 

three design phases such as conceptual, logical and physical. They use a set of meta-

models represented in UML and a set of transformations based on Object Constraint 
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Language (OCL) at each phase in order to facilitate semi-automation of their design 

task. In the conceptual design the user requirements are represented in the form of 

UML class diagram.  The second step involves the mapping of the UML conceptual 

model into a logical multidimensional schema. In the logical design phase the 

enriched and transformed UML conceptual model is mapped into a logical schema. 

The physical phase maps the multidimensional schema into a physical database 

schema, depending on the target OLAP tool.  

Song et al., (2007) proposed SAMSTAR method, which is a semi-automated 

lexical method for generating STAR schemas from an entity-relationship diagram 

(ERD) by analyzing its semantics as well as the structure. It mainly follows the 

supply driven approach covering the conceptual and logical design phases.  

Giorgini et al., (2008) presented an approach called GRAnD (Goal-oriented 

Requirement Analysis for DWs).  It is a goal-oriented approach to requirement 

analysis for DWs based on the Tropos methodology (Bresciani et al., 2004). Their 

approach could be considered as demand driven when only requirements are used to 

derive the conceptual multidimensional model. It could also be considered as mixed 

approach when both source and requirements knowledge is used. The GRAnD 

adopts two different perspectives for requirement analysis: organizational modeling 

and decisional modeling. The organizational modeling is centered on stakeholders 

and decisional modeling focuses on the actors. After the requirement analysis the 

next step derives the conceptual multidimensional model. In GRAnD, facts, 

dimensions and measures identified during the requirements analysis is mapped 

manually over the data sources. 

Maz´on et al., (2009) proposed a framework based on the Model Driven 

Architecture (MDA) for the development of a hybrid multidimensional model at the 

conceptual and logical level. The approach uses the information requirements model 

(Computation Independent Model, CIM) obtained from decision makers to derive 

the conceptual multidimensional model of the DW (Platform Independent Model, 

PIM). PIM is then reconciled with the data sources which are marked with its 

multidimensional concepts to obtain hybrid PIM. By considering the deployment 
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platforms, several logical models are derived from this hybrid PIM as Platform 

Specific Models (PSMs). The relations between models are implemented by using 

the Query/View/ Transformations (QVT) language. Several transformations using 

the Model to Text Transformation (Mof2Text) language are defined in order to 

obtain the code for the implementation of the multidimensional model according to 

each PSM.  

Abelló and Romero (2010) presented an approach for supporting 

multidimensional design based on Multidimensional Design by Examples (MDBE), 

which is a semi-automated method to carry demand driven and supply driven in a 

parallel way. The method uses end-user information requirements (expressed as 

SQL queries) and the logical model of the data sources as inputs. It produces a 

constellation schema from the data sources as output.  

2.2.2 Ontological Based Approaches 

The traditional approaches discussed so far mainly work with relational 

sources, hence they use set of heuristic to derive multidimensional elements such as 

facts and dimensions. But today, the information systems are dealing with semi-

structured and unstructured sources. These sources may lead to heterogeneous 

problems which may affect the design output. The three heterogeneity issues that 

normally arise are syntactic, structural and semantic (Pérez et al., 2008). Resolving 

syntactic and structural issues may be done irrespective of the context, but semantic 

issues are application dependent. In order to represent the concept of a domain 

irrespective of the application, ontology began to be used. Ontology provides a way 

to represent the concepts of a domain and automatic processing of the concepts. 

Hence, the use of ontology for the DW design helps to solve the heterogeneity issues 

that arise in the data sources (Gagnon, 2007) as well as provide automation of the 

design task (Romero and Abelló, 2010). Following is a brief review of the 

ontological approaches available in the literature: 

Romero and Abelló (2010) presented a method called Automating 

Multidimensional Design from Ontologies (AMDO). It follows a reengineering 
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process that derives the multidimensional schema from the data source represented 

as ontology. The three constraints  that are used to identify multidimensional 

concepts in data source are: multidimensional model constraint,  multidimensional 

space arrangement constraint, summarization integrity constraint.The 

multidimensional concepts obtained from the data source are filtered according to 

certain filtering conditions. 

Romero et al., (2011) presents a system called GEM (Generating ETL and 

Multidimensional designs). The system provides designers with a semi-automatic 

method for generating the conceptual multidimensional schema.  It is also used to 

derive a conceptual representation of the ETL processes that coordinate the data 

flow from the data sources to the DW system. GEM uses a set of data sources 

represented as OWL ontology and business requirements expressed in XML format. 

It carries out the requirement validation by mapping it to the source. An ontology 

subset is derived for each requirement and the multidimensional elements are tagged 

for the concepts in the ontology. 

Jovanovic et al., (2012) proposed a semi-automatic method called Ontology-

based DW REquirement evolution and integration (ORE), for constructing the 

multidimensional schema. Their approach considers each requirement separately, 

and incrementally builds the unified multidimensional schema satisfying the entire 

set of requirements. The information requirements are validated against the available 

data sources.  The source subset satisfying the given requirements is interpreted with 

the identified multidimensional knowledge. Here, the multidimensional 

interpretations (MDI) satisfying the given set of information requirements are 

considered as inputs. The ORE comprises four stages, namely matching facts, 

matching dimensions, complementing the multidimensional design, and integration. 

In all stages, they maintain a structure, called traceability metadata (TM), for 

systematically tracing about the multidimensional design that is integrated at each 

stage. 

Selma et al., (2012) proposed a method, namely the ontology-based DW 

(OBDW) and case tool for designing a DW multidimensional schema from 
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ontology-based database sources. They proposed a goal-oriented requirement model 

based on which DW ontology is extracted from the global ontology representing the 

sources. The DW ontology is annotated by the multidimensional concepts. The 

multidimensional role of concepts and properties are identified and annotated over 

the ontology, based on the analysis of the defined goals. The logical model of the 

DW is generated by translating the annotated DW ontology. 

2.2.3 Comparative Analysis of Schema Design Approaches 

In this section a comparison of the traditional and ontological approaches is 

provided along with a detailed summary of the main features of the design 

approaches.  Most of the features used for comparison represent the existence of the 

corresponding feature through yes/no and other features have alternative values. 

Comparison of Traditional Approaches 

Table 2.1 presents the comparison of the traditional approaches.  Analyzing 

Table 2.1 it was found that, most of the approaches considered user requirements to 

be the important aspect of constructing the multidimensional model. They are 

classified as demand-driven or goal-driven. Giorgini et al., (2008) and Maz´on et al., 

(2009) used goal oriented and Prat et al., (2006) used UML diagram for 

requirements representation. Here, the multidimensional elements such as fact, 

measure, and dimension are identified from the user requirements. Hence, the main 

limitation of the demand driven approaches is that, the results obtained depends on 

the correctness and understanding of the requirements in hand. To handle this issue, 

few approaches such as Prat et al., (2006) used data source at the end of the design 

to produce the final model. 

Few researchers realized that the knowledge contained in the data source to 

be helpful for the schema design and its automation. These are called as supply 

driven or data driven approaches. Relational sources are used by Giorgini et al., 

(2008) and Abelló and Romero (2010), ER diagram is used by Song et al., (2007) as 

data source. Most of the approaches use different patterns or heuristics to identify 
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concepts likely to play a multidimensional element. Hence, the design experts might 

require a well documented data source, otherwise the final model may be not be 

derived accurately. Moreover, as user requirements are not considered by most of 

the supply driven approaches, they produce exhaustive results in the final output, 

which may not satisfy the end user goals.  

Few supply driven approaches such as Song et al., (2007) consider user 

requirements to filter the final results, but they perform the demand driven stage in a 

manual way. Hence, the ideal scenario for deriving the DW schema would require a 

hybrid approach, i.e., a combination of supply-driven and demand-driven stages. 

Thus, the resulting multidimensional schema would satisfy user requirements and be 

conciliated with the data sources simultaneously.  

In literature only few approaches such as Giorgini et al., (2008) and Abelló 

and Romero (2010) follow a hybrid methodology and try to automate the design 

process. But, the degree of automation achieved is rather low. Specifically, these 

approaches consist of a detailed requirements elicitation stage that need to be 

performed manually and an automated analysis of the data sources. At the end of the 

design, both stages are put in common by conciliating the data sources and 

requirements. In these approaches the requirements elicitation stage leads the 

process and the main design decisions are made in this step. The analysis of the data 

sources is carried out only in a superficial manner.  

Considering the different phases of design, most of the traditional approaches 

such as Giorgini et al., (2008) and Abelló and Romero (2010) concentrate on 

conceptual phase generating the conceptual schema and few carry out the 

conceptual, logical and physical phases (Prat et al., 2006; Maz´on et al., 2009). 
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Table 2.1 Comparison of Traditional Approaches 

Features 
Prat et al., 

(2006) 

Song et 

al., (2007) 

Giorgini et 

al., (2008) 

Maz´on et 

al., (2009) 

Romero 

and Abelló 

(2010) 

Automation 
Semi-

automatic 
Semi-

automatic 

Semi-

automatic 

Semi-

automatic 

Semi-

automatic 

Design 

Approach 

Demand-

Driven 
Supply-

Driven 

Demand-

Driven & 

Hybrid 

Demand-

Driven 
Hybrid 

Requirement 

Representation 

UML 

diagram - 
i* 

framework 

i* 

framework 
SQL 

Data source 

Representation 

 

- 
ER -

diagram 
Relational - Relational 

Formal 

Algorithm  
No Yes No No Yes 

Conceptual 

Design 
Yes Yes Yes Yes Yes 

Logical Design Yes Yes No Yes No 

Physical Design Yes No No Yes No 

Quality 

assessment 
No No No No No 

User Suggestion No Yes No No No 

Tool Yes No Yes No Yes 

 

Comparison of Ontological Approaches 

Table 2.2 provides the comparison of the existing ontological approaches. 

Like traditional approaches, the ontological approaches follow supply driven, 

demand driven or hybrid methodology to perform the DW schema design. 
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Table 2.2 Comparison of Ontology Based Approaches 

Features 
Romero and 

Abelló (2010) 

Romero et 

al., (2011) 

Jovanovic et 

al., (2012) 

Selma et al.,  

(2012) 

Automation 
Semi-

automatic 

Semi-

automatic 

Semi-

automatic 

Semi-

automatic 

Design 

Approach 
Supply-Driven 

Demand-

Driven 

Demand-

Driven 

Demand-

Driven 

Requirement 

Representation 
- 

XML 

Format 

Natural 

Language 
Ontology 

Data source 

Representation 
Ontology Ontology Ontology Ontology 

Formal 

Algorithm  
Yes Yes No Yes 

Conceptual 

Design 
Yes Yes Yes Yes 

Logical Design No No No Yes 

Physical Design No No No No 

Quality 

assessment 
No Yes No No 

User Suggestion Yes Yes No No 

Tool Yes Yes No Yes 

 

The supply driven approach AMDO (Romero and Abelló, 2010) used 

ontology representation of the data source to automatically derive the 

multidimensional elements. Here the results produced are exhaustive, and hence 

some filtering function is required to filter the obtained results. Other ontological 

approaches such as GEM (Romero et al., 2011) and OBDW (Selma et al., 2012) 

used both user requirements and data source for the design process. Though these 

approaches claim to use the hybrid methodology, they are not a pure hybrid as the 

entire design process is driven by the user requirements. A thorough analysis of data 

source is lagging in these approaches and moreover the knowledge contained in it is 

used superficially. 
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To derive the multidimensional elements, most of these approaches (Romero 

and Abelló 2010; Romero et al., 2011; Selma et al., 2012) provided a formal 

algorithm. But considering the design phases, Romero and Abelló (2010), Romero et 

al., (2011) and Jovanovic et al., (2012) proposed approaches cover only the 

conceptual phase to produce the conceptual multidimensional schema and Selma et 

al., (2012) proposed approach covers conceptual and logical phases.  

In a real scenario there are multiple heterogeneous sources exists and to 

utilize the knowledge in them, these sources need to be integrated into a single 

source schema in order to carry the design task. Except Selma et al., (2012), other 

approaches do not consider about the source integration. Even with this approach 

they discussed only about the integration of ontology based databases (OBDBs) and 

do not consider other type of data sources. 

In order to provide a semi-automatic means of deriving the multidimensional 

schema, the existing approaches managed to develop a prototype tool which would 

facilitate the designer to perform the design process. 

Limitations 

1. Compared to demand-driven and supply driven approach, the hybrid 

approaches provide a promising results for the DW schema design. However, 

in the existing hybrid approaches the mechanisms through which to formally 

match the data sources with user requirements in the early stages of the 

design are not investigated so far.  

2. In the hybrid methodology, the identification of multidimensional elements 

(i.e., fact, dimensions, dimension hierarchy) in the data sources is a 

mandatory previous step before reconciling requirements and data sources. 

These elements are usually annotated in a manual (Giorgini et al., 2008) or 

semiautomatic (Mazón and Trujillo, 2009; Song et al., 2007) manner from 

the data sources using syntactic information (Lechtenbörger  and Vossen, 

2003) which is not enough for every scenario and prevents their total 

automatization.  
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3. The quality of the schema designed need to be analyzed before it is carried 

out for actual implementation. The existing approaches do not focus on 

ensuring the schema quality in a formal way. 

4. Though existing approaches provide tools to carry out the schema design, 

they do not provide the required functionalities to fully automate the design 

task. 

Thus, in this research the proposed DW schema design approach considers 

both the user requirements and data source at the early stage of the design. An 

appropriate multidimensional model is generated by covering different phases of 

the design in an automated way. 

2.3 DATA WAREHOUSE SCHEMA EVOLUTION APPROACHES 

Evolution in DW may be generated by change in data source schema and in 

requirements. Following are the various reasons for changes happening in the data 

source or user requirements: 

1. Incorporation of new users or requirement in the system or creating new 

versions (Rechy-Ramirez and Benitez-Guerrero, 2006). 

2. Ambiguous or insufficient requirements during the development phase 

(Body et al., 2002).  

3. Periodical revisions done for the removal of bugs and redundancies (Bebel et 

al., 2006). 

4. Change in the requirements during the operational phase of the DW which 

results in the structural evolution of the DW schema. (Rechy-Ramirez and 

Benitez-Guerrero, 2006) 

5. Reorganization of the DW schema during the operational phase of the DW as 

a result of different design solutions that are decided upon. (Bebel et al., 

2006). 

6. Change in the information source resulting in a new DW design. 
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The DW must evolve in reaction to the above mentioned reasons. Data 

changes are monitored and propagated to a DW often by means of materialized 

views (Chen et al., 2006; Sahpaski et al., 2009) and the history of data changes is 

supported by applying temporal extensions (Eder et al,. 2002; Eder et al., 2006). 

Whereas, source schema changes are often handled by applying schema evolution 

(Benitez-Guerrero et al., 2004; Curino et al., 2009 ; Fan and Poulovassilis, 2004) 

and schema versioning techniques (Bebel et al., 2006; Papastefanatos et al., 2007; 

Rechy-Ramirez and Benitez-Guerrero, 2006 ; Sahpaski et al., 2009). In schema 

evolution approaches historical DW states are lost as there is only one DW schema 

that is being modified. In schema versioning approaches only historical versions of 

data are maintained, whereas schema modifications are difficult to handle. Thus, the 

DW evolution is classified into two main approaches, namely schema evolution and 

schema versioning. In this section a brief review of these approaches has been 

provided. 

2.3.1 Schema Evolution Approaches 

Benitez-Guerrero et al., (2004) proposed a Warehouse Evolution System 

(WHES) that demonstrates a DW evolution model and its associated 

multidimensional data definition language. WHES implements a set of translation 

rules to provide one-to-one mapping between multidimensional schema and the 

relational model. It also defines a set of propagation rules that modify the relational 

model whenever a change occurs in the corresponding multidimensional model. The 

authors have proposed 16 operators to modify the multidimensional schemas.  

Papastefanatos et al., (2007) provides a framework for performing ETL 

evolution for potential changes to data source of a DW. They use a graph model that 

uniformly models relations, views, queries, ETL operations, and their significant 

properties. The authors propose a set of rules to annotate the graph representing the 

ETL workflow. The annotation contains actions that either blocks the event or 

reshapes the graphs when a change event occurs. The change event along with the 

annotation represents policy to be followed for the handling of a potential change.  
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Banerjee et al., (2009) contributes formalism for representing DW schemas 

and determining the validity of schema evolution operators applied to a schema. The 

schema evolution operators are the core features of a DW that are defined in the 

generalized model. Here, the authors have summarized various schema evolution 

operators based on change in dimension, change in fact and change to a cube. Along 

with schema evolution the authors have proposed modeling extended hierarchy 

semantics. 

Solodovnikova and Niedrite (2011) proposed a framework DWE to support 

DW evolution. It allows propagating different changes in DW, creating versions of 

schemata and data semantics. This approach is user-centric, where users are 

involved to design reports on multiple DW versions using user terms. The 

operations of the framework are based on the metadata which is used to describe the 

DW schema versions and to accumulate information about reports defined by users 

on schema versions.  

Thakur and Gosain (2011) present a theoretical framework called 

DWEVOLVE to support DW evolution. The changes in the requirements specified 

by the stakeholders as well as the developers are analyzed here. These changes are 

then incorporated into the warehouse by performing appropriate additions, deletions 

and updates. It consists of a module that cleans redundant or dirty data by employing 

certain cleaning algorithms. To enhance the framework operation comprehensive 

metadata support has been provided.  

2.3.2 Schema Versioning Approaches 

Rechy-Ramirez and Benitez-Guerrero (2006) proposed a Version-based 

Evolution Model based on the bi-temporal schema versioning. In the model, the 

granularity of versioning represents the multidimensional database version. Here 

each version is formed by a multidimensional schema and a multidimensional 

database which is conformed to the schema. Thus, when a change is made to a 

multidimensional schema, a new multidimensional database version having a new 

associated temporal pertinence is created. In addition to the evolution operators, the 
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authors have defined a SQL-like language.  This allows the DW administrator to 

express his/her evolution requirements.  

Golfarelli et al., (2006) have proposed an approach to schema versioning and 

formulating cross-version queries for DW. Their approach allows queries that cover 

data across different schema versions. The authors have introduced a representation 

of DW schemata as graphs of simple functional dependencies. They define algebra 

of schema graph modification operations in order to create new schema versions. 

The also discuss how augmented schemata can be introduced to speed up the cross-

version querying process.   

Sahpaski et al., (2009) presented an approach for dynamically evolving the 

design of the DW schema spanning across its multiple versions. An optimization of 

the DW implementation schema design is provided by the authors by defining the 

multiversion data cube and the multiversion implementation schema. They add the 

multiversion implementation schema with its instances to the generalized solution 

space of the optimization problem.  They also introduce a new derivation procedure 

and a new derivation cost constraint. The procedure is used for evolving the current 

implementation schema to a new implementation.  

Oueslati and Akaichi et al., (2011) proposed an approach called Multiversion 

Trajectory Data Warehouse (MVTDW). The main goal of this approach is to 

propose a solution, based on versioning approach which is able to handle structural 

changes in order to keep track of the DW evolution. There are two types of schema 

versioning used in this approach: real version and alternative version. The real 

version is defined as a version that handles changes of the real world like changing 

geographical borders of countries. The alternative version is defined as a version that 

handles virtual business scenarios. The authors also proposed certain constraints that 

have to be fulfilled to guarantee the integrity of the MVTDW. 

Xuan et al., (2006) presented a solution for asynchronous versioning 

problem for an ontology-based DW. This DW integrates ontology-based data 

sources which are autonomous and heterogeneous. The data source contains local 
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ontologies which references a shared ontology by subsumption relationships.  These 

local ontologies change their schema as well as instances with respect to changes in 

the environment. To manage ontology changes the authors proposed two different 

solutions: ontology evolution and ontology revolution. 

2.3.3 Comparitive Analysis of Schema Evolution Approaches 

Table 2.3 provides the comparison of various DW evolution approaches. The 

schema evolution approaches focus on updating the changes over the original 

schema. Whereas the schema versioning approaches maintains the old schema and 

creates the new version of the schema by updating the changes.  

Table 2.3 Comparison of Evolution Approaches 
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Benitez-

Guerrero et al., 

(2004) 

Schema 

Evolution 
Relational Yes No Yes MDL No No 

Papastefanatos 

et al., (2007) 

ETL 

Evolution 
Graph Yes No No Algorithm Yes Yes 

Banerjee et al., 

(2009) 

Schema 

Evolution 
Relational Yes No Yes Algorithm No No 

Thakur and 

Gosain (2011) 

Schema 

Evolution 
Relational Yes Yes No - No No 

Solodovnikova 

and Niedrite 

(2011) 

Schema 

Evolution 

& Schema 

Version 

Logical & 

Relational 
Yes Yes No - Yes No 

Rechy-Ramirez 

and Benitez-

Guerrero (2006) 

Schema 

Version 
Conceptual Yes No Yes SQL-Like No No 

Golfarelli et al., 

(2006) 

Schema 

Version 
Graph No Yes No 

Schema 

Modification 

Algebra 

No No 

Sahpaski et al., 

(2009) 

Schema 

Version 
Relational Yes No No - No No 

Oueslati and 

Akaichi et al., 

(2011) 

Schema 

Version 
Relational Yes No Yes Algorithm Yes No 

Xuan et al., 

2006 

Schema 

Version 
Ontology Yes No No - No No 
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DW schema needs to evolve when business requirements are changed or 

extended or a data source schema is adapted after changes. Most of the existing 

work concentrates on handling source schema evolution and only few approaches 

(Thakur and Gosain, 2011, Golfarelli et al., 2006) discuss about handling 

requirement changes. 

The three types of changes as given in the literature, that normally occur over 

the DW schema are addition, deletion and rename. These changes are carried over 

the multidimensional elements such as fact, fact attributes, measures, dimension, 

dimension attributes, level, level attributes and fact-dimension relationship. In order 

to perform these changes, different set of evolution operators are proposed by 

several authors (Benitez-Guerrero et al., 2004; Rechy-Ramirez; Banerjee et al., 

2009; Oueslati and Akaichi et al., 2011). Apart from evolution operators certain 

existing approaches (Benitez-Guerrero et al., (2004); Rechy-Ramirez and Benitez-

Guerrero (2006); Golfarelli et al., (2006); Papastefanatos et al., (2007); Banerjee et 

al., (2009); Oueslati and Akaichi (2011)) provide formal methods such as algorithms 

and SQL like languages to update the changes over the DW schema. 

The existing approaches propagate the changes directly over the relational 

schema of the DW except the works by Papastefanatos et al., (2007) and Golfarelli 

et al., (2006), which handle the evolution over the graph representation of the 

multidimensional schema. The change propagation is handled manually by these 

works. Whereas, few works (Papastefanatos et al., (2007), Solodovnikova and 

Niedrite (2011) and Oueslati and Akaichi et al., (2011)) tried to automate the 

evolution task.  

The DW schema is not an independent entity. When it evolves, it might have 

an impact on its dependent modules such as ETL tasks, queries, views, etc.  But 

none of the existing approaches concentrate on the impact analysis and the cost of 

handling changes over the DW schema. 
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Limitations 

1. Most of the existing approaches either schema evolution or schema 

versioning handled changes in the data source schema. Very few 

concentrated on changes in business requirements, but they do not provide a 

concrete way of handling these changes. 

2. Evolution operators and formal methods such as algorithms and SQL-like 

language are proposed by different authors to propagate changes over the 

DW. Still, most of the approaches could not provide an automation of the 

evolution task. 

3. The changes are mostly updated over the relational schema of the DW. 

Hence, such approaches might not produce a feasible solution to the 

evolution process as they may incur high maintenance cost. Only a few 

works over the conceptual or graph representation of the DW schema, but 

they are found to provide a complex scenario in order to handle the 

evolution. 

4. From the existing works, it is observed that none of the approaches discussed 

about the impact that the updated DW schema might bring to its dependent 

entities. Papastefanatos et al., 2007 focus on impact analysis, but their main 

concentration is on ETL evolution rather than DW schema evolution. 

5. Finally, there is a lack of automated approach which might help the DW 

designer to carry out the complex process of evolution in an efficient way. 

The problem of managing changes on the schema level, which may be 

demanded by changes either in the user requirements or in the sources has been 

addressed by this research. An automated approach has been proposed to propagate 

changes from user requirements or data source over the DW schema along with 

adaptation of the dependent entities. 
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2.4 DATA WAREHOUSE SCHEMA PARTITIONING 

APPROACHES 

The DW schema needs to be partitioned for optimization of its performance 

before it is implemented in the underlying database. Partitioning is the process of 

splitting large relations (tables) into smaller ones so that the database needs to 

retrieve only relevant data at a particular time (Bellatreche et al., 2000; 

Papadomanolakis and Ailamaki, 2004). The two ways to partition a relation are: 

horizontal and vertical (Sanjay et al., 2004). The horizontal partitioning involves 

splitting the tuples (rows) of a relation and placing them into two or more relations 

with the identical structure. Vertical partitioning involves splitting the attributes 

(columns) of a relation and placing them into two or more relations linked by the 

relation's primary key. The main advantages of partitioning are: it can significantly 

impact the performance of the workload, i.e. the set of queries that executes against 

the DW system by reducing the cost of accessing and processing data. Moreover, it 

allows parallel processing of data by locating tuples where they are most frequently 

accessed (Bellatreche et al., 2000). 

Different partitioning modes have been proposed and supported by various 

database systems. They are classified into two main types, based on the number of 

participating tables in the partitioning process: single table partitioning and table 

dependent partitioning. In case of single table partitioning, a table is partitioned 

based only on its attributes. Thus, the partitioning is similar to primary horizontal 

partitioning (Ozsu and Valduriez, 1999). In order to implement this partitioning, 

several modes exist: Range, List, Hash, Round Robin (supported by Sybase), 

Composite (Range-Range, Range- List, List-List, etc.) and Virtual Column 

partitioning. The single table partitioning is well adapted for optimizing selection 

operations, especially when partitioning key matches with selection attributes. In 

case of table dependent partitioning, a table (usually called child) is partitioned 

based on the fragmentation schemes of other tables (called parents). This type of 

partitioning is feasible if there is a parent-child relationship between these two tables 

(Eadon et al., 2008). To implement this partitioning, the two main modes that are 
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available are: Native Referential Partitioning and User-driven Referential 

Partitioning.  

In the native referential partitioning, a child table inherits the partitioning 

characteristics of its parent table. It is supported by Oracle11G, by the use of a 

native DDL. It optimizes selection and joins simultaneously. Hence, it is well 

adapted for star join queries. User-driven referential partitioning is a manual 

implementation of referential partitioning, i.e., it is implemented using the single 

table partitioning. That is, a parent table is first horizontally partitioned on its 

primary key, then the child table is split using the foreign key referencing the parent 

table. This kind of partitioning has been used for designing parallel DWs and is not 

well adapted for star join queries.  

Thus, the partitioning approaches available in the literature can be classified 

as a single table and referential partitioning. Single table partitioning, involves 

fragmenting the fact table. Referential partitioning, involves fragmenting the fact 

table with reference to fragments of dimension table(s).  This section presents the 

review of these existing partitioning approaches. When the DW table(s) is 

partitioned, it generates large set of partitions or fragments. Hence selection of 

optimal fragment has been the focus of several approaches that are discussed here. 

2.4.1 Single Table Partitioning Approaches 

Brkić et al., (2012) discussed the procedure for horizontal fragmentation of 

DW tables. They argue that their procedure is suitable when there are multiple 

independent organizational units that produce data of the same structure and which 

are needed to be loaded into the consolidated fact table. In such case, in order to 

ensure data quality factors such as completeness and timeliness, their proposed 

method uses meta-data for horizontal fragmentation of the DW. They define certain 

expression for completeness and timeliness of DW tables which is used to ensure the 

quality of the DW after ETL operation. They also provide experimental results to 

show how horizontal partitioning of the fact tables can improve the quality of the 

warehouse when compared to the non partitioned warehouse. 
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Liu and Iftikhar (2013) presented the design method for modeling big 

dimensions in a DW. In order to automate the DW modeling process they use OWL 

ontology to describe the semantics of a big dimension. They consider the vertical, 

horizontal and hybrid partitioning technologies for modeling big dimension. Their 

approach streamlines the modeling process from conceptual to physical DW design. 

Barr (2013) presented a work that deals with the problem of selecting the 

horizontal fragmentation. It considers two objective functions to minimize that is, 

the number of I/O between memory and disk during decisional queries and the 

number of fragments while selecting the fragment. A scalar method called 

compromise method has been used. It is responsible to optimize an objective 

function which considers the second objective function as a constraint. The main 

principle of the method is to transform a multi-objective problem into single 

objective one under additional constraints. To realize the meaning of compromise of 

the proposed multi-objective optimization method, here the results obtained using 

Genetic Algorithm are collected. These results give the number of inputs/outputs 

according to the number of fragments introduced. Thus, the horizontal fragments 

that minimize both the number of I/O between memory and disk and number of 

fragments are selected. 

2.4.2 Referential Partitioning Approaches 

Boukhalfa et al., (2009) proposed an architecture for the combined selection 

of horizontal partitioning (HP) and bitmap join indexes (BJI) by exploiting their 

similarities. Here the dimension table is partitioned using several attributes without 

their restriction to be contained in a hierarchy. The fact table is partitioned based on 

the partitioning of the dimension table. For a fragmentation schema generation, they 

used genetic algorithm. To generate a configuration of BJI they used greedy 

algorithm. 

Mahboubi and Darmont (2009) proposed a technique which adapts derived 

horizontal fragmentation techniques developed for relational DWs to the XML DW. 

In their fragmentation methodology, first the primary horizontal fragmentation is 
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applied onto the warehouse dimensions using either the predicate construction 

method or the affinity-based method. Both these methods, inputs selection 

predicates from the query workload. The facts are finally fragmented according to 

horizontal fragments obtained by applying either the predicate construction or 

affinity-based method on dimensions. Fragmentation of facts is achieved by semi-

join operations based on a virtual key reference.  

Dimovski et al., (2011) proposed a formal approach for horizontal 

partitioning and its application for optimizing DW design in a cost-based method. 

The horizontal partitioning is based on predicate abstraction which maps the domain 

of a relation to be partitioned to an abstract domain following a finite set of arbitrary 

predicates chosen over the whole concrete domain. In order to address the 

optimization problem a minimal set of predicates for each relation is derived using 

ComputeMin procedure. The chosen predicates are used to horizontally partition 

some (or all) dimension relations of the DW with star schema. The fact relation is 

partitioned by using the predicates specified on dimension relations. Finally, they 

use genetic algorithms, known evolutionary heuristic, to find a suitable partition 

which minimizes the query cost. 

Bellatreche (2012) proposed a comprehensive procedure for referential 

partitioning in the DW. First, it selects relevant dimension table(s) to partition the 

fact table and they are associated with selection predicates. Each dimension table is 

then partitioned using single table partitioning type. To generate partitioning scheme 

of the chosen dimension tables, DBA chooses the hill climbing algorithm. Finally, 

the fact table is partitioned using referential partitioning based on the fragmentation 

schemes generated by the algorithm. 

2.4.3 Comparitive Analysis of Schema Partitioning Approaches 

Table 2.4 provides the comparison of different partitioning approaches 

available for DW. These approaches aim to minimize the query execution time by 

applying partitioning over the DW tables there by optimizing its performance. 

Horizontal partitioning has been employed by most of the approaches. Boukhalfa et 
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al., (2009), Brkić et al., (2012), Liu and Iftikhar, (2013) and Barr (2013) applied 

single table partitioning strategy in order to partition the fact table. Whereas, 

Mahboubi and Darmont (2009) and Bellatreche (2012) followed referential 

partitioning strategy, where the fact table is fragmented based on the fragmentation 

of dimension table(s). They argue that referential partitioning improves query 

performance as DW involves star join queries that related fact with the dimension 

table. 

Table 2.4 Comparison of Partitioning Approaches 
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Brkić et 

al., 2012 
Single Horizontal No No No No No No 

Liu and 

Iftikhar, 

2013 

Single 

Horizontal 

Vertical 

Hybrid 

No No No No Yes Yes 

Barr 2013 Single 
Horizontal 

 
No No Yes 

Genetic and 

Pareto 

Dominance 

No No 

Boukhalfa 

et al., 2009 
Referential Horizontal No No Yes Genetic No No 

Mahboubi 

and 

Darmont 

2009 

Referential Horizontal No Yes No No- No No 

Dimovski 

et al., 2011 
Referential Horizontal No Yes Yes Genetic No No 

Bellatreche 

2012 
Referential Horizontal Yes No Yes 

Hill 

Climbing 
Yes Yes 

 

When partitioning is applied over the dimension or fact table the number of 

fragments produced is very large depending on the chosen partitioning attributes. 

Hence, the existing approaches such as Boukhalfa et al., (2009), Dimovski et al., 
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(2011), Barr (2013) and Bellatreche (2012) used fragmentation selection algorithms 

such as genetic and hill climbing algorithms to choose optimal fragments. The 

selection of partitioning attributes is addressed by Mahboubi and Darmont (2009) 

and Dimovski et al., (2011).  

The DW involves multiple dimension tables, hence the choice of dimension 

table affects the partitioning process. Bellatreche (2012) discussed about dimension 

table selection method. Also, Bellatreche (2012) and Liu and Iftikhar (2013) 

provided steps for automating their proposed method along with a prototype tool to 

facilitate the partitioning process. 

Limitations 

1. None of the existing approaches focus on dimension table selection except 

Bellatreche (2012). Hence, as the DW involves multiple dimension tables an 

efficient selection method need to be developed. 

2. Another important issue that needs attention is partitioning attribute selection, 

which needs to be improved. 

3. Most of the approaches follow horizontal partitioning assuming the dimension 

tables to have a large set of records. But in reality, these tables may contain a 

large set of attributes. Hence, a mixed partitioning i.e. horizontal and vertical 

partitioning needs to be combined to fragment a big dimension. Liu and Iftikhar 

(2013) discuss about traditional mixed partitioning without any partitioning 

selection procedure involved. 

4. The existing approaches, though provide a fragmentation selection method and 

fragmentation selection algorithm, they do not provide an optimized result. 

5. Finally, as the queries imposed over the DW evolves, the existing partitions need 

to be altered, which has not been discussed in the existing methods. 

This research solves the partitioning issues of DW schema by providing 

optimization of the traditional partitioning techniques. It also enables the partitions 

to be managed in case of query evolution. 
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2.5 SUMMARY 

In this chapter the different approaches that exist in the DW schema design, 

evolution and partitioning have been discussed. The existing schema design 

approaches do not provide a formal mechanism to match the data sources with user 

requirements. Further, a design method covering the conceptual, logical and physical 

phases is required to produce the final model. The research works on DW evolution 

handles data source changes at the physical level, which incurs high maintenance 

cost. Manual adaptation of DW evolution needs a lot of effort and rework, hence 

automatic adaptation of DW schema changes and its dependent modules is essential. 

Related to DW schema partitioning the existing works proposed algorithms for 

optimal fragment selection. Problems related to dimension and attribute selection, 

fragmentation of big dimension and partition management has not been much 

studied. 

A detailed comparison of the existing approaches and their limitations are 

presented in this chapter. From the survey, it is inferred that the DW project to be 

successful, it is essential to provide an appropriate multidimensional schema which 

facilitate to make critical business decisions. Thus, this research work focuses on the 

issues existing in the DW schema design and its management. A comprehensive 

approach has been developed in order to handle the problems that exist in the DW 

schema design, evolution and partitioning. 
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CHAPTER 3 

ONTOLOGY BASED APPROACH FOR DATA 

WAREHOUSE SCHEMA DESIGN 

 

3.1 INTRODUCTION 

The DW, owned by an organization, integrates data from heterogeneous 

sources to enable better decision making. To facilitate OLAP queries the data 

within the DW is arranged in a multidimensional format. The design of the 

multidimensional schema in literature has been carried out from requirements or 

data source and is called as demand driven or supply driven approach, 

respectively. As discussed in the previous chapter, the design of 

multidimensional schema requires a hybrid methodology, utilizing the 

knowledge contained both in requirements and the data source. Hence, in order 

to ascertain that source system and the requirements are well understood, it is of 

great importance to provide a formal, explicit, and well-defined way to represent 

these entities. To facilitate such representation and to provide the automation of 

multidimensional design the DW community has adopted ontology (Pardillo and 

Mazón, 2011; Romero and Abelló, 2010; Selma et al., 2012).  The existing 

ontology-based approaches do not fully utilize the benefits of hybrid 

methodology of the schema design. Moreover, these approaches do not cover 

the different phases of DW design such as conceptual, logical, and physical. 

Hence, to overcome the limitations of existing methods, the proposed work has 

the following contributions: 
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1. Representation of business requirements in a formal way using ontology. 

2. A thorough analysis of the data source to obtain the multidimensional 

knowledge it contains. 

3. Reconciliation of data source and requirements concepts to generate 

conceptual model. 

4. Generation of a logical model using schema transformation and design 

rules. 

5. Physical implementation of the generated schema to validate the quality 

of the output. 

Section 3.1 describes in detail about the proposed OntoMD approach for 

DW schema design. The OntoMD tool developed based on the OntoMd 

approach is explained in section 3.2. Section 3.3 provides the details of the 

case study used for the application of OntoMD approach. The evaluation of 

the proposed approach is given in section 3.5. The summary of this chapter is 

provided in section 3.6. 

3.2 OntoMD: PROPOSED ONTOLOGY BASED 

MULTIDIMENSIONAL SCHEMA DESIGN APPROACH 

This section describes the steps involved in the proposed ontology based 

multidimensional (OntoMD) schema design approach. Figure 3.1 represents the 

steps involved in the proposed approach. A hybrid methodology is followed here 

for identifying the multidimensional concepts such as facts, measures, 

dimensions and levels in order to construct the DW schema. To provide 

automation of the design task, the requirements and the data source are 

represented in OWL ontology format. Here, the data source is first analyzed to 

derive the multidimensional concepts it contains. Next, the requirements are 

matched with the identified multidimensional concepts to filter the required 

elements of the conceptual schema. From the derived conceptual schema, the 
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logical schema is generated automatically. Finally, the logical schema is refined 

using queries to facilitate the physical implementation.  

 

Figure 3.1 Proposed OntoMD Approach 

3.2.1 Representation of Business Requirements and Data Source 

Like any software system, requirements play a major role in the DW design. 

Among the several approaches that exist for DW requirement analysis, the goal-

oriented approach based on i* framework is found to be an efficient method (Gloria 

et al., 2008; Inmon, 2005; Niedrite et al., 2007). The proposed OntoMD approach 

assumes that a requirement analysis has been carried out earlier and the 

corresponding requirement specification is available for the given business domain. 

For automation of the design task, it is required to formalize the requirements 

specification. At this stage, the usage of ontology is beneficial, and thus the 

requirement ontology is constructed based on the i* framework for DW (Gloria et 

al., 2008). This ontology captures the multidimensional elements of the business 

domain through which the knowledge contained in the data source is retrieved. 
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Figure 3.2 represents the graphical view of the concepts available in the 

ontology. The DW requirements are represented in the form of goals. Three types of 

goals that exist in the ontology are strategic goal, decision goal and information 

goal. The strategic goals (for example, „„increase sales”) are the main objectives of 

the business process. It has one or more decision goals (for example, „„determine 

some kind of promotion”), which determines how a strategic goal can be achieved. 

The decision goal in turn has set of information goals (for example, „„analyze 

customer purchases”) to be satisfied. The information goal is used to represent sets 

of information requirements of the DW. Each of the information requirements 

contains resources which are defined by three multidimensional elements such as 

business process (the business process to be analyzed), measures (process measures 

under analysis) and context (context of analysis) of the business domain.  

 

Figure 3.2 Data Warehouse Requirement Ontology 

Formally, the DW requirement ontology (DWRO) can be defined as:  

DWRO = {S, I, D, IR, BP, M, CN}, where, 
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- S is a set of OWL classes representing the strategic goals; 

- I is a set of OWL classes representing the information goals; 

- D is a set of OWL classes representing the decision goals; 

- IR is a set of OWL classes representing the information requirements; 

- BP is a set of OWL classes representing business process; 

- ME is a set of OWL classes representing measures; 

- CN is a set of OWL classes representing the contexts. 

The main advantage of the proposed requirement ontology is that when there 

are any changes in the requirements during the design or at later stages, these 

changes can be easily incorporated into the ontology. And thus, it facilitates for the 

evolution of DW which has been discussed in the next chapter. 

Once the requirements are formalized, the next step is to represent the data 

source in an OWL ontology format and perform the required analysis to derive the 

multidimensional concepts. As the data for the DW are derived from several sources 

(e.g. Relational, XML, Text) each may have different syntax, semantic, and 

structural representations. Hence, each source needs to be represented in an ontology 

format. In order to obtain a unified view of these sources, the ontologies 

representing them are mapped and merged (Noy and Musen, 2003) to form an 

integrated ontology. The process of obtaining the integrated data source ontology is 

given in Figure 3.3.  

Different tools are available for converting a particular type of source to 

OWL representation. A relational source can be converted to ontology using 

DB2OWL (Cullo et al., 2007) tool. Similarly xml and text sources can be converted 

to ontology representation using XML2OWL (Lacoste et al., 2011) and OntoLT 

(Buitelaar et al., 2004) tools respectively.  This integrated ontology is taken as input 

to derive the DW schema. 
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Figure 3.3 Ontology Integration 

The integrated data source is described by an ontology called as data source 

ontology (DSO). DSO is the collection of classes, its data type properties, and object 

properties which is defined as follows: 

DSO = {C, DTP, OTP} where, 

- C is a set of OWL classes; 

- DP is a set of data type properties; 

- OP is a set of object type properties.  

For any dpi ∈DP, there exists a domain ci = D(dpi) where ci ∈C, and a range 

cj = Rng(dpi) ∈DTxml where DT is the collection of XML Schema data types. For 

any opi ∈OP, there exists domain ci = D(opi) and range cj = Rng(opi) where, ci, cj ∈  

C, and i ≠ j.  
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3.2.2 Analysis of the Data Source 

To derive the multidimensional concepts (MDC) from the DSO, the 

condition of C≠ ∅ is required. The MDC is represented as follows:  

MDC= {FL, ML, DL} where,  

- FL is a set of facts; 

- ML is a set of measures; 

- DL is a set of dimensions.  

The ontology DSO is taken as input and the MDC are automatically derived 

through source analysis. From ontology DSO, a concept is identified as fact if it 

contains enough number of numerical properties. Hence, the concepts with a ratio of 

numerical attributes greater than the specified threshold are derived as fact. The 

numerical attributes become the measures of the fact through which a business 

process is measured. For each fact identified the dimensions are derived by making 

use of class subsumption and multidimensionality principle which is defined as: N 

elements of fact are related to at-least and at-most one element of a dimension 

through a relationship i.e. an object property. 

In order to derive the MDC contained in the source, a formal algorithm has 

been proposed. The pseudo code of the algorithm FactDim is given in Figure 3.4. 

The various notations used in this algorithm have been explained in section 3.2.1. 

The algorithm first derives the data properties of each class in the ontology. From 

the available set of data properties the numerical data properties are derived using its 

range value. The tn and tp represents total numeric data properties and total data 

properties respectively, for a class (Steps 2 – 8). 
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Figure 3.4 FactDim Algorithm 

Next, any ontology class having a ratio of numerical data properties (rnp) 

greater than a given threshold is considered to be a fact concept. This ratio is 

obtained by dividing tn by tp (Steps 10 – 13). The numerical data properties of the 

obtained fact concept are derived as measures. Fact and measures are displayed to 

the user (Step 14). From the obtained fact concept the dimensions are derived using 

MDC. For all object properties of the fact class, the algorithm finds the range class. 

Range class having 1:n relationship with the fact class is derived as dimension 

concept. Each fact concept may have one or more dimensions (Steps 18 – 27). The 

facts, measures, and dimension list are then displayed to the user. 

 

Input : Ontology of the form O = {C,DP,OP}

Output : MDC = {FL,ML,DL}

1 for all classes ci C do

2 for all data properties ci .dpi  DP do

3 rng := Rng(ci .dpi), rng  DTxml 

4 if isnumeric(rng) then

5 Add ci .dpi to MLi;

6 tn++;

7 end if

8 tp++;

9 end for

10 rnp =tn/tp;

11 if (rnp > =threshold) then

12 F= ci;

13 Add ci to FLi;

14 Print(F, ML);

15 Compute_dimension(ci);

16 end if

17 end for

18 Compute_dimension(ci)

19 for all object properties ci.opi  OP do

20 cj:= Rng(ci.opi), ci  C

21 if (cj!= null) then

22 if (ci.opi allValuesFrom  cj && 

maxCardinality = = 1) then

23 Add cj to DLi;

24 end if

25 endif

26 end for

27 Print(DLi);
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3.2.3 Reconciliation of Data Source and Requirements 

This step involves in filtering the results obtained from data source analysis 

using the requirements. The reason for reconciliation is that not all the MDC 

obtained from the source is useful for business analysis. Hence, the requirement 

knowledge is used to retrieve only the required concepts.  The DWRO represented 

in Figure 3.2 contains context and measures required for the business analysis. For 

each information requirement, the context and measure are matched with the 

obtained list of MDC, and the matched concepts are filtered accordingly. WordNet 

algorithm (Howe, 2009) is used in order to resolve the syntactic and semantic 

conflicts during the matching process. Following are the steps in the matching 

process: 

1. For each information requirement from requirements ontology, the 

contexts and measures are retrieved. 

i. A matching is performed using WorldNet matcher for the contexts 

of DWO(CN), with the dimensions of MDC(DL) obtained from the 

FactDim Algorithm  

ii. A matching is performed using WorldNet matcher for measures of 

DWO(M), with the measures of MDC(ML) obtained from the 

FactDim Algorithm. 

iii. For the successful matches, the corresponding MDC are retrieved. 

iv. For any unsuccessful match the designer is informed and the 

corresponding requirement is resolved for any ambiguity. 

v. The matched results containing fact, measures, and dimensions are 

displayed to the user as a conceptual schema. 

Thus, the reconciliation step helps to gather the exact knowledge about the 

business domain from requirements and source at the early stage of design. 
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3.2.4 Derivation of Dimension Hierarchy 

In order to perform OLAP analysis, such as drill-down or roll-up operations, 

it is essential to store different level of details within the DW. This step involves 

finding out the granularity required for representing the dimensions. Having 

different levels provides a deeper level of business analysis. From the results 

obtained after reconciliation, the dimension hierarchy containing the levels is 

computed for each dimension concept.  

 
 

Figure 3.5 DimHierarchy Algorithm 

The proposed DimHierarchy algorithm is used by OntoMD approach to 

derive the dimension hierarchy. The steps of the algorithm are represented in Figure 

3.5. The various notations used in this algorithm have been explained in section 

3.2.1.  DimHierarchy algorithm uses the input ontology DSO and dimension list DL 

of MDC to compute the dimension hierarchy. Here, for each dimension class, the 

dimension levels are computed. For all object properties of the dimension class, the 

algorithm finds the range class (Steps 3-4). Range class having 1:n relationship or 

Input : Ontology of the form O = {C,DP,OP}

Output : Dimension Hierarchy: DH 

1 Compute_Hierarchy(DLi)

2 for each class ci  DLi do

3 for all object properties ci.opi  OP do

4 cj:= Rng(ci.opi), ci C

5 if(cj!= null && cj!=FLi )then

6 if (ci.opi allValuesFrom  cj && maxCardinality = = 1) ||

  (ci.opi someValueFrom  cj && maxCardinality = = 1) 

then

7 Add cj to DHi;

8 end if

9 end if

10 end for

11 Print(DHi);

12 Compute_Hierarchy(DHi)

13 end foreach
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1:1 relationship with the dimension class is derived as level (Steps 5-9). Each level 

is recursively traversed to compute the dimension hierarchy.  

The conceptual model containing fact, measure, dimension, and 

corresponding dimension hierarchy is presented to the designer for further 

improvement. Based on the designer‟s choice the number of levels of a hierarchy is 

retained. 

3.2.5 Generation of Logical Schema  

The logical design involves in defining the multidimensional structure for the 

DW. Thus, in this step of the OntoMD approach the logical schema is derived from 

the conceptual model. Here, the logical schema is represented in ontology format as 

given in Figure 3.6.  The following transformation rules are followed to construct 

the DW Ontology (DWO) representing the logical schema: 

1. The concept fact is represented as a fact class.  

2. Measure concepts become measurable properties of the fact class.  

3. The attribute that relate the fact to dimension concepts becomes the 

object property.  

4. The attributes of fact concept are represented as data properties of the 

fact class. 

5. The dimension concepts are represented as separate dimension class.  

6. The attributes of each dimension concept become the data properties of 

the dimension class. 

7. For each level concept, a separate class is created with the properties. 

Similar to DWRO, the advantage of maintaining the logical schema as 

ontology is that it can support for future evolution of the DW. The DWO can be 

formally defined as given below: 
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DWO = {F,FP,M,D,DIP,RP,L,LP} where, 

- F is a set of OWL classes representing the fact; 

- FP is a set of data properties representing the fact properties; 

- M is a set of data properties representing the measures of the fact; 

- D is a set of OWL classes representing the dimensions; 

- DIP is a set of data properties representing the dimension properties; 

- RP is a set of object properties representing the relationship between 

facts and dimensions and between dimension and level; 

- L is a set of OWL classes representing the levels; 

- LP is a set of data properties representing the level properties. 

 

Figure 3.6 Data Warehouse Ontology 

3.2.6 Enrichment of the Logical Schema 

Before the logical schema is implemented at the physical level, it is further 

refined in order to satisfy the user needs. For the refinement of the logical schema, 

the dimensions may be de-normalized and unnecessary attributes can be removed as 

per the requirements. At this stage, the queries are written based on the 

requirements. In the refinement process, first the tables involved are extracted from 

the from clause of each query. These tables are then verified with the classes in the 
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DWO representing the logical schema. The following design rules are applied based 

on the mapping between the queries and the DWO concepts: 

1. When two or more classes in the DWO are mapped to a single table in 

the query then the classes are merged. 

i.e. if ci,cj  ti then merge (ci,cj) 

2. When a single class in the DWO is mapped to two or more tables in the 

query then split operation is performed over the class. 

i.e.  if ci  ti ,tj then split(ci) 

3. When no mapping exists for a class in the DWO to tables in the query 

then the corresponding class in DWO is dropped. 

i.e. if ¬ci  (ti) then drop(ci)  

4. When no mapping exists for a table in the query to classes in the DWO 

then the table is added as a new class to the DWO. 

i.e if ¬ti  (ci) then add(ti)  

Where, ci,cj ∈  C i.e classes in DWO and ti ∈  T i.e tables  in the queries. 

A similar operation for refining the attributes needs to be performed. For this 

the fields contained in the where clause of the queries and the table properties in the 

DWO are mapped as follows:  

1. When no mapping exists for a data property in the DWO to the attributes 

in the query, then the data property is dropped. 

i.e. if ¬dpi    (ai) then drop(dpi) 

2. When no mapping exists for an attribute in the query to the data 

properties in the DWO then the attribute is added to the DWO. 

i.e. if ¬ai    (dpi) then add(ai) 
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Where, dpi ∈  DP i.e data property in DWO and ai ∈  A i.e attribute in the 

queries. After refining DWO using the above operations, the final logical schema for 

the DW can be generated and represented using graphical notation. 

3.2.7 Physical Schema Construction  

The final step of OntoMD involves in transformation of logical to physical 

schema. The physical schema of the DW is defined as follows: 

PS = {T,A} Where, 

- T is a set of tables representing facts, dimensions and levels; 

- A is a set of attributes of  the table; 

- ti is a table in T; 

- ai is an attribute in A. 

 
 

Figure 3.7 Physical Schema Construction 

Input : DWO

Output : Relational Data Warehouse

1 for each class ci  DWO do

2 Create table ti from ci;

3 Create the primary key ai of ti;

4 end for

5 for each data property dpi DP do

6 cj := Dom(dpi);

7 Find table tj;

8 rng := Rng(dpi);

9 Create ai from dpi and add to tj;

10 end for 

11 for each object properties opi OP do

12 cj := Dom(opi);

13 Find table ti

14 ci := Rng (opi)

15 Find table ti

16 Add attribute ai as foreign key to tj

17 Add foreign key constraint to ai 

which references to primary key of ti

18 end for 
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From the DWO the physical schema is created in the underlying database 

using the steps defined in Figure 3.7. The notations used in this algorithm have been 

explained in section 3.2.1. A table is created for every class in the ontology, with the 

same name as the OWL class. An attribute representing the primary key is added 

into this table (Steps 1-4). For all data type properties the domain and the range 

classes are obtained. An attribute is created with the same name as the data type 

property. The attribute is added to the table which is mapped to the domain class, 

and the attribute data type is obtained from the range of the data type property (Steps 

5-10).  

For an object type property, a foreign key relationship is created between the 

table that maps the domain class and the table that maps the range class. An attribute 

is added to the table that maps the domain class and the foreign key constraint is 

added to this attribute as well (Steps 11-18).  

Thus, the OntoMD approach, starting from ontology representation of 

requirements and data source automatically derives the DW multidimensional 

schema following conceptual, logical and physical phases of the design. In order to 

enable the DW designer to construct the schema an OntoMD tool has been 

developed which is explained in the next section. 

3.3 THE ONTOMD TOOL  

This section presents the details about the proposed OntoMD tool for DW schema 

design. The OntoMD tool follows the steps of OntoMD approach systematically and 

generates the multidimensional schema effectively. This tool assists the designer to 

reconcile the knowledge in the requirements and the sources at the early stage of 

design. It also helps to overcome the difficulties in the design process and develop a 

DW schema in the underlying database following conceptual, logical and physical 

phases of the DW design. Various components of the OntoMD tool, technology and 

tools required for implementation of OntoMD tool and comparison with existing 

tools are discussed in this section. 
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3.3.1 Components  

Figure 3.8 represents the three main components of OntoMD tool which are 

explained below: 

Ontology Representation:  The two main inputs of the design process are 

the requirements and source which are represented in ontology format. The DWRO 

is constructed from requirement specification using Protégé (Ontology, 2007) which 

is an ontology editing tool. The local ontologies representing different sources are 

integrated to DSO using Prompt tool (Noy and Mason, 2003), ontology mapping and 

merging plug-in for Protégé (Ontology, 2007). Prompt and Protégé are included as 

plug-ins for the OntoMD tool. 

 

Figure 3.8 Components of OntoMD Tool 

Ontology Parsing: For performing Source analysis, the DSO is taken as 

input. Jena API is used for parsing the ontology and to derive the facts, measures, 

and dimensions based on FactDim algorithm given in section 3.2.2. The results are 

then displayed to the user. To reconcile the requirements and the source Wordnet 

matcher is used. WordNet (Howe, 2009) matching algorithms take the MDC from 
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requirements and source. The matched MDC are derived and displayed to the user. 

The designer can derive the different levels of a dimension based on his choice. To 

derive the dimension hierarchy Jena API is used for parsing the source ontology 

based on the DimHierarchy algorithm given in section 3.3.4. The conceptual schema 

elements with dimension hierarchy are displayed in the graphical notation.  

Schema Transformation: To derive the logical schema, this component 

takes the conceptual schema elements as input and represents the fact and dimension 

in DWO format. The refinement rules explained in section 3.2.6 applied to the 

logical schema are implemented using Java and Jena API. From the logical schema 

i.e. DWO, the relational schema is constructed in the underlying database using the 

physical schema construction steps given in section 3.2.7, which is implemented 

using Jena API. 

3.3.2 Implementation Support 

In this section, the general technologies, programming languages and 

development tools that are used during the implementation process are briefed 

below: 

 Net Beans 6.9.1 as development environment – IDE  

The complete development of the tool is realized inside Net Beans 6.9.1. The 

reason of choosing this development tool can be mainly justified by the fact 

that it has better support for drag and drop GUI development. 

 Java 

For implementation of OntoMD tool, Java programming language has been 

used. Java is a general-purpose, concurrent, class-based, object-

oriented computer programming language that is specifically designed to 

have as few implementation dependencies as possible. The main reason 

behind this choice is its platform-independent and portable nature. 
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 OWL - Web Ontology Language  

Inside the OntoMD tool, ontologies are chosen for representing the 

requirements and the data source. As the system needs to read and infer 

relations from the data source, OWL has been chosen for representing the 

ontology. The advantage of OWL is that it provides the system with the 

means of only representing information, but also for automatic processing of 

that information. 

 Jena API: 

For reading and parsing the ontology represented in OWL, JENA (Semantic 

Web Framework for Java) has been chosen for the OntoMD tool. JENA is 

open source technology and it represents a Java framework for building 

Semantic Web applications. It provides a Java programmatic environment 

for both creation and parsing of various Semantic Web Standards (RDF, 

RDFS, OWL etc.).   

 Protégé 

Protégé is a free, open-source platform that supports the creation, 

visualization, and manipulation of ontologies in various representation 

formats. It is added as a plug-in to OntoMD tool for editing the ontologies. 

 WordNet 

WordNet is a large lexical database of English. Nouns, verbs, adjectives and 

adverbs are grouped into sets of cognitive synonyms (synsets), each 

expressing a distinct concept. Synsets are interlinked by means of 

conceptual-semantic and lexical relations. It is used for finding out the 

syntactic and semantic relatedness between terms from requirements and 

data source ontologies. 
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3.3.3 Comparison of OntoMD with existing tools 

A comparison of OntoMD tool with existing tools for DW schema design is 

given in this section. The various features that are compared are represented in Table 

3.1. The main advantage of the proposed OntoMD tool is that it provides a thorough 

analysis of data source and a formal way of mapping requirements with it to derive 

the multidimensional model for the DW. The proposed tool provides a good level of 

automation covering different stages of the design. The relational schema for the 

DW is automatically constructed from the ontology representation. The user or 

designer suggestions are utilized while refining the requirements and choosing the 

dimension hierarchy.  

Table 3.1 Comparison of Design Tools 

Tool Features AMDO Tool GEM Tool OBDWD Tool OntoMD tool 

Source Analysis Yes No No Yes 

Requirements and 

Source Mapping 
No Yes Yes Yes 

Automation of each 

design Phase 
No No No Yes 

Relational Schema 

Construction 
No No Yes Yes 

User Suggestion No Yes No Yes 

 

Thus, the proposed tool based on the OntoMD approach improves the design 

task in a significant way. To illustrate the practical application and to evaluate the 

proposed OntoMD approach and the corresponding OntoMD tool, the Transaction 

Processing Council Benchmark H (TPC-H for short) has been chosen (Council, 

2008). For the given business domain, the DW schema is generated by applying the 

various steps of OntoMD approach which has been explained in the following case 

study.  
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3.4 CASE STUDY – TPC-H 

The TPC-H is a decision support benchmark developed by the TPP Council 

(Council, 2005). This benchmark was designed to represent a real-world information 

system and have been widely chosen for its industry-wide relevance. It consists of a 

set of tables and business oriented ad hoc queries. TPC-H does not represent the 

activity of any particular business segment, but rather any industry which, sell, or 

distribute a product worldwide, for example, food distribution, parts, suppliers, etc. 

(Council, 2005). The purpose of this benchmark is to reduce the diversity of 

operations found in an information analysis application, while retaining the 

application's essential performance characteristics.  

The TPC-H schema represents ordering and selling activity and it consists of 

tables such as Lineitem, Orders, Partsupp, Part, Supplier, Customer, etc. Various 

business analysis that can be performed over the TPC-H domain are profit and 

revenue analysis, pricing and promotions analysis, Supply and demand analysis etc.  

In this section, a detailed discussion is given for each step of OntoMD 

approach explained in section 3.2, that are applied to the case study. Based on the 

obtained results the proposed approach is evaluated, which has been provided in the 

next section. Following are the steps considered for the given TPC-H domain: 

1. Representation of Business Requirements and Data Source 

2. Analysis of the Data Source 

3. Reconciliation of Data Source and Requirements  

4. Derivation of Dimension Hierarchy 

5. Generation of Logical Schema 

6. Enrichment of the Logical Schema 
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3.4.1 Representation of Business Requirements and Data Source 

The requirement specification is derived from the high-level descriptions of 

the business questions available in TPC-H. A sample of the descriptions is given 

below: 

 Measure the revenue increase by eliminating various ranges of discounts 

in given product order quantity intervals shipped in a given year;  

 Compare revenues for certain product classes and suppliers in a certain 

region, grouped by more restrictive product classes and all years of 

orders;  

 Retrieve total revenue for lineorder transactions within a given region in 

a certain time period, grouped by customer nation, supplier nation and 

year; 

 Analyze the profit change in a certain time period, grouped by supplier 

nation and product category. 

For the proposed OntoMD approach it is assumed that the requirement 

specification is available, which has been already derived using goal-oriented 

requirement analysis. Figure 3.9  represents the ontology format of the requirement 

specification for profit and revenue analysis.  

The strategic goal of the given business domain is to “increase profit for 

items shipped”. In order to achieve this goal, the decision goals that are to be taken 

are “increase revenue for customer orders” and “increase revenue for parts sold”.  In 

order to satisfy the given decision goals, it is necessary to have information goals 

such as “study revenue based on customer and order date” and “study revenue based 

on parts sold, supplier and date”.   

Based on the information goals, different analysis needs to be performed, 

such as “analyze revenue based on customer”, “analyze revenue based on supplier”, 

and so on. Here, the context is “customer” and measure is “revenue” for the 
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information requirement “analyze revenue based on customer”. Similarly, for other 

information requirements, the contexts and measures can be obtained. 

 
 

Figure 3.9 Requirement Specification for TPC-H 
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Figure 3.10 Ontology for TPC-H schema 

Strategic goals, decision goals, information goals, and information 

requirements along with contexts and measures are represented as classes of the 

requirement ontology as explained in section 3.2.1. Once the requirements are 

specified, the next step is to analyze the data source to derive the MDC.  An 

integrated ontology representing the data sources is available for the TPC-H domain. 

The graphical representation of TPC-H schema ontology (Skoutas et al., 2009) is 

shown in Figure 3.10. 
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3.4.2 Analysis of the Data Source 

In order to perform the source analysis, the TPC-H schema ontology is taken 

as input and the MDC are automatically derived using the FactDim Algorithm given 

in section 3.2.2. The MDC such as facts, measures, and dimensions obtained after 

source analysis are given in Table 3.2.  

Table 3.2 MD Concepts Derived after Source Analysis 

 

 

 

 

Fact Measures Dimensions Fact Measures Dimensions

Orders

Orders_o_totpriceATRIBUT

Orders_o_orderkeyATRIBUT

Orders_o_orderstatusATRIBUT

Orders_o_shippriorityATRIBUT

Orders_o_orderpriorityATRIBUT

Orders_o_custkeyATRIBUT

- Individual Individual_i_idnumATRIBUT -

EUNation EUNation_eu_eukeyATRIBUT -
Parts

Parts_p_sizeATRIBUT

Part_p_retailpriceATRIBUT

Part_p_partkeyATRIBUT

-

LegalEntity LegalEntity_le_regnumATRIBUT - Partsupp

Partsupp_ps_suppkeyATRIBUT

Partsupp_ps_supplycostATRIBUT

Partsupp_ps_partkeyATRIBUT

Partssupp_ps_availqtyATRIBUT

Parts

LineItem

Lineitem_l_returnflagATRIUT

Lineitem_l_quantityATRIBUT

Lineitem_l_taxATRIBUT

Lineitem_l_linenumberATRIBUT

Lineitem_l_extendedpriceATRIBUT

Lineitem_l_suppkeyATRIBUT

Lineitem_l_partskeyATRIBUT

Lineitem_l_discountATRIBUT

Lineitem_l_orderkeyATRIBUT

Orders

Partsupp
Nation

Nation_n_nationkeyATRIBUT

Nation_n_regionkeyATRIBUT
Region

NonEuNation NonEUNation_neu_neukeyATRIBUT - Customer

Customer_c_nationkeyATRIBUT

Customer_c_phoneATRIBUT

Customer_c_accbalATRIBUT

Customer_c_cuskeyATRIBUT

Orders

Nation

Supplier

Supplier_s_phoneATRIBUT

Supplier_s_accbalATRIBUT

Supplier_s_suppkeyATRIBUT

Supplier_s_nationkeyATRIBUT

 

Nation 

Partsupp

Region Region_r_regionkeyATRIBUT Area

Area Area_a_areakeyATTRIBUT -
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By setting the threshold value greater than 0 for the ratio rnp in FactDim 

Algorithm, concepts with one or more numerical properties are derived as fact. For 

the TPC-H schema ontology 13 facts are obtained, such as Orders, LineItem, 

Supplier, etc. Concepts related to the fact with at-least and at-most one object 

property is derived as dimensions.  

For example, Orders and Partsupp are derived as dimensions for the fact 

LineItem.  After the source is analyzed, the MDC derived are presented to the 

designer. Here, it is observed that properties such as phone_number, return_flag, 

etc., are also included as measure concepts as they belong to numerical category. 

Hence, the results need to be filtered according to the requirements, as all the 

concepts may not be useful for constructing the DW schema. 

3.3.3 Reconciliation of Data Source and Requirements 

This step is used to reconcile the results obtained in the previous step with 

the requirements from requirement ontology. From Table 3.1, the fact LineItem 

consisting of the measures ExtendedPrice and Discount along with dimensions 

Orders and Partsupp matches with the measures ExtendedPrice and Discount given 

in the requirement ontology. The results after matching are shown in Table 3.3. 

Context such as Customer, Nation, Supplier, Part available in the requirements are 

not obtained in the filtered result. As these concepts also need to be included in the 

DW schema, the levels of each dimension are extracted in the next step.  

Table 3.3 Results after matching between requirement and source concepts 

 

 

Fact Measure Dimension

LineItem
Lineitem_l_extendedpriceATRIBUT

Lineitem_l_discountATRIBUT

Orders

Partsupp
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3.4.3 Derivation of Dimension Hierarchy 

For dimension Orders and Partsupp, the computed hierarchy is shown in 

Figure 3.11. Customer class having n:1 relationship with Orders dimension becomes 

the first level. By means of recursively traversing Customer class, Nation is derived 

as the second level for Orders dimension. In a similar manner, the levels of Partsupp 

dimension are obtained.  At this stage, the designer can choose the levels to be 

included in the conceptual schema based on the requirements. As the requirement 

contains Customer, Nation, for Orders dimension and Part, Supplier, Nation and 

Region for Partsupp dimension, these levels are considered for the DW schema 

representation. The resulting conceptual schema is shown in Figure 3.10. Here, 

LineItem is the fact concept, ExtendedPrice and Discount are the measure of the 

fact, and Orders and Partsupp along with the levels forms the dimension hierarchy.  

 

Figure 3.11 Conceptual Schema Representation 

 

 

 

Fact:LineItem
Measure: 
ExtendedPrice
Measure:Discount

Dimension: 
Orders

Level: 
Customer

Level: 
Nation

Dimension: 
Partsupp

Level: 
Part

Level: 
Supplier

Level: 
Nation

Level: 
Region
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3.4.4 Generation of Logical Schema 

Following conceptual representation, the logical schema is derived using the 

steps given in section 3.2.4. Figure 3.12 represents the generated DWO representing 

the logical schema. 

 

Figure 3.12 Data Warehouse Ontology for Logical Schema 

3.4.5 Enrichment of the Logical Schema 

In order to refine the logical schema, the queries based on the information 

requirements are used. For the case study, the Star Schema Benchmark (SSB) 

queries (O‟Neil et al., 2007) are used. SSB is a variation of the TPC-H benchmark, 

which models the DW for the TPC-H schema. For the TPC-H example, the mapping 

between logical schema tables to query tables is shown in Figure 3.13. Here, the 

LineItem and Orders table from logical schema are mapped to Line Order table 

LINEITEM (FACT)

Line_l_parsupptkey (FK)
Line_l_orderkey (FK)
Line_l_tax
Line_l_extendedprice
Line_l_quantity
Line_l_discount
Line_l_commitdate
Line_l_returnflag
Line_l_shipmode
Line_l_linestatus
Line_l_shipinstuct
Line_l_receiptdate
Line_l_shipdate

NATION 
(LEVEL)

Nation_n_nationkey(PK)
Nation_n_comment

PART 
(LEVEL)

Part_p_partkey (PK)
Part_p_name
Parts_p_size
Part_p_mfgr
Part_p_category
Part_p_brand
Part_p_color
Part_p_type
Part_p_container
Part_p_retailprice

ORDERS
(DIMENSION) 

Order_o_orderkey (PK)
Order_o_cuskey (FK)
Order_o_orderpriority
Order_o_totprice
Order_o_orderdate
Order_o_shippriority
Order_o_orderstatus
Order_o_commnet

SUPPLIER
(LEVEL)

Supplier_s_suppkey (PK)
Supplier_s_nationkey 
(FK)
Supplier_s_name
Supplier_s_address
Supplier_s_phone
Supplier_s_accbal
Supplier_s_comment
Supplier_s_nation
Supplier_s_region

CUSTOMER
(LEVEL) 

Customer_c_cuskey (PK)
Customer_c_nationkey (FK)
Customer_c_mktsegment
Customer_c_name
Customer_c_address
Customer_c_phone
Customer_c_accbal
Customer_c_comment
Customer_c_nation
Customer_c_region

PARTSUPP
(DIMENSION)

Partsupp_ps_partsuppkey (PK)
Partsupp_ps_partkey (FK)
Partsupp_ps_partkey (PK)
Partsupp_ps_supplycost
Partsupp_ps_comment 
Partsupp_ps_availqty
Partsupp_ps_suppkey

REGION 
(LEVEL)

Region_r_regionkey(PK)
Region_r_name
Region_r_comment

NATION 
(LEVEL)

Nation_n_nationkey (PK)
Nation_n_regionkey(FK)
Nation_n_comment
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contained in the query. Thus, they can be merged to form a single table. The table 

Partsupp in the logical schema is not available in the query. Hence, Partsupp can be 

dropped while constructing the final DW schema. The table Date, involved in the 

query and not available in the logical schema can be kept as a separate dimension 

table in the final schema. Similar steps can be followed for other mappings. The 

designer may also need to filter the attributes, as the final schema does not involve 

all the attributes available. Like table matching, attributes matching can be 

performed to derive the required result. 

 

Figure 3.13 Mapping between Tables in Logical Schema and Queries  

  After the logical schema is refined using the above operations, the final 

logical schema is generated. Figure 3.14 shows the DWO representing the logical 

schema produced by the proposed approach. After merging LineItem and Orders 

table, the Line Order is obtained as the fact table. Similarly, Customer, Part, 

Supplier, and Date become the dimension table.  The primary key and foreign keys 

are represented for each table of the logical schema. The physical schema can be 

LineItem

Order

Cutomer

Customer_Nation

Partsupp

Part

Supplier

Supplier_Nation

Supplier_Region

LineOrder

Date

Customer

Part

Supplier

Tables in DW 

Schema

Tables in 

Queries
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automatically constructed from DWO using the steps given in section 3.2.7 and can 

be evaluated for its quality as discussed in the following section. 

 

Figure 3.14 Logical Schema for Data Warehouse 

 

3.5 RESULTS AND DISCUSSION 

This section discusses about the experimental setup for evaluating the 

effectiveness of the proposed approach along with the schema quality parameters 

used for the evaluation. Further, the results obtained with the proposed OntoMD 

proposed is compared with other approaches such as AMDO (Romero and Abelló, 

2010), GEM (Romero et al., 2011) and OBDW (Selma et al., 2012). 

 

LINEORDER (FACT)

LineOrder_l_linenumber (PK)
LineOrder_l_suppkey (FK)
LineOrder_l_orderkey (FK)
LineOrder_o_custkey (FK)
LineOrder_l_partskey (FK)
LineOrder_l_tax
LineOrder_l_extendedprice
LineOrder_l_quantity
LineOrder_l_discount
LineOrder_l_commitdate
LineOrder_l_returnflag
LineOrder_l_shipmode
LineOrder_l_linestatus
LineOrder_l_shipinstuct
LineOrder_l_receiptdate
LineOrder_l_shipdate
LineOrder_ps_supplycost
LineOrder_o_orderpriority
LineOrder_o_totprice
LineOrder_o_orderdate
LineOrder_o_shippriority
LineOrder_o_orderstatus
LineOrder_o_commnet

DATE 

(DIMENSION)

Date_d_datekey (PK)
Date_d_date
Date_d_week
Date_d_month
Date_d_year

PART 

(DIMENSION)

Part_p_partkey (PK)
Part_p_name
Parts_p_size
Part_p_mfgr
Part_p_category
Part_p_brand
Part_p_color
Part_p_type
Part_p_container
Part_p_retailprice

CUSTOMER

(DIMENSION) 

Customer_c_cuskey (PK)
Customer_c_mktsegment
Customer_c_name
Customer_c_address
Customer_c_phone
Customer_c_accbal
Customer_c_comment
Customer_c_nation
Customer_c_region

SUPPLIER  

(DIMENSION)

Supplier_s_suppkey (PK)
Supplier_s_name
Supplier_s_address
Supplier_s_phone
Supplier_s_accbal
Supplier_s_comment
Supplier_s_nation
Supplier_s_region
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3.5.1 Experimental Setup 

To evaluate the proposed approach in terms schema quality three different 

domains, TPC-H, EU-Car Rental (Frias et al., 2003), and LUMB (Guo et al., 2005) 

are used. TPC-H benchmark has been explained in section 3.3.  EU-Car Rental 

provides an integrated data source schema, and a set of business requirements for the 

car rental domain. The supporting schema contains information, such as, 

rental_agreement, customer, branch, reservation etc. The LUBM is composed of 

several data sources and a global schema available in an ontology format on a 

university's domain with concepts such as Undergraduate Student, Assistant 

Professor etc. and 14 test queries. The DW schemas for these three domains are 

generated using the OntoMD tool.  

In order to validate the schema generated, the physical schema is constructed 

in the Oracle11G DBMS. In order to execute the queries the DW is populated using 

the data generator available for each domain. 

3.5.2 Schema Quality Metrics 

The effectiveness of the proposed approach is evaluated in terms of the quality 

of the output schema generated. Following are the parameters used to verify the DW 

schema quality (Vassiliadis, 2000): 

1. Correctness: Final inspection of DW schema for each entity and its 

corresponding ones in the sources. 

                    Correctness = 
           

   
       …... (3. ) 

Where, TE is the total number of entities and NUM is the number of 

unmatched entities. 

2. Completeness: Final inspection of DW schema for useful entities in the 

sources, not represented in the DW schema. 
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                    Completeness = 
          

   
       …... (3.2) 

Where, TE is the total number of entities and NNU is the number of non-useful 

entities. 

3. Minimality: Final inspection of DW schema for undesired redundant 

information. 

                     Minimality = 
         

   
       …... (3.3) 

Where, TE is the total number of entities and NR is the number of redundant 

entities. 

4. Traceability: Inspection of DW schema for inability to cover user 

requirements. 

                    Traceability = 
          

   
        …... (3.4) 

Where, TE is the total number of entities and NNR is the number of entities not 

covered the requirements. 

5. Interpretability: Mapping of conceptual to logical entities and from logical 

to physical entities. 

                   Interpretability = 
          

   
        …... (3.5) 

Where, TE is the total number of entities and NNT is the number of non-

traceable entities. 

3.5.3 Result Analysis 

The values of the given schema quality parameters are computed for the 

generated DW schema for the three given domains. The results are compared for the 

proposed OntoMD approach with the existing approaches. Table 3.4 provides the 

obtained results for each quality metric.  
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Table 3.4 Results for schema quality generated by ontology based 

approaches 

Schema  Quality Metrics Domains AMDO GEM OBDW OntoMD 

Correctness % 

TPC-H 85 89 90 100 

CAR-RENTAL 86 87 89 100 

LUMB 84 85 90 100 

Completeness % 

TPC-H 78 83 85 98 

CAR-RENTAL 75 82 87 98 

LUMB 75 83 85 97 

Minimality % 

TPC-H 82 85 90 100 

CAR-RENTAL 80 86 89 100 

LUMB 80 85 89 100 

Traceability % 

TPC-H 75 86 100 100 

CAR-RENTAL 73 84 100 100 

LUMB 75 86 100 100 

Interpretability % 

TPC-H 72 80 87 95 

CAR-RENTAL 70 82 88 96 

LUMB 70 80 88 95 

Figure 3.15 presents the comparison of correctness metrics of ontology-

based approaches for the three domains. A formal reconciliation of requirements and 

data source has been carried out by the proposed OntoMD approach. Hence, the 

correctness achieved is 100% as the DW schema entities produced have a mapping 

with the corresponding source schema entities for all three domains. 

 

Figure 3.15 Correctness Analysis 
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The useful entity in the source schema not present in the DW schema for 

TPC-H domain is customer type in customer dimension, hence the achieved 

completeness is 98%. From the Figure 3.16 it was observed that the results for 

completeness metrics for other domains are also better when compared to the 

existing approaches. 

 

Figure 3.16 Completeness Analysis 

Figure 3.17 analyses the effectiveness of the approaches in terms of 

minimizing the redundant entities in the output schema. The proposed approach 

performs filtering of the required MDC from the source. Hence, the DW schema 

produced by OntoMD does not contain any redundant entities and thus the 

minimality achieved is 100% for the given domains.  
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Figure 3.17 Minimality Analysis 

From the Figure 3.18 it has been observed that the OBDW and the proposed 

OntoMD achieved traceability as 100% for the three domains. The reason is that 

these two approaches successfully execute the given set of queries, which in turn 

satisfy the given set of requirements.  

 

Figure 3.18 Traceability Analysis 
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In the proposed OntoMD design approach, most of the entities from 

conceptual to logical and, logical to physical schema could be traced and hence it 

could achieve 92% as interpretability for TPC-H domain. This result is 

comparatively high as shown in Figure 3.19, when compared to existing approaches 

for the given domains. 

 

Figure 3.19 Interpretability Analysis 

From the above results it has been observed that the OBDW approach and 

proposed work provide good results compared to other approaches. The proposed 

work outperforms OBDW and other approaches w.r.t correctness, completeness and 

minimality, and interpretability. The following inference is made from the Figure 

3.15 to Figure 3.19: 

i. The proposed OntoMD achieve 10% more result for correctness when 

compared to OBDW, 13% more than GEM and 15% more result than 

AMDO. 

ii. For completeness OntoMD produce 13% better results compared to 

OBDW, 16% more than GEM and 22% more result than AMDO. 
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iii. In case of minimality OntoMD  achieve 10% more result when compared 

to OBDW, 53% more than GEM and 19% more result than AMDO. 

iv. OntoMD and OBDW achieve same results for traceability. Whereas, 

OntoMD produce 14% more result when compared to GEM and 25% 

more than AMDO.  

v. For interpretability OntoMD produce 13% better results compared to 

OBDW, 16% more than GEM and 22% more result than AMDO. 

3.6    SUMMARY 

In this chapter the proposed ontology-based approach for the DW schema design 

has been described. In this approach, utilizing semantic web tools such as ontology, 

a conceptual design phase has been used, which aimed at reconciliation of MDC 

present in requirements and data source in a formal way. The resulting conceptual 

schema was then mapped into a logical multidimensional schema, followed by an 

enrichment of this schema using SQL queries. Based on the proposed 

implementation, a tool called OntoMD was developed to facilitate the designer for 

the design task. The design method was applied to a case study. In order to validate 

the proposal, the physical schema was implemented using TPC-H benchmark and 

other domains. By comparing the proposed work with existing approaches, it was 

inferred that the OntoMD produced a good level of automation of the design task. It 

helps to reduce the burden of designer to perform manual reconciliation and 

redesign involved during the design process. Moreover, the quality of the output 

generated by the proposed approach outperforms the existing ontological 

approaches. In the next chapter, the focus is on the impact of changes in data source 

and business requirements of the DW schema and its dependent entities.  
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CHAPTER 4 

ONTOLOGICAL APPROACH TO HANDLE DATA 

WAREHOUSE SCHEMA EVOLUTION 

 

4.1 INTRODUCTION 

DWs tend to evolve, due to changes in data sources and business requirements 

of users. Both these changes result in DW schema evolution. These changes are 

handled either by just updating it in the DW structure (Benitez-Guerrero et al., 2004; 

Curino et al., 2009), or it is developed as a new version (Bebel et al., 2006;  

Sahpaski et al., 2009).  

Existing approaches in DW schema evolution concentrate on source changes 

and few over requirements changes. As these changes are updated at the physical 

level of the DW schema, it may induce high maintenance costs and complex OLAP 

server administration. Moreover, any change in the DW schema structure may have 

an impact on its dependent entities. Existing research over DW evolution do not 

focus on the impact analysis. In this research an ontological approach to automate 

the evolution (OntoEvol) of the DW schema has been proposed. This method assists 

the DW designer to handle evolution and also analyze the change impact, based on 

which decision can be made to carry out the changes at the physical level.  

Section 4.2 of this chapter provides the details about the proposed approach 

along with the steps involved. The automatic adaptation part of the proposed system 

has been detailed in section 4.3. Application of the OntoEvol approach to a case 

study has been explained in section 4.4. Section 4.5 provides the evaluation of the 

proposed approach and comparison with existing approaches. Summary of the 

chapter is provided in section 4.6. 
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4.2 OntoEvol: PROPOSED ONTOLOGICAL EVOLUTION 

APPROACH  

This section describes the formal approach that has been developed for 

managing the DW schema evolution using ontology. When data source and 

requirements evolves the DW schema need to be updated in order to provide up-to-

date information to users. Before making structural changes to the existing DW 

physical schema the proposed work provides a method for updating the conceptual 

representation of the schema. Hence, the data source schema, requirements and DW 

schema are represented in ontology format. Given information about the changes in 

the data source or requirements, the proposed OntoEvol approach produces the 

updated version of the DW schema at the conceptual level, and based on the impact 

of change the DW physical schema is constructed. 

 

Figure 4.1 OntoEvol System 

Figure 4.1 represents the steps followed in the proposed approach. By making 

use of the ontological representation of the inputs, automation (semi- automation) of 

the evolution task has been achieved. In the schema evolution part of the OntoEvol 

approach, the changes that occurred at the data source or requirements are extracted 
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from the corresponding ontology representation. The type of change and the element 

affected by the change are derived and the change is propagated to the DW schema. 

As the DW schema changes, it affects the dependent entities such as the mapping 

between data source and DW schema, queries and views.  

In the automatic adaptation part of the proposed system the impact of a given 

change on the dependent entities is analyzed. The impact of a change is obtained by 

calculating the cost of mapping adjustment, query rewriting and view rewriting. 

Based on the total cost obtained the DW administrator can make a decision to 

perform the changes at the physical level. Finally, from the DW ontology the new 

version of the DW physical schema is constructed automatically in the underlying 

database. The automatic adaptation part of the proposed system has been discussed 

in section 4.3. Following are the steps of the schema evolution part of the proposed 

approach which has been detailed in this section: 

1. Input Formalization 

2. Definition of Evolution Operators 

3. Change Information Extraction 

4. Change Identification 

5. Change Propagation 

4.2.1 Input Formalization 

This step presents the formalization of inputs of the proposed method in order to 

standardize and to ensure the correctness of the DW evolution process. OWL 

ontology is used to describe the semantics of different entities involved in the 

methodology. The reason for using OWL as the utility, instead of XML, UML or 

others, is that OWL supports automatic processing of information represented in the 

ontology. Thus, the data source, requirements and the DW schema are described in 

the OWL ontology format. As explained in section 3.2.1 of Chapter 3 these entities 

are formally represented using ontology concepts as given below: 
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The data source ontology (DSO) is the collection of classes, data type 

properties, and object properties which is defined as follows: 

DSO = {C, DP, OP} where, 

- C is a set of OWL classes; 

- DP is a set of data properties; 

- OP is a set of object properties.  

The DW requirement ontology (DWRO) can be defined as: 

DWRO = {S, I, D, IR, BP, M, CN} where, 

- S is a set of OWL classes representing the strategic goals; 

- I is a set of OWL classes representing the information goals; 

- D is a set of OWL classes representing the decision goals; 

- IR is a set of OWL classes representing the information requirements; 

- BP is a set of OWL classes representing business process; 

- ME is a set of OWL classes representing measures; 

- CN is a set of OWL classes representing the contexts. 

The graphical representation of the DWRO is given in Figure 4.2. 

 

Figure 4.2 Data Warehouse Requirement Ontology 
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The formal and graphical representation of DW ontology (DWO) explained in 

section 3.2.5 of chapter 3 used to represent the DW schema has been reproduced 

below. The DWO can be formally defined as given below: 

DWO = {F, FP, M, D, DIP, RP, L, LP}, where, 

- F is a set of OWL classes representing the fact; 

- FP is a set of data properties representing the fact properties; 

- M is a set of data properties representing the measures of the fact; 

- D is a set of OWL classes representing the dimensions; 

- DIP is a set of data properties representing the dimension properties; 

- RP is a set of object properties representing the relationship between facts 

and dimensions and between dimension and level; 

- L is a set of OWL classes representing the levels; 

- LP is a set of data properties representing the level properties. 

The graphical representation of the DWO is given in Figure 4.3. 

 
 

Figure 4.3 Data Warehouse Ontology 

4.2.2 Definition of Evolution Operators  

The proposed approach defines a set of evolution operators to represent the type 

of change that occurs over the DW schema.  The three possible type of changes that 
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occur over the DW schema are: addition, deletion and rename. The 

multidimensional elements of DW such as Fact, Dimension, Measures, Levels, Fact 

Properties, Dimension Properties etc., are subject to change. As the proposed system 

uses DWO to represent a DW schema when new changes are carried over the 

ontology, it requires additional changes to be executed. For example, addition of a 

new dimension i.e., dimension class to the DWO requires addition of its data 

property and object property. The type of change, element changed and additional 

changes are given in Table 4.1. 

Table 4.1 Evolution Operators 

Type of 

Change 
DW Schema Elements 

Equivalent 

Ontology Concept 

Changed 

Elementary 

Changes 

Addition 

Table  

(Fact, Dimension) 
Class 

Add Data Property 

Add Object Property 

Attribute 

(Measure, Descriptive) 
Data Property 

Add Property 

Domain 

Add Property Range 

Relationship 

(Primary Key, Foreign 

Key) 

Object Property 

Add Property 

Domain 

Add Property Range 

Deletion 

Table  

(Fact, Dimension) 
Class 

Delete Data Property 

Delete Object 

Property 

Attribute 

(Measure, Descriptive) 
Data Property 

Delete Property 

Domain 

Delete Property 

Range 

Relationship 

(Primary Key, Foreign 

Key) 

Object Property 

Delete Property 

Domain 

Delete Property 

Range 

Rename 

Table  

(Fact, Dimension) 
Class 

Rename Class  

 (If required) 

Attribute 

(Measure, Descriptive) 
Data Property 

Rename Data 

Property 

(If required) 

Relationship 

(Primary Key, Foreign 

Key) 

Object Property 

Rename Object 

Property 

 (If required) 
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4.2.3 Change Information Extraction 

The data source schema may be modified, for example, due to the addition of a 

relation or deletion of an attribute. The changes in the original data source schema 

are carried over the DSO to enable the evolution task. This is done by means of 

ontology editing tool such as protégé (Ontology, 2007). Similarly, the requirements 

of the DW may change, for example, the addition of a new business analysis 

perspective i.e. a new dimension. As the proposed approach maintains the 

requirements in ontology format, the changes can be easily incorporated over the 

DWRO using protégé (Ontology, 2007).  

The proposed system begins by extracting any change that has recently occurred 

over either DSO or the DWRO. The OntoEvol system uses Change Annotation 

Ontology (ChAO) (Ontology, 2007) which acts as a log to capture the changes that 

has happened to the ontology. The concept changed (name of the concept), concept 

type (multidimensional element type) and change type (addition, deletion or rename) 

are retrieved from ChAO.   

4.2.4 Change Identification 

This step involves the identification of the multidimensional type of an element 

when the change type is addition. When a new concept is added to the DSO or 

DWRO, before it is propagated over the DWO, its multidimensional type has to be 

identified. For example, when a new class is added to the DSO, it may act as a fact, 

dimension or level in the DW schema. According to the designer's choice before the 

new class is added to the DWO, its multidimensional type is identified using the 

proposed algorithm FindClassType given in Figure 4.4. The notations used in this 

algorithm are given in section 4.2.1. 
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Figure 4.4 Algorithm FindClassType 

The algorithm takes DSO, the new concept changed and the multidimensional 

lists (MDList) containing FactList, DimList and LevelList of DWO as inputs. First, 

the algorithm finds whether the class ci is a fact, for this the range class of ci is 

obtained. If the range class exists in DSO and it belongs to DimList, ci is likely to be 

a fact. The data properties of ci are derived and checked whether it contains enough 

numerical properties to qualify as a fact. If ci has n:1 relationship with range class, 

then it is identified as fact (steps 2-15). To find whether ci is a dimension, the 

FindClassType (DSO, ConceptChanged, MDList)

1 for all ci C do

2 if ci == ConceptChanged then

3 if (Rng(ci.opi)!= null && Rng(ci.opi)  DimensionList))then

4 for all data properties ci .dpi  DP do

5 rng := Rng(ci .dpi), rng  DTxml 

6 if isnumeric(rng) then
7 tn++;

8 end if

9 end for

10 if tn>threshold then

11 cj:= Rng(ci.opi), ci  C

12 if (ci.opi allValueFrom  cj && maxCardinality = = 1) then
13 ci =FactClass

14 end if

15 endif

16 else if (Domain(ci.opi)! =null && Domain(ci.opi) FactList) then
17 cj= Domain(ci.opi)

18 if (cj.opi allValueFrom ci && maxCardinality = = 1) then
19 ci =DimensionClass

20 end if

21 else if (Domain(ci.opi)! =null && Domain(ci.opi)  (DimList ||  

LevelList)) then
22 ci = LevelClass

23 endif

24 end if

25 end if

26 end if

27 end for
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domain class of ci is obtained. If the domain class cj belongs to FactList then ci is 

likely to be a dimension. If the domain class ci has 1:n relationship with fact then ci 

is identified as a dimension (steps 16-20). To find whether ci is a level, the domain 

class of ci is obtained. If the domain class cj belongs to DimList or LevelList then ci 

is identified as a level (steps 17-23). 

The next algorithm FindDPType given in Figure 4.5 checks whether the concept 

added is a data property and identifies it as a fact property, dimension property or 

level property. It takes DSO, the new property added and the MDList such as 

FactList, DimList and LevelList of DWO as inputs. From the DSO for the newly 

added data property dpi, its domain d is obtained (Step 2-3). If d is in FactList then 

the concept added is identified as fact property (Steps 4-5). If d is in DimList then it 

is identified as dimension property (Steps 6-7). If d belongs to LevelList then the 

concept is identified as level property (Steps 8-9).  

 

Figure 4.5 Algorithm FindDPType 

Finally, to identify an object property that is added, the proposed algorithm 

FindOPType is used. This algorithm checks whether the concept added is an object 

FindDPType (DSO,ConceptChanged, MDList)

1 for all dpi  DP do

2 if dpi == ConceptChanged then

3 d= Domain(dpi)

4 if dFactList then

5 dpi=FactProperty

6 else if d=  DimList then

7 dpi=DimensionProperty

8 else

9 dpi=LevelProperty

10 end if

11 end if

12 end if

13 end if

14 end for
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property and identifies it as a fact relation, dimension relation or a level relation. The 

domain d and range r of the newly added object property opi is obtained. If d is a 

fact belonging to FactList and r is a dimension belonging to DimList then concept 

added is identified as fact-dimension relation. If d is a dimension and r is a fact then 

the concept added is identified as dimension-fact relation. If d is a dimension and r 

is a level, then the concept added is identified as dimension-level relation. The steps 

of FindOPType are given in Figure 4.6. 

 

Figure 4.6 Algorithm FindOPType 

4.2.5 Change Propagation 

Once the changes are extracted and the type of change is identified, the next 

step involves in propagating the changes to the DW schema. Depending on the type 

of change three algorithms are proposed to apply changes over the DWO. In these 

algorithms, various notations are used which has been explained in section 4.2.1.  

FindOPType (DSO,ConceptChanged, MDList)

1 for all opi OP do

2 if opi == ConceptChangedt hen

3 d=Domain(opi)

4 r= Rng(opi)

5 if (d (FactList) && r ( DimensionList) then

6 opi=FactDiemensionRelation

7 else if (d ( DimensionList) && r (FactList) then

8 opi=DiemensionFactRelation

9 else if (d ( DimensionList) && r (LevelList) then

10 opi=DiemensionLevelRelation

11 end if

12 end if

13 end if

14 end if

15 end for
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If the type of change is addition, the multidimensional element is identified 

using the previous step. For propagating the addition change, the proposed algorithm 

ApplyChangeAddition given in Figure 4.7 is used. In this algorithm, if the concept 

type is a class, then the list of data properties and object properties are retrieved for 

the class. The new class is added to the DWO and for each data property its range 

and domain are included. Similarly, for each object property its range and domain 

are included (Steps 1-6). If the concept type is a data property, the new data property 

is added to the corresponding class in DWO and its range and domain are included 

(Steps 7-10). If the concept type is an object property, the new object property is 

added to the class in DWO and its range and domain are included accordingly (Steps 

11-14). 

  

Figure 4.7 Algorithm ApplyChangeAddition 

ApplyChangeAddition(DWO, Concept, ConceptType)

1 if Concept _Type ==Class then

2 c=Concept

3 Add cC in O

4 Get DP and OP

5 AddDP(c,DP)

6 AddOP(c,OP)

7 else if Concept _Type ==DataProperty then

8 dp= Concept

9 Get  c of dp

10 AddDP(c,dp)

11 else if Concept _Type ==ObjectProperty then

12 op= Concept

13 Get  c of op

14 AddDP(c,OP)

15 end if

16 end if

17 end if

18 AddDP(c,dp)

19 Add ci .dpDP

20 Set Rng(c.dp) 

21 Set Dom(c.dp)

22 end

23 AddOP(c,op)

24 Add c.op OP

25 Set Rng(c.op)

26 Set Dom(c.op)

27 end
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For propagating the deletion change, the proposed ApplyChangeDeletion 

algorithm given in Figure 4.8 is used. If the concept type is a class, then the class is 

deleted from DWO. The corresponding data properties and object properties of the 

class are also deleted (Steps 1-10). If the concept type is data property or object 

property, it can be directly deleted from the given class (Steps 11-20).  

 

Figure 4.8 Algorithm ApplyChangeDeletion 

For propagating the rename change, the proposed algorithm 

ApplyChangeRename given in Figure 4.9 is used. If the concept type is a class, the 

old concept is deleted and the new concept name is included in the ontology (Steps 

1-7). Similar step is followed if the concept type is a data property or an object 

property (Steps 8-21). 

ApplyChangeDeletion(DWO, Concept, Concept _Type)

1 if Concept _Type ==Class then

2 c=Concept

3 Delete c C in O

4 for all data properties c.dpi DP do

5 Delete  c.dpi

6 end for

7 for all object properties ci.opi OP do

8 Delete  c.opi

9 end for

10 end if

11 if Concept _Type == DataProperty then

12 dp= Concept

13 Get  c of dp

14 Delete  c.dp

15 end if

16 if Concept _Type == ObjectProperty then

17 op= Concept

18 Get  c of op

19 Delete  c.op

20 end if
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Figure 4.9 Algorithm ApplyChangeRename 

4.3 PROPOSED AUTOMATIC ADAPTATION 

The important part of the OntoEvol system is to find the dependent entities that 

are affected by the DW schema change and adapt them accordingly. As DW involves 

a complex structure, there are different entities available which are dependent on 

each other. Hence, changes in a particular entity may affect others. One such entity is 

the mapping that exists between the data source and DW schema, through which the 

DW is populated.  

When data source schema modifies its structure the DW schema also gets 

updated, thus, the mapping between them becomes invalid. Queries and views which 

are based on the DW schema are the other entities which become invalid due to 

ApplyChangeRename(DWO, OldConcept,NewConcept, Concept _Type)

1 if Concept _Type ==Class then

2 for all ci C do

3 if ci == OldConcept then

4 Add NewConcept

5 Delete ci

6 end if

7 end for

8 else if Concept _Type ==DataProperty then

9 for all dpi DP do

10 if dpi == OldConcept then

11 Add NewConcept

12 Delete dpi

13 end if

14 end for

15 else if Concept _Type ==ObjectProperty then

16 for all opi OP do

17 if opi == OldConcept then

18 Add NewConcept

19 Delete opi

20 end if

21 end for

22 end if

23 end if

24 end if
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changes. In order to analyze the impact of a recent change and to maintain the DW 

system in a consistent state, it is necessary to adapt these entities.  

The proposed system maintains a mapping between the DSO and DWO. When 

the mapping becomes invalid due to recent changes the system performs mapping 

adjustments between them. The queries which worked over the previous schema may 

not work for the new DW schema. Hence, a query rewriting is performed. Finally, 

the views maintained for the schema also becomes invalid, hence the views 

definitions are updated automatically. For each of the dependent entities discussed, 

the cost of updating them is computed. Based on the adaptation cost, the DW 

administrator can make an analysis of the impact of different changes over the DW 

schema and create the physical schema as required. 

4.3.1 Mapping Adjustments 

 The UpdateMapping Algorithm given in Figure 4.10 has been proposed to 

perform the mapping adjustments. The changed concepts are obtained for DSO and 

DWO from the log entries. ChAO which acts as a log is used for storing the changes 

happening in the ontologies. Mappings are then established only for the changed 

resources. The previous mappings between these two ontologies are updated at the 

completion of the algorithm. DSO, DWO, mapping file and changed concepts are 

given as input to the algorithm. It produces the updated mapping file together with 

the number of entities affected and corrected as the output.  

In the algorithm, first the changed concepts are obtained from log and read 

into CH for DSO and DWO (steps 1-6). If the type of change is addition, the 

similarities between the changed resources are computed for DSO and DWO (steps 

6-10). If the change type is deletion, the concepts are searched in the mapping file 

and the corresponding mapping is removed (steps 11-13).  

 

 



97 

 

For a renamed concept the mapping entity is obtained and the concepts are 

renamed using information from the log, i.e., the old concept name and its mapping 

are deleted and the new concept name along with the mapping is added (steps 14-16). 

Finally the mapping file is updated with new mapping information. The total no. of 

entities affected and corrected is computed.  

 

Figure 4.10 Algorithm UpdateMapping 

Algorithm UpdateMapping

Input: Ontologies DSO and DWO for mapping reconciliation, Ontology change 

information from ChAO of both ontologies, i.e., CH1  for DSO and CH2  for 

DWO.

Output: Updated Mapping, Number of mappings affected and corrected.

1 if CH ∩ CH. DSO.ChAO.NewChange then

2 CH1 = CH.ChAO

3 end if

4 if CH ∩ CH.DWO.ChAO.NewChange then

5 CH2 = CH.ChAO

6 end if

7 if ChAO.NewChange.ChangeType = ADDITION   then

8 NewMap ←Similarity(CH1,CH2)

9 Execute.update(MappingsFile, NewMap)

10 Count=Count+1

11 else if ChAO.NewChange.ChangeType = DELETION   then

12 Execute.update(MappingsFile, DeleteMap(CH1, CH2))

13 Count=Count+1

14 else if ChAO.NewChange.ChangeType = RENAME   then

15 Execute.update(MappingsFile, RenameMap(CH1_Old, CH2_Old, 

CH1_New, CH2_New))

16 Count=Count+1

17 else

18 Print(“No Change”)

19 end if

20 end if

21 end if
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4.3.2 Query Rewriting 

 As the DW schema has evolved the queries imposed previously need to be 

rewritten to work over the new DW schema. The proposed QueryRewriting 

algorithm given in Figure 4.11 is used by the OntoEvol to rewrite the queries. From 

the DWO, for a particular change, the concept changed, concept type and change 

type are retrieved. These are given as input to the algorithm. It produces the 

rewritten query, number of queries affected and corrected as the output. 

If the concept type is a class and change type is addition, then the concept 

changed (fact, dimension or level) is updated in the FROM clause of the query 

(Steps 1-5). If the concept type is a class and change type is deletion or rename, then 

the FROM clause of the query is modified accordingly (Steps 6-9). If the concept 

type is a data property and change type is addition, then the concept changed (fact 

property, dimension property or level property) is updated in select, where, groupby 

or orderby clause of the query (Steps 14-17). If the concept type is a data property 

and change type is deletion or rename, then the concept changed (fact property, 

dimension property or level property) is updated in select, where, groupby or 

orderby clause of the query (Steps 15-22). 

4.3.3 View Rewriting 

A view is a virtual table in the DW defined by a query. It is mainly used 

when data security is required and when data redundancy is to be kept to the 

minimum while maintaining data security. When the underlying data source and 

DW changes its schema structure the views may become invalid. Hence, one 

important issue is to maintain the view consistency upon any structural changes. In 

order to find the number views affected and to rewrite the view definition, the steps 

given for query rewriting is applied. The changes are then automatically propagated 

to the DWO. 
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Figure 4.11 Algorithm QueryRewrite 

 

 

 

QueryRewrite(DWO, ConceptChanged, Concept Type, ChangeType,QueryWorkload)

1 if Concept Type ==Class then

2 c = ConceptChanged

3 if  ChangeType = =Addition then

4 Get suggestion from user

5 RewriteQuery in FROM clause with c

6 else if  (ChangeType = = Deletion | ChangeType = = Rename) then

7 RewriteQuery in FROM clause with c

8 end if

9 end if

10 Count++ 

11 else if Concept Type ==DataProperty then

12 dp = ConceptChanged

13 d= Domain(dp)

14 if  ChangeType = =Addition then

15 Get suggestion from user

16 SearchQuery for d

17 RewriteQuery in SELECT |WHERE |GROUPBY | ORDERBY clause

 with dp

18 else if  (ChangeType = = Deletion | ChangeType = = Rename) then

19 SearchQuery for d

20 RewriteQuery in SELECT |WHERE |GROUPBY clause with dp

21 end if

22 end if

23 Count++

24 end if

25 end if
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4.3.4 Impact Analysis 

 The impact of a particular set of changes imposed on the DW schema is 

obtained by computing the adaptation cost of the dependent entities. In the proposed 

approach the mapping, queries and views are adapted automatically. The automatic 

adaptation cost is given as a sum of number of changes propagated on the DW 

schema and cost of manually discovering and adjusting entities that escaped the 

automation. The details of the adaptation cost have been discussed in section 4.5.2. 

Based on the adaptation cost the DWA may decide to construct the DW schema at 

the physical level. 

4.3.5 Data Warehouse Schema Construction 

The final step of OntoEvol system involves in the transformation of DWO to 

physical schema in the underlying database. For the physical schema construction of 

the DW the steps defined in section 3.2.7 of Chapter 3 are considered. 

  Thus, the Schema Evolution and Automatic adaptation part of the 

proposed OntoEvol approach effectively propagate and adapt to the given changes in 

requirements or the data source. For the illustration and evaluation of the proposed 

OntoEvol approach the TPC-H case study has been used, which is explained in the 

following section. 

4.4 CASE STUDY: TPC-H 

The details of TPC-H benchmark has been discussed in section 3.4 of 

Chapter 3. The various steps involved in the OntoEvol approach explained in section 

4.3 are applied to the case study. Using the results obtained the proposed approach is 

evaluated, which has been given in the next section.  

For the case study, the data source schema, DW requirements and the DW 

schema represented in ontology format are taken as inputs. For data source schema 

and DW requirements, the DSO and DWRO based on TPC-H benchmark discussed 
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in section 3.2.1 of Chapter 3 are considered. The DW schema is taken from the 

DWO which has been derived from the proposed OntoMD approach discussed in 

section 3.2.5 of Chapter 3. Any change that happened in the DSO or DWRO are 

retrieved from the log and represented as change set. If the change type is addition, 

for individual change in the change set, its multidimensional type is identified. 

Based on the changes over DWO, any dependent entities affected are automatically 

adapted by the OntoEvol approach. Following are the steps applied for the case 

study: 

1. Representation of Inputs 

2. Change Identification 

3. Change Propagation 

4. Adaptation of dependent entities 

4.4.1 Representation of Inputs 

Once the inputs, data source schema, DW requirements and DW schema are 

available in ontology format, the proposed evolution system begins by considering a 

recent change either in the DSO or DWRO. For example, in the TPC-H domain, to 

increase the profit for the items shipped, a new decision goal “Increase Revenue 

through promotions” has been added in the requirements and its information goal is 

identified as “Study Revenue by Customer Promotions” and information 

requirements as “Analyze Revenue based on Customer for a given Promotions”.  

The context for the new information requirement is “Customer” and “Promotions”. 

The measures for analyzing Revenue are “ExtendedPrice” and “Discount”. This new 

requirement is added to the DWRO which is shown in Figure 4.12. 
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As new requirement has been included for the business analysis, the data 

source is verified for the existence of this information. In addition to the above 

changes in the requirements, the other change that has occurred over the DSO is 

given in Table 4.2.  

Table 4.2 Change Set 

Data Source Change 
Data Source  Ontology  

Change 
Entity Changed 

ADDITION 

Table Class Promotion 

Attribute Data Property Promotion _p_id 

Attribute Data Property Promotion _p_name 

Attribute Data Property Promotion _p_category 

Attribute Data Property Promotion _p_subcategory 

Attribute Data Property Promotion _p_cost 

Attribute Data Property Promotion _p_begdate 

Attribute Data Property Promotion _p_enddate 

Attribute Data Property Promotion _p_total 

RENAME 

Attribute Data Property OldName:Customer_c_comment ,  

NewName:Customer_c_feedback 

Attribute Data Property OldName:Part_p_category, 

 NewName: Part_p_model 

DELETION 

Attribute Data Property Customer_c_mktsegment 

Attribute Data Property Part_p_container 

 

4.4.2 Change Identification 

This step identifies the multidimensional type when the change type is 

addition. The algorithms FindClassType and FindDPType explained in section 4.2.4 

are applied to derive the multidimensional type for the class “Promotions” and its 

data properties. As the class “Promotions” added to DSO has 1:n relationship with 

existing fact “LineItem”, it is identified as a dimension. Thus, the properties of the 

class “Promotions” becomes the descriptive data properties of the dimension 

“Promotions” according to algorithm FindDPType. Table 4.3 gives the details of 

multidimensional type for the added entities that are to be propagated to the DWO. 
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Table 4.3 Multidimensional Type 

Data Source Ontology 

Change 

Entity Changed Multidimensional Type 

Class Promotions Dimension Class 

Data Property Promotion _p_id Dimension Data Property 

Data Property Promotion _p_name Dimension Data Property 

Data Property Promotion _p_category Dimension Data Property 

Data Property Promotion _p_subcategory Dimension Data Property 

Data Property Promotion _p_cost Dimension Data Property 

Data Property Promotion _p_begdate Dimension Data Property 

Data Property Promotion _p_enddate Dimension Data Property 

Data Property Promotion _p_total Dimension Data Property 

 

 Table 4.4 DWO Changed Concepts 

 

4.4.3 Change Propagation 

Table 4.4 presents the changes that are propagated over the DWO. For 

adding the dimension class “Promotions”, its domain, range and data properties are 

DW Ontology Change Change Applied 

ADDITION 

Dimension Class Add Promotions Add Domain:   Add Range: 

Dimension Data Property Add Promotion _p_id Add Domain:  Promotion Add Range: Integer 

Dimension Data Property Add Promotion _p_name Add Domain:  Promotion Add Range: String 

Dimension Data Property Add Promotion _p_category Add Domain:  Promotion Add Range: String 

Dimension Data Property Add Promotion _p_subcategory  Add Domain:  Promotion Add Range: String 

Dimension Data Property Add Promotion _p_cost Add Domain:  Promotion Add Range: Double 

Dimension Data Property Add Promotion _p_begdate Add Domain:  Promotion Add Range: Date 

Dimension Data Property Add Promotion _p_enddate Add Domain:  Promotion Add Range: Date 

Dimension Data Property Add Promotion _p_total Add Domain:  Promotion Add Range: Double 

 

 

 

RENAME 

 

Dimension Data Property Delete Name:Customer_c_comment ,  

Add Name:Customer_c_feedback 

- - 

Dimension Data Property Delete Name:Part_p_category, 

 Add Name: Part_p_model 

- - 

DELETION 

Dimension Data Property Customer_c_mktsegment Delete Domain:  Customer Delete Range: String 

Dimension Data Property Part_p_container Delete Domain:  Part Delete Range: String 



105 

 

added. For adding a dimension data property, for example, “Promotion  p_id”, its 

corresponding domain and range are included in the DWO. For renaming the data 

property of Customer dimension, for example, “Customer_c_comment”, its old 

name is deleted and new name is added as “Customer_c_feedback”. And, for 

deleting the data property of Customer dimension, for example, 

“Customer_c_mktsegment”, its domain and range are deleted from the DWO. Figure 

4.13 represents the final DWO after the changes are applied.  

 

Figure 4.13 Data Warehouse Schema Ontology 

 

LINEORDER (FACT)
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LineOrder_l_suppkey (FK)
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4.4.4 Adaptation of dependent entities 

This step involves in adapting the dependent entities, after the changes in the 

change set given in Table 4.2 has been successfully propagated over DWO. The 

Customer and Part dimension classes are affected by the changes and a new 

dimension class Promotions has been included in DWO.  

i. Mapping Adjustments 

In order to update the mapping between DSO and DWO, the proposed 

algorithm UpdataMapping is used by the OntoEvol approach. Figure 4.14 represents 

the mapping rewritten for the Customer dimension class. As the data property 

Mktsegment has been removed from DSO and from DWO, the corresponding 

mappings between these concepts are removed from the mapping document. The 

data property Comment in the DSO is renamed as Feedback which has been updated 

in the DWO. Hence, the mapping between Comment from DSO to DWO is deleted 

and a new mapping for the data property Feedback is added between DSO to DWO. 

Similar steps are applied for other changes involved in the change set. 

ii. Query and View Rewriting 

The SSB (O’Neil et. al., 2007) queries and views are used in order to verify 

query and view rewriting performed by the OntoEvol approach.  For example, in the 

change set given in Table 4.2, the data property p_category from Part dimension 

class is renamed as p_model. Using the QueryRewrite Algorithm the select, where, 

groupby and orderby clause in the queries are searched. As the Query 2.1, Query 4.2 

and Query 4.3 contain the data property p_category it is renamed as p_model. 

Similarly, View 4 and View 5 are affected by the addition, deletion and rename 

operations given in the change set. 
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Figure 4.14 Mapping Adjustments 

Figure 4.15 and Figure 4.16 represents a sample query and view rewriting 

that has been executed by the proposed adaptation system. In Query 4.3 shown in 

Figure 4.15, the p_container attribute has been removed, the p_category attribute 

has been renamed as p_model and a new attribute pr_category of Promotions table 

has been added. In View 5, shown in Figure 4.16, the p_category attribute has been 

renamed as p_model. In Table 4.5 the details about the query and view affected and 

corrected for individual change has been given. 
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Figure 4.15 Query Rewriting 

 

Figure 4.16 View Rewriting 

 

Q4.3 select d_year, s_city, p_container, sum

(lo_revenue - lo_supplycost) as profit 

from date, customer, supplier, part, lineorder 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_partkey = p_partkey 

and lo_orderdate = d_datekey 

and c_region = 'AMERICA' 

and s_nation = 'UNITED STATES' 

and (d_year = 1997 or d_year = 1998) 

and p_category = 'MFGR#14' 

group by d_year, s_city, p_container order by 

d_year, s_city, p_container

Q4.3 select d_year, s_city, p_container pr_category, 

sum(lo_revenue - lo_supplycost) as profit 

from date, customer, supplier, part, promotions, 

lineorder 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_partkey = p_partkey 

and lo_orderdate = d_datekey 

and lo_promoid=pr_promoid

and c_region = 'AMERICA' 

and s_nation = 'UNITED STATES' 

and (d_year = 1997 or d_year = 1998) 

and p_model = 'MFGR#14' 

group by d_year, s_city, p_container, pr_category 

order by d_year, s_city, p_container, pr_category

Before Query 

Rewriting
After Query 

Rewriting

V5. create view profit(d_year, s_nation, c_region, 

s_region,   p_category, profit) as

select d_year, s_nation, c_region, s_region, 

p_category, sum(lo_revenue - lo_supplycost) as profit 

from date, customer, supplier, part, lineorder 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_partkey = p_partkey 

and lo_orderdate = d_datekey 

group by d_year, s_nation, c_region, s_region 

,p_category order by d_year, s_nation, p_category

V5. create view profit(d_year, s_nation, c_region, 

s_region,   p_category, profit) as

select d_year, s_nation, c_region, s_region, p_model, 

sum(lo_revenue - lo_supplycost) as profit 

from date, customer, supplier, part, lineorder 

where lo_custkey = c_custkey 

and lo_suppkey = s_suppkey 

and lo_partkey = p_partkey 

and lo_orderdate = d_datekey 

group by d_year, s_nation, c_region, s_region 

,p_model order by d_year, s_nation, p_model

Before View 

Rewriting

After View 

Rewriting
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Table 4.5 Query and View Adaptation 

Data Source 

Ontology 

Change 

Entity Changed Query Affected 

and Corrected 

View Affected 

and Corrected 

ADDITION 

Class Promotion Q4.1, Q4.2 and 

Q4.3 

V4,V5 

Data Property Promotion _pr_id Q4.1, Q4.2 and 

Q4.3 

- 

Data Property Promotion _pr_name  - 

Data Property Promotion _pr_category Q4.1, Q4.2 and 

Q4.3 

V4,V5 

Data Property Promotion _pr_subcategory - - 

Data Property Promotion _pr_cost - V4,V5 

Data Property Promotion _pr_begdate -  

Data Property Promotion _pr_enddate -  

Data Property Promotion _pr_total - V4,V5 

RENAME 

Data Property OldName:Customer_c_comment 

,  

NewName:Customer_c_feedback 

- - 

Data Property OldName:Part_p_category, 

 NewName: Part_p_model 

Q2.1, Q4.2 and 

Q4.3 

V4,V5 

DELETION 

Data Property Customer_c_mktsegment Q4.2 - 

Data Property Part_p_container Q4.3 - 

 

4.5 RESULTS AND DISCUSSION 

In this section the experimental setup for the evaluation of the proposed 

approach is provided. The evaluation is carried out in terms of its effectiveness to 

correctly propagate the changes over the DW schema and its efficiency to adapt the 

dependent entities. Further, a comparative analysis of the proposed OntoEvol 

approach and existing approaches has been given. 

4.5.1 Experimental Setup 

In order to analyze the effectiveness, different change set is considered by the 

proposed approach. Each change set consists of elementary changes. One such 

change set is given in Table 4.2 and its propagation over the DWO has been 

explained in the case study. The set of evolution operations or changes that are 
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considered in the TPC-H source schema includes, addition of attributes and table, 

renaming of attributes and table, and, deletion of attributes and table. A total of 143 

evolution operations were encountered and the distribution of occurrence per kind of 

operation is shown in Figure 4.17. 

 

Figure 4.17 Distribution of occurrence per kind of evolution operations 

In Table 4.6, the results are summarized for different kinds of events. It is 

observed that most of the activities are affected by attribute additions and renaming, 

since these kinds of operations are the most common in the given scenario. Most 

important, it is observed that the proposed evolution approach can effectively adapt 

activities to the examined kinds of operations.  

Table 4.6 Affected and Corrected Operations 

Evolution Event 

Type 
Total Affected Total Corrected 

Attribute Addition 50 49 

Attribute Deletion 20 20 

Attribute Rename 52 51 

Table Addition 4 4 

Table Deletion 2 2 

Table Rename 15 14 
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4.5.2 Effectiveness Analysis 

The effectiveness of OntoEvol approach is derived using the following 

metrics: 

              
                            

                           
 

Figure 4.18 shows the comparison of no. of attributes affected and that are 

corrected by using the proposed approach. Here, it is observed that the system 

achieved 98% effectiveness for attribute addition, 100% for attribute deletion and 

98% for attribute rename. 

 

Figure 4.18 No. of Attributes Affected and Corrected Status 

The comparison of no. of tables affected and corrected by using the proposed 

approach is given in Figure 4.19. From the figure it is observed that the system 

achieved 100% effectiveness for table addition, 100% for table deletion and 93% for 

table rename. 
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Figure 4.19 No. of Tables Affected and Corrected Status 

Figure 4.20 shows the comparison of the proposed approach with existing 

evolution approaches in terms of its effectiveness to correctly propagate the changes 

over the DW schema. From the Figure 4.20, it is observed that the OntoEvol 

approach achieved 98% of effectiveness when compared to existing DWE 

(Solodovnikova and Niedrite, 2011) and MVTDW (Oueslati and Akaichi et al., 

2011) approaches which produced 80% and 85% effectiveness respectively, for the 

evolution task. 

 

Figure 4.20 Comparison of Different Evolution Approaches 
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4.5.2 Efficiency Analysis 

In order to evaluate the efficiency of the proposed OntoEvol approach the 

cost of manually adapting the dependent entities for different change set is compared 

with the proposed ontological approach. The manual effort comprises of detection, 

inspection and where necessary the rewriting of affected entities by an event.  

Human effort for manual handling of an entity e, for a change c, is expressed as:  

…... (4.1) 

Where, 

AX = No. of Mapping/Query/View entity e, affected per change c, that is 

manually detected. 

RX = No. of Mapping/Query/View entity e, affected per change c, which 

must be manually adjusted. 

For a set of changes C, and a set of manually adapted entities E, the overall 

cost of manual adaptation is given as: 

…... (4.2) 

 

Automatic handling of the dependent entities using the proposed ontological 

approach is quantified as a sum of no. of changes imposed on the DW schema CS, 

and cost of manually discovering and adjusting entities AMC that escape the 

automation Ed. The latter cost AMC is expressed as: 

…... (4.3) 

Thus, the overall cost of automated adaptation is given by,  

…... (4.4) 
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For example, the Table 4.2 represents the sample change set CS1, whose 

adaptation cost has been given in Table 4.6 along with the adaptation cost for other 

change sets. The total no. of changes CS, propagated over the DW schema is 13 for 

CS1. For each change, i.e. evolution operation, the no. of mapping, query and view 

entities affected are computed. Here, TAX is total mapping affected, which is 13 and 

TRX is total mapping rewritten manually, which is 15 for the entire CS1. Hence, the 

total manual effort MC is computed as 28. Thus, the overall cost of manual 

adaptation, CMA is 28. In order to compute automatic adaptation cost by using the 

OntoEvol system, CS is added with the no. of entities that escaped automation Ed, 

which is 2 for the given mapping. Thus, the overall cost of automatic adaptation 

CAA for the given mapping is 15. Similarly, the values of CMA and CAA can be 

computed for query and view entities for the change set CS1. In order to compute 

the efficiency of the OntoEvol system, various change sets are imposed over the DW 

schema and the adaptation cost computed are given in Table 4.7. 

Where, 

TAX – Total no. of Mapping/Query/View entities affected per change c, by 

event an  e, which is manually detected. 

TRX – Total no. of Mapping/Query/View per change c, which must be 

manually re-written. 

TMC – Total human effort for manual handling of schema evolution for a 

change c, over an entity e. 

CS – No. of changes imposed on the DW schema. 

AMC – Cost for automated handling of schema evolution for a change c, 

over an entity e. 

CMA – The overall cost of manual adaptation to the change c,  

for an entity e.   

CAA – The overall cost of automatic adaptation to the change c,  

for an entity e.   
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Table 4.7 Impact Analysis 

Change 

Set 

Entity Manual and Automatic Adaptation Cost 

TAX TRX TMC CS AMC CMA CAA 

CS1 
Mapping 13 15 28 13 2 28 15 

Query 14 14 28 13 3 28 16 

View 10 10 20 13 2 20 15 

CS2 
Mapping 15 19 34 15 2 34 17 

Query 12 12 24 15 0 24 15 

View 9 9 18 15 0 18 15 

CS3 
Mapping 18 20 40 14 2 38 16 

Query 12 12 24 14 2 24 16 

View 10 10 20 14 0 20 14 

CS4 
Mapping 16 20 36 15 0 36 15 

Query 13 13 26 15 0 26 15 

View 10 10 20 15 0 20 15 

CS5 
Mapping 14 16 30 12 4 30 16 

Query 10 10 20 12 0 20 12 

View 10 10 20 12 2 20 14 

CS6 
Mapping 20 20 40 17 2 40 19 

Query 14 14 28 17 3 28 20 

View 10 10 20 17 2 20 10 

CS7 
Mapping 15 17 32 13 0 32 13 

Query 12 12 24 13 0 24 13 

View 10 10 20 13 2 20 15 

CS8 
Mapping 18 20 40 17 2 38 19 

Query 10 10 20 17 0 20 17 

View 10 10 20 17 0 20 17 

CS9 
Mapping 12 12 24 12 0 24 12 

Query 8 8 16 12 0 16 12 

View 8 8 16 12 0 16 12 

CS10 
Mapping 14 16 30 15 2 30 17 

Query 9 9 18 15 0 18 15 

View 10 10 20 15 2 20 17 
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The following Figure 4.21 graphically represents the impact of evolution on 

mapping. A comparative analysis is made between the existing manual adaptation 

approach and automated adaptations using the proposed OntoEvol approach for 

various change sets. It has been observed that mapping adjustments using the 

ontological approach resulted in an average of 53% minimal cost compared to the 

manual adaptation. 

 

 Figure 4.21 Comparision of Manual and Automated  

Adaptation Cost for Mapping 

 

Figure 4.22 Comparision of Manual and Automated  
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The Figure 4.22 graphically represents the impact of evolution on queries 

with a comparison of manual adaptation cost and automated adaptation cost for 

various change sets. It has been observed that query rewriting using the ontological 

approach resulted in an average of 67% minimal cost compared to the existing 

manual adaptation. 

The following Figure 4.23 graphically shows the impact of evolution on 

views with a comparative cost of manual adaptation approach and automated 

adaptation using the proposed ontological approach for various change sets. It has 

been observed that view rewriting using proposed approach resulted in an average of 

74% minimal cost compared to the manual adaptation. 

 

Figure 4.23 Comparision of Manual and Automated  

Adaptation Cost for Views 

From the above Figures 4.21 to 4.23, it is found that the automated cost 

(CAA) of adaptation to Mapping, Query and View produced by the OntoEvol 

system is comparatively less than that of the manual cost of adaptation (CMA) used 

by the existing schema evolution approaches. 
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Using the obtained results it has been inferred that the proposed approach 

achieved better results when compared to the existing evolution approaches.  

i. The proposed OntoEvol system achieved 13% better results in effectively 

propagating the given set of changes when compared to the existing 

MVTDW (Oueslati and Akaichi et al., 2011) approach and 17% better than 

DWE (Solodovnikova and Niedrite, 2011) approach. 

ii. In case of efficiency to adapt the dependent entities such as mapping, 

queries and view, for the given change sets, the proposed OntoEvol system 

provided 62% minimal cost when compared to the manual adaptation. 

4.6 SUMMARY 

The DW is considered as the core component of the modern decision support 

systems. As the information sources and business requirements from which the DW 

is derived, frequently change, it may have its impact on the DW schema. The 

existing works on DW evolution, such as schema versioning and schema evolution 

mainly concentrate on changing the schema structure at the physical level. The 

proposed approach handles evolution of the DW schema at the ontological level. 

The ontological representation of the data source, requirements and DW schema 

helps to provide automation of evolution task. The impact that the evolution has 

brought over the DW schema is analyzed. Based on the adaptation cost the DW 

designer is left with the choice of carrying the changes at the existing physical 

schema of the DW or create a new version of the schema from ontology.  

 Compared to existing approaches, the effectiveness of the proposed 

approach is better in handling the changes over the DW schema. Moreover, the 

proposed ontological approach provides minimal adaptation cost when compared to 

the manual adaptation of the dependent entities. Thus, current chapter focused on 

managing the schema when requirements or the data source evolved. Another issue 

in the DW design is to manage the schema for performance optimization which is 

the focus of the next chapter. 
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CHAPTER 5 

OPTIMIZATION OF DATA WAREHOUSE SCHEMA  

PARTITIONING TECHNIQUES 

 

5.1 INTRODUCTION 

Partitioning is a design technique applied to the DW schema for dividing a single 

table into two or more partitions (fragments), thus improving query performance and 

optimizing resource utilization. As the DWA can manage only a limited set of 

fragments in the underlying database it is essential to select only optimal set of 

fragments during the design, which can reduce the overall query execution cost. The 

existing approaches on DW schema partitioning adopted evolutionary approaches 

such as genetic algorithm, as fragmentation selection is an optimization problem 

involving large search space (Boukhalfa et al., 2009, Dimovski et al., 2011 and 

Bellatreche, 2012).  

 Apart from fragment selection, there are several issues that exist during 

partitioning, which has not been much addressed in the literature. The dimension 

table selection is an important factor in order to referentially partition a fact table. 

Moreover, when the given business scenario contains a big dimension, involving 

large number of attributes, then the appropriate fragmentation technique needs to be 

applied to partition the dimension. As the fragmentation selection involves a 

complex problem of selecting optimal fragments from the given set of large 

fragments, the existing evolutionary algorithms need to be improved for better 

results.  Further, the existing partitions need to be managed when the business 

analysis need changes, as the query imposed over the DW may evolve. The 

proposed approach on DW schema partitioning focus on solving the discussed 

issues. 
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This chapter presents the details of the proposed optimized referential 

partitioning (ORP) approach. Section 5.2 presents the different steps involved in 

ORP and discusses each of them in detail. To handle evolving queries the partition 

management of the ORP approach has been discussed in section 5.3. To apply ORP 

approach SSB case study has been used which is explained in section 5.4. The 

details of evaluation carried out for the proposed approach and the comparative 

study with existing methods have been discussed in section 5.5. Summary of the 

chapter has been provided in section 5.6.  

5.2 ORP: PROPOSED OPTIMIZED REFERENTIAL 

PARTITIONING APPROACH 

In this section the proposed ORP approach has been described in detail. A 

DW modeled as a star schema is considered for partitioning, which consists of set of 

D dimension tables and a fact table F, which need to be referentially partitioned in 

order to minimize the cost of a given set of queries Q. The DWA can maintain a 

maximum of N number of fragments in the underlying database. The proposed 

method offers the DW designer to partition a fact table with respect to the chosen 

dimension table(s). The steps involved in the proposed referential partitioning are 

given in Figure 5.1.  

In order to automate the partitioning process, the ORP approach uses 

ontology representation of the DW schema. Using the DW schema ontology (DWO) 

and the query workload Q, the first step involves in the selection of appropriate 

dimension and its attributes. With the chosen dimension and its attributes a fragment 

schema is constructed. This fragment schema, having integer representation for the 

values of the attributes forms one of the possible solutions for fragmentation. From 

this initial solution several other solutions are generated, and the optimal set of 

fragments is obtained by the proposed hybrid algorithm. Based on optimal fragment 

schema the dimension table(s) is horizontally fragmented. The fact table is 

fragmented with reference to the fragments of dimension tables. For a DW schema 

involving big dimension, the table is vertically partitioned by applying attribute 
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clustering and for each vertical fragment generated, the above discussed horizontal 

partitioning is applied. 

 

Figure 5.1 Proposed ORP Approach 

5.2.1 Dimension Table and Attribute Selection 

The DW schema may involve a large number of dimension tables. When the 

number of dimension table fragments is more, the number of fact fragments 

becomes large. Hence, the choice of dimension table and its attributes has an impact 

on the number of fragments that is generated. To select the appropriate number of 

dimension tables and attributes for partitioning, a dim_selection matrix and an 

attr_selection matrix are constructed in this step. The format of the dim_selection 

matrix is shown in Table 5.1. The rows of the matrix represent the dimension tables 

and the column represents the parameters which are used as the selection criteria for 

the dimensions. The three parameters used in the proposed approach are: frequency, 

attributes and size.  
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Table 5.1 Dim_Selection Matrix 

Parameters 

 

Dimension 

Frequency Attributes Size 

D1 n n-3 n-1 

D2 n-1 n n 

D3 n-2 n-2 n-3 

Dn n-3 n-1 n-2 

 

The frequently used table when partitioned reduces the query execution time. 

Hence, the first parameter is the frequency of the dimension table, which is obtained 

from the query workload. The second parameter is the attributes, which represent 

the total number of attributes of a dimension table in the query workload Q. 

Choosing a dimension table with large number of attributes in the queries for 

partitioning, has an impact on the query execution. The third parameter is the size of 

the dimension table. Partitioning a large table would reduce the query execution 

time. Based on the values of each parameter, the individual dimension is assigned a 

score. Dimension having higher values for a parameter gets high score, i.e. n, which 

is the total number of dimensions available. These scores occupy the cells of the 

dim_selection matrix. The rows of the matrix are added to calculate the total score 

for a dimension. Using this matrix the DWA can select one or more dimensions 

having high scores for partitioning process. 

The three parameter values explained above are obtained automatically using 

the proposed algorithm DimSelection which is given in Figure 5.2. The algorithm 

takes DWO representing the DW schema and the query workload Q as inputs. It 

produces the values of the three parameters for each dimension as the output. For 

each class in DWO, the algorithm first checks if it is a dimension  

class (Steps 1-2). 
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Figure 5.2 Dim_Selection Algorithm 

Next, for each of the dimension class the values of the parameters are 

obtained. In order to calculate the frequency value the dimension class name is 

searched in the from clause of each query belonging to the query workload Q, and its 

total count is obtained (Steps 3-9). To find the number of attributes, i.e. attributes 

value, each data property of the dimension class is searched in the select, where, 

groupby and orderby clause of the queries (Steps 10-18). The size of the dimension 

is obtained from the underlying database where the physical table is stored (Steps 

19-21).  

DimSelection(DWO, MDList, Q)

1 for all ci  C do

2 if ciDimensionList then

3 //find table_frequency 

4 for each qj in Q

5 if ci in FROM clause then
6 Fcount++;

7 end if

8 end for
9 ci .frequency=Fcount;

10 //find attr_frequency

11 for all ci.dpi DP do

12 for each qj in Q

13 if  ci.dpi in SELECT |WHERE |GROUPBY | ORDERBY 

clause then
14  Acount++;

15 end if

16 end for

17 end for
18  ci .attributes=Acount;

19 // find table_size

20 Connect to DB

21 ci.size =Execute Query( select avg_row_len*num_rows from
 dba_tables)

22 end if

23 end for
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After the selection of dimension, the attributes for partitioning are derived by 

constructing the attr_selection matrix. For each of the dimension tables selected 

using dim_selection matrix, the attr_selection matrix is constructed as given in 

Table 5.2. The rows of the matrix represent the attributes of the chosen dimension 

and columns represent each query. If a particular attribute exists in the select, where, 

groupby or oderby clause of the queries, the cell value is represented as 1 or 0 

otherwise. Using this matrix the DWA can choose one or more attribute present in 

the queries as partitioning attribute.  

Table 5.2 Attribute_Selection Matrix 

Queries 

 

Attributes 

Q1 Q2 Q3 

A1 1 0 1 

A2 0 1 0 

A3 1 1 0 

An 0 1 1 

 

5.2.2 Fragment Schema Construction 

Once the dimension table and its attributes are chosen for partitioning using 

the previous step, the next step involves the construction of the fragment schema. 

This schema represents the partition of the selected dimension table. The Table 5.3 

shows the format of the fragment schema. The rows of the schema represent the 

attributes and columns represent the attribute’s domain values. Based on the domain 

values of a particular attribute, the cells are filled with integer numbers from 1, 2, 

3… N. The reason for using integer representation for the fragment schema is that, it 

is given as input for the proposed hybrid evolutionary algorithm to select optimal 

fragments. 

 

 



125 

 

Table 5.3 Fragment Schema 

Values 

 

Attributes 

Domain 

A1 1 2 - 

A2 1 2 3 

A3 1 2 3 

An 1 2 - 

 

 

Figure 5.3 Fragment Construction Algorithm 

 

FragmentConstruction (DWO, Selected_Dim, Selected_attr)

1 for all ci   C do

2 if ci  Selected_Dim then

3 for all ci.dpi  DP do

4 if ci.dpi  Selected_attr then

5 rng := Rng(dpi);

6 if (rng=“Integer”) | (rng=“Date”) then

7 Get predicates of dpi;

8 N=count(predicates);

9 else

10 Get values of dpi  from ti;

11 N=count(values);

12 end if

13 k=1;

14 for m 1 to N

15 Fragment[n][m]=k++;

16 end for

17 n++;

18 end if

19 end for

20  end if

21 end for
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The fragment schema is constructed using the proposed algorithm given in Figure 

5.3. The DWO, list of dimensions and a list of attributes selected are given as input 

to the algorithm. It produces the fragment schema as the output. For each class in the 

DWO, if the class is the selected dimension, its data properties representing the 

attributes of the dimension are retrieved (Steps 1-3). For each of the data property, 

the range is obtained from the DWO (Steps 4-5). If the range value is “integer” or 

“date” then the predicates of the data property (attribute) is obtained from the user 

(Steps 6-8). A predicate represents a pure boolean expression over the attributes of a 

relation and constants of an attribute’s domain. For other range values such as 

“string”, the values are obtained from its corresponding table in the underlying 

database (Steps 9-12). The total number of values of the data property is computed. 

Based on the total count, the cells of the fragment schema are represented with 

integer numbers (Steps 13-17). 

5.2.3 Optimal Fragment Selection  

Depending on the attributes chosen for partitioning the number of partitions 

or fragments might be very large. If mi is the number of fragments of the dimension 

table Di, and g is the total number of dimension tables fragmented, then the total 

number of fragments N of the fact table is: 

 

As the DWA can manage only a limited set of fragments in the underlying 

database it is essential to select only optimal set of fragments which can reduce the 

overall query execution cost. The cost of a query is computed based on the number 

of disk I/Os. As fragmentation selection is an optimization problem involving large 

search space the existing works adopted heuristic approaches such as genetic 

algorithm and hill climbing algorithm. Hill climbing is an optimization technique 

which belongs to the family of local search (Selman et al., 2006). Genetic algorithms 

(GAs) are a general methodology for searching a discrete solution space in a way 

that is similar to the process of natural selection procedure in biological systems 
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(Mitchell 1998). Hill climbing search that uses only one solution can easily miss 

some promising areas of the search space, and thus it may get stuck in a local 

optimum. And genetic algorithms show lower solution quality with increasing 

problem size. In the proposed work on referential partitioning a hybrid genetic and 

hill climbing algorithm has been proposed in order to overcome the limitation of 

individual algorithms and improve the final solution. 

 

Figure 5.4 GAHC Algorithm 

 

1 Initialize the parameters:
2 population_size, max_generation;

3 Generate initial population P randomly with generation=1;
4 Apply HillClimbing for initial population

5 while generation <= max_generation do

6 Create new population P1;
7 Use a fitness function F to evaluate each individual in P;

8 for i=1 to population_size
9 Select two parents from P;
10 Perform crossover;
11 Perform mutation;
12 Place the new offspring into P1;

13 end for

14 for i=1 population_size
15 Apply HillClimbing for new population P1 
16 Compute the fitness value for the new population P1

17 end for

18 Merge new offspring from P1 with old offspring from P

19 Select the fittest offspring and pace into P1 such that Size(P1) =N
20 P= P1;
21 generation =generation + 1;

22 end while



128 

 

The proposed approach combines the principles of genetic and hill climbing 

algorithms where genetic algorithm is efficient at finding the best solution patterns 

and hill climbing is exploited to quickly tune solutions to reach local optimum. The 

steps of hybrid GAHC (genetic algorithm with hill climbing) are given in Figure 5.4.  

At initiation the GAHC algorithm creates a set of random valid individuals 

(fragment schema) called initial population. The hill climbing algorithm starts with 

an individual chosen randomly from the initial population. It then attempts to find a 

better solution by incrementally changing (by step size) a single element of the 

individual. The original solution is replaced with the resultant if it has better fitness 

and then the step size is doubled. But, when the resultant does not have better fitness 

the step size is halved. Now, when the individual is at a local optimum the stepping 

begins again on the next individual. Upon reaching a local optimum for the 

individual, a new solution is randomly chosen from the initial population and hill 

climbing begins again. For every iteration the best prior solution is remembered. 

From the obtained initial population the genetic principles are applied. First, 

the fitness of an individual (fragment schema) is measured using a cost function. 

Individuals (fragment schemas) are selected from the initial population for the 

crossover operation based upon their fitness values. The crossover occurs by mixing 

the two solutions together to produce two new individuals (fragment schemas). 

Next, the individual (fragment schema) is allowed to mutate in each generation, 

which changes the individual. The proposed algorithm continues with the process of 

several hill climbing iterations followed by genetic-principles iteration. After a 

certain number of iterations, the algorithm converges to a set of solutions to the 

problem at hand. Once the population has converged and no more offspring 

(fragment schema) produced is noticeably different from those in previous 

generations the algorithm terminates. The proposed GAHC algorithm applied for 

fragmentation selection has been explained in the case study given in section 5.4.3.  

 

http://en.wikipedia.org/wiki/Incremental_heuristic_search
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The quality of a solution is given by the fitness value is calculated by the 

Query cost. The cost for each fragment schema (estimating the number of  

inputs and outputs required for executing the set of queries) are computed using the 

cost model: 

Query Cost = {(Size of each fact fragment) * (Length of each instance of fact)} 

                        / Page size of the disk.                ……(5.1) 

5.2.4 Optimized Mixed Fragmentation for Big Dimension 

The previous steps described ORP approach with horizontal fragmentation 

(ORP-H) for partitioning fact table with reference to the chosen dimension table. In 

certain scenario the dimension table may be wider, i.e., it may involve a large set of 

attributes which is called a big dimension (Costa and Madeira 2004). Hence, 

applying horizontal partitioning alone might not be effective. In the proposed work, 

optimized mixed (hybrid) fragmentation (ORP-M) approach has been developed to 

solve the big dimension problem. In the mixed fragmentation the big dimension is 

fragmented vertically based on the columns (attributes), followed by a horizontal 

fragmentation on each vertical fragment. 

A vertical fragmentation of a relation R produces fragments F1, F2, . . . , Fn 

each of which contains a subset of R’s attributes. Compared to horizontal 

fragmentation, vertical fragmentation is inherently more complicated. When the 

horizontal partition consisting of n simple predicates the possible minterms is 2
n
 and 

some of them can be ruled out by existing constraints. Whereas, in vertical 

partitioning for m non-primary key attributes, the number of possible fragments is 

equal to B(k) (= the kth Bell number), i.e., the number of partitions of a set with m 

members.  For example B(15) = 10
9  

(Ozsu and Valduriez 1999). In vertical 

fragmentation attributes usually accessed together are placed in one fragment and 

hence there is a need for some measure that would define more precisely how 

closely the attributes are related. Hence, in the proposed approach the information 

about the attributes are collected in the Query Attribute Matrix (QAM). 
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For the given query workload Q which is executed over relation R consisting 

of attributes (A1, . . . , An) the QAM denotes which query uses which of the 

attributes. The rows represent workload queries and columns represent attributes 

from Q. In general terms QAM (i, j) is set to one if Qi includes attribute Ai and to 

zero otherwise as shown in Table 5.4.  

Table 5.4 Query Attribute Matrix (QAM) 

 Attributes 

 

Queries 

A1 A2 A3 An 

Q1 1 0 0 0 

Q2 0 1 0 0 

Q3 0 1 1 0 

Qn 0 1 0 1 

 

The next step is to derive fragments that optimize data access for a given set of 

queries. As vertical fragments are built from attributes it is necessary to cluster the 

attributes with respect to the query workload. Following steps are used to cluster the 

attributes: 

1. Find the attributes set W contained in the same queries from QAM. 

2. Add the primary key of the table to each set. 

3. Remove the duplicate sets. 

4. Construct the execution tree: 

i. Include unused attributes and primary key of the table as root. 

ii. Extend tree by adding possible sets. 

iii. Repeat steps i and ii, until all attributes are included in one leaf. 

5. Each leaf of the tree represents a valid candidate attribute clustering solution.  

6. Rank the solutions in increasing order based on their aggregate costs. 

7. Remove the solutions whose costs are larger than the cost of No Partition. 

8. Based on the ranking choose the best solution. 
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Based on the chosen solution the vertical fragments are constructed. The next 

step involves partitioning each fragment further applying horizontal fragmentation. 

For each vertical fragment it is necessary to select the attributes and its 

corresponding predicates based on which the horizontal partitioning is performed. 

As the possible number of fragments produced is large, the fragmentation selection 

is carried out by using the proposed hybrid GAHC algorithm described in the 

previous step. 

5.2.5 Fact Fragmentation 

Using the proposed horizontal or mixed partitioning, the dimension table(s) are 

fragmented. The optimal fragment schema is chosen using the GAHC algorithm 

which is then partitioned by applying Range, List or Hash partitioning modes. 

Finally, based on this partition the fact table is referential partitioned in the 

underlying database. 

The existing partitions need to be altered when the business analysis needs 

changes as new queries need to be imposed over the DW. Hence, the proposed 

approach provides a partition management component which monitors the DW 

query evolution and informs the DWA to perform the refragmentation as required. 

5.3 PROPOSED PARTITION MANAGEMENT FOR EVOLVING 

QUERIES 

In this section the proposed partition management for the ORP approach has 

been described. New queries arise due to changes in the business needs. Based on 

the frequency of the new queries, the existing partitions need to be adapted. This 

part of the proposed approach monitors the DW in order to collect statistics about 

queries, it detects any changes in query patterns and informs the DWA to trigger the 

refragmentation process. The Figure 5.5 represents the various steps involved in the 

partition management, which are explained in this section. 
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Figure 5.5 Partition Management  

5.3.1 Query Analyzer 

The first step involves analyzing a new query and inform the DWA for any 

alteration required in the existing partitions. In order to perform this task, 

information about the existing partitions, attributes of each partition and its values 

are maintained. The procedure given in Figure 5.6 is followed by the query analyzer.  

It works based on the following three cases to alert for the refragmentation process: 

Case 1: When new values or predicates not in existing partitions exist in the query. 

Case 2: When new attributes not in existing partitions exist in the query. 

Case 3: When new table not in existing partitions exists in the query. 

When new query q enters the existing query workload Q, then its frequency 

value FR is updated. As the same query appears repeatedly and when its frequency 

becomes greater than the threshold value, the query analyzer triggers the 

refragmentation (Steps 1-3). Here, the table names are first retrieved from the select 

clause of the query q (Step 4). When a table Ti in the query belongs to the 

partitioned table (PT) list, then the attributes of the partition are retrieved from the 
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where clause of the query.  If this attribute Ti.Ai, is available in the partitioned 

attributes (PA) then its new value or its new predicate needs to be included in the 

existing partition. But if the attribute Ti.Ai is not available in the partitioned 

attributes (PA) then refragmentation needs to be carried out for the table Ti with 

attribute Ai (Steps 5-12).  When a table Ti in the query is not contained in a 

partitioned table (PT) list, then new fragmentation is triggered for this table Ti (Steps 

13-16). 

 

Figure 5.6 Trigger Refragmentation 

5.3.2 Alter Partition Schema 

When an alert is received for refragmentation, the designer or the DWA 

performs the modification of the schema of the received partition. The 

refragmentation may involve the addition of new fragmentation attribute or the 

alteration of an attribute’s domain value or predicates. The two main operations that 

Trigger Refragment(Q, PT, PA)

1 Get new query q.

2 Update frequency of q; FR=FR+1;

3 if FR>FRThreshold then

4 for each Ti in select clause of q

5 if Ti ϵ PT then

6 for each Ti.Ai in where clause of Q

7 if Ti.Ai ϵ  PA then

8 Refragment_NewValue (Ti, Ai,Value);

9 else

10 Refragment_NewAttribute (Ti, Ai,Value);

11 end if

12 end for

13 else

14 Obtain Ti.Ai in where clause of Q

15 Fragmentation(Ti,Ti.Ai,Value);

16 end if

17 end for

18 end if
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are performed for modification over the partition schema are SPLIT and MERGE. 

The SPLIT operation divides the given partition to two separate partitions. And the 

MERGE is involved in merging two partitions into a single partition.  

5.3.3 Cost Analyzer 

This part of the management module calculates the cost of a partition schema 

before and after the alteration using the cost model given in equation 5.1. If the cost 

after alteration exceeds a certain cost threshold and the number of manageable 

fragments exceeds the fragmentation threshold, then the DWA can decide to retain 

the old partition. Otherwise, the altered schema of the partition is chosen for 

fragmentation. 

5.3.4 Refragmentation 

The final step executes the required alteration over the table partition in the 

underlying database. Thus, the proposed approach could adapt the existing partitions 

when the query imposed over the DW evolves. 

 In the proposed approach, the ORP along with the partition management 

provides an improved and automated (semi-automated) way of performing DW 

schema partitioning and its management in order to enhance the query performance. 

Following section discusses SSB (O’Neil et al., 2007) case study in order to 

illustrate the steps involved in the ORP and to evaluate the proposed approach. 

5.4 CASE STUDY – SSB (TPC-H) 

The SSB benchmark is a variation of TPC-H benchmark. SSB is the DW schema 

for TPC-H domain. The SSB is a Sales DW schema which consists of the 

LineOrder, Customer, Date, Part and Supplier tables. The DW schema is given in 

Figure 5.7. The experimental setup and the evaluation of the proposed approach 

using the obtained results are discussed in section 5.5. Following are the steps of the 
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proposed ORP approach explained in section 5.2 and 5.3 which are applied to the 

case study: 

1. Dimension Table and Attributes Selection 

2. Fragment Schema Construction 

3. Optimal Fragment Selection using GAHC 

4. Fact Fragmentation 

5. Partition Management 

6. Optimized Mixed Fragmentation for Big Dimension 

 

Figure 5.7 SSB Data Warehouse Schema 

The SSB queries are used in the experiment for retrieving the results in the 

Sales DW and these queries are also used for computing the query execution time 

and query cost. The list of queries is given in Table 5.5. 
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Table 5.5 SSB Queries 

Q.No. Queries Description 

Q1.1 

select sum(lo_extendedprice*lo_discount) as revenue from 

lineorder, date where lo_orderdate = d_datekey and d_year = 

1998 and lo_discount between1 and 3 and lo_quantity < 25; 
Quantifies the amount 

of revenue increase 

that results from 

eliminating certain 

companywide 

discounts in a given 

percentage range for 

products shipped in a 

given year. 

Q1.2 

select sum(lo_extendedprice*lo_discount) as revenue from 

lineorder, date where lo_orderdate = d_datekey and 

d_yearmonthnum = 199801 and lo_discount between4 and 6  

and lo_quantity between 26 and 35; 

Q1.3 

select sum(lo_extendedprice*lo_discount) as revenue from 

lineorder, date where lo_orderdate = d_datekey and 

d_weeknuminyear = 6 and d_year = 1998 and lo_discount 

between 5 and 7 and lo_quantity between 26 and 35; 

Q2.1 

select sum(lo_revenue), p_brand1 from lineorder, date, part, 

supplier where lo_orderdate = d_datekey and lo_partkey = 

p_partkey and lo_suppkey = s_suppkey and p_category = 

'MFGR#12' and s_region = 'AMERICA' and 

d_yearmonthnum = 199801group by p_brand1 order by 

p_brand1; 
Compares revenue for 

some product classes, 

for suppliers in a 

certain region, grouped 

by more restrictive 

product classes and all 

years of orders. 

Q2.2 

select sum(lo_revenue), p_brand1 from lineorder, date, part, 

supplier where lo_orderdate = d_datekey and lo_partkey = 

p_partkey and lo_suppkey = s_suppkey and p_brand1 

between 'MFGR#2221' and 'MFGR#2228' and s_region = 

'ASIA' and d_yearmonthnum = 199801 group by p_brand1 

order by p_brand1; 

Q2.3 

select sum(lo_revenue), d_year, p_brand1 from lineorder, 

date, part, supplier where lo_orderdate = d_datekey and 

lo_partkey = p_partkey and lo_suppkey = s_suppkey and 

p_brand1 = 'MFGR#2221' and s_region = 'EUROPE' group 

by d_year, p_brand1 order by d_year, p_brand1; 

Q3.1 

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue 

from customer, lineorder, supplier, date where lo_custkey = 

c_custkey and lo_suppkey = s_suppkey and lo_orderdate = 

d_datekey and c_region = 'ASIA' and s_region = 'ASIA' and 

d_year >= 1992 and d_year <= 1995 group by c_nation, 

s_nation, d_year order by d_year asc, revenue desc; 
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Q3.2 

select c_city, s_city, d_year, sum(lo_revenue) as reve-nue 

from customer, lineorder, supplier, date where lo_custkey = 

c_custkey and lo_suppkey = s_suppkey and lo_orderdate = 

d_datekey and c_nation = 'UNITED STATES' and s_nation = 

'UNITED STATES' and d_year >= 1992 and d_year <= 1995 

group by c_city, s_city, d_year order by d_year asc, revenue 

desc; 

Provides revenue 

volume for lineorder 

transactions by 

customer nation and 

supplier nation and 

year within a given 

region, in a certain 

time period. 

Q3.3 

select c_city, s_city, d_year, sum(lo_revenue) as reve-nue 

from customer, lineorder, supplier, date where lo_custkey = 

c_custkey and lo_suppkey = s_suppkey and lo_orderdate = 

d_datekey and (c_city='UNITED KI1' or c_city='UNITED 

KI5'); 

Q3.4 

select c_city, s_city, d_year, sum(lo_revenue) as reve-nue 

from customer, lineorder, supplier, date where lo_custkey = 

c_custkey and lo_suppkey = s_suppkey and lo_orderdate = 

d_datekey and (c_city='UNITED KI1' or c_city='UNITED 

KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') 

and d_yearmonth = 'Dec1997' group by c_city, s_city, d_year 

order by d_year asc, revenue desc; 

Q4.1 

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as 

profit from date, customer, supplier, part, lineorder where 

lo_custkey = c_custkey and lo_suppkey = s_suppkey and 

lo_partkey = p_partkey and lo_orderdate = d_datekey and 

c_region = 'AMERICA' and s_region = 'AMERICA' and 

(p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by 

d_year, c_nation order by d_year, c_nation; 

Measures the 

aggregate profit as 

(revenue – supplycost) 

group by year, nation 

and by product 

category. 

Q4.2 

select d_year, s_nation, p_category, sum(lo_revenue - 

lo_supplycost) as profit from date, customer, supplier, part, 

lineorder where lo_custkey = c_custkey and lo_suppkey = 

s_suppkey and lo_partkey = p_partkey and lo_orderdate = 

d_datekey and c_region = 'AMERICA' and s_region = 

'AMERICA' and (d_year = 1997 or d_year = 1998) and 

(p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by 

d_year, s_nation, p_category order by d_year, s_nation, 

p_category; 

Q4.3 

select d_year, s_city, p_brand1, sum(lo_revenue - 

lo_supplycost) as profit from date, customer, supplier, part, 

lineorder where lo_custkey = c_custkey and lo_suppkey = 

s_suppkey and lo_partkey = p_partkey and lo_orderdate = 

d_datekey and c_region = 'AMERICA' and s_nation = 

'UNITED STATES' and (d_year = 1997 or d_year = 1998) 

and p_category = 'MFGR#14' group by d_year, s_city, 

p_brand1 order by d_year, s_city, p_brand1; 
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5.4.1 Dimension Table and Attributes Selection 

The first step involves the selection of dimension table and attributes 

involved in the Sales schema. The DW schema ontology given in section 3.4.5 of 

Chapter 3 is considered for SSB Schema. This DWO and the SSB queries are given 

as input to DimSelection algorithm. For each dimension in the ontology the values 

of the parameters such as frequency, attributes and size are obtained. These values 

are given in Table 5.6. Based on the values, the scores for the dimension are 

included in the dim_selection matrix. The rows of the matrix are added and the total 

score for each dimension is shown in the Table 5.7. 

Table 5.6 Parameter Values 

Dimension Frequency Attributes Size 

Customer 7 4  30,000 

Supplier 10 4 2000 

Part 6 5 50,000 

Date 13 4 2555 

 

Table 5.7 DimSelection Matrix 

Dimension Frequency Attributes Size Total Score 

Customer 2 3  3 8 

Supplier 3 3 1 7 

Part 1 4 4 9 

Date 4 3 2 9 

 

The user can select one or more dimensions based on the scores. For 

example, if the Date dimension is selected for horizontal partitioning, its attributes 

need to be chosen. From the given set of SSB queries the attribute_selection matrix 

for the Date dimension is constructed as shown in Table 5.8. The 16 attributes of 

Date dimension are represented as A to P. According to the matrix, the d_datekey, 

d_year, d_yearmonthnum and d_weeknuminyear are the attributes available in the 

query. Based on the frequency the d_year and the d_yearmonthnum attributes are 

chosen for fragmentation. 
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Table 5.8 Attribute_Selection Matrix 

 Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 FREQ 

A 1 1 1 1 1 1 1 1 1 1 1 1 1 PK 

B               

C               

D               

E   1   1 1 1 1 1 1 1 1 9 

F  1  1 1         3 

G               

H               

I               

J               

K   1           1 

L               

M               

N               

O               

P               

 

5.4.2 Fragment Schema Construction 

The construction of fragment schema based on the chosen dimension table 

and its attributes is performed in this step. The domain values of the chosen 

attributes are obtained and based on these values the fragment schema is constructed 

as explained in section 5.2.2. The fragment schema holds integer values to represent 

the domain number. Table 5.10 represents the fragment schema for the Date 

dimension. The total possible fragments are 16 (4x4) for this dimension table as 

each attribute has 4 predicate values. 

Table 5.9 Attribute Values for Date Dimension 

Attribute Name Values 

d_year 1992-1993 1994-1995 1996-1997 1998 

d_yearmonthnum 
199201-

199312 

199401-

199512 

199601-

199712 

199801-

199812 
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Table 5.10 Fragment Schema for Date Dimension 

Attribute Name Domains 

d_year 1 2 3 4 

d_yearmonthnum 1 2 3 4 

 

5.4.3 Optimal Fragment Selection using GAHC 

In order to apply the proposed GAHC algorithm to find the optimal number of 

fragments, the problem solution can be represented as given in Table 5.11.  The 

following are the steps of the proposed algorithm: 

i. Initialization: Ten initial solutions (fragmentation schemes) are produced 

randomly which is the population on which the algorithm works. A sample 

fragmentation schema is given in Table 5.11. The total number of 

generations is initialized 10, 50, 100 for each experiment. The threshold 

value is set, which is the maximum number of fragments N managed by the 

database. 

Table  5.11 Initial Solution 

Attribute Name Domains 

d_year 1 2 3 4 

d_yearmonthnum 1 2 3 4 

 

ii. Evaluation: The fitness value for each and every fragmentation scheme is 

computed using the cost model given in equation 5.1.  

iii. Hill Climbing: For each individual in the initial population hill climbing is 

applied. The number of fragments (N) generated by the individual is 

obtained. If N is greater than the threshold, then the sub domains in the 

fragment code (schema) of the individual are merged. For example the sub 

domains 1 and 2 of d_yearmonthnum can be merged as shown in Table 5.12. 

If N is lesser than the threshold, then the sub domains in the fragmentation 

code of the individual are splitted. After applying merge or split operations 

the fitness of the individual is calculated. When the individual has a higher 
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fitness than the original individual, it is retained for further improvements. 

After certain iterations when no further improvements are seen the hill 

climbing is terminated. The above steps are repeated for other individuals in 

the initial population. 

Table  5.12. Initial Solution with Merging 

Attribute Name Domains 

d_year 1 2 3 4 

d_yearmonthnum 1 2 3 4 

 

iv. Genetic Operations:  

a. Selection: Roulette wheel method is used in this algorithm. The two 

individuals with highest fitness value are chosen.  

b. Crossover: New individual is created by crosses of the selected 

individuals. Here one-point crossover mechanism is used to give the 

same chances to the attributes with high and low number of sub 

domains. Figure 5.8  is an example for crossover operation. 

c. Mutation: It involves in modifying the cells (genes) in the individual 

to obtain a new individual. Figure 5.9 is an example for mutation 

operation. 

d. New population: The fitness value for each and every fragment is 

computed using the given cost model. These fragments form the new 

set of population.  

v. Termination: If the termination condition is not satisfied, then the whole 

process is repeated. After a certain number of iterations the algorithm 

converges and the optimal fragmentation schema is obtained. The Table 5.13 

represents the genetic algorithm parameters used in the proposed approach.  
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Figure 5.8 Cross over Operation 

 

Figure 5.9 Mutation Operation 

Table 5.13 Genetic Algorithm Parameters 

Parameters Values 

Population Size 10 

Maximum Generations 10, 50, 100 

Encoding Mechanism Decimal Encoding 

Crossover One point crossover 

Selection Roulette Wheel Method 

 

5.4.4 Fact Fragmentation 

After running the GAHC algorithm for fragmentation selection the optimal 

fragmentation schema is given in Table 5.14 that is used to partition the Sales DW. 

The corresponding domain values for the fragment schema are shown in Table 5.15.  

Attribute Sub Domains

d_yearmonthnum 2 2 3 3

Attribute Sub Domains

d_yearmonthnum 1 2 3 4

Attribute Sub Domains

d_yearmonthnum 1 2 3 3

Attribute Sub Domains

d_yearmonthnum 2 2 3 4

Attribute Sub Domains

d_yearmonthnum 2 2 3 4

Attribute Sub Domains

d_yearmonthnum 2 2 3 3
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Range partitioning can be applied for Date dimension table using d_year 

attribute and d_yearmonthnum attributes. Based on the partitions the LineOrder fact 

table can be referentially partitioned in the Oracle11G DBMS. 

Table 5.14 Optimal Fragment Schema 

Attribute Name Domains 

d_year 1 1 3 4 

d_yearmonthnum 1 1 1 4 

 

Table 5.15 Optimal Fragment Schema with domain values 

Attribute Name Values 

d_year 1992-1995 1996-1997 1998 - 

d_yearmonthnum 199201-199712 199801-199812 - - 

 

5.4.5 Partition Management 

This part of ORP maintains information about existing partitions and 

performs the required alteration when new query arises. Table 5.16 provides the 

details of partition tables PT, and its corresponding partition attributes PA. For 

example, when a new query given in Figure 5.10 enters the query workload and its 

frequency is greater than the query frequency threshold FR, the existing partitions 

are verified by the query analyzer. According to the given query the partitions P0 

and P1 are affected. Here, from the where clause of the query the d_year attribute 

has predicate as 1992-1997. Hence, the partitions P0 and P1 can be combined by 

performing the MERGE operation over these partitions.  

Table 5.16 Partition Tables and Partition Attributes 

Partition 

Table (PT) 
PT0 PT1 PT2 PT3 PT4 

    Partition 

    Attribute 
d_year d_year d_year d_yearmonthnum d_yearmonthnum 

Attribute 

Value 
1992-1995 1996-1997 >1998 199201-199712 199801-199812 
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Figure 5.10 New Query 

The resultant fragment schema after the modification is given in Table 5.17. 

The cost analyzer computes the cost of the new fragment schema using the cost 

model. As the computed cost is lesser than the cost threshold the partitions are 

merged at the physical level. 

Table 5.17 Fragment Schema after merging 

Attribute Name Values 

d_year 1991-1997 1998 

 

5.4.6 Optimized Mixed Fragmentation for Big Dimension  

The SSB schema does not contain big dimension. Hence, the star schema of 

the Inmon’s sales data mart (Inmon, 2005) has been used for applying the proposed 

partitioning technique (ORP-M) for big dimension. The data mart consists of a fact 

table and four dimension tables: Date Dimension, Product Dimension, Store 

Dimension and Customer Dimension as shown in Figure 5.11. Here the Customer 

dimension consists of 53 attributes which is chosen as the big dimension for 

partitioning. The DW has been populated using synthetic data set. A set of 8 OLAP 

queries are considered which are available for the star schema.  

 

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue from customer, lineorder, supplier, 
date where lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate = d_datekey and 

c_region = 'ASIA' and s_region = 'ASIA' and d_year >= 1992 and d_year <= 1997 group by 
c_nation, s_nation, d_year order by d_year asc, revenue desc;
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Vertical partitioning explained in section 5.2.4 is performed over customer 

dimension by splitting the big dimension table into multiple tables, each of which 

contains different number of columns. To apply attribute clustering the QAM i.e 

query attributes matrix is constructed. The customer dimension attributes are given 

as (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10….A53) = (CustomerId, FirstName, 

CountryLanguage, CustomerAge, DrivingLicense, PurchaseProduct, Purchaseyear, 

PurchaseQuantity, CustomerCountry, CustomerContinent, etc.) 

Table 5.18 Sample QAM for Customer Dimension 

Queries A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

Q1 1   1   1    

Q2 1  1       1 

Q3 1  1     1 1  

Q4 1      1 1   

Q5 1 1  1       

Q6 1   1   1    

Q7 1      1 1  1 

Q8 1   1 1      

 

Table  5.18 shows the QAM constructed for sample attributes of the 

customer dimension. The attribute sets formed using the QAM is given in Figure 

5.12. After the attribute clustering is applied over the obtained sets using attribute 

clustering tree, the different possibilities of solutions for partitioning are given in 

Figure 5.13. For solutions S1 to S8 the query cost is estimated using the given cost 

model and the aggregate cost is shown in Table 5.19. From the table it is observed 

that S2 and S8 are the best solutions to vertically partition the customer table for the 

given set of sample attributes. The vertical partitions are represented in Table 5.20. 

 

Figure 5.12 Attribute Sets 
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Table 5.19 Aggregate Cost for Partition Solutions 

Solution 
Estimated Query Cost Aggregate 

Cost Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

S1 9 49 98 9 49 44 90 9 44.63 

S2 9 42 88 9 44 44 87 9 41.50 

S3 9 47 98 9 49 47 90 9 44.75 

S4 9 44 80 9 43 43 82 9 39.88 

S5 22 49 84 20 49 44 90 22 47.50 

S6 9 46 87 9 45 45 88 9 42.25 

S7 24 49 98 22 43 43 98 29 50.75 

S8 9 44 84 9 43 43 84 9 40.63 

 

Table 5.20 Vertical Partitions 

Vertical 

Partition 2 

Vertical 

Partition 2 

Vertical 

Partition 3 

Vertical 

Partition 4 

CustomerId CustomerId CustomerId CustomerId 

PurchaseProduct CountryLanguage CustomerAge PurchaseYear 

 PurchaseQuantity PurchaseYear PurchaseQuantity 

 CustomerCountry  CustomerContinent 

 

In order to horizontally fragment each vertical partition the attributes need to 

be selected along with the corresponding predicates to be used for fragmentation. 

For example, to fragment vertical partition 3 represented in Table 5.20, the 

fragmentation attributes are CustomerAge and PurchaseYear. The predicates of the 

attributes are obtained from the given specification which is given in Table 5.21. 

Based on the obtained predicates the fragmentation schema of the Vertical Fragment 

3 (Customer) is shown in Table 5.22. 

Table 5.21 Predicates for Horizontal Fragmentation 

Attribute Name Values 

Age <38 38-48 48-58 >58 

PurchaseYear <2000 2000-2005 2005-2007 2007-2009 
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Table 5.22 Fragment Schema for Horizontal Fragmentation 

Attribute Name Domains 

Age 1 2 3 4 

PurchaseYear 1 2 3 4 

 

Based on the fragmentation schema given in Table 5.22 the total number of 

fragments is 16. The proposed GAHC algorithm is applied in order to find an 

optimal fragment schema which generates fragments, such that the overall query 

cost is minimized.  As the fragment schema given in Table 5.23 gives the minimal 

query cost it is chosen as the optimal fragment.   

Table 5.23 Optimal Schema for Horizontal Fragmentation 

Attribute Name Values 

Age <38 38-48 48-58 >58 

PurchaseYear <2000 2000-2005 2005-2009 - 

 

For partitioning the fact table, horizontal fragmentation has been applied to 

the Customer dimension using range partitioning mode for Age and PurchaseYear 

attributes. Based on these partitions the fact table Sales are referentially partitioned 

in Oracle11G DBMS. 

5.5 RESULTS AND DISCUSSION 

In this section, the experimental setup for evaluating the proposed approach is 

given. The results obtained are analyzed by providing a comparison of the proposed 

approach with the existing partitioning techniques. The comparative analysis is 

performed for the dimension selection methods, fragmentation selection algorithms 

and mixed fragmentation techniques. 

5.5.1 Experimental Setup 

An experimental study has been conducted to evaluate the proposed ORP 

strategy which performs referential partitioning for a given DW schema. The SSB 

schema has been used which is a Sales DW schema. The fact table LineOrder 
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contains 6,00,000 records, the dimension tables Customer has 30,000 records,  Date 

has 2,555 records, Part has 50,000 records and  Supplier has 2000  records. The 

experiments have been conducted using Oracle11G which supports referential 

partitioning. The dataset of SSB benchmark is created and populated using its data 

generator called DBGEN that enables the generation of synthetic data. This 

warehouse has been installed under Oracle 11g on a Pentium 1.8 GHz (with a 

memory of 256 mu, 60Go) running under windows XP pro. 

5.5.2 Analysis of Dimension Selection Methods 

The first experiment compares the quality of each parameter: frequency, 

attributes and size for dimension selection with the proposed matrix based selection. 

For each parameter the proposed referential partitioning is applied with different 

values of the threshold N. Where, N is the number of generated fragments to be 

managed in the underlying database. This N value is varied to 10, 20, 50 and 100 for 

each experiment. Here, it is assumed that the maximum threshold value is 100. The 

cost of evaluating the SSB queries is computed for the generated fragment schemas 

using the cost model given in equation 5.1. Table 5.24 summarizes the obtained 

results. 

Table 5.24 Results for Dimension Selection Methods 

Dimension 

Selection Methods 

Fragments 

(10) 

Fragments 

(10) 

Fragments 

(10) 

Fragments 

(10) 

Frequency 17500000 14900000 17560000 17595000 

Attributes 21700000 21750000 21700000 21800000 

Size 21700000 21750000 21700000 21800000 

Matrix_Based 17500000 14900000 17560000 17595000 
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From the Figure 5.14 it was observed that the matrix based selection 

produces minimal I/O cost for queries when compared to individual parameter for 

the dimension selection. In the given scenario, the Date dimension chosen by the 

matrix based selection is also given by the frequency parameter.  

Hence, both results are same. Regarding the threshold values, it was 

observed that increasing the number of fragments does not reduce the query cost. 

Having the N value as 50 or 100 gives the same results. The reason is that, 

increasing the number of fragments might result in large number of join operations 

in the queries, which results in increased query cost. 

 

Figure 5.14 Comparison of Query Cost for Dimension Selection Methods 

5.5.3 Analysis of Fragment Selection Methods 

The SSB queries are executed over the Non_Partitioned DW and partitions 

generated by partitioned hill climbing (Partitioned_HC), partitioned genetic 

algorithm (Partitioned_GA), and the proposed GAHC algorithms. The results 

obtained for query execution time and query cost are given in Table 5.25. 
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Table 5.25 Results for Fragment Selection Methods 
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Q1.1 1789 1012 912 550 40800000 22000000 20000000 14500000 

Q1.2 1845 1078 978 512 40100000 22050000 20010000 14900000 

Q1.3 1678 1048 948 570 41500000 22700000 20005000 14560000 

Q2.1 2189 1102 987 620 42900700 25800000 21008900 15595000 

Q2.2 2235 1120 963 642 42700000 25000000 21000000 15500000 

Q2.3 2412 1245 925 678 42800000 25050000 21310000 15900000 

Q3.1 2190 1289 890 680 44990000 26700000 22005000 15560000 

Q3.2 2213 1156 994 758 45990000 25800000 22008900 16595000 

Q3.3 2460 1208 915 730 44790000 25000000 22006000 16540000 

Q3.4 2372 1345 973 719 43790000 26050000 22005000 16530000 

Q4.1 2864 1652 1082 806 45990000 26700000 22000000 17506000 

Q4.2 2850 1521 1041 816 45890000 26700000 22004000 17507000 

Q4.3 2812 1420 1090 860 47790000 25800000 22003000 17500000 

 

Figure 5.15 provides the comparison for the individual query execution time 

when different fragment selection algorithms are applied. The proposed hybrid 

GAHC algorithm utilizing the advantages of hill climbing and genetic algorithm 

features selects the best optimal fragment schemas from the given search space. 

Hence the individual query execution time for the GAHC based partition is minimal 

for the given workload when compared to the partitions generated by existing 

fragment selection algorithms.  The total query execution time when GAHC is 

applied is 8941 ms when compared to Non_Partitioned, Partitioned_HC and 
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Partitioned_GA which produced 299909  ms, 16196 ms and 12698 ms respectively 

as given in Figure 5.16. 

 

Figure 5.15 Comparison of Individual Query Execution Time  

for Fragment Selection Algorithms 

 

Figure 5.16 Comparison of Overall Query Execution Time  

for Fragment Selection Algorithms  

In order to study the query cost for different partitioning techniques, the 

queries are executed over the fragment schemas generated and the cost is computed 

using the given cost model. From the Figure 5.17 it is observed that the fragment 
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schemas produced by GAHC gives minimal cost for individual queries. The reason 

is that, the number of I/Os required for executing the queries is minimal due to the 

optimal partition schema generated by the proposed GAHC partitioning technique. 

The overall cost of the given query is thus minimized when compared to 

Non_Partitioned, Partitioned_HC and Partitioned_GA as shown in Figure 5.18. 

 

Figure 5.17 Comparison of Individual Query Cost  

for Fragment Selection Algorithms  

 

Figure 5.18 Comparison of Overall Query Cost  

for Fragment Selection Algorithms  
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5.5.4 Analysis of Mixed Fragmentation Techniques 

 

The big dimension, i.e. customer dimension of Inmon’s sales DW is 

partitioned using the traditional mixed fragmentation approach and the proposed 

ORP-M approach. By executing the queries over the partitioned dimension table and 

its corresponding fact table, the query execution time and query cost that are 

obtained are summarized in Table 5.26. 

Table 5.26 Results for Mixed Fragmentation Techniques 
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Q1 4458 2058 2130000 1015300 

Q2 8634 5632 5389000 3109000 

Q3 3812 1914 1338900 1036500 

Q4 9972 6970 5723800 4013800 

Q5 3056 1055 2114000 1170000 

Q6 7945 5846 5812000 2112200 

Q7 4012 2017 3764100 1934700 

Q8 1082 482 2753900 1445900 

 

Figure 5.19 compares the individual query execution time (in ms) for the 

proposed ORP-M approach with the traditional mixed fragmentation. The proposed 

ORP-M uses optimized vertical partition based on attribute clustering followed by 

the horizontal partition of the vertical fragment. Hence, the partition generated by 

the ORP-M approach is optimal for executing the queries compared to the existing 

approach. Thus, from the figure 5.19 it is observed that ORP-M gives 25976 ms as 



156 

 

total query execution time, which is minimal compared to the traditional mixed 

approach which gives a total of 42597 ms.  

 

Figure 5.19 Comparison of Individual Query Execution Time  

for Mixed Approaches 

The comparison of individual query cost for the given set of queries when 

applied to the mixed fragmentation approaches is given in Figure 5.20. The ORP-M 

performs better when compared to the traditional mixed approach. 

 

Figure 5.20 Comparison of Individual Query Cost  

for Mixed Approaches 
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From the obtained results it has been observed that the proposed ORP approach 

helps in reducing the query execution time and query cost when compared to 

existing partitioning techniques. Following inferences are made from the results 

show in Figure 5.15 to Figure 5.20: 

i. The ORP-H approach optimized with matrix based dimension selection and 

hybrid GAHC for fragment selection performs better compared to existing 

approaches. Hence it could achieve 30% of reduced query execution time 

when compared to Partitioned_GA, 45% reduction compared to 

Partitioned_HC and 70% of reduction compared to Non_Partitioned 

approach. 

ii. When comparing the query cost, ORP-H approach produces minimal cost. 

That is, 30% minimum cost compared to Partitioned_GA, 36% and 63% 

minimum compared to Partitioned_HC and Non_Partitioned approaches 

respectively. 

iii. Comparing proposed ORP-M with the traditional mixed approach, the 

proposed approach provided 40% reduced query execution and 45% 

minimum query cost. The proposed mixed fragmentation could achieve 

better results as the vertical fragmentation is optimized with attribute 

clustering and horizontal fragmentation by adopting the proposed ORP-H 

approach. 

5.6 SUMMARY 

Partitioning plays an important role during the design of DW which helps to 

improve the performance of star join queries. As DW schema involves fact-

dimension relationship referential partitioning gives greater benefits in terms of 

query performance when compared to single table partitioning. The selection of 

dimension and maintaining manageable numbers of fragments/partitions are the 

main issues of referential partitioning.  
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The proposed ORP approach provides a matrix based method, which uses 

multiple selection parameters for choosing the best dimension table(s) for 

partitioning. Based on the number of attributes and the values of the chosen 

dimension the number of possible fragments would be large. Hence the ORP 

approach provides hybrid GAHC (genetic and hill climbing) algorithm for optimal 

fragment selection based on the given cost model. The GAHC algorithm solves the 

limitations of the existing fragment selection algorithms and generates a valid set of 

fragments. With reference to the dimension fragments the fact table is partitioned 

horizontally.  

The ORP-H is applied for horizontal fragmentation of the dimension table. 

Whereas, for partitioning a big dimension table ORP provides a mixed 

fragmentation (ORP-M) which involve optimized vertical partition using attribute 

clustering followed by the horizontal partition of the vertical fragment. The 

proposed ORP approach also provides facilities for refragmentation of existing 

partitions in case of evolving queries. It monitors the DW for changes in query 

pattern and informs the DWA for triggering the refragmetnation process.  

The ORP is evaluated by applying it to a case study of SSB sales DW 

schema. The experiments are conducted for the existing and the proposed approach 

for DW schema partitioning. The obtained results are compared and it has been 

observed that the proposed approach provides better performance in terms of 

reducing query execution time and query cost. 
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CHAPTER 6 

CONCLUSION AND FUTURE ENHANCEMENTS 

The DW schema provides a multidimensional representation of the data 

integrated from several operational sources. As the DW involves a multifaceted 

environment the design and management of the multidimensional schema becomes a 

complex task. Hence, the overall objective of this research is to study the different 

issues that exist in this task and provide an improved solution for each. This chapter 

gives the conclusions of the research work with the research contributions and then 

outlines the possible future enhancement. 

6.1 CONCLUSIONS 

The first issue explored is the design of the multidimensional DW schema. 

The existing approaches tried to provide automation of the design task either from 

requirements or data source, but the results were not satisfactory. A new hybrid 

approach was developed utilizing both the requirements and data source knowledge 

to derive the multidimensional schema. It provides automation of the design task 

covering conceptual, logical and physical design phases by a formal representation 

of the requirements and data source concepts in ontology format. Experiments were 

conducted and the results show that the newly developed OntoMD approach 

outperforms the existing approaches in a significant way. 

The second issue explored is the evolution of the DW schema for a changing 

business scenario. The existing methods on DW evolution handles schema changes 

at the physical level, hence it has an impact on the maintenance cost. Moreover, 

these methods failed to provide an automatic adaptation of dependent entities when 

the DW schema evolves. Thus, the cost of manual adaptation of the entities is high. 

A new method OntoEvol was developed which eliminates the deficiency of existing 

methods. The proposed method allows the propagation of changes from the 

requirements or the data source to the DW schema at the ontological level. And also, 

it provides an automatic adaptation of the dependent entities. The experiments 
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showed that the OntoEvol could effectively propagate the changes when compared 

to existing methods.   

The final issue explored is to enhance the performance of referential 

partitioning of the DW schema. The existing works on partitioning focused only on 

fragment selection methods. They were not focused on the other problem exist in 

DW schema partitioning. Hence, a new optimized referential partitioning technique 

ORP was developed to provide improved solution for dimension table selection, 

attribute selection, fragment selection, big dimension fragmentation and query 

evolution. Comparisons were made with existing partitioning methods. The results 

show a significant improvement in query performance when ORP is applied for 

referential partitioning. 

Following conclusion were derived based on the comparison of the proposed 

solutions with the existing approaches: 

i. The newly proposed OntoMD approach could efficiently generate the 

multidimensional schema by the reconciliation of the knowledge contained 

in the data source and the requirements using ontology. 

ii. In the OntoMD approach any ambiguity in the requirements is eliminated at 

the early stage of the conceptual design.  

iii. It gives step by step guideline to generate the conceptual, logical and 

physical schema of the DW. 

iv. An OntoMD tool was proposed in order to facilitate the designer to perform 

the design task in an automated way. 

v. The DW schema quality generated by the OntoMD approach is better when 

compared the quality of schema produced by existing design approaches. 

OntoMD produce 13 to 15% improvement for correctness, 13 to 20% 

improvement for completeness, 10 to 19% improvement for minimality, 14 

to 25% improvement for traceability and 13 to 22% improvement for 

interpretability metrics when compared to existing approaches. 
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vi. To handle evolution the newly proposed OntoEvol approach provides 

different evolution operators to propagate requirements as well as the source 

changes, automatically over the DW schema. 

vii. The impact of a particular change is evaluated by the proposed approach 

before it is implemented at the physical level. 

viii. The mapping between source and the DW, queries and views which are 

affected by a change are automatically adapted in the proposed OntoEvol 

approach. 

ix. Compared to the existing evolution methods, the proposed OntoEvol 

approach has more effectiveness in propagating the changes over the DW 

schema. It produced 13% better results when compared to the existing 

MVTDW approach and 17% better than DWE approach. 

x. The cost of automatic adaptation of dependent entities of the OntoEvol is 

minimal compared to the manual cost of adaptation. It could produce 62% 

minimal cost when compared to the manual adaptation. 

xi. The ORP approach proposed optimizes the referential partitioning technique. 

In ORP-H, the best dimension(s) and its attributes are chosen for horizontal 

partitioning through matrix based selection. 

xii. In the proposed ORP-M, the big dimension is partitioned, where the attribute 

clustering tree is used for choosing the vertical fragments on which the 

horizontal fragmentation is applied. This provides an optimized mixed 

fragmentation. 

xiii. In ORP, a hybrid GAHC algorithm is developed to choose the optimal 

fragments and a refragmentation is applied in case of evolving queries. 

xiv. The proposed ORP-H approach, thus minimizes the query execution time by 

30% when compared to Partitioned_GA and 45% when compared to 

Partitioned_HC. It also minimizes the  query cost by 36% when compared to 

Partitioned_GA and 63% when compared to Partitioned_HC. 

xv. The proposed ORP-M approach minimizes  query execution time by 40% 

and query cost by 45% when compared to the traditional mixed 

fragmentation technique. 
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Thus, in this research the developed approaches and techniques for the DW 

schema design and its management could solve several issues and provide promising 

results compared to the existing works. 

The main focus of this research is to provide a systematic platform for any 

organization to handle the expensive and time consuming task of DW schema design 

and its management.  Taking advantage of the ontology the DW designer can 

resolve the ambiguity present in the data source as well as the requirements and 

build the unified multidimensional schema. Hence, this research can provide an 

organization with a DW structure, that  derives huge business benefits by providing 

accurate analysis of the past results, find correlations in the data available, and 

present information in a user-friendly way to business users. 

6.2  FUTURE RESEARCH DIRECTIONS 

There are several possibilities for the improvement of this research work. The 

OntoMD approach which generates simple dimension hierarchies could be further 

extended to form multiple dimension hierarchies. In case of DW evolution, the 

history of changes over the schema needs to be maintained as different versions. 

Hence, the OntoEvol can be further extended to support version management.  

Further, the OntoEvol and ORP approaches can be integrated into the OntoMD 

tool such that the designer or administrator of the DW is given with a single point of 

access to design and management of the schema. As the design of ETL has received 

attention in recent research works, an integration of the DW schema and ETL design 

process can be carried out by ontology and other semantic web tools. Another 

interesting line of research is to design a data mart from the DW using ontology, 

where a data mart represents the subset of the DW and focused on specific function 

of the enterprise.  
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