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ABSTRACT 

 

 Association Rule Mining (ARM) is a structured mechanism for 

unearthing hidden facts in large data sets and drawing inferences on how a 

subset of items influence the presence of another subset. These rules have 

many applications in areas ranging from e-commerce to sports to census 

analysis to medical diagnosis. The discovery of association rules is an 

extremely computationally expensive task and it is therefore imperative to 

have fast scalable algorithms for mining these rules.  

 The standard ARM methods such as: Apriori, Frequent Pattern (FP) 

growth tree, scans the whole dataset for each attribute match, increasing the 

input / output overhead of the system. The rules generated aim a single 

objective of accuracy alone in spite of generating vast number of rules. 

Pruning and summarization are needed to filter the significant rules. The 

efficiency of ARM can be enhanced by reducing the number of passes over 

the database, making the process multiobjective and sustaining the search 

space efficiently.  

 Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) 

provide solutions for the above requirements while mining association rules. 

In this research work, mining association rules using GA and PSO have been 

attempted. GA and PSO are evolutionary computing (EC) methods with 

effective population-based stochastic search algorithms that include heuristics 

and an element of non-determinism in traversing the search space. Both the 

above algorithms move from one point to another in the search space in a 
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non-deterministic manner, guided by heuristics and using population 

generated from the dataset in consideration, rather generating them randomly. 

GA and PSO, when applied for association rule mining generate high quality 

association rules with good rule quality metrics.  

 Changes were introduced in the methodologies of GA and PSO for 

mining association rules. Tuning of control parameters in GA was performed 

and the same has been adapted for association rule mining using PSO.  

Effective methodologies such as GA with Elitism, dynamic neighborhood 

selection in PSO, Chaotic PSO, non-data dependent and data-dependent 

models of adaptation in GA and PSO have been proposed and implemented. 

 A hybrid approach combining the unique features of GA and PSO 

has also been proposed for effective mining of association rules. Memetic 

PSO with shuffle frog leaping algorithm (SFLA) for local search is proposed, 

to generate quality association rules, with enhanced accuracy. All these 

algorithms have been validated using data sets from the repository of UCI 

(University of California, Irvine). Experimental results and analysis confirm 

the promising and consistent behavior of the algorithms and methods that 

have been carried out in this research work.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 GENERAL 

 The amount of data kept in computers is growing at a phenomenal 

rate. It is estimated that the amount of data available in the world is doubling, 

every 20 months (Frawley et al. 1992). The above data includes industrial, 

medical, financial and other databases, which constitute an invaluable 

resource / repository of useful knowledge. Hence there is also a consistent 

demand from users of these data for more sophisticated and useful 

information. Simple structured languages (like Simple Query Language -

SQL) are not adequate to support the above ever increasing demand. This has 

led to the challenge of finding new techniques to extract useful patterns from 

such a huge database. Against this backdrop data mining has emerged as a 

new research area to meet this challenge and has also received a lot of 

research focus (Witten and Frank 2005). 

 Association rule mining (ARM) is one of the dominating data 

mining technologies. ARM is a process of finding associations or relations 

between data items or attributes in large datasets. The mining of association 

rules is a computationally expensive task. Further, the databases are typically 

very large. It is therefore imperative to have fast and scalable techniques for 

mining them. In this thesis, efficient techniques for discovering quantitative 

and qualitative association rules from large databases, efficiently and 

effectively, are presented. 
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1.2 DATA MINING 

 Association rule (AR) discovery is part of a larger field of study 

called data mining a field that consists of techniques to automatically find 

interesting patterns and trends in large collections of data. The explosive 

growth in stored data has generated an urgent need for new techniques and 

automated tools that can intelligently assist in transforming the vast amounts 

of data, into useful information and knowledge. 

 Knowledge Discovery in Databases (KDD) is the automated 

extraction of novel, understandable and potentially useful patterns which are 

implicitly stored in large databases, data warehouses and other massive 

information repositories. KDD is a multi-disciplinary field, drawing attention 

from areas including database technology, artificial intelligence, machine 

learning, neural networks, statistics, pattern recognition, information retrieval, 

high-performance computing and data visualization. 

 Data mining is an essential step in the process of knowledge 

discovery in databases, in which intelligent methods are applied in order to 

extract patterns. Many types of “interesting patterns" have been identified in 

research literature and ARs constitute one such type. Data mining tasks to 

find these various patterns include: 

 Characterization: Data characterization is a summarization of 

the general characteristics or features of a user-specified target 

class of data.  

 Discrimination: Data discrimination is a comparison of the 

general features of a user-specified target class data objects with 

the general features of objects from one or a set of (user-

specified) contrasting classes.  
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 Association Analysis: Association analysis is the discovery of 

ARs showing attribute-value conditions that occur frequently 

together in a given set of data. Association analysis is widely 

used for market basket or transaction data analysis and forms 

the subject matter of this thesis. 

 Classification and Regression: Classification is the process of 

finding a set of models that describe and distinguish data classes 

or concepts, for the purpose of being able to use the model to 

predict the class of objects whose class label is unknown. While 

classification predicts a categorical value, regression is applied, 

if the field being predicted comes from a real-valued domain. 

Common applications of classification include credit card fraud 

detection, insurance risk analysis, bank loan approval, etc. 

 Cluster Analysis: Objects in a database are clustered or grouped 

based on the principle of maximizing intraclass similarity and 

minimizing interclass similarity. Applications of clustering 

include demographic or market segmentation for identifying 

common traits of group of people, discovering new types of 

stars in datasets of stellar objects, and so on. 

 Outlier Analysis: Outliers are data objects that do not comply 

with the general behavior or model of the data. Most data 

mining methods discard outliers as noise or exceptions. 

However, in some applications such as fraud detection, the 

analysis and mining of outliers is crucial. 

 Evolution Analysis: Data evolution analysis describes and 

models regularities or trends for objects, whose behavior 

changes over time. Although this analysis may include any of 

the above functionalities on time-related data, distinct features 
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of such an analysis include time-series data analysis, sequence 

or periodicity pattern matching, and similarity-based data 

analysis. 

 Association analysis is one of the dominating data mining 

technologies. The ARs mined is useful in classification (Liu et al. 1998) and 

clustering (Han et al. 1997). ARM is the process of finding associations or 

relations between data items or attributes in large databases, bringing 

important information to the surface.  

1.3 ASSOCIATION RULE MINING 

 ARM is an undirected or unsupervised data mining technique, which 

works on massive data, and it produces clear and understandable results. 

ARM is aimed at finding regularities in data. ARM research was originally 

proposed almost a decade ago (Agrawal et al. 1993), and since then has 

attracted enormous attention in both academia and industry. ARM identifies 

associations (patterns or relations) among database attributes and their values. 

It is a pattern-discovery technique which does not serve to solve neither 

classification problems (it does not classify samples into some target classes) 

nor prediction problems (it does not predict the development of the attribute 

values).  

 ARM generally searches for any associations among any attributes 

present in the database. An example for association rule (AR) can be the 

following (Wijsen and Meersman, 1998): 'if a customer buys a toothbrush, 

then he also probably buys toothpaste (in the same transaction)', the rule can 

be written as: {toothbrush}  {toothpaste}.  

 AR is commonly understood as an implication xy in a transaction 

database D = {t1, t2,…, tm}(Agrawal et al. 1993). Each transaction ti  D 
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contains a subset of items I = {i1,…, in}; x and y are disjoint itemsets, it holds 

x; y ⊆ I and x∩y=Φ. The left hand side of this implication is called 

antecedent and the right hand side is referred as consequent. The transaction 

database D can also be viewed as a boolean dataset, where the boolean values 

of attributes in records express occurrence of items in transactions.  

 There are two basic measures for ARs: support and confidence. 

Support of an association rule is defined as the percentage/fraction of records 

that contain x∪y to the total number of records in the database. Support is 

calculated using the following equation 

            
                               

                       
                      (1.1) 

 Confidence of an AR is defined as the percentage/fraction of the 

number of transactions that contain x∪y to the total number of records that 

contain x, where if the percentage exceeds the threshold of confidence an 

interesting association rule xy can be generated. Confidence is a measure of 

strength of the association rule. 

                  
           

          
                                (1.2) 

 To identify the ARs, the user has to preset a threshold that segregates 

frequently observed patterns from infrequent patterns. This threshold is called 

minimum support threshold. A set of items that appear together above this 

minimum support threshold, are searched. Rules connecting two sets of 

frequently observed items, appearing together above a minimum support 

threshold are found and, in many cases, a second measure of interestingness 

such as confidence, is used to further filter the rules found for interesting 

association rules. The confidence measure is called minimum confidence. 
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This classic approach discovers the association rules among the frequently 

observed patterns in a set of transaction records. 

1.4 POPULATION BASED STOCHASTIC SEARCH METHODS 

 Stochastic search is a class of search methods which includes 

heuristics and an element of nondeterminism in traversing the search space. 

Stochastic search algorithm moves from one point to another in the search 

space in a nondeterministic manner, guided by heuristics. The next move is 

partly determined by the outcome of the previous move. Population based 

stochastic search algorithms employ a population of individuals to solve the 

problem on hand.  

 Population based search algorithms were proposed for solving 

unconstrained optimization problems. These search methods belong to the 

category of metaheuristic optimization algorithms in general, and naturally 

inspired computation methodologies, in specific. Grouped under the term 

evolutionary computation or evolutionary algorithms (Back 1996), are the 

domains: Genetic Algorithms (GA) (Holland 1975), Evolution Strategies 

(Rechenberg 1973; Schwefel 1977), Evolutionary Programming (Fogel, 

Owens and Walsh 1966), Genetic Programming (Koza 1992), Particle Swarm 

Optimization (PSO) (Kennedy and Eberhart 1995) and Ant Colony 

Optimization (ACO) (Dorigo et al. 1991).  

 Stochastic optimization has been the popular choice for solving 

complex and intricate problems, which are otherwise difficult to solve by 

traditional methods. Among stochastic search algorithms, population based 

methods namely GA and PSO follow the multiobjective requirements of, 

reduced number of scan on the database while mining ARs (Jacinto et al. 

2002; Deepa Shenoy et al. 2003). GA and PSO move from a set of points 

(population) to another set of points in a single iteration with likely 
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improvement using a combination of deterministic and probabilistic rules. 

Both the above methods generate ARs with better predictive accuracy and 

reduced complexity. 

 GA can be viewed as a general-purpose search method, an 

optimization method, or a learning mechanism, based loosely on the 

Darwinian principles of biological evolution, reproduction and “the survival 

of the fittest” (Goldberg 1989). GA maintains a set of candidate solutions 

called population and repeatedly modifies them. At each step, GA selects 

individual from the current population to be the parent and uses them to 

produce children for the next generation. Over successive generations, the 

population evolve towards an optimal solution and remains in the genome 

composition of the population over traits with weaker undesirable 

characteristics. GA is well suited and has been extensively applied to, solve 

complex design optimization problems as it can handle both discrete and 

continuous variables, nonlinear objective and constrain functions, without 

requiring gradient information (Varsek at al. 1993; Abdel-Magid and Abido 

2003; Abido 2005) 

 PSO is inspired by the ability of flocks of birds, schools of fish, and 

herds of animals, to adapt to their environment, find rich sources of food, and 

avoid predators by implementing an information-sharing approach. PSO 

technique was invented in the mid 1990s while attempting to simulate the 

choreographed, graceful motion of swarms of birds as part of a sociocognitive 

study investigating the notion of collective intelligence in biological 

populations (Kennedy and Eberhart, 1995). In PSO, a set of randomly 

generated solutions propagate in the design space towards the optimal 

solution over a number of iterations based on large amount of information 

about the design space that is assimilated and shared by all members of the 

swarm (Kennedy and Eberhart 2001). 
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1.5 PROBLEM IDENTIFICATION 

 The standard ARM methods such as: Apriori (Agrawal et al. 1993; 

Agrawal and Srikant 1994), Frequent pattern growth tree (Piatetsky-Shapiro 

1991; Han et al. 2000) scans the whole dataset for each attribute match, thus 

increasing the input/output overhead of the system. The rules generated aim a 

single objective of accuracy alone, whereas, the number of rules generated is 

vast. Pruning and summarization are needed to obtain the significant rules.  

 The application areas of AR mining vary from market analysis to 

business intelligence, which has now been extended to epidemiology, clinical 

medicine, fluid dynamics, astrophysics, and crime prevention.  Hence, the 

accuracy of the ARs mined and the relationship between attributes has 

become an important issue.  There is a clear need for developing automatic 

methods for extracting knowledge from data that not only have a high 

predictive accuracy (PA) but also, are comprehensible by users (Fayyad et al. 

1996; Freitas 1997; Freitas 1999).  Evolutionary algorithms (EAs) have 

inspired many research efforts for optimization as well as rule generation 

(Fonseca and Fleming1995; Robinson et al. 2002).  

 GA and PSO provide robust and efficient approach in exploring 

large search space and have proven to be successful in solving difficult 

problems. The success or failure of any population based algorithm depends 

on its ability to establish proper trade-off between exploration and 

exploitation. A poor balance between exploration and exploitation may result 

in a weak optimization method, which may suffer from premature 

convergence, trapping in a local optima and stagnation.  

 Setting the right values for the parameters involved and modifying 

the basic operations of the methods maintain the search space effectively, 

thereby achieving a balance between exploration and exploitation. Therefore, 
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improving the efficiency of ARM algorithms using GA and PSO by tuning 

the parameters and modifying the methodologies appropriately, have been set 

as the focus of the present study. 

1.6 OBJECTIVES OF THE RESEARCH 

 Motivated by the open issues in ARM using GA and PSO, the 

objectives of our research work are formulated as: 

 To develop efficient methodology for mining ARs using 

population based search methods namely 

 Genetic Algorithm with parameter tuning and modifications 

in methodology 

 Particle Swarm Optimization with parameter tuning and 

modifications in swarm movements 

 To formulate an effective methodology for mining ARs  

 By Combining the unique features of GA and PSO  

 With effective local search namely Shuffle Frog Leaping 

Algorithm (SFLA) in PSO 

 To validate the generated ARs quantitatively through predictive 

accuracy and qualitatively using rule measures. 

1.7 ORGANISATION OF THE THESIS 

 This thesis is organized in seven chapters. Chapter 1 gives a preface 

to the proposed research work, motivation that lead to the research, problem 

statement and a brief description of the basic concepts underlying this 

research work.  
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 Chapter 2 depicts the review of state of the art research related to 

ARM. The classical methods and population based search algorithms for 

mining rules are reviewed. The preliminary works that served as the main 

motive for most of present work have been narrated in this chapter. 

 Chapter 3 gives an overview of the important concepts like 

stochastic search, GA and PSO. The details of the datasets from the repository 

of University of California, Irvine (UCI) which have been used in this study 

for experimental purpose, are discussed.  Further, the various evaluation 

parameters that have been used to measure the performance of ARM are also 

included, in this chapter.  

 Chapter 4 describes the methodology of mining ARs using GA. The 

objective function applied for ARM is discussed.  The tuning of control 

parameters of GA for association rue mining is done to understand the role of 

these parameters. The concept of Elitism is introduced in GA for mining ARs. 

The proposal of Adaptive GA, where the mutation probability is made self 

adaptive for ARM, is also presented and discussed. 

 Chapter 5 elaborates the methodology of mining ARs using PSO. 

ARM through PSO available in the literature is taken and the effect of inertia 

weight on the performance has been analyzed in this chapter. The proposal of 

Chaotic PSO for ARM and the dynamic selection of the neighborhood for the 

local best particle to replace the particles personal best are also explained in 

this chapter. ARM by adaptive parameter setting for PSO has been proposed 

for ARM. The acceleration coefficients and the inertia weight are adapted 

dynamically. Two approaches, namely, data independent and data dependent 

approaches for ARM using PSO are presented.   
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 Chapter 6 elaborates the design and development of hybrid 

algorithms for ARM. GA and PSO are hybridized effectively to optimize the 

ARM process. Weak local search, the major drawback of PSO is overcome by 

proposing a memetic algorithm, combining PSO and SFLA for mining ARs. 

 Chapter 7 contains the conclusion of this research work and 

discusses the enhancements made to design GA and PSO for ARM. The 

scope for future work has also been highlighted. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 GENERAL 

 In this chapter, current and past research on generating ARs is 

reviewed. The overview of the related topics are presented under three 

themes; (a) review of general approaches for mining ARs, (b) review on 

mining ARs based on population based stochastic search algorithms and (c) 

review on hybrid methodologies using GA and PSO. 

2.2 TRADITIONAL METHODS FOR MINING ASSOCIATION 

RULES 

 In this section the traditional ARM algorithms, have been reviewed. 

Most of the approaches depend on finding frequent patterns and then search 

for correlations between them to generate ARs.  

2.2.1 Agrawal, Imielinski and Swami (AIS) Algorithm 

 The AIS was the very first algorithm proposed for ARM.  It was 

developed by Agrawal, Imielinski and Swami (Agrawal et al. 1993) and 

hence referred to as AIS algorithm. This is a “multi-pass" algorithm in which 

candidate itemsets are generated while scanning the database, by extending 

known-frequent itemsets with items from each transaction. An estimate of the 

supports of these candidates is used to guide whether these candidates need to 
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be extended further to produce more candidates.  The efficiency of the AIS 

algorithm was improved by the addition of an estimation method to  

filter candidate itemsets that had no chance of being above the threshold  

(Zhao et al. 2003) 

2.2.2 Apriori and Apriori-based Algorithms 

 The AIS algorithm was followed by the Apriori algorithm (Zhao and 

Bhowmick, 2003) that was shown to perform better than AIS by an order of 

magnitude. The most important aspect of Apriori is to completely incorporate 

the subset frequency-based pruning optimization. It utilizes a data structure 

called hash tree to store the counters of candidate itemsets. The main 

drawback in this algorithm is that it performs n passes over the database, 

where, n is the length of the longest frequent itemset.  Mao (2001) proposed a 

methodology where candidate itemsets are generated by joining the frequent 

itemsets level-wise and the candidates are pruned according to the Apriori 

properties to reduce the search space. 

 The original Apriori algorithm has to deal with the drawback of 

multiple scan and thus the candidate generation process was complex. Several 

modifications have been proposed to the Apriori algorithm to reduce the 

multiple scans and some of the modified approaches namely (1) Apriori-TID, 

(ii)Apriori-Brave, (iii) Apriori-DF and (iv) F-Apriori are presented below.  

 Apriori-TID extends the original Apriori algortihm by constructing a 

counting base set during first pass through the dataset. This counting base set 

is used later for the determination of the frequent itemsets (Ceglar and 

Roddick 2006). A hybrid structure combining Apriori and Apriori-TID was 

proposed, eliminating the need for construction a new structure. This was 

done using a hash tree like structure containing pointers, instead of holding 

counters (Hipp et al. 2000). 
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 Bodon (2003) proposed Apriori-Brave, featuring delayed accrual 

and organization switching based on memory usage. This also featured an 

implementation of dataset pruning to remove invalid items from the dataset. 

Perfect hash pruning was proposed by Ozel and Guvenir (2001), including 

optimization through the use of perfect hashing, when it comes to creating the 

hash table. This is considered to effectively eliminate a collision which means 

to avoid recounting the occurrence or support of an itemset.  

 Another Apriori-based approach proposed is Apriori-DF (Pijls and 

Bioch 1999), in which a novel extension technique was used to calculate the 

valid subtree from the already formed subtree. This algorithm builds the 

initial itemsets through the use of traditional Apriori method.  

 FApriori (Patel et al. 2013) method combines confidence and 

support as constraints with Apriori algorithm and reduces (i) storage required 

to store candidate and (ii) the execution time by reducing CPU time. CPU 

time is saved by reducing candidate sets size and time required to calculate 

the support of each candidate. The concept of checkpoint based on support 

value has been introduced to reduce the execution time and overall storage 

space required to store candidate generated. 

2.2.3 FP-Tree and FP-Growth / FP-Tree Based Algorithms 

 One of the efforts of the various works to overcome the Apriori 

drawback is the design of tree structures for use in ARM.  Frequent Pattern 

Tree (FP-Tree) was first introduced by Han and Pei (2000a). This approach 

requires only two passes through the database to generate the frequent 

itemsets and does so, without the need to generate candidate itemsets. 
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 While the FP-Tree was shown to be effective and efficient, the  

size of the tree usually increases exponentially as the number of unique  

items increase. To address this shortcoming FP-Growth tree was developed  

(Grahne and Zhu 2003) and it uses an extra array based structure, to decrease 

the number of tree traversals required during analysis. Another FP-Growth 

based approach was proposed by Wang et al. (2002), which is a top down 

variation to the base FP-Growth approach. This approach is said to alleviate 

the need or demand to generate conditional pattern bases and physical 

projections of the tree. 

 H-Mine proposed by Pei, Han and Lakshmanan (2001) was designed 

to extend the pattern growth concepts in FP-Growth even though it uses an 

array-based hyperstructure. The population of the hyperstructure occurs in a 

manner similar to FP-Growth, where, the first valid itemset and the second 

create the H-Struct hyperstructure from that itemset. Item Trans Link Miner 

(ITL-Mine) (Gopalan and Suchayo 2002) optimizes H-Mine by maintaining a 

static set of links in the hyperstructure. This needs one scan of the database 

reducing Input / Output demands. 

 A hybrid pattern growth algorithm known as Opportunistic 

Projection (Liu et al. 2002), works by constructing a prefix tree that contains 

the associated counts, through the use of breath first tracking and database 

reduction techniques, until the data structure can be held in memory. 

2.2.4 Other Association Rule Mining Methods  

 Rapid association rule mining (RARM) algorithm is an approach 

that uses a tree structure to represent the database and does not utilize 

candidate generation process. It was first proposed by Das, Ng and Woon, 

which was projected as being faster than the exiting algorithms (Das et al. 

2001). The partitioning strategy was introduced by Savasere et al. (1995),  
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wherein the database is logically divided into a number of disjoint partitions. 

The partition algorithm requires at most two passes and is based on the 

observation that an item-set can globally be frequent over the entire database, 

if it is locally frequent in at least one partition.  

 Sampling algorithm (Toivonen 1996) first mines a random sample of 

the database to obtain itemsets that are frequent within the sample. These 

itemsets could be considered as a representative of the actual frequent 

itemsets in applications, where approximate mining results are sufficient. In 

order to obtain accurate mining results, this algorithm requires one or two 

scans over the entire database.  A variation of partition was proposed by Lin 

and Dunham (1998), which made use of the cumulative count of each 

candidate to achieve an illusion of a “large partition". At any instant, it stores 

only the candidates that are frequent over their respective large partitions.  

 In Dynamic Itemset Counting (DIC) method for mining ARs  

(Brin et al. 1997), generates candidates are generated and remove after every  

M transaction, where M is a parameter to the algorithm. Although it is a 

multi-pass algorithm, it was shown to complete within two passes typically. 

Continuous Association Rule Mining Algorithm (CARMA) proposed by 

Hidber (1999) is a 2-pass algorithm that has the feature of dynamically 

generating and removing candidates after each tuple of the database is 

processed. Though a novel approach, the CARMA algorithm suffers from the 

drawbacks of tuple-by-tuple approaches.  

 While the above algorithms were primarily horizontal (tuple) based 

approaches, the MaxClique (Zaki et al., 1997) algorithm is designed to 

efficiently mine databases that are available in a vertical layout. Unlike earlier 

vertical mining algorithms, which were subject to various restrictions on the 

underlying database size, shape, contents or the mining process, the Vertical 

Itemset Partitioning for Efficient Rule (VIPER) (Shenoy et al., 2000) 
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algorithm does not have any such restrictions. It includes many optimizations 

to enable efficient processing and was shown to outperform earlier vertical 

mining algorithms. It also scales well with the database size. 

2.3 STOCHASTIC SEARCH METHODS FOR MINING 

ASSOCIATION RULES 

 This section focus on reviewing the literature for mining ARs using 

the stochastic search methods namely; GA and PSO.  

2.3.1 Genetic Algorithm  for ARM  

 The traditional methods of mining ARs face two major drawbacks 

namely, it needs more than one pass / scan of the database to generate 

frequent itemsets. Processing is to be done to generate rules from these 

frequent itemsets. To overcome these drawbacks, evolutionary computation is 

the solution. Evolutionary computation methodologies provide robust and 

efficient approach in exploring large databases and are more suitable for 

multiobjective optimization problems. 

 GA has received wide attention over the past two decades on various 

areas of optimization. This subsection focuses on performance analysis of the 

existing work on mining ARs based on GA. 

 A GA based data mining system suitable for both supervised and 

certain types of unsupervised knowledge extraction from large and possibly 

noisy databases was proposed by Cattral, Oppacher and Deugo (1999). This 

differs from a standard GA in several crucial aspects, including the following: 

(i) its ‘chromosomes’ are variable-length symbolic structures,  (ii) besides 

typed crossover and mutation operators, it uses macromutations as 
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generalization and specialization operators to efficiently explore the space of 

rules, and (iii) it evolves a default hierarchy of rules. 

 Zhu Yu et al. (2009) proposed a method of mining multi-

dimensional ARs based on artificial immune algorithm, and the algorithm has 

faster speed of mining multi-dimensional ARs. Wu Zhao-hui et al. (2005) 

presented a new ARM algorithm based on improved simulated annealing 

genetic algorithm, wherein, adaptive crossover probability and mutation 

probability, and restrained premature convergence were effectively used. 

 Salleb-Aouissi et al. (2007) developed a system QuantMiner: A 

Genetic Algorithm for Mining Quantitative Association Rules. This system is 

based on a GA that dynamically discovers “good” intervals in ARs by 

optimizing both the support and the confidence. Dehuri et al. (2006) presented 

a fast and scalable multi-objective ARM technique using GA from a large 

database. Confidence factor, comprehensibility, and interestingness were 

thought of as multi objectives of the ARM problem and were treated as the 

basic input to the GA.  

 The Elitist Multi-Objective Genetic Algorithm (EMOGA) has  

been proposed for mining classification rules from large databases  

(Dehuri et al. 2008). It uses the concept of elitism to retain the high quality 

rules. A hybrid crossover operator combining the best attribute of single point 

and uniform crossover is used. Extracting ARs from data with both discrete 

and continuous attributes, is an important problem in Knowledge Discovery 

in Databases (KDD). A new model of immune GA was formulated for 

solving this problem (Yang 2010). This algorithm uses three-segment 

chromosomes, integrating the discretization, attributes reduction 

and mining ARs. The immune mechanism is introduced into GA to avoid 

premature phenomenon and improve its efficiency. 

http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?origin=resultslist&authorId=37060199600&zone=
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 To solve the two problems of low efficiency and the real demanded 

rules, a quick response data mining method was proposed (Wenxiang et al. 

2008). This method avoids mining rules through huge candidate itemsets. 

Further it mines maximal frequent itemsets and produces rules, after users 

select their interested maximal frequent itemsets. It also scans the database for 

obtaining real support and confidence of these rules. By adopting the global 

searching character of GA, it can be used to mine the maximal frequent 

itemsets in set time or set number and show them to users. 

 The minimum threshold for support and confidence were usually set 

for generating ARs. Setting of the minimum values for these thresholds is the 

primary key for the success of the algorithms.  In GA, this threshold values 

need not be set.    

 Alatas and Akin (2006) proposed GA methodology that performs a 

database-independent approach, not relying upon the minimum support and 

the minimum confidence thresholds for each database. Instead of randomly 

generated initial population, uniform population that forces the initial 

population not to be far away from the solutions and distributes it in the 

feasible region uniformly, is used. An adaptive mutation probability, a new 

operator called uniform operator that ensures the genetic diversity and an 

efficient adjusted fitness function are used for mining all interesting ARs from 

the last population in only single run of GA. 

 A GA based strategy for identifying ARs without specifying actual 

minimum support was proposed by Xiaowei et al. (2009). In this approach, an 

elaborate encoding method was developed, and the relative confidence was 

used as the fitness function. Furthermore, this strategy was expanded to cover 

quantitative AR discovery. For efficiency, a generalized FP-tree is designed to 

implement this algorithm.  
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 Hamid et al. (2011) proposed a method based on GA without taking 

the minimum support and confidence into account. In order to improve the 

algorithm efficiency, the FP-tree algorithm was employed. Yan proposed a 

method based on GA without considering minimum support (Yan et al., 

2008). This method uses an extension of elaborate encoding while relative 

confidence is the fitness function. A public search is performed based on GA 

and instead of using minimum support, a system automation procedure was 

used. 

 The control parameters of GA play a vital role in the performance of 

the algorithms and are dependent on the problem for which the algorithm is 

applied. A Self-Adaptive Migration Model GA was proposed by Srinivasa et 

al. (2007), where the parameters population size, the number of points of 

crossover and mutation rate for each population were adaptively fixed. 

Further, the migration of individuals between populations is decided 

dynamically. Thus the adaptation of parameters is made problem-dependent. 

 The issue with GA is that it easily leads to premature convergence 

and into the plight of local optimum, also consumes a large amount of time to 

search. For resolving these issues, Guo and Zhou (2009) proposed an 

algorithm by introducing an adaptive mutation rate and improving the 

methods of individual choice, for mining ARs. Min et al. (2011) proposed a 

method of mining multidimensional AR based on the Adaptive Genetic 

Algorithm (AGA) with crossover matrix and mutation matrix. In this ARM 

system, selection, mutation, and crossover are all parameter-free in the 

evolution process. 

 Mining large datasets to obtain classification models with prediction 

accuracy (PA) can be a very difficult task, as the size of the dataset can make 

data mining algorithms inefficient. To meet this requirement an efficient 

distributed GA for classification rule extraction in data mining, which 
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promotes a new method of data distribution in computer networks, was 

proposed (Miguel Rodriguez et al. 2011). This was done by spatial 

partitioning of the population into several semi-isolated nodes, each evolving 

in parallel, and possibly exploring different regions of the search space. 

2.3.2 Particle Swarm  Optimization for ARM 

 Traditional methods of ARM generate more number of rules. 

Pruning is to be done to filter and obtain the required rules. Getting limited 

relevant rules is of more concern. Therefore, for generating optimum number 

of ARs with minimum complexity and at reduced time, PSO technique was 

used.  

 Esmaeli et al. (2008) proposed a method for rule mining with PSO 

without any modifications in the basic PSO steps proposed by Eberhart and 

Kennedy. A rough particle swarm optimization algorithm, based on the notion 

of rough patterns using rough values defined with upper and lower intervals 

that represent a range or set of values, was proposed by Alatas and Akin 

(2008a). They also proposed another numeric ARM method called chaos 

rough particle swarm algorithm (Alatas and Akin 2008b) 

 Kuo et al. (2011) proposed PSO technique to obtain quality ARs. 

Since defining support and confidence measure is a challenging issue in 

pattern mining, the above authors have introduced a novel approach for 

suggesting suitable threshold values for generating quality rules. Initially the 

data was transformed into binary values and using suitable fitness function in 

the PSO, the rules were generated. A New Quantum behaved Q-QPSO 

(Quantum behaved Particle Swarm Optimization) algorithm starts like the 

usual PSO (Mourad Ykhlef, 2011). At the end of the iteration, the quadratic 

interpolation recombination operator was invoked to generate a new swarm 

particle. 
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 Nandhini et al. (2012) proposed a technique to reduce the quantity of 

the rules, without compromising the usefulness factor thereby improving the 

computational efficiency of rule mining. The above framework reduces the 

number of rules by combining mining and post-mining techniques. PSO was 

used in the mining process to compute an optimal support and confidence 

parameters, and a collection of strong rules was then obtained using these 

computed parameters. 

 Gupta (2012) used weighted particle swarm optimization for ARM 

for finding the suitable threshold values for minimum support and minimum 

confidence. These parameters were used for extracting valuable information. 

Asadi et al. (2012) used PSO for finding the threshold values for the Apriori 

algorithm. Xios (2012) proposed ARM framework based on self-adaptation 

swarm, applying PSO on mass stock data. It cannot only dig 

hidden rules behind deal data but also verify the efficiency of the algorithm 

and dig ARs totally. 

 Maragatham and Lakshmi (2012) proposed an approach where the 

main processes involved were calculation of the support and confidence from 

the input data, rule generation, initialization, updation of the velocity, position 

of the rules and evaluation of fitness function.  

 Most approaches to ARM assume that the items within the dataset 

have a uniform distribution. Therefore, weighted ARM was introduced to 

provide a notion of importance to individual items. These approaches require 

users to assign weights for each item. This is infeasible when we have 

millions of items in a dataset. To meet the above aspiration a novel method 

called, weighted ARM using PSO was proposed (Pears and Koh 2012), which 

uses PSO to assign meaningful item weights for ARM. 

http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?origin=resultslist&authorId=37039860700&zone=
http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?origin=resultslist&authorId=37039860700&zone=
http://www.scopus.com.scopeesprx.elsevier.com/authid/detail.url?origin=resultslist&authorId=23006075100&zone=
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 A Binary Particle Swarm Optimization (BPSO) based AR miner 

generates the ARs from the transactional database by formulating a 

combinatorial global optimization problem (Sarath and Ravi 2013), without 

specifying the minimum support and minimum confidence, unlike the Apriori 

algorithm. This algorithm generates the best M rules from a given database, 

where M is a given number and the quality of the rules was measured by a 

fitness function, defined as the product of support and confidence. 

2.4 HYBRID APPROACHES OF GA AND PSO 

 Hybridization is a growing area of intelligent systems research, 

which aims in combining the desirable properties of different approaches to 

mitigate their individual weaknesses. The scope of this research is applying 

GA and PSO; population based stochastic search methods for ARM. In 

literature the hybrid of PSO and GA for ARM has seen to be less investigated 

and reported.  

 The reviews considered are hybrids of GA and PSO for optimization 

of other application areas. Both approaches being population based, such 

hybrids are readily formulated. Angeline (1998a) applied a tournament 

selection process that replaced each poorly performing particle’s velocity and 

position with those of better performing particles. This movement in space, 

improved the performance in three out of four test functions, but moved away 

from the social metaphor of PSO. Brits et al. (2001) used Guaranteed 

Convergence Particle Swarm Optimization (GCPSO) (van den Bergh and 

Engelbrecht, 2002) in their niching PSO algorithm. Borrowing techniques 

from GAs, the NichePSO initially sets up sub-swarm leaders by training the 

main swarm using Kennedy’s (1997) cognition only model. 

 Gaussian mutation was combined with velocity and position update 

rules by Higashi and Iba (2003) and was tested on unimodal and multimodal 
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functions. The hybrid achieved better results than those of GA and PSO alone. 

Juang (2004) also incorporated mutation alongside crossover and elitism. 

Inspiration for the Cooperative PSO (van den Bergh and Engelbrecht, 2004) 

was provided by the more specialized Cooperative Coevolutionary Genetic 

Algorithm developed by Potter and de Jong (1994), which aims to minimize 

the exponential increase of difficulty in optimizing problems with higher 

dimensions through targeting each dimension as a single dimensional 

problem. 

 A new hybrid GA to solve the job shop scheduling problem was 

introduced (Tang et al. 2010) where PSO algorithm was used to get the initial 

population and evolutionary genetic operations solve the lack of the major 

evolution direction problem of GA. To improve the performance of PSO an 

enhanced evolutionary algorithm based on the characteristics of PSO,  

multi-parent crossover algorithm and differential evolution was proposed by 

Dhazi et al. (2011).  

 A hybrid algorithm, PSO with Dynamic Inertia Weight and Genetic 

Algorithm for classification rule mining was proposed by Uma et al. (2012). 

The dynamic inertia weight helps the algorithm to find global optima and to 

overcome the problem of convergence at local optima, and GA performs a 

global search over the entire search space with faster convergence speed.  

2.5 MEMETIC PARTICLE SWARM OPTIMIZATION 

 There are several works in literature which have applied 

evolutionary algorithms for mining ARs, but the idea of using Memetic 

Algorithm (MA) for obtaining high quality ARs is seen to be much less 

investigated and reported. Memetic algorithm applies local search techniques 

to newly created offspring to quickly find individuals with high fitness, and 

discovers near optimal regions of the search space. There are several 
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advantages for incorporating local search into evolutionary algorithms. One of 

them is to improve their performance by increasing the convergence rate and 

maintaining solutions diversity. 

 Memetic PSO (MPSO) is a hybrid algorithm that combines PSO 

with local search techniques. MPSO consists of two main components: a 

global one that is responsible for the global search of the search space, and a 

local one, which performs more refined search around potential solutions of 

the problem on hand. 

 MPSO algorithm called MeSwarm was proposed for tackling the 

overshooting problem in the motion behavior of PSO. While the overshooting 

problem occurs, particles may be led to wrong or opposite directions against 

the direction to the global optimum. As a result, MeSwarm integrates the 

standard PSO with the Solis and Wets local search strategy to avoid the 

overshooting problem and it is based on the probability of success  

to efficiently generate a new candidate solution around the current particle 

(Liu et al. 2005). 

 Petalas et al. (2007) introduced MPSO algorithm which consisted of 

two main components: a global one that is responsible for the global search of 

the search space, and a local one, which performs more refined search around 

potential solutions of the problem on hand. They employed a stochastic 

iterative Local Search (LS) technique in their MA, called Random Walk with 

Direction Exploitation (RWDE), where, a sequence of approximations of the 

optimizer were generated by assuming a random vector as a search velocity. 

 Motivated by the compensatory property of EA and PSO, where, the 

latter can enhance solutions generated from the evolutionary operations by 

exploiting their individual memory and social knowledge of the swarm, 

Chiam et al. (2009), proposed the implementation of PSO as a local optimizer 
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for fine tuning in evolutionary search. Hongfeng et al. (2010) investigated a 

PSO based memetic algorithm that hybridizes PSO with a local search 

technique for dynamic environments. Within the framework of the proposed 

algorithm, a local version of PSO with a ring-shape topology structure was 

used as the global search operator, and a fuzzy cognition local search method 

was proposed, as the local search technique. 

 A hybrid multiobjective EA combining two heuristic optimization 

techniques was proposed by Mousa et al. (2012). This approach integrates the 

merits of both GA and PSO. Hongfeng et al. (2010) proposed a new memetic 

PSO algorithm that combines PSO and a LS method for optimization 

problems with many optima. In the proposed MPSO algorithm, a special PSO 

neighborhood structure, where the particles are located on a ring-shaped 

topology and adaptively form different species based on their indices in the 

population, was proposed for locating multiple optima, and an adaptive LS 

operator, which employs two different LS methods in an adaptive cooperation 

fashion, was used for enhancing the exploitation capacity of the proposed 

algorithm. 

 The literature so far reviewed are summarized in Table 2.1 for 

analysis on the shortcomings of existing methods and   provide a roadmap to 

the direction to be taken to achieve the objective of the work to be carried out. 
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Table 2.1 Analysis on Existing Literature 

S.No Category Method Features Attempted Applied 

for 

ARM 

Multi-

objective 

1 Traditional 

Methods 

AIS Multiple Scan of 

database to identify the 

patterns 

Yes No 

Apriori 

Based 

Attempts in reducing 

the number of scans 

and reduced to n scan 

where n is number of 

attributes in rule 

Yes No 

FP Tree 

based 

Tree structure used to 

store patterns for 

reducing scans 

Yes No 

Other 

methods 

Attempts slight 

modification as 

introducing hash, id 

counts to make ARM 

simple 

Yes No 

2 Stochastic 

search 

methods 

GA Changes made in GA 

parameter ,parameter 

tuning and Elitism 

Yes Yes 

PSO Changes like chaos, 

Quantum behavior, 

weighted PSO and 

changes in velocity 

updation 

Yes No 

3 Hybrid GA + 

PSO 

GA with modifications 

in operators and during 

displacement GA 

applied within PSO 

Hardly 

yes 

No 

4 Memetic PSO + LS Local searches like 

RWDE, Wets LS, 

Fuzzy Cognitive LS 

and adaptive LS were 

tried 

No No 
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2.6 CONCLUDING REMARKS   

 The state-of-the-art methods related to the proposed research work 

have been briefly described and discussed in this chapter. From the following 

inferences are drawn:  

(i) The traditional ARM methods are complex methods requiring 

too many scans of the database and generate more number of 

rules. 

(ii) GA and PSO perform better for data mining applications. 

(iii) Hybrid and memetic methods of GA and PSO assure global 

optimization avoiding premature convergence. 
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CHAPTER 3 

CONCEPTS AND PROBLEM SETTINGS 

 

3.1 GENERAL 

 In this chapter an overview of the fundamental concepts namely 

stochastic search methods, evolutionary computing methodologies, GA and 

PSO that are related to this research work are presented.  The datasets and the 

measures used for evaluating the proposed methods in this research, are also 

discussed. 

3.2 STOCHASTIC SEARCH METHODS 

 An optimization problem consists of a pair (X; H), where X is a set, 

called the state space, H: X  R is a real-valued function, called the objective 

function or energy function. A global maximum solution to the optimization 

problem is an element (state) x  X for which H(x)  H(y), for every y  X.  

 In order to search through X for a global solution, one must first 

define a neighborhood function N(x). A neighborhood function maps each x 

 X to a subset of X. Thus we have N(x)  X. Now given such a 

neighborhood function, a path of length n in the state space is a sequence of 

elements L = x0, x1,…, xn for which xi  N(xi-1), for all i = 1,2,…,n. 

 Usually search through the state space consists of traversing one or 

more paths in the state space until a solution is found, or until some other 

stopping condition has been met. This implies that there has to be some 
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method for computing the next element in the path. If the method follows a 

deterministic rule, then, that the search is deterministic. Similarly, if the 

method is stochastic in nature, then that the search is stochastic. 

 Many engineering problems encountered in real-world applications 

require solving high-dimensional optimization tasks in a reasonable 

computational time. Often such problems cannot be solved in a deterministic 

manner, and hence there is a need for alternative, stochastic approximation 

approaches. Stochastic search methods are optimization methods that generate 

and use random variables. The study of stochastic optimization problems 

dates back to the 1950’s and the work of Dantzig (1955) attempts to model 

uncertainty in the data by assuming that (part of) the input is specified in 

terms of a probability distribution, instead of deterministic data given in 

advance. Stochastic search plays a significant role in the analysis, design, and 

operation of modern systems.  

 Methods for stochastic optimization provide a means of coping with 

inherent system noise and coping with models or systems that are highly 

nonlinear, high dimensional, or otherwise inappropriate for classical 

deterministic methods of optimization. Stochastic search optimization 

methods include: 

 Simulated Annealing  

 Reactive Search Optimization   

 Random Search  

 Stochastic Tunneling 

 Stochastic Hill Climbing 

 Swarm Intelligence 

http://en.wikipedia.org/wiki/Reactive_Search_Optimization
http://en.wikipedia.org/wiki/Stochastic_hill_climbing
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 Evolutionary Algorithms 

o Genetic Algorithm 

o Evolution strategies 

 Many modern data mining packages include methods such as 

simulated annealing, GAs and PSO as tools for extracting patterns in data. 

3.3 OVERVIEW OF EVOLUTIONARY COMPUTING 

 The collection of techniques for optimization purpose in use today is 

derived from three research paradigms that arose independently in the late 

1950s and early 1960s. GAs (and a subsequent variant called genetic 

programming) exploit the inheritance of genetic traits, emphasizing the 

importance of recombination and the adaptive properties of populations. 

Evolutionary strategies focus on the inheritance of behavior traits rather than 

genetic traits, and emphasize the key role that mutation plays in evolutionary 

search. Evolutionary programming also emphasizes the inheritance of 

behavior traits, at the level of species as an alternative to the level of 

individuals. The distinction between these paradigms have blurred in recent 

years, and the more inclusive term, evolutionary computation, is often used to 

emphasize that the various algorithms share many features. 

 The power of Evolutionary Computation (EC) algorithms is derived 

from a very simple heuristic assumption: the best solutions to a problem will 

be found in regions of the search space containing relatively high proportions 

of good solutions and these key regions can be identified by strategic and 

robust sampling of the space. In practice, these algorithms have proven 

strongly capable of finding improvements in complex, nonlinear search 

spaces. They have been applied to a wide variety of search and optimization 

problems. 

http://en.wikipedia.org/wiki/Evolutionary_algorithms
http://en.wikipedia.org/wiki/Genetic_algorithms
http://en.wikipedia.org/wiki/Evolution_strategies
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 The idea behind the EC is quite straightforward – take a population 

of points from some search space, assign them numbers that reflect their 

probability to survive the selection process, and perform a randomized 

selection. The selected points undergo a randomized variation, yielding a new 

population of points, and the process is iterated many times. The layout of the 

algorithm for evolutionary computation is given below. 

 Step 1.   Create an initial random population. 

 Step 2.   Evaluate the fitness values of the population. 

 Step 3.   Perform the following steps on the current generation: 

 Select an individual in the population based on a selection 

scheme 

 Adapt the selected individuals 

 Evaluate the fitness value of the adapted individuals 

 Select adapted individuals for the next generation according 

to a selection scheme 

 Step 4.  If the termination criterion is fulfilled, then output the final 

population.   Otherwise, set the current generation as nest 

generation and go to    step 3. 

 This algorithm is more complex than it seems at first glance.  

There are five important decisions that factor in designing the algorithm 

(Ashlock 2006). 

 The data structure to be used 

 Fitness function to be designed 

 Adapting of individuals for evolution process 
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 Selecting parents from the population and inserting children in 

population 

 Termination condition to end the algorithm 

Representation: The structure of a solution varies from problem to problem 

and the solution of a problem can be represented in a number of ways.  The 

representation of individuals in search methods differs. The representation 

scheme depends both on the application problem and the chosen search 

method.  For any method choosing the right representation for problems 

makes it simpler to solve (DeJong 1997).  

Initial Population: Evolutionary computing methods are stochastic 

population based search algorithms. Each methodology maintains a 

population of candidate solutions.  The first step in applying an EC to solve a 

problem is to generate an initial population. The standard way of generating 

an initial population is to assign a random value from the allowed domain. 

The initial population should ensure uniform representation of the entire 

search space. The size of the initial population has consequences in terms of 

computational complexity and exploration abilities (Engelbrecht 2002). 

Fitness Function: In the Darwinian model of evolution, individuals with best 

characteristics have the best chance to survive. To determine the ability of an 

individual to survive, a mathematical function called fitness function is used 

to quantify the goodness of the represented solution. Fitness function has an 

important role in evolutionary computing because the evolutionary operators 

make use of the fitness values of individual for evolution. 

 Given a particular individual, the fitness function returns a single 

numerical "fitness," or "figure of merit," which is supposed to be proportional 

to the "utility" or "ability" of the individual which the chromosome 
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represents. For many problems, particularly function optimization, the fitness 

function should simply measure the value of the function. 

Selection: Selection is one of the main operators used in evolutionary 

computation. The primary objective of the selection operator is to emphasize 

better solutions in a population. This operator does not create a new 

population, instead, it selects relatively a good solution from a population for 

the adaption into future generations (DeJong 1997). The selection is usually 

accomplished using the fitness values of solutions. The main idea is that a 

solution having a better fitness must have a higher probability of selection. 

Adapting Selected Individuals: This is a major activity of EC. The selected 

members of the population undergo transformations to form new solutions. 

The operators for the transformation vary from one method of EC to other. 

This step differentiates the various methods in EC. The Evolutionary 

algorithms use genetic operators as crossover and mutation for transformation 

purposes. The Swarm intelligent algorithms such as PSO and ACO follow 

different patterns for transforming the solutions from one population to the next.  

Stopping Criteria: The evolution of population is done in evolutionary 

computing until a stopping criterion is achieved. Common stopping 

conditions are: 

 On reaching a fixed number of generations or 

 On reaching the allocated budget (computation time/money) or 

 On reaching the highest ranking solution's fitness or has 

reached a plateau such that successive iterations no longer 

produce better results or  

 By manual inspection or 

 Combinations of the above. 
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 GA and PSO could start with initial population defined from 

datasets, instead of assuming them randomly. This makes GA and PSO more 

suitable for ARM where the aim is to find interesting correlations between 

attributes from the datasets defined. 

3.3.1 Genetic Algorithm    

 The grand idea behind GAs is the survival of the fittest, essentially 

evolution. In real life, a species of animal or plant, etc. will begin to die-off 

over time if a more dominant species is competing with it for the same 

resources. The weakest specimens of the species start to die off first, while the 

stronger ones survive and continue to breed. Over time, the strong mate with 

the strong, produce even stronger or fitter, specimens, and the species adapts 

to the challenges by evolving a population better able to compete. GA try to 

mimic this action of nature. They take solutions to problems and, by 

controlling the death and breeding of the specimens, influence the population 

to become collectively and individually fitter (Man et al. 1999). The block 

diagram of GA is shown in Figure 3.1. 

 
 

Figure 3.1 Block Diagram of Genetic Algorithm 
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 Every GA has three basic elements. There must first be a group of 

solutions to a problem, called the population. Secondly, there must be a way 

of measuring solutions against each other and determining which solution is 

best, or most fit. This is called a fitness test or fitness function. And lastly, 

there must be a way of combining together different solutions from any one 

population to produce new solutions, called breeding or mating. By 

continuously breeding the fit specimens of each population with each other 

the hope is to produce even more fit specimens (Kim et al. 1999). The 

pseudocode of the simple GA is given in Figure 3.2. 

 

Step 1.  Initialization : Generate initial population at random or with prior 

knowledge 

Step 2.  Fitness Evaluation : Evaluate the fitness for all individuals in the 

current population 

Step 3.  Selection : Select a set of promising candidates from the current 

population 

Step 4.  Crossover: Apply crossover to the mating pool for generating a set 

of offspring  

Step 5.  Mutation : Apply mutation to the offspring set for obtaining its 

perturbed set  

Step 6.  Replacement : Replace the current population with the set of 

offspring  

Step 7.  Termination : If the termination criteria are not met, go to Step 2 

 

Figure 3.2 Algorithm for Simple GA 
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 Selection chooses the individuals with higher fitness as parents for 

the next generation. In other words, selection operator is intended to improve 

average quality of the population by giving superior individuals a better 

chance to get copied into the next generation. There is a selection pressure 

that characterizes the selection schemes. It is defined as the ratio of the 

probability of selection of the best individual in the population to that of an 

average individual (Back, 1994; M¨uhlenbein and Voosen  1993). There are 

two basic types of selection scheme in common usage:  proportionate and 

ordinal selection. Proportionate selection picks out individuals based on their 

fitness values relative to the fitness of the other individuals in the population. 

Examples of such a selection type include roulette-wheel selection (Goldberg, 

1989; Holland, 1975), stochastic remainder selection (Booker, 1982), and 

stochastic universal selection (Baker  1985). Ordinal selection selects 

individuals not based upon their fitness, but upon their rank within the 

population. The individuals are ranked according to their fitness values. 

Tournament selection (Brinde 1981), (μ, λ) selection (Schwefel 1977), linear 

ranking selection (Baker 1985), and truncation selection (M¨uhlenbein and 

Voosen 1993), are included in the ordinal selection type.  

 Crossover exchanges and combines partial solutions from two or 

more parental individuals according to a crossover probability, pc, in order to 

create offspring. That is, the crossover operator exploits the current solution 

with a view to find better ones. Two popular crossover operators, among 

many variants, are: one-point and uniform crossover. One point crossover 

(Goldberg 1989; Holland 1975) randomly chooses a crossover point (i.e., 

crossing site) in the two individuals and then exchanges all the genes behind 

the crossover point (Figure. 3.3a). Uniform crossover (Syswerda 1989) 

exchanges each gene with probability 0.5 (Figure. 3.3b), hence achieving the 

maximum allele-wise mixing rate. 
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Figure 3.3 Crossover Operators 

3.3.2 Particle Swarm Optimization  

 PSO is one of the evolutionary computation methods, based on 

swarm intelligence. PSO was first designed to simulate birds seeking food. 

Birds would find food through social cooperation with other birds within a 

neighborhood. Assume that there is a group of birds searching food in an area 

and if there are small pieces of food near the food centre, then bigger the food 

becomes. No bird knows where the food center is. So the best strategy to find 

the food is to follow the bird which has found the biggest pieces. PSO just 

simulates this scenario and uses it to solve optimization problems. 
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 In PSO, each single solution is a "bird" in the search space. We call 

it a "particle".  All particles have fitness values which are evaluated by the 

fitness function to be optimized, and have velocities which direct the flying of 

the particles. Each particle keeps track of its coordinates in the problem space 

which are associated with the best solution (fitness) it has achieved so far. 

This value is called pBest. Another best value that is tracked by a particle is 

the best value obtained so far by any particle in the problem space.   This best 

value is the global best and is called gBest. After finding the two best values, 

each particle updates its corresponding velocity and position. The pseudocode 

for the PSO is given in Figure 3.4. 

 

Step 1. Initialize particles with random positions and velocities. 

Step 2.     Set particles’ pBest to their current positions. 

Step 3.     Calculate particles’ fitness and set gBest. 

Step 4.     For T generations do 

  Update particles’ velocities. 

  Update particles’ positions. 

  Recalculate particles’ fitness. 

  Update particles’ pBest and gBest. 

  end For 

Figure 3.4 Algorithm for Simple PSO 

 Each particle p, at some iteration t, has a position x(t), and a 

displacement velocity v(t). The particles best (pBest) and global best (gBest) 

positions are stored in the associated memory.  The velocity and position are 

updated using equations 3.1 and 3.2 respectively. 
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                                                     (3.1)   

  
        

       
                                                  (3.2) 

where,  

  
   

 is particle velocity of the i
th

 particle before updation 

  
     is particle velocity of the i

th
 particle after updation 

xi  is the i
th
, or current particle  

i  is the particle’s number  

d  is the dimension of search space  

rand ( ) is a random number in (0, 1) 

c1  is the individual factor 

c2  is the societal factor 

pBest  is the particle best 

gBest is the global best 

 The particle velocity on each dimension is clamped to a maximum 

velocity Vmax. If the sum of accelerations cause the velocity in that dimension 

to exceed Vmax, which is a parameter specified by the user, then the velocity in 

that dimension is limited to Vmax. This method is called Vmax method (Song 

and Gu, 2004).  The diagrammatic representation of the position update  

of particle in PSO following the velocity and position update is shown in 

Figure 3.5. 
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Figure 3.5 Displacement of a PSO Particle 

 With the position and velocity updates, the particles shift their 

location with successive generations. The positions in which the particle lies 

can be categorized into one of the four states namely: 

 Exploration 

 Exploitation 

 Convergence 

 Jumping Out 

 Exploration is defined as locating the global optima effectively. 

Exploitation is performing the local search in the global optima. The 

movement of all particles towards the global optima is convergence and 

Jumping out is the process of moving away from the global optima. 

Personal  best of 
previous step 
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 The implement PSO effectively balance between exploration and 

exploitation have to be maintained properly, to avoid jumping out and 

converge correctly.  

3.4 DATASETS USED IN THIS STUDY 

 All our experiments were conducted using benchmarked data sets 

from different fields. Table 3.1 gives the description of the datasets that have 

been used. These datasets are sourced from the University of California, 

Irvine (UCI) database (Blake and  Merz, 1998). The UCI Machine Learning 

Repository is a collection of databases, domain theories, and data generators 

that are used by the machine learning community for the empirical analysis of 

machine learning algorithms. The datasets with varying number of instances 

and features have been selected to validate the performance of proposed 

methodologies. The total number of instances in each of the dataset, the 

number of features along with the number of classes is presented in the 

dataset. The details of all UCI datasets that have been used in this study are 

presented in Annexure I 

Table 3.1 Description of the Datasets Used 

Name of the Dataset 
No. of 

Attributes 

No. of 

Instances 

Attribute 

characteristics 

Lenses 4 24 Categorical 

Car Evaluation 6 1728 Categorical, Integer 

Haberman’s Survival 4 310 Integer 

Post-operative Patient Care 9 87 Categorical, Integer 

Zoo 18 101 
Categorical, Binary, 

Integer 

Iris 4 150 Categorical, Integer 

Nursery 8 12960 Categorical, Integer 

Tic Tac Toe 9 958 Categorical 

Wisconsin Breast Cancer 10 699 Categorical, Integer 

Adult 14 48842 Categorical, Integer 
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3.5 PERFORMANCE EVALUATION       

 ARs generated are usually large in numbers and have redundant 

information.  Much work on ARM has been focused on efficiency, 

effectiveness and redundancy. Focus is also needed on the quality of rules 

mined. In this work ARM using GA and PSO is treated as a multiobjective 

problem, where rules are evaluated quantitatively and qualitatively based on 

the following five measures. 

 Predictive Accuracy (PA) 

 Laplace 

 Conviction 

 Leverage 

 Lift 

i. Predictive Accuracy (also named Confidence) measures the 

 effectiveness of the rules mined. The mined rules must have high PA. 

                     
          ∪   

          
                                (3.3) 

Where, x is the antecedent and y the consequent. 

ii. Laplace is a confidence estimator that takes support into account, 

becoming more pessimistic as the support of   decreases (Good, 1965; 

Deepa et. al, 2003). It ranges between [0, 1] and is defined as 

              
         ∪    

            
                                (3.4) 
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iii. Conviction is sensitive to rule direction and attempts to measure the 

degree of implication of a rule (Brin et al. 1997b). It ranges between 

[0.5, ∞]. Values far from 1 indicate interesting rules. 

                 
             

                 
                     (3.5) 

iv. Leverage also known as Piatetski-Shapiro measure (Piatetsky-Shapiro 

1991). It measures how much more counting is obtained by the rule from 

the co-occurrence of the antecedent and consequent from the union. It 

ranges between [−0.25, 0.25] and is defined as: 

                       ∪                             

                           (3.6) 

v. Lift (also called interest by Brin et al. 1997a) measures how far from 

independence are antecedent and the consequent. It ranges within [0, 

+∞]. A lift value of 1 indicates that the items are co-occurring in the 

database as expected under independence. Values greater than one 

indicate that the items are associated. 

           
               

          
                          (3.7)                    

3.6 SUMMARY       

 This chapter provides the necessary background information for the 

proposed research. Introduction to stochastic search methods and 

Evolutionary Computing are first explained. This is followed by the 

discussion on the two population-based search methods GA and PSO that 

have been used in this research. Finally the datasets used and evaluation 

measures are presented.  
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CHAPTER 4 

ASSOCIATION RULE MINING USING GENETIC 

ALGORITHM 

 

4.1  GENERAL  

 This chapter discusses the need and motivation for using GA to mine 

ARs and focuses on the modifications that has been suggested and 

implemented in GA for mining ARs. ARM using GA and the effective setting 

of parameters in GA for ARM have been explained in detail. The concept of 

Elitism is introduced in GA for ARM purpose. The qualitative and 

quantitative measures of the rules mined with the datasets taken up for the 

study of Elitism in GA is presented and the adaptive parameter setting of the 

mutation probability and its effect on the performance of ARM is also 

analyzed. The results obtained are compared with the results from simple GA 

and the salient inferences are drawn. 

4.2 NEED AND MOTIVATION  

 Many algorithms for generating ARs were developed over time. 

Some of the well known algorithms are Apriori, Eclat and FP-Growth tree. 

The existing algorithms traverse the database many times and hence the I/O 

overhead and computational complexity becomes very high and cannot meet 

the requirements of large-scale database mining. At present, GA-based data 

mining methods have yielded some progress, and based on GA classification 

system has also yielded good results.  
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 The original motivation for the GA approach was a biological 

analogy. In the selective breeding of plants or animals, offspring are sought to 

have certain desirable characteristics—characteristics that are determined at 

the genetic level by the way the parents’ chromosomes combine. In the case 

of GAs, a population of strings is used, and these strings are often referred in 

the GA literature as chromosomes. The recombination of strings is carried out 

using simple analogies of genetic crossover and mutation, and the search is 

guided by the results of evaluating the objective function for each string in the 

population. Based on this evaluation, strings that have higher fitness (i.e., 

representing better solutions) can be identified, and these are given more 

opportunity to breed. 

4.3 MINING AR USING GA 

 This section deals with the ARM problem as a multi-objective 

problem using multi-objective evolutionary algorithms with emphasis on GA. 

The main motivation for using GA is that they perform a global search and 

cope better with attribute interaction than the greedy rule induction algorithms 

often used in ARM tasks.  

4.3.1 Experimental Setup 

 The pseudo code for GA as given in Figure 3.2 is used for mining 

ARM. It starts with a population of individuals randomly generated according 

to some probability distribution, usually uniform, and updates this population 

in steps called generations. In each generation, multiple individuals are 

randomly selected from the current population based on some application of 

fitness, bred using crossover, and modified through mutation to form a new 

population. The number of generations is maintained as 50. 
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Genetic Operators  

 GA maintains a population of n chromosomes (solutions) with 

associated fitness values. Parents are   selected to mate, on the basis of their 

fitness, producing offspring via a reproductive plan (mutation and crossover).  

Consequently highly fit solutions are given more opportunities to reproduce 

(selected for next generation), so that offspring inherit characteristics from 

each parent.  As parents mate and produce offspring, room must be   made for 

the new arrivals, since the population is kept at a static size (population size). 

In this way it is hoped that over successive generations better solutions will 

thrive while the least fit solutions die out. The representation scheme, 

population size, crossover rate, mutation rate, and fitness function and 

selection operator are the GA operators, and are discussed below. 

Encoding chromosomes: The Michigan approach of binary encoding (Ghosh 

and Nath 2004) is adopted for representing rules. Each attribute is represented 

in binary form, thereby creating array representation, with each entry in an 

array representing a rule (Avendano and Martin 2010; Ghou and Zou 2010). 

Initialization:  Based on the population size fixed, the initial population is 

selected randomly.  

Fitness function: The fitness of an individual in a GA is the value of an 

objective function for its phenotype  

 This work adopts minimum support and minimum confidence for 

filtering rules. Then, correlative degree is confirmed in rules which satisfy 

minimum support degree and minimum confidence degree. After support 

degree and confidence degree are synthetically taken into account, fitness 

function is defined as follows. 
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                            (4.1) 

 In the above formula, Rs + Rc = 1 (Rs ≥ 0, Rc ≥ 0); supportmin, and 

confidencemin are respective values of minimum support and minimum 

confidence. By all appearances if the supportmin and confidencemin are set to 

higher values, then, the value of fitness function is also found to be high. 

Selection operator:  During each successive generation, a proportion of the 

existing population is selected to breed a new generation. Figure 4.1 depicts 

the Roulette wheel selection method used for ARM using GA in this work. 

Reproduction: The reproduction mechanism involves rule selection and the 

application of the crossover operators. The rule selection method used by this 

algorithm follows the “universal suffrage” approach proposed in (Giordana et 

al. 1997). With this approach each AR is represented by a single individual. 

The actual reproduction takes place by performing crossover and mutation 

operations on the new individuals. 

 
Figure 4.1 Roulette Wheel Selection Methodology 
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Crossover Operator: Crossover selects genes from parent chromosomes and 

creates a new offspring. In this work, single point crossover with crossover at 

attribute level is performed.  So the optimal value of the crossover rate is 

independent on the number of attributes in the datasets. 

Mutation Operator: Mutation changes randomly the new offspring. For 

binary encoding we can switch a few randomly chosen bits from 1 to 0 or 

from 0 to 1. Mutation provides a small amount of random search, and ensures 

that no point in the search has a zero probability of being examined. The 

mutation rate when set to zero retains the original values of the offspring.  

4.3.2 Results and Discussion 

 Five datasets from UCI Machine Learning Repository (Blake and 

Merz 1998) have been considered for experimentation.  The experimental 

setup is made as given in Table 4.1. 

Table 4.1 GA Parameters for ARM 

Parameter Name Value 

Population Size 21 

Crossover rate  0.5 

Mutation rate  0.0 

Selection Method  Roulette Wheel Selection 

Minimum Support  0.2 

Minimum Confidence 0.8 
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 The crossover rate is set as 0.5. This generates two offspring which 

exchanges 50% of bits from each parent. The mutation rate is made as 0.0 to 

retain the original values of the offspring generated by crossover operation, to 

study the is  significance of crossover operation. 

 Quantitative measures for analyzing the performance of the ARs are 

PA and the number of rules generated. The PA of the ARs mined with the 

above discussed GA method given in Table 4.2. The PA for the mined rules is 

optimal for all datasets considered for the analysis. The PA of the ARs mined 

with GA is enhanced upto 2 % when compared to the accuracy by methods 

given in literature. 

 The number of rule generated by GA for the PA, 0.05 percentage 

less than the maximum PA achieved for each dataset is given in Table 4.3.  

Table 4.2 Predictive Accuracy for ARM with GA 

Dataset 
PA attained 

(%) 
PA by existing methods (%) 

Lenses 85 - 

Car Evaluation 81 - 

Haberman’s  Survival 87 - 

Post operative Patient 74 - 

Zoo 81 - 

Nursery 90 89 (Dehuri and Mall, 2006) 

Adult 88 86 (Dehuri and Mall, 2006) 

Wisconsin Breast Cancer 97 96.14 (Chen and Hsu, 2006) 
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Table 4.3 Number of Rules Generated by GA 

Dataset No. of Rules 
No. of Rules mined by 

existing methods 

Lenses 10 - 

Car Evaluation 178 11 (Avendano and Gutierrez, 2010) 

Haberman’s  Survival 46 - 

Post operative Patient 22 - 

Zoo 15 Around 325 (Ramesh and Iyakutti 2011) 

Nursery 22 4 (Hamid et al. 2011) 

Adult 117 Around 350 (Ramesh and Iyakutti 2011) 

Wisconsin Breast 

Cancer 

83 - 

 

The number of rules generated by any methodology should be 

optimum. If the number of rules generated is too large, then pruning or 

filtering of the rules should be done. If too few rules are generated, then the 

chance of missing interesting patterns may also occur. Many existing methods 

in literature identify the number of rules based on support values and hence 

number of rules generated is more. In the proposed method association rule is 

generated based on PA which takes into account the support value and 

confidence value we claim that the number of rules generated is optimum as 

shown in Table 4.3. 

 

 The qualitative measures indicate the importance or interestingness 

of the ARs mined. The Conviction, Laplace, Leverage and Lift measures for 

analyzing the interestingness of the rules generated with GA are given in 

Table 4.4 
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Table 4.4 Qualitative Measures of AR mined by GA 

Dataset Conviction Laplace Leverage Lift 

Lenses Infinity 0.52 0.002 1 

Car Evaluation Infinity 0.625 0 1 

Haberman’s Survival Infinity 0.52 0.0625 2 

Postoperative Patient Infinity 0.5 0.016 6.314 

Zoo Infinity 0.644 0.046 1.06 

Nursery Infinity 0.601 0.028 1 

Adult Infinity 0.533 0.052 1 

Wisconsin Breast Cancer Infinity 0.544 0.032 1.05 
 

 The values of the defined measures for all the five datasets are 

within the specified range as denoted in section 3.5. Thus the rules generated 

by the GA methodology are of significance. 

 The qualitative and quantitative measures of the ARs mined by GA 

presented in this section indicate that the chosen GA methodology is more opt 

for the application chosen. 

4.4 EFFECTIVE PARAMETER SETTING OF GA FOR ARM 

 There have been several attempts for mining ARs using GA. Robert 

Cattral et al. (1999) described the evolution of hierarchy of rule using GA 

with chromosomes of varying length and macro mutations. The initial 

population was seeded instead of random selection. Manish Saggar et al. 

(2004) proposed an algorithm with binary encoding and the fitness function 

was generated based on confusion matrix. The individuals were represented 

using the Michigan’s Approach. Roulette Wheel selection was implemented 

by first normalizing the values of all candidates. 
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 Shi and Lei (2008) proposed GA where the fitness function is based 

on PA, comprehensibility and interestingness factor. The selection method 

was based on elitist recombination. In Ma and Li (2009) the encoding of data 

was done with gene string structure, where the complexity concepts were 

mapped to form linear symbols. The fitness function was considered as a 

measure of the overall performance of the process and not the individual rule 

measure, when the bit strings were interpreted as a complex process.  

 Adaptive exchange probability (Pc) and mutation probability (Pm) 

was introduced in this work. Guo and Zhou (2009) applied the method of 

adaptive mutation rate to avoid excessive variation causing non-convergence, 

or a local optimal solution. A sort of individual- based selection method is 

applied to the evolution in GA, in order to prevent the high-fitness individuals 

converging early by the rapid growth of the number of individual. 

 As the parameters of the GA and the fitness function are found to be 

the major area of interest in the above studies, the effects of the genetic 

parameters and the controlling variables of fitness function on different 

datasets are explored. 

4.4.1 Methodology 

 The parameters of GA are the key components enabling the system 

to achieve good enough solution for possible terminating conditions. The 

parameters of GA and their role in solving problems are given in Table 4.5. 
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Table 4.5 Role of GA Parameters in Problem Solving 

Parameter Name Parameter Role 

Population Size 
Fixes the number of chromosomes and indirectly 

the crossover 

Selection Selection of the chromosomes for crossover 

Mutation rate (pm) 
Maintains the genetic diversity of the population 

from one generation to other 

Crossover rate (pc) Sharing Information between chromosomes 

Minimum support 

Minimum confidence 
Set by the user for fitness calculation 

 

 ARM using GA was performed following the steps given in the 

Figure 4.2. Effective ARM using GA by tuning the parameters manually is 

experimented and presented in this section. The population size, crossover 

rate, mutation rate are tuned manually to find the optimum values for better 

performance of ARM.  The same fitness function described in equation 4.1 is 

adopted here. The user-defined values of minimum support and minimum 

confidence were also varied to analyze their role in mining ARs. 

 
 

Figure 4.2 Flowchart of Simple GA 
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4.4.2 Experimental Results and Discussion 

 The objective of this study is to compare the accuracy achieved in 

datasets by varying the GA Parameters. The encoding of chromosome is 

binary encoding with fixed length. As the crossover is performed on attribute 

level, the mutation rate is set to zero so as to retain the original attribute 

values. The selection method used is tournament selection. The default 

parameters set for the experiment is listed in Table 4.6. 

Table 4.6 Default GA Parameters 

Parameter Name Value 

Population Size Instances * 1.5 

Crossover Probability 0.5 

Mutation Probability  0.0 

Selection Method Tournament Selection 

Minimum Support 0.2 

Minimum Confidence 0.8 
 

 The parameters listed are tuned with varying values for each datasets 

and the results are recorded while mining ARs with GA. The population size 

is varied based on the number of instances in the datasets. For achieving 

optimal results the population size is set to three different values as given 

below: 

 Equal to the number of instances in the dataset; 

 1.25 times the number of instances in the dataset and  

 1.5 times the number of instances in the dataset 
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 The range of the population size is set so as to balance the number  

of rules generated without redundancy. The plotted results are shown in 

Figure 4.3. 

 

Figure 4.3 Population Size vs Accuracy for ARM with GA 

 The optimal value of the population size to be set depends on the 

dataset size. For the lenses dataset where the number of instances is small i.e. 

24 only, the population size is set 1.5 times the number of instances, 

generated ARs with higher PA. For the datasets with moderate number of 

instances (Post operative care: 90, Zoo: 101 and Haberman’s Survival: 306) 

the PA is found to be optimum when the population size is set to 1.25 times 

the number of instances in the dataset. For the car evaluation dataset with 

large number of instances (1728), when the population size is set to the actual 

number of instances, maximum PA is achieved. 
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 The crossover operator in the GA helps in sharing information 

between chromosomes thereby maintaining the exploitation capability of the 

chromosomes. The crossover is performed at attribute level for ARM. As the 

minimum number of attributes in the dataset taken up for the study is 4 

(Lenses and Haberman’s survival), the crossover could be done only for 3 

attributes at the maximum. Hence, the crossover probabilities are altered to 

three different values to analyze the role of this operator for ARM using GA. 

 The PA achieved by the rules mined with GA along with the 

generation number at which the PA is optimum is presented in the Table 4.7.  

Table 4.7 Comparison based on Variation in Crossover Probability 

for ARM using GA 

 
Pc =0 .25 Pc = 0.5 Pc = 0.75 

Dataset 
Accuracy 

% 

Generation 

Number 

Accuracy 

% 

Generation 

Number 

Accuracy 

% 

Generation 

Number 

Lenses  95 8 95 16 95 13 

Haberman’s 

Survival  
69 77 71 83 70 80 

Car 

Evaluation  
80 80 81 83 81 85 

Post 

Operative 

Patient  

74 57 74 63 73 68 

Zoo  81 90 80 88 81 85 

 

 The PA achieved for each dataset is almost same regardless of the 

crossover probability set. However, only the generation number at which the 

accuracy is achieved differs from dataset to dataset. The crossover rate as 

defined earlier shares information between chromosomes, thereby finding the 

global region effectively and hence controls the convergence rate of ARM. 
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 The mutation rate helps in maintaining the diversity of the 

population. In this study, the mutation rate was set to zero thereby relying on 

the diversity of population generated by reproduction, using crossover alone. 

The selection   operator enables the selection of the chromosomes for 

reproduction. The selection operator is not varied in this study and tournament 

selection is used for selection of chromosomes. 

 The fitness function employed for ARM has four parameters: RS, RC, 

supportmin and confidencemin. The RS and RC values are set less than 1 and 

hence their impact on fitness value is less when compared to the supportmin 

and confidencemin values set by the user. These are the minimum values for 

the support and confidence expected from the ARs mined. To study the 

impact of these two values on the PA of the rules mined, different 

combination of  supportmin and confidencemin are analyzed and the values are 

recorded for four significant combinations alone in the chart. 

 The PA of the ARs achieved for the five datasets are plotted in 

Figure 4.4.  

 
 

Figure 4.4  Minimum Support and Minimum Confidence vs Accuracy 

 for ARM with GA 
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 From the figure, it is clear that the variation in minimum support and 

minimum confidence brings greater changes in accuracy. When the values of 

minimum support and minimum confidence are set to the minimum, the 

accuracy is found to be low regardless of the size of the dataset. The same is 

noted when both the values are set to the maximum. Optimum accuracy is 

achieved when a tradeoff value between the minimum confidence and the 

minimum support is set. 

4.5 GA WITH ELITISM FOR ARM 

 When GA is applied for mining ARs the PA achieved is optimum. 

The reproduction operators at times generate offspring well deviated from the 

actual population thereby misleading the global optima. Available literature 

(Rudolph 1999, Eckart et al. 2000) show that elitism can speed up the 

performance of GA significantly, and help to prevent the loss of good 

solutions, once they are found. 

 In general terms, elitism consists of archiving the “best” solutions 

generated during the search (e.g., Pareto optimal solutions). A secondary 

population, named archive, is used to store these high-quality solutions. The 

strategy used in updating the archive (elite population) relies on size, 

convergence, and diversity criteria. Elitism can be implemented in two ways: 

 Passive Elitism Strategy 

 Active Elitism Strategy 

 In passive elitism strategy, the archive is considered as a separate 

secondary population that has no impact on the search process (Figure 4.5). 

This will only guarantee that an algorithm has a monotonically non-degrading 

performance in terms of the approximated Pareto front.  



60 
 

  

(1) 

  

(1) 

  

(1) 

  

(2) 

  

(2) 

 In active elitism strategy the archived solutions are used to generate 

new solutions (Figure 4.5). Active elitism allows achieving faster and robust 

convergence toward the Pareto front for a better approximation of the Pareto 

front (Obayashi et. al, 1998; Zitzler and Thiele, 1999; Meunier et al. 2000). 

 

 

 

 

 

(1) Generation of new solutions 

(2)  Update the archive 
 

(a) Passive Elitism    (b) Active Elitism 

 
 

Figure 4.5 Elitism in Multiobjective Optimization 

4.5.1 Elitism in GA 

 In ARM using GA there are chances of the selection of individuals 

with minimum fitness value (non-opt parent for reproduction) over 

chromosomes with better fitness values (opt parent for reproduction). To 

prevaricate elitism has been used in the search process of multiobjective 

optimization (active elitism).  

 When elitism is being carried out, care should be taken to prevent 

being trapped by a premature convergence, if a high-elitist pressure is applied 

to the generation of new solutions.  In ARM using Elitist GA, the elitism was 

set as 10% of the population size. The active elitism allows the elite (archive) 

population for further reproduction. In other words, the elite population is fed 
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to the selection process so as to perform the crossover and mutation operation, 

if selected. Thus, being trapped into local optima by premature convergence is 

avoided. The block diagram of the GA with Elitism is given in Figure 4.6. 

 

Figure 4.6 Block Diagram of Elitist GA for Association Rule Mining 

 An external population is maintained at every generation storing all 

non-dominated solutions discovered so far beginning from the initial 

population. This external population participates in all genetic operations. At 

each generation, a combined population with the external and the current 

population are first constructed. All nondominated solutions in the combined 

population are assigned a fitness based on the number of solutions they 

dominate. This assignment of fitness makes sure that the search is directed 

toward the nondominated solutions. 

 It was demonstrated in section 4.4 that the user-defined values of the 

supportmin and confidencemin for the fitness function (Eqn. (4.1)) adopted 

affect the performance of the system. The actual trade-off between these two 

values is not easy to set by trial and error method (manual tuning). 
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 For ARM with Elitism based GA a new fitness function to overcome 

the setback was defined. The fitness function for mining ARs with GA is 

given in Equation (4.2). 

                                                          (4.2) 

 Where, confidence(x) is the confidence value of the rule, support(x) 

is the support for the antecedent and length(x) is the length of the rule. 

 The flowchart of the Elitist GA algorithm for ARM is given in the 

Figure 4.7. 

 

Figure 4.7 Flowchart of ARM with Elitist GA 

4.5.2 Experimental Results and Discussion  

 ARM was performed using GA with Elitism on the five datasets. 

The parameter values set for the experiment are given in Table 4.8. 
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Table 4.8 Default Parameters for ARM with Elitist GA 

Parameter Name Value 

Elitism 10% of population size 

Crossover Probability 0.5 

Mutation Probability  0.2 

Selection Method Roulette Wheel Selection 

Population Size Lenses                        :  20 

Haberman’s Survival  : 300 

Car Evaluation            :  700 

Postoperative Patient  :  75 

Zoo                             :  90 

 

 ARs were mined from the specified datasets and the PA achieved 

over 50 generations is presented in the Table 4.9. 

Table 4.9 Predictive Accuracy for AR mined with Elitist GA 

No. of 

Iterations 
Lenses 

Car 

Evaluation 

Haberman’s 

Survival 

Postoperative 

Patient 
Zoo 

4 90 82.4 70 70 70.4 

6 87.5 81.6 75 70 70.4 

8 91.6 82.8 91.6 73.5 75 

10 90 7.5 75 70.8 75 

15 87.5 80 83.3 73 75 

20 91.6 77.5 97 68 79 

25 87.5 85 92.5 70 82 

30 83.3 83.75 83.3 79 78.6 

50 90 75 75 75 86 
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 The PA achieved by mining AR through GA with Elitism is optimal 

and the convergence rate varies from dataset to dataset, depending on the size 

of the dataset and the correlation between attributes. 

 The maximum PA achieved by Elitist GA is plotted against the 

accuracy of the rules mined with simple GA defined in section 4.3, is shown 

in Figure 4.8. 

 

Figure 4.8 Predictive Accuracy for Mining AR based on GA with Elitism 

 The elitist based GA generates ARs with better PA when compared 

to simple GA for all the five datasets. The enhancement in the accuracy of the 

mined rules is significant. 
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 The elites that could be archived by elitism for the lenses dataset is 

compared by varying selection methods without elitism concept and is plotted 

as shown in Figure 4.9. Here random selection and roulette wheel selection 

without elitism is compared with the elites of roulette wheel selection with 

Elitism. 

 

Figure 4.9 Comparison of Elites for ARM with and without Elitism 

 It can be inferred from the above figure that the roulette wheel 

selection method with elitism generated more elites when compared to the 

selection methods without elitism as the iteration progresses. 

 The qualitative measures of the ARM with elitist based methodology 

are given in the Table 4.10. The Laplace measure is a confidence estimator 

and the value away from 1 indicates that the rules generated are of value. The 

conviction measure being infinity for all datasets indicates that the rules 

generated are interesting. The range of the values of Leverage measure ranges 

between [-0.25, 0.25]. The measure of ARs mined with Elitist GA are all less 

than 0.01 indicates that the rules generated are compact (antecedent and 
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consequent are correlated). Similarly the Lift measure being close to one 

signifies that the antecedent and the consequent in rules generated with Elitist 

GA are associated. 

Table 4.10 Qualitative Measures of ARM with Elitist GA 

Measures Lenses 
Haberman’s 

Survival 

Car 

Evaluation 

Postoperative 

Patient 
Zoo 

Laplace 0.505582 0.538462 0.5 0.5024 0.5 

Lift 3.263158 1.846154 2.08 5.05 1.279 

Conviction Infinity Infinity Infinity Infinity Infinity 

Leverage 0.015661 0.076389 0.006 0.0079 0.007 
  

 The other quantitative measures like the number of rules generated 

by the Elitist GA  with PA less than 0.05% is plotted against the ARM with 

simple GA in the Figure 4.10.  

 
 

Figure 4.10 Comparison of Number of Rules Generated with Elitist GA 

and Simple GA 
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 The number of rules generated by GA with elitism is more when 

compared to simple GA. Preserving the Elite population as archive to the next 

generations helps in retaining better solutions for future generation. Hence, 

more number of rules is generated with this method. In summary in can be 

stated that GA with Elitism performs better than simple GA for ARM. 

4.6 ADAPTIVE GA FOR ARM 

 Rule acquisition is a technique of data mining that is used to deduce 

inferences from large databases. These inferences cannot be noticed easily 

without data mining applications. GA is considered as a global search 

approach for optimization problems. Through the proper evaluation strategy, 

the best “chromosome” can be found from the genetic combinations. In the 

self-adaptive GA, the main thought is to let control parameters (crossover 

rate, mutation rate) adjust adaptively within the proper range, and thus help to 

achieve an optimum solution.  

 In the traditional GA, the crossover and mutation rates are fixed 

values, which are selected based on experience. Generally, it is believed that 

when the crossover rate is too low, the evolutionary process can easily fall 

into local optimum resulting in groups of premature convergence due to 

population size and the lack of diversity. When the crossover rate is too high, 

the process is optimized to the vicinity of optimal point and the individual is 

difficult to reach optimal point which can slow the speed of convergence 

significantly, though groups can ensure the diversity. 

4.6.1 Need for Adaptation 

 GA has found a wide amount of application in data mining, where 

knowledge is mined from large databases. GAs can be used to build effective 

classifier systems (De Jong et al. 1993; Holland,1986), mining ARs (Jacinto 
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et al. 2002; Deepa et al. 2003) and other such data mining problems. Their 

robust search technique has given them a central place in the field of data 

mining and machine learning. 

 In GA, the three basic operators namely, selection, crossover and 

mutation operators, are fixed apriori. The optimum values for these operators 

depend on the problem to which the GA is applied, and also on the fitness of 

the current population.  

 The issue of parameter setting has been relevant since the beginning 

of the EA research and practice. Eiben et al. (2003 and 2007) emphasize that 

the parameter values greatly determinate the success of an EA in finding an 

optimal or near-optimal solution to a given problem. Choosing appropriate 

parameter values is a demanding task. There are many methods to control the 

parameter setting during an EA run.  Parameters are not independent. But 

trying all combinations is an impossible task and the found parameter values 

are appropriate only for the tested problem instances. Nannen et al. (2008) 

state that major problem of parameter tuning is weak understanding of the 

effects of EA parameters on the algorithm performance. 

 Researchers have proposed different adaptive approaches for EA to 

make the parameters evolve by themselves. Back (1992) embedded the 

mutation rate into chromosomes in GA to observe the performance of the self-

adaptive approach in different functions. Spears (1995) added an extra bit in 

the schematic of chromosome to investigate the relative probability of 

operating two-point crossover and uniform crossover in GA. Hop and 

Tabucanon (2005), presented a new and original approach to solve the lot size 

problem using an adaptive GA with an automatic self-adjustment of three 

operator rates, namely, the rate of crossover, mutation and reproduction 

operations. A hybrid and adaptive fitness function (Tang and Tseng 2012), in 



69 
 

which both filter and wrapper approaches were applied for feature selection 

via GA to generate different subsets for the individual classifiers.  

 The efficiency of the rules mined by GA mainly depends on  

the mutation rate and the crossover rate which affects the convergence rate 

(Eiben et al. 2007).  Therefore tuning the value of the mutation rate becomes 

an important criterion for mining ARs with GA. Higher mutation rate 

generates chromosomes much deviated from original values resulting in 

higher exploration time. Lower mutation rate results in crowding of 

chromosomes towards the global optima thereby limiting the search space. 

The dataset from which ARs are mined is considered for modifying the 

mutation rate during evolution process.  So mutation rate is made adaptive 

based on the history of mutation rate and the fitness value.  The algorithm for 

adaptive GA for mining ARs is as given below: 

Initialize population randomly; 

Evaluate fitness of each individual in the population; 

While the stopping condition is not met 

{ 

 Perform selection; 

 Perform crossover and mutation; 

 Evaluate fitness of each individual; 

 Change mutation operator. 

} 

 The mutation operator is made adaptive as given in equation (4.3) 

  
     

      
  

     
              

     
       

   
                      (4.3)
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where, pm
(n+1)

 is the mutation rate of (n+1)
th

 generation;  the first generation 

mutation rate is pm
0
; fmean  is the mean fitness of itemset; fmax

(n+1)
 is the highest 

fitness of the (n+1)
th 

individual stocks; fi
n 

is the fitness of the n
th

 individual I 

and λ is the adjustment factor, which is set within the range [0,1]. 

 The selection of individuals for reproduction (crossover and 

mutation) is based on fitness value.  The fitness function given in Eqn. (4.2) is 

applied for ARM. Adapting the mutation rate based on the fitness values of 

the itemset results in generation of offspring for the new population with 

higher fitness value (Srinivasa et al. 2007). This leads easily towards the 

global optima thereby maintaining the search space effectively. The main 

drawback of GA is its lack of memory (ability to retain the previous fitness 

values). The mutation rate adaption based on the history of mutation rates 

solves this problem, thus enhancing the performance of GA.  

4.6.2 Experimental Results and Discussion 

 The objective of the adaptive GA and adaptive PSO is to enhance 

the performance of ARM by making the adaption dependent on dataset used. 

To validate the performance of the proposed methodology, five datasets from 

University of California Irvine (UCI) repository have been used for the study. 

The experiments were developed using Java and run in windows 

environment. The best of the five executions were recorded. The number of 

iterations was fixed to 100.  

 In adaptive GA mutation rate was made self adaptive based on the 

analysis of control parameters, where the mutation operation was found to 

influence the accuracy of the system while the crossover operation affects the 

convergence rate alone. Hence the crossover rate is kept at fixed value. For 

the mutation rate, in addition to the feedback from earlier mutation rate, the 

fitness value is also considered during adaptation. This enhances the accuracy 
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of the ARs mined and makes the adaption data-dependent. The initial 

parameter setting of the GA parameters for ARM is listed in Table 4.11. 

Table 4.11 Default GA Parameters for ARM 

Parameter Name Value 

Population Size Varies as per the dataset 

Initial Crossover rate 0.9 

Initial Mutation rate 0.1 

Selection Method Roulette wheel selection 

 

 The PA of the ARs mined by this method is compared with the 

results of Simple GA as shown in Figure 4.11.  

 

Figure 4.11 Comparison of the Accuracy between GA and AGA when 

Parameters are Ideal for Traditional GA 
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 A considerable improvement is achieved in PA for all datasets by 

using AGA for ARM. The PA of the rules mined by AGA has improved 

between 8% and 12.5% for the datasets in comparison with the simple GA. 

The adaption of the mutation rate based on its previous value along with the 

fitness value results in generating the diversified population enhances the 

performance of AGA. The mutation rate is GA is fixed for all generations and 

hence lower performance.  

 To analyze the effects of AGA on accuracy the mutation rate of the 

adaptive GA at the final iteration was noted. The noted mutation rate was 

applied for the simple GA and compared with the results of AGA. This is 

shown in Figure 4.12. 

 The adaptive GA methodology gives better performance than GA. 

The performance of GA with the mutation rate obtained at final iteration of 

AGA is inferior to the simple GA’s performance.  

 

Figure 4.12 Predictive Accuracy Comparison of AGA, GA and GA with 

AGA Mutation Rate 
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 Accuracy alone is not the objective of mining ARs. The 

interestingness of the ARs mined is also measured through Lift, Laplace, 

Conviction and Leverage measures and presented in Table 4.12. 

Table 4.12 Qualitative Measures of ARM by AGA 

Dataset Lenses 
Haberman's 

Survival 

Car 

Evaluation 

Postoperative 

Patient 
Zoo 

Laplace 0.65201 0.64782 0.652488 0.6528 0.6524 

Conviction Infinity Infinity Infinity Infinity Infinity 

Leverage 0.0324 0.0569 0.04356 0.0674 0.0765 

Lift 1.89 1.89 1.89 1.89 1.89 

 

 The Laplace and Leverage values are away from 1 for all datasets 

which indicates that the rules generated are of interest. The conviction value, 

infinity also signifies the importance of the rules generated. Similarly the Lift 

measure being close to 1 means that the antecedents and the consequents are 

related, indicating the importance of the rules generated. 

 The PA of the mines ARs achieved using the above proposed 

methodologies are given in Table 4.13.  

Table 4.13 Comparison of PA Achieved by the GA based Methods 

Dataset GA 
GA with 

Elitism 

Adaptive 

GA 

Lenses 85 91.6 91.6 

Haberman's Survival 87 94 97 

Car Evaluation 81 91.6 85 

Postoperative Patient 74 79 82 

Zoo 81 86 89.54 
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 While the PA achieved by the GA was found to be optimal, GA with 

elitism generated ARs with enhanced PA due to carry over of elites through 

generations. The Adaptive GA methodology for ARM generated ARs with 

better PA for the datasets except the car evaluation. The increase in PA when 

compared to GA is 4% for the car evaluation dataset; 6.6% for the lenses 

dataset; 7.54 % for the zoo dataset; 8 % for the postoperative patient dataset 

and 10% for the haberman’s survival dataset.  

 The age of the patient, an attributes in haberman’s survival datasets 

has values with broad range. The PA increase of 10% achieved for this dataset 

signifies the superior performance of the AGA methodology. Similarly for the 

zoo dataset with 18 attributes the 7.54% increase in PA also supports this 

significance.   

4.7 SUMMARY 

 The literature shows ARM implemented using GA has always 

resulted in better PA. However, setting the values of parameters required in 

GA mechanism is usually a time-consuming process. These parameters are 

usually set by trial and error. By assigning all the allowed values to the GA 

parameters and using different data sets, optimal values for these parameters 

were arrived in this study based on the experiments carried out. It is found 

that such optimal values are within the allowed range of values. The values of 

minimum support, minimum confidence decides upon the accuracy of the 

system while crossover rate affects the convergence rate. The Elitist based 

GA generated ARs with better PA than simple GA and the number of 

significant rules generated with Elitist GA is more than the rules generated 

with Simple GA. The adaptive parameter setting of the mutation rate was 

carried out based on the mutation rate history and the fitness values of the 

individuals. The AGA methodology of ARM generated AR with enhanced 

PA, when compared to simple GA and Elitist GA. 
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CHAPTER 5 

PARTICLE SWARM OPTIMIZATION FOR  

MINING ASSOCIATION RULES 

 

5.1 GENERAL 

 This chapter focuses on ARM using PSO methodology. 

Modifications were made in the PSO velocity update for avoiding premature 

convergence. In this regard, chaotic behavior and dynamic neighborhood 

selection were introduced in the basic PSO method. The methodology and 

experimental results of the new PSO variants are also presented in this 

chapter. The avoidance of premature convergence is attempted by adjusting 

the control parameters: inertia weight and acceleration coefficients. Two 

different adaption mechanisms namely, data-independent and data-dependent 

mechanisms are also dealt in this chapter for mining ARs. 

5.2 PSO FOR ARM  

 GA when applied for ARM generates ARs with better PA. But, the 

time taken for mining the rules is more, and the reproduction operator at times 

produced offspring crowding towards local optima. 

 To overcome the above demerits, PSO was taken up for mining ARs. 

PSO shares many similarities with evolutionary computation techniques such 

as GA. However unlike GA, PSO has no evolution operators such as 

crossover and mutation and also possess the advantage of storing the previous 

history of particles. PSO has proved to be competitive with GA in several 

tasks, mainly in optimization areas.  



76 
 

 The initial ideas on particle swarms of Kennedy (a social 

psychologist) and Eberhart (an electrical engineer) were essentially aimed at 

producing computational intelligence by exploiting simple analogues of social 

interaction, rather than purely individual cognitive abilities. The first 

simulation (Kennedy and Eberhart 1995) was influenced by Heppner and 

Grenander’s work (Heppner and Grenander 1990) and involved analogues of 

bird flocks searching for corn. Soon this soon was developed into a powerful 

optimization method— PSO (Kennedy and Eberhart 1995; Eberhart and 

Kennedy 1995; Eberhart et al. 1996). The concept of ARM using PSO is 

discussed in the following section. 

5.2.1 Methodology 

 PSO is initialized with a group of random particles (solutions) and 

then searches for optimum value by updating particles in successive 

generations. In each iteration, all the particles are updated by following two 

"best" values: pBest and gBest. The movement of the particle in PSO towards 

the global optima (target) is shown in figure 5.1 below. 

   

Figure 5.1 Particles Movement towards the Target 
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 PSO is a new evolutionary algorithm, which simulates the 

coordinated motion in flocks of birds.  Sousa, Silva, and Neves (2004), 

proposed the use of PSO for data mining. PSO can achieve the rule discovery 

process. The rule representation in PSO uses the Michigan approach. PSO 

needs fewer particles than GA to obtain the same results. 

 The flowchart of the PSO algorithm for mining ARs is shown in 

Figure 5.2. Each record in the dataset with its attributes is represented as a 

particle in PSO.  During iteration process, the velocity and position of all 

particles are updated based on velocity and position update equations (3.1) 

and (3.2), respectively.  

 
Figure 5.2 Flowchart of PSO for ARM 
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 Binary encoding is applied for representing each particle. The 

particles in this population are called initial particles. Initially the velocity and 

position of all particles are randomly set, within predefined range.  

 To reduce the possibility  of particles flying out of the problem 

space, Eberhart et al. (1996) put forward a clamping scheme that limited the 

speed of each particle to a range [ -vmax, vmax] with vmax usually being 

somewhere between 0.1 and 1.0 times the maximum position of the particle. 

In this study vmax is set as the maximum value of the particles (xi). 

 Whilst experimenting with the standard algorithm, Shi and Eberhart 

(1998), noted that without the velocity memory   
     the first part of Eqn. 

(3.1), the swarm would simply contract to the global best solution found 

within the initial swarm boundary (providing a local search). Conversely, with 

the velocity memory, the swarm will behave in the opposite sense, expanding 

to provide a global search. In order to achieve the balance between 

exploration and exploitation, a modified PSO incorporating an inertia weight 

(    was introduced thus: 

  
        

                                                  (5.1) 

 The initial experimentation (Carlisle and Dozier 2000; Trelea 2003)  

suggested that a value between 0.8 and 1.2 provided good results, although in 

later work (Eberhart and Shi 2000) they indicate that the value is typically set 

to 0.9 (reducing the stepwise movement of each particle, allowing greater 

initial exploration) reducing linearly to 0.4 (speeding convergence to the 

global optimum), during an optimization run. 

 To study the impact of inertia weight on PSO for ARs mining the 

inertia weight is varied and the accuracy achieved by ARM was analyzed. 



79 
 

5.2.2 Experimental Results and Discussion 

 The objective of this study is to analyze the performance of PSO for 

mining ARs. PSO models without and with inertia weights were applied for 

ARM. ARs are mined from the five datasets described in section 3.5. The 

parameters of the PSO model without inertia weight for ARM is given in 

Table 5.1. 

Table 5.1 Initial Parameter Setting of PSO for ARM 

Parameter Name Value 

Population Size Lenses                        :  20 

Haberman’s Survival :  300 

Car Evaluation           :  1000 

Postoperative Care    :  50 

Zoo                            :  100 

No. of Generations 100 

c1, c2 2 

vmax  Maximum (xi) 

  

 Each methodology was run 10 times on the dataset chosen. The PA 

achieved for the five datasets is presented in Table 5.2. The same is compared 

with the simple GA methodology described in Chapter 4.  
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Table 5.2 Predictive Accuracy Comparison of PSO and GA for ARM 

Dataset Name GA PSO 

Lenses  85 92.8 

Haberman’s Survival  87 94.4 

Car evaluation  81 91.6 

Post Operative Patient  74 83.33 

Zoo  81 95.45 

 

 The PA obtained through PSO methodology  is better than the 

performance of simple GA for all the five datasets. The simplicity of  

PSO with minimum function evaluations generates better ARs when 

compared to GA. 

 The execution time (CPU) is the time taken for mining ARs by PSO 

methodology until the completion of specified number of generations. The 

execution time results obtained for GA and PSO are presented in Figure 5.3. 

 

Figure 5.3 Execution Time comparison of PSO and GA for ARM 
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 In terms of computational effectiveness PSO is found to be 

marginally faster than GA. PSO shares many similar properties with GAs. 

Both methods begin with a group of randomly initialized population, evaluate 

their population based on fitness function. However, the main difference 

between PSO and GA is that PSO does not have the genetic operators as 

crossover and mutation. In PSO, only the best particle passes information to 

others and hence, the computational capability of PSO is marginally better 

than GA. 

 As the efficiency of PSO in terms of PA and execution time have 

been found to be better than GA, the qualitative measures defined in chapter 3 

are determined for the five datasets. The results are given in Table 5.3. 

Table 5.3 Qualitative Measures of ARM with PSO 

 
Lenses 

Haberman’s 

Survival 

Car 

Evaluation 

Postoperative 

Patient 
Zoo 

Laplace 0.52 0.5 0.5 0.5 0.5 

Lift 2 2.08 1.05 1.279 6.314 

Conviction Infinity Infinity Infinity Infinity Infinity 

Leverage 0.0625 0.006 0.0015 0.007 0.016 
 

 The Laplace measure, away from the value 1, signifies that the 

antecedent values are dependent on the consequent and hence the rules 

generated are of importance. The conviction measure which is infinity for all 

datasets show that the rules generated are interesting. The Leverage measure 

being far away from 1 again insists on the interestingness of the rules 

generated. The measure of Lift for all the datasets is greater than1 signifies 

that the dependency of the consequent on the antecedent.  Thus the rules 

generated by PSO are of importance based on the Lift measure. 
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 In the velocity update function (Eqn 3.1) the velocity of the particle 

in previous generation is added as such, to the current velocity. This makes an 

impact on the previous particle’s movement on the new velocity. Thus, the 

exploration ability of the particle gets restricted. To reduce the impact of 

earlier velocity on current velocity, the inertia weight parameter is added as 

given in Equation (6.1). The inertia weight impart only portion of earlier 

velocity into new one. The inertia weight is varied and the PA achieved by the 

generated rules from the five datasets is given in Figure 5.4 below.  

 

Figure 5.4 Impact of Inertia Weight on Predictive Accuracy for ARM 

 From the above figure it is inferred that for the inertia weight (   in 

the range [0.4, 0.9], the PA achieved is optimum. For inertia weight in range 

[0.5, 0.7] the PA achieved is maximum depending on datasets used. When 

inertia weight is between 0.2 and 0.3 the PA achieved is inconsistent.  The PA 

achieved by the weighted PSO for ARM is plotted in comparison with PSO 

without inertia weight, as shown in Figure 5.5. 
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 The PA of weighted PSO (WPSO) has enhanced, for all the five 

datasets in comparison with PSO. The accuracy enhancement achieved is 

varying from 1.27% to 14% for the datasets chosen. An increase in PA of 

14% is achieved for the postoperative care dataset.  Marginal enhance of 

1.27% of PA is noted for the zoo dataset. A better balance between 

exploration and exploitation is obtained by the addition inertia weight and 

hence, better performance by the WPSO. 

 

Figure 5.5 Comparison of PSO with and without Inertia Weight for ARM 

5.3 CHAOTIC PSO FOR ARM  

 The canonical PSO has a tendency to get struck at local optima and 

thereby leading to premature convergence when applied for solving practical 

problems. To improve the global searching capability and escape from the 

local optima, chaos is introduced in PSO (Alatas et al. 2007). Chaos is a 

deterministic dynamic system, very sensitive and dependent on its initial 

conditions and parameters. In this section chaotic behavior introduced in PSO 

is presented to maintain the diversity of population and to enhance the 

performance of ARM process. 
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5.3.1 Chaotism in PSO 

 To improve the global searching capability by escaping from the 

local solutions, sequences generated from different Zaslavskii Map (Zhang 

and Huang 2004) substitute random numbers for different parameters of PSO, 

where it is necessary to make a random-based choice. Coupling such behavior 

with PSO and complex dynamics, can improve the quality of results in some 

optimization problems and also that chaos may be a desired process. It has 

been empirically shown that introducing chaotic maps with ergodicity, 

irregularity and the stochastic property in PSO, the global convergence has 

been improved (Alatas et al., 2007). 

 The common method of generating chaotic behavior is based on 

Zaslavskii map (Zhang and Huang, 2004). This representation of map 

involves many variables. Setting right values for all the variables involved, 

increases the complexity of the system. And erroneous values might bring 

down the accuracy of the system involved. Logistic map and tent map also 

have the most frequently used chaotic behavior. The drawback of these maps 

is that the range of values generated by both maps after some iteration 

becomes fixed to a particular range. To overcome this defect the tent map 

undisturbed by the logistic map (Kong et al., 2010) is introduced as the 

chaotic behavior. A new chaotic map model is proposed with the following 

equation, based on the tent and logistic maps. 

                                                                                           

       
                                                            

                                               
   

 

(5.2) 
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 The initial value of u0 and v0 are set to 0.1. The slight tuning of 

initial values of u0 and v0 creates wide range of values with good distribution. 

Therefore, the chaotic operator chaotic_operator(k) = vk is designed to 

generate different chaotic operators by tuning u0 and v0. The value u0 is set to 

two different values for generating the chaotic operators 1 and 2. 

 The velocity updation equation based on chaotic PSO is given in 

Equation 5.3. 

  
       

                                        
                                                                               

 

 In the above equation, the random number generator is replaced with 

chaotic_operator1 and chaotic_operator2.  Chaotic behavior is replaced by 

random number to create a new population with diversity. When diversity 

exists, the exploitation capability of PSO increases. Thus, the global search is 

performed effectively and the performance also increases.  

5.3.2 Experimental Results and Discussion 

 The chaotic PSO (CPSO) was tested on the bench mark datasets 

discussed earlier in chapter 3, for performance analysis. The number of 

generations was set to 100. The acceleration coefficients c1 and c2 were both 

set to 2. The initial velocity was set as 0 for all the particles and the value for 

Vmax was set as 1. Each methodology was run 10 times on the chosen dataset.  

 The PA achieved by CPSO for ARM from the five datasets is plotted 

in Figure 5.6. The PA achieved by PSO is compared with the obtained results. 
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Figure 5.6   Comparison of Predictive Accuracy of CPSO and PSO for ARM 

 Chaotic PSO generated ARs with enhanced PA, in comparison to 

PSO for all the five datasets. The convergence rate (generation at which 

maximum PA achieved) of the CPSO for mining ARs from the five datasets 

chosen for analysis is presented in the Figure 5.7. 

  

Figure 5.7 Convergence Rate of CPSO   for ARM 
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 It could be noted form the Figure 5.7 that the PSO methodology 

generated ARs with maximum accuracy at the earlier stages of iteration (10-

40) for the five datasets. To avoid premature convergence chaotic behavior 

was introduced in PSO. This chaotic behavior resulted in diversification of 

particles, thereby evading the premature convergence.  Thus the convergence 

has shifted to later iterations in CPSO (30-70). 

 The chaotic operators could be changed by altering the initial values 

in chaotic operator function. The balance between exploration and 

exploitation is maintained by CPSO methodology. 

5.4 DYNAMIC NEIGHBORHOOD SELECTION IN PSO FOR ARM 

 The problem of not reaching the optimal solution and deviation from 

optimal solution space are addressed via gBest and pBest values respectively 

in PSO. The global best propagates information at the fastest, in the 

population dealing with exploration, while, the local best using a ring 

structure speeds up the system balancing the exploration. 

 In published literature efforts have been directd to enhance the 

performance of PSO. In Gregarious PSO (Pasupuleti and Battiti, 2006) the 

social knowledge of the particle is used for discovery in the search space. If 

particles are trapped in the local optimum, a stochastic velocity vector thereby 

self sets the parameters. In Dynamic neighborhood PSO (Lu and Chen, 2008) 

instead of using the current gBest, another parameter Neighborhood Best 

(Nbest) is utilized. This term is the best particle among the current particle’s 

neighbors in a specified neighborhood. 

 Fixing up the best position for particles after velocity updation by 

using Euclidean distance helps in generating the best particles (Kuo et al. 

2011). The problem of getting struck at local optimum and hence premature 
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convergence is overcome by self adaptive PSO (Lu et al. 2010), where, the 

diversity of population is maintained. This copes up with the deception of 

multiple local optima and reduces computational complexity. An adaptive 

chaotic PSO (Cehng at al. 2011) enhances the global searching capability and 

local searching capability by introducing chaotic operators based on Logistic 

map and tent map. In addition an adaptive search strategy which optimizes 

continuous parameters is employed. 

 To avoid premature convergence and enhance the accuracy the 

Neighborhood selection in PSO (NPSO) was proposed replacing the particle 

best concept by local best. 

5.4.1 Dynamic Neighborhood Selection in PSO 

 The balance between exploration and exploitation in PSO is the 

main issue when applied for solving complex problems. The velocity update 

equation plays a major role in enhancing the performance of the PSO. To 

maintain the diversity of the particles and enhance the performance of the 

PSO, the concept of adapting the local best particle among the neighbors is 

proposed for mining ARs. The proposed work is to review the PSO for 

mining ARs with dynamic neighborhood selection. 

 From the study carried out on the five datasets, PSO proves as 

effective as GA in mining ARs. In terms of computational efficiency, PSO is 

marginally faster than GA. The pBest and gBest values tend to pass the 

information between populations more effectively than the reproduction 

operators in GA.  The neighborhood best called local best (lBest) selection is 

as follows; 
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 Calculate the distance of the current particle from other 

particles by equation (5.4). 

                                                                           (5.4) 

 Find the nearest m particles as the neighbor of the current 

particle based on distance calculated 

 Choose the local optimum lBest among the neighborhood in 

terms of fitness values 

 The flowchart of the proposed algorithm is given in Figure 5.8. The 

number of neighborhood particles m is set to 2. Velocity and position 

updation of particles are based on equation (3.1) and (3.2). The velocity 

updation is restricted to maximum velocity Vmax, set to the maximum of xi.  

The termination condition is set as fixed number of generations. 

 
 

Figure 5.8 Flowchart for Association Rule Mining with Dynamic 

Neighborhood Selection in PSO 
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 The velocity update function of NPSO is as defined in equation (5.5) 

and the position update function is adopted using Eqn. (3.2). 

   
        

                                                     (5.5) 

 The interestingness of discovered ARs is an important and active 

area within data mining research. The measure of interestingness varies from 

application to application and from expert to expert. Each interestingness 

measure produces different results, and experts have different opinions of 

what constitutes a good rule. The interestingness measure for a rule is taken 

from relative confidence and is as follows: 

                    
         ∪                        

                        
                           (5.6) 

where, k is the rule; x the antecedent part of the rule and y the consequent part 

of the rule k. 

5.4.2 Experimental Results and Discussion  

 The effectiveness of the proposed dynamic neighborhood selection 

in PSO methodology for ARM was tested on the five datasets selected for 

analysis. The parameter setting of the proposed NPSO methodology for ARM 

is listed in Table 5.4. 
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Table 5.4 Default Parameter Setting of NPSO for ARM 

Parameter Name Value 

Population Size Lenses                         :  20 

Haberman’s Survival  :  300 

Car Evaluation            :  1000 

Postoperative Care      :  50 

Zoo                              :  100 

Initial Velocity 0 

c1 2 

c2 2 

Vmax 1 

No of Iterations  100 

No. of Runs 10 
 

 The maximum accuracy achieved from repeated runs is recorded as 

the PA for each case. The interestingness is calculated from the corresponding 

run. The PA achieved was compared with PSO for the same datasets and the 

highest PA achieved for multiple runs is plotted in Figure 5.9. 

 
 

Figure 5.9 Predictive Accuracy Comparison for Dynamic 

Neighborhood selection in PSO 
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 The PA achieved for all the five datasets chosen was better 

compared to PSO methodology. A maximum enhancement of 11.18% is 

achieved for the postoperative care dataset.  

 The interestingness or relative confidence measures of the mined 

rule are shown in Table 5.5. The ARs mined with dynamic neighborhood 

selection PSO is with good interestingness measure, indicating the importance 

of the mined rules. 

Table 5.5 Measure of Interestingness for Dynamic Neighborhood 

Selection PSO 

Dataset Lens 
Car 

Evaluation 

Haberman’s 

Survival 

Postoperative 

Patient 
Zoo 

Interestingness 

Value 
0.82 0.73 0.8 0.78 0.76 

 

 Experts using evolutionary algorithms observe that the time 

complexity of PSO is less, when compared to GA. Premature convergence 

may also result in reduced execution time. The scope of this work is to avoid 

premature convergence. The concept of local best based on neighborhood 

particles, instead of the individual best particles, focuses on this issue.  

 The convergence rate of NPSO for mining ARs is given in  

Table 5.6.  
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Table 5.6  Comparison of Convergence Rate of  NPSO with PSO for 

   ARM 

Dataset 
PSO 

(Generation No.) 

NPSO 

(Generation No.) 

Lens  10 60 

Car Evaluation  20 60 

Haberman’s Survival  10 60 

Postoperative Patient  50 60 

Zoo  20 60 

 

 The PSO methodology produces maximum results at the earlier 

iteration stages itself (10-50), whereas, the neighborhood selection in PSO 

extends the convergence rate to iterations more than 50, thus, avoiding 

premature convergence.  

 The selection of local best particles based on neighbors (lBest), 

replacing the particles own best (pBest), enhances the accuracy of the rules 

mined. The concept of local best (lBest) based on neighborhood selection in 

fitness space instead of other measures helps in maintaining the diversity of 

local points optimally, thus striking a balance between premature convergence 

and diversification of particles in problem space. 

5.5   MOTIVATION FOR ADAPTIVE TECHNIQUES 

 While solving problems with PSO, its properties affect the 

performance. The properties of PSO depend on the parameter setting and 

hence users need to find the opt value for the parameters to optimize the 

performance. The interactions between the parameters have a complex 

behavior and so each parameter value will have a different effect depending 

on the value set for others. Without prior knowledge of the problem, 
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parameter setting is difficult and time consuming. The two major ways of 

parameter setting are through parameter tuning and parameter control (Eiben 

and Smith, 2003). Parameter tuning is the commonly practiced approach that 

amounts to finding appropriate values for the parameters, before running the 

algorithm. Parameter control steadily modifies the control parameter values 

during the run. This could be achieved either through one of: deterministic, 

adaptive or self-adaptive techniques (Eiben et al. 2007).  

 Deterministic parameter control is effected through a deterministic 

rule that modifies the strategy parameter without any feedback. This method 

becomes unreliable for most problems because the parameter adjustments 

must rely on the status of the problem at current time.  In self-adaptive 

approach, the parameters to be controlled are encoded into the candidate 

solution which may result in deadlock.  Good solution depends on finding the 

good setting of parameters and obtaining the good setting of parameters 

depends on finding the good solution. Moreover, extra bits are required to 

store these strategy parameters, so the dimensionality of the search space 

increases. Thus, the corresponding search space becomes larger and hence the 

complexity of the problem increases. In this context, adaptive method is the 

better solution. 

 The parameters of PSO and their role in optimization process are 

presented in Table 5.7.  

Table 5.7 Parameters of PSO and their Roles 

Parameter Parameter Role 

Inertia weight (   Controls the impact of the velocity history into the new 

velocity 

Acceleration 

Coefficient c1 

Maintains the diversity of swarm 

Acceleration 

Coefficient c2 

Convergence towards the global optima 
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 The research attempts on dynamically adapting the parameter of 

PSO to enhance the efficiency of ARM based on: data independent and data 

dependent techniques as discussed in the following sections. 

5.6 DATA INDEPENDENT ADAPTATION IN PSO 

 The velocity update equation plays a major role in enhancing the 

performance of the PSO. However, similar to other evolutionary computation 

algorithms, the PSO is also a population-based iterative algorithm. Hence, it 

can easily get trapped in the local optima when solving complex multimodal 

problems (Liang et al., 2006). These weaknesses have restricted wider 

applications of the PSO (Engelbrecht 2006). 

 To balance the global search and local search, inertia weight (ω) was 

introduced. It can be a positive constant or even a positive linear or nonlinear 

function of time (Shi and Eberhart 2002). Inertia weight plays a key role in 

the process of providing balance between exploration and exploitation 

process. The inertia weight determines the contribution rate of a particle’s 

previous velocity to its velocity at the current time step. Eberhart and Shi 

(2001), proposed a random inertia weight strategy and experimentally found 

that this strategy increases the convergence of PSO in early iterations of the 

algorithm. In global-local best inertia weight (Arumugam and Rao 2006), the 

inertia weight is based on the function of local best and global best of the 

particles, in each generation. It neither takes a constant value nor a linearly 

decreasing time-varying value. Using the merits of chaotic optimization, 

Chaotic Inertia Weight has been proposed by Feng et al. (2010).  

 Gao et al. (2008), proposed a new PSO algorithm which combined 

the logarithm decreasing inertia weight with chaos mutation operator. 

Adaptive parameter control strategies can be developed based on the 

identified evolutionary state and by making use of existing research results on 
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inertia weight (Shi and Eberhart 1999; Shi and Eberhart 2001). Some use a 

self-adaptive method by encoding the parameters into the particles and 

optimizing them together with the position during run time (Tripathi et al. 

2007; Yamaguchi and Yasuda 2006). 

 To maintain effective balance between exploration and exploitation, 

the inertia weight is adapted during evolution independent of the dataset 

involved. The inertia weight is made adaptive by two different techniques. 

5.6.1 Methodology 

 The original PSO has pretty good convergence ability, but also 

suffers the demerit of premature convergence, due to the loss of diversity. 

Improving the exploration ability of PSO has been an active research topic in 

recent years. Thus, the proposed algorithm introduces the concept of self 

adaptation as the primary key to tune the two basic rules velocity and 

position. By improving the inertia weight formulae in PSO the diversity of 

population could be achieved. The basic PSO, as resented by Eberhart and 

Kennedy (1995), has no inertia weight. In 1998, first time Shi and Eberhart 

presented the concept of constant inertia weight.  

 By looking at equation (3.1) more closely, it can be seen that the 

maximum velocity allowed actually serves as a constraint that controls the 

maximum global exploration ability the PSO can have. By setting a too small 

maximum for the velocity allowed, the maximum global exploration ability is 

limited, and hence, PSO will always favor a local search, no matter what the 

inertia weight is. PSO can have a large range of exploration ability, by setting 

optimum value for inertia weight. Since the maximum velocity allowed 

affects global exploration ability indirectly, and the inertia weight affects it 

directly, it is better to control global exploration ability through inertia weight 

only. A way to achieve this is by allowing inertia weight to control 
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exploration ability. Thus, the inertia weight is made to change automatically 

(self adaptive). Three self adaptive inertia weights methods namely: Self 

Adaptive PSO1 (SAPSO1), Self Adaptive PSO2 (SAPSO2) and Self Adaptive 

chaotic PSO (SACPSO) are introduced for mining ARs in this work. 

 In order to linearly decrease the inertia weight as iteration progresses 

the inertia weight is made adaptive through the equation (5.7) in SAPSO1.  

                  
 

 
             (5.7) 

where,      and      are the maximum and minimum inertia weights, g is the 

generation index and G is the predefined maximum number of generation.  

 In SAPSO2 the inertia weight adaptation is made to depend upon the 

values from previous generation so as to linearly decrease its value with 

increasing iterations, as given by equation (5.8).  

             
           

 
                                                  (5.8)     

where,  ( +1) is the inertia weight for the current generation,  ( ) inertia 

weight for the previous generation,      and      are the maximum and 

minimum inertia weights and G is the predefined maximum number of 

generation. 

 The value of      and      are set as 0.9 and 0.4 respectively. The 

values are arrived from section 5.2 (Figure 5.4) where the PA of ARM arrived 

is optimum, when values are within the range [0.4, 0.9]. 

 The velocity update equation specified in Eqn. (6.1) is applied for 

mining ARs. The position update is made as given in equation 3.2. For both 

SAPSO1 and SAPSO2 methods, the inertia weight is adjusted during 

evolution based on equation (5.7) and (5.8). 
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 In the proposed SACPSO methodology, the inertia weight adaption 

is made in chaotic PSO for ARM. The velocity update equation of 

chaotic PSO (Eqn. 5.3) is altered by adding the inertia weight as given in 

Equation (5.9). 

  
   

     
                                        

                                                                                                         

 Here, the inertia weight adaptation is performed based on the 

equation (5.7), for mining ARs. 

5.6.2 Experimental Results and Discussion 

 ARM is performed on the five datasets using the three adaptive 

methodologies discussed in the previous section. The initial parameter setting 

for the experiment is listed in Table 5.8. 

Table 5.8 Default Parameter Setting of Adaptive Methodologies for ARM 

Parameter Name Value 

Population Size Lenses                         : 20 

Haberman’s Survival  :  300 

Car Evaluation            :  1000 

Postoperative Care      :  50 

Zoo                              :  100 

Initial Velocity 0 

c1 , c2 2 

Vmax 1 

     0.4 

     0.9 
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 ARs are mined with the three methodologies; SAPSO1, SAPSO2 

and SACPSO for the five datasets. The PA achieved by the three methods 

over generations is plotted individually for the five datasets as given in Figure 

5.10 (a-e). 

 

(a) Lenses Dataset 

 

(b) Haberman’s Survival Dataset  
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(c) Car Evaluation Dataset 

 

(d) Postoperative Patient Dataset 
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(e) Post Operative Patient Dataset 

Figure 5.10 Comparison of Predictive Accuracy of three Adaptive                           

Methodologies with PSO for ARM 

 From Figure 5.10 a to e it is observed that the three adaptation 

techniques: SAPSO1, SAPSO2 and SACPSO generated ARs with better PA 

than PSO methodology. SAPSO1 methodology performs marginally better 

when compared to other two methodologies except for the Haberman’s 

Survival dataset, where SACPSO’s PA is better. The performance of SAPSO2 

is consistent for all the five datasets throughout the evolution process. 

 Introduction of adaptation in inertia weight enhances the accuracy of 

the system considerably. The inertia weight controls the impact of previous 

flying experience, which is utilized to keep the balance between exploration 

and exploitation. The adaptation of the control parameters result in 

enhancement of the accuracy thereby increasing the ability of PSO for  

mining ARs. 
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5.7 DATA DEPENDENT ADAPTATION IN PSO 

 The literature on adaptive strategies in GA and PSO focuses on the 

mechanisms of adaptation over generation either decreasing or increasing the 

parameter values, independent of the data involved to enhance the 

performance. As ARM is mainly based on relationship or correlation between 

items in a dataset, data dependent strategy of adaptation could generate better 

associated rules both qualitatively and quantitatively. The performance of the 

adaptive strategy for mining ARs could be enhanced, if the parameter 

adjustments are done depending on: i) the data involved and ii) fitness values 

used for evolution through generations. The proposed ARM based on data 

dependent adaptation of control parameters in PSO, is discussed in the 

following section. 

5.7.1 Methodology 

 The roles of the parameters are significant in the performance of the 

methodologies. PSO is mainly conducted by three key parameters important 

for the speed, convergence and efficiency of the algorithm (Yao et al. 1999): 

the inertia weight     and two positive acceleration coefficients (c1 and c2). 

Inertia weight controls the impact of the velocity history into the new 

velocity. Acceleration parameters are typically two positive constants, called 

the cognitive parameter c1 and social parameter c2. 

 Inertia weight plays a key role in the process of providing balance 

between exploration and exploitation process. The linearly decreasing  

inertia weight over time enhances the efficiency and performance of PSO 

(Xin et al., 2009). Suitable fine-tuning of cognitive and social parameters c1 

and c2 may result in faster convergence of the algorithm and alleviate the risk 

of settling in one of the local minima. To adapt the parameters of PSO in the 

proposed adaptive PSO methodology for ARM, parameter tuning was 

performed based on the evolutionary state to which the data is fits. The 

acceleration coefficients are adapted based on the dataset from which ARs are 
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mined. The inertia weight is adjusted based on the fitness value of the 

individuals. The pseudo code for the Adaptive PSO is given below: 

/* Ns: size of the swarm, C: maximum number of iterations, Of : the final 

output*/ 

i. t = 0, randomly initialize S0, 

• Initialize xi, ∀i, i ∈ {1, . . .,Ns}      /* xi : the i
th

 particle  */ 

• Initialize vi, ∀i, i ∈  {1, . . .,Ns}    /* vi : the velocity of the i
th

  

   particle*/ 

• Initialize  1, c1(1), c2(1)
 
               /*

   : Inertia weight, c1, c2 :  

   Acceleration  Coefficients */ 

• Pbi ← xi, ∀i, i ∈  {1, . . .,Ns}        /* Pbi : the  personal best of the i
th

 

   particle */ 

• Gb← xi   /* Gb : the global best particle */ 

ii.  for t = 1 to C,   /* C : total no of iterations */ 

•   for i = 1 to Ns  

 F(xi) = confidence(xi )    log (support (xi) x (length(x) + 1)   

                       /* F(xi) : Fitness of xi  */ 

 If ( F(xi) < F(Pbi)) 

      Pbi ← xi   /* Update particle best */ 

 Gb ← min(Pb1, Pb2,… , PbNs)    /* Update global best */ 

 adjust parameters( (t), c1(t), c2(t))  /* Adaptive Adjustment */ 

 vi(t) =  (t)vi (t-1)+ c1(t)r1(Pbi − xi) + c2(t) r2(Gb − xi )  

                   /* Velocity Updation         

      r1, r2 : random values*/ 

 xi (t)= xi(t-1) + vi(t)   /* Position Updation */ 

 

• A(t) ← non dominated(S(t) ∪ A(t))  /* Updating the Archive*/ 

iii. Of ← A(t) and stop            /* Of : Output*/ 
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Adjust parameters ((t), c1(t), c2(t)) in the above pseudo code is achieved 

through adaptive mechanism newly proposed. The proposed approach based 

on estimation of evolutionary state distributes the evolution of data into four 

states, namely, Convergence, Exploration, Exploitation and Jumping out. 

Estimation of Evolutionary State (EES) 

 During the PSO process, the population distribution characteristics 

vary not only with the generation number, but also with the evolutionary state. 

For example, at an early stage, the particles may be scattered in various areas, 

and hence, the population distribution is dispersive. As the evolutionary 

process goes on, the particles would cluster together and converge to a local 

or globally optimal area. Hence, the population distribution information 

would differ from the early stage. The estimation of evolutionary state detects 

the population distribution information and locates the region in which the 

particle lies.  

 Based on the search behaviors and the population distribution 

characteristics of the PSO, estimation of evolution state is done as follows 

a. The distance between particles is calculated using the Euclidean 

distance measure for each particle i using the Equation (5.10). 

    
 

   
          

  
                 (5.10) 

 where, N is the population size, xi and xj are the i
th

 and j
th

 particles in 

the population, respectively.              

b. Calculate the evolutionary state estimator (e), defined as 

   
         

           
             (5.11) 
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 where,    is the distance measure of the gBest particle,     ,      are 

the maximum and minimum distance measures respectively, from step 

a, above. 

c. Record the evolutionary (e) factor for 100 generations for each dataset 

individually. 

d. Classify the estimator (e), to the state it belongs: Exploration, 

Exploitation, Convergence, Jumping out, for the datasets based on the 

evolutionary states.  

 The evolutionary state estimator e over hundred generations is 

plotted for the zoo dataset as shown in Figure 5.11. The evolution states are 

estimated based on the e values.  The state transition is different for the five 

datasets and is nondeterministic and fuzzy. Based on the evolution state 

estimator values, classification is done for determining the intervals at which 

the class transition occurs.    

 
 

Figure 5.11 Evolutionary State Information Robustly Revealed by e at 

Run Time for Zoo Dataset 
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 The intervals arrived for the five datasets based on EES is given in 

Table 5.9.  

Table 5.9 Classification into States by Evolutionary Factor 

    Datasets 

 

EES State 

Lenses 
Car 

Evaluation 

Haberman’s 

Survival 

Postoperative 

Patient 
Zoo 

Convergence 0.0 – 0.3 0.0- 0.15 0.0 - 0.4 0.0 - 0.5 0.0- 0.15 

Exploitation 0.1- 0.4 0.15- 0.25 0.3-0.7 0.2- 0.6 0.1- 0.35 

Exploration 0.2- 0.7 0.1- 0.3 0.6- 0.9 0.4-0.8 0.2- 0.4 

Jumping out 0.6-1 0.3-1 0.8-1 0.7-1 0.3-1 

 

 The change of state reflected as per the PSO sequence is 

Convergence  Exploitation   Exploration  Jumping Out   

Convergence. 

 The formulation of numerical implementation of the classification 

for the Haberman’s Survival dataset is as follows: 

Case (a) – Exploration: A medium to large value of e represents exploration, 

whose membership function is defined as: 

                

 
 
 

 
 

                                           
                          
                                      
                      
                                   

                                 (5.12a) 
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Case (b)—Exploitation: A shrunk value of e represents exploitation whose 

membership function is defined as: 

                 

 
 
 

 
 

                                
                        

                                          
                      
                                 

                            (5.12b) 

Case (c)—Convergence: A minimal value of e represents convergence, whose 

membership function is defined as: 

                 
                                

                      
                                   

                                 (5.12c) 

Case (d)—Jumping Out: When PSO is jumping out of a local optimum, the 

global best particle is distinctively away from the swarming cluster. Hence, 

the largest value of f reflects S4, whose membership function is, thus, defined 

as: 

                 
                                
                    
                                   

                                    (5.12d) 

 Therefore, at a transitional period, two memberships will be 

activated, and e can be classified to either state. The singleton method of 

defuzzification is adopted. The distribution of all particles in PSO, based on 

Euclidean distance calculated is illustrated in Figure 5.12. 
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         , Exploration             , Exploitation,                , Jumping    

                                                       Convergence                                        Out           

                       ,         -   Best particle of the swarm 

Figure 5.12 Population Distribution in PSO based on Evolutionary factor  e  

 Based on the estimation into states using evolutionary estimation 

factor e and fitness values, the adaptation of acceleration coefficients and 

inertia weight is performed. 

Adaptive Control of Acceleration Coefficients 

 The acceleration coefficients are made adaptive through the 

classification of evolutionary states. Parameter c1 represents the “self-

cognition” that pulls the particle to its own historical best position, helping in 

exploration of local niches and maintaining the diversity of the swarm. 

Parameter c2 represents the “social influence” that pushes the swarm to 

converge to the current globally best region, helping with fast convergence. 

Both c1 and c2 are initially set to 2 (Song and Gu 2004; Mendes et al. 2004), 

based on the published literature. The acceleration coefficients are adaptively 

altered during evolution, according to the evolutionary state, with strategies 

developed. The strategy to adopt for the four states is given in Table 5.10. The 

values for δ and  are empirically arrived for the datasets taken up for study. 
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Table 5.10 Control Strategies for c1 and c2 

State/Acceleration 

Coefficient 
c1 c2 

Exploration Increase by δ Decrease by δ 

Exploitation Increase by  Decrease by  

Convergence Increase by  Increase by  

Jumping out Decrease by δ Increase by δ 

 

 The increase or decrease in the values of c1 and c2 arrived in Table 

5.10 is discussed below. 

Exploration: During exploration, particles should be allowed to explore as 

many optimal regions as possible. This avoids crowding over single optima, 

probably the local optima, and explores the target thoroughly. Increase in the 

value of c1 and decrease in c2 facilitate this process.  

Exploitation:  In this state, based on the historical best positions of each 

particle, they group towards those points. The local information of the particle 

aids this process. A slight increase in c1 advances the search around particle 

best (pBest) positions. At the same time the slight decrease in c2 avoids the 

deception of local optima, as the final global position has yet to be explored. 

Convergence: In this state, the swarm identifies the global optima. All the 

other particles, in the swarm should lead towards the global optima region. 

The slight increase in the value of c2 helps this process. To fasten up the 

process of convergence, a slight increase in the value of c1 is adopted. 
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Jumping Out: The global best (gBest) particle move away from the local 

optima towards global optima, taking it away from the crowding cluster. Once 

any particle in the swarm reaches this region, then all particles are to follow 

the same pattern rapidly. A large c2 along with a relatively small c1 value 

helps to obtain this goal. 

Bounds for Acceleration Coefficient  

 Adjustments on the acceleration coefficients should be minimum so 

as to maintain the balance between values c1 and c2. Hence, the maximum 

increase or decrease between two generations is in the range [0.02, 0.1]. The 

value of    is set as 0.02 based on trials and the value for δ is set as 0.06 

similarly. c1 and c2 values are clamped in the interval [1.5, 2.5] in order to 

maintain the diversity of the swarm and fast convergence (Carlisle and Dozier 

2001). The sum of the acceleration coefficients is limited to 4.0 (Zhan et al. 

2007), when the sum exceeds this limit then both c1 and c2 are normalized 

based on equation (5.13). 

      
  

      
                                                           (5.13) 

 The adaptation behavior of the acceleration coefficients c1 and c2 

through change of states, in estimation of evolution state for Zoo dataset is 

shown in Figure 5.13. 
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Figure 5.13 Adaptation of Acceleration Coefficients through EES for 

Zoo Dataset  

Inertia Weight Adaptation 

 The inertia weight controls the impact of previous flying experience, 

which is utilized to keep the balance between exploration and exploitation. 

The particle adjusts its trajectory according to its best experience and enjoys 

the information of its neighbors. In addition, the inertia weight is also an 

important convergence factor; smaller the inertia weight, faster the 

convergence of PSO. A linear decrease in inertia weight gradually may 

swerve the particle from their global optima (Chatterjee and Siarry 2006). 

Hence, a nonlinear adaptation of inertia weight as proposed in the given 

Equation (5.14), is considered as the solution to the above issue. The global 

best particle is derived based on the fitness value of the particles in the 

swarm. The proposed methodology for adopting the inertia weight is based on 

the fitness values exhibited by the particles.     
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                     (5.14) 

where, f, fmin and favg are the fitness values, which are decided by the current 

particles in the swarm. The minimum fitness value of all particles in swarm is 

defined as fmin, while the mean value is selected as favg. The adaptation of 

inertia weight for zoo dataset over generations is given in Figure 5.14. 

 

Figure 5.14 Inertia Weight Adaptation for Zoo dataset 

 From figure it can be concluded that in general, the change in inertia 

weight decreases linearly. In detail, it is adapted based on the fitness 

information dynamically. The value of inertia weight swings around 0.461 

frequently for all generations. With the above value of inertia weight, the 

convergence ability in the search space, to avoid the risk of being trapped into 

local minima, and improve the diversity of PSO. 
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5.7.2 Experimental Results and Discussion 

 The objective of the adaptive PSO is to enhance the performance of 

ARM by making the adaption dependent on dataset used. The proposed 

methodology was validated using the bench mark datasets chosen for 

validating the experiment. 

 Five datasets were used for analyzing the performance of APSO and 

comparing with that of simple PSO. The parameter setting for the APSO 

methodology is given in the Table 5.11. 

Table 5.11 Parameter Setting for APSO 

Parameter Name Value 

Population Size Lenses                         : 20 

Haberman’s Survival  : 300 

Car Evaluation            : 1000 

Postoperative Care      : 50 

Zoo                              : 100 

No. of Generations 100 

  
  0.3 

pc 0.3 

  0.25 

c1 , c2 2 

     0.9 

     0.4 
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The scope of this study on ARM using adaptive PSO is to  

 Mine ARs with adaptive  PSO with multiobjective, namely, 

accuracy and significance of the rules generated; 

 Compare the performance with simple PSO (non adaptive 

methodologies); 

 Analyze the performance over generations and 

 Convergence analysis of APSO in terms of execution time 

 The APSO methodology was applied on the five datasets to mine 

ARs and the PA was recorded.  The results are compared with that of simple 

GA  discussed in chapter 4 and PSO discussed earlier in this chapter.  

 The APSO methodology for mining ARs adapt the acceleration 

coefficients based on the estimation of evolutionary state. Based on the fitness 

values the inertia weight is adapted. Then, the velocity modification is based 

on the state in which the particle lies. This acts as a balance between 

exploration and exploitation, thus escaping from premature convergence. The 

PA of the ARs mined is improved through the evolution process.  

 The PA for the adaptive PSO methodology over 100 generations, is 

shown in Figure 5.15. The adaptive PSO’s performance on Car Evaluation 

dataset and Zoo data set is consistent. The performance on Haberman’s 

survival dataset and Post operative patient dataset, is maximum at the end of 

evolution. This avoids premature convergence at initial stages. For the Lenses 

dataset where the dataset size is small, global search space is maintained 

effectively making the convergence possible, even at early iterations.    

 The Laplace, Conviction, Leverage and Lift measures of the five 

datasets for the adaptive PSO is recorded as given  in Table 5.12. 
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Figure 5.15 Predictive Accuracy of Adaptive PSO over Hundred 

Generations 

Table 5.12 Multiobjective Measures of APSO 

Measures  Lenses 
Haberman's 

Survival 

Car 

Evaluation 

Postoperative 

Patient 
Zoo 

Laplace 0.52941 0.501608 0.502488 0.5028 0.5024 

Conviction Infinity Infinity Infinity Infinity Infinity 

Leverage 0.026 0.003039 0.002394 0.0301 0.0249 

Lift 1.548 2.0458 1.9875 2.2478 2.4558 
 

 When the Laplace measure is away from 1, it indicates that the 

antecedent values are dependent on the consequent values, and hence the rules 

generated are of significant. The conviction measure which is infinity for all 

datasets show that the rules generated are interesting. The Leverage measure 

being far away from 1 again insists on the interestingness of the rules 
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generated. The measure of Lift for all the datasets, greater than1 signifies the 

dependency of the consequent on the antecedent.  The rules generated by 

Adaptive PSO are of importance based on the Lift measure. 

 The PA achieved from the adaptive PSO methodology is compared 

with  that of simple PSO, as shown in Figure 5.16. The Adaptive PSO performs 

better than the simple PSO for all the five datasets, when applied for ARM. 

 

Figure 5.16 Predictive Accuracy Comparison of APSO with PSO 

 The number of rules generated by APSO with PA less than 0.05 

percentage of the maximum PA arrived, is plotted for mining ARs against the 

simple PSO methodology for the datasets in Figure 5.17. In terms of number 

of rules generated adaptive PSO performs better for Hagerman’s Survival, 

Zoo and car evaluation datasets. The number of rules generated for lens and 

postoperative patient dataset is marginally better than that of simple PSO. As 

the number of instances in both datasets is small, the increase in the number 

of rules is found to be minimum. 
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Figure 5.17 Comparison of Number of Rules Generated by APSO and 

   PSO 

 

 The execution time of APSO for mining ARs from the datasets in 

comparison with PSO methodology is given in Figure 5.18. This is the time 

taken by the system to generate ARs (CPU time). The number of iterations 

when the PA is at maximum, is taken as point at which the execution time is 

recorded. The execution time of the APSO for mining ARs is more, when 

compared to PSO. The adaption mechanism of acceleration coefficients based 

on evolution factor, and inertia weight adaptation increases the complexity of 

the algorithm, resulting in higher execution time when compared to PSO. 
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Figure 5.18 Comparison of Execution Time of APSO and PSO 

 When number of instances in the dataset is less then increase in 

execution time is found to be marginal.  Thus, the difference in the execution 

time for mining rules for the Lenses, Postoperative Patient and Zoo datasets, 

are minimum for APSO than PSO. For the Haberman’s survival dataset with 

moderate number of instances, there is a noticeable increase in execution 

time, whereas, for the car evaluation dataset, the difference in execution time 

is large. The consistent performance of the APSO in terms of PA throughout 

evolution and the PA achieved from APSO for mining ARs, balances the 

difference in the execution time.  

 The major drawback of the simple PSO is its premature 

convergence, where, the particle fixes some local optima as the target (global 

search area), where all particles converge locally. One of the objectives of 

Adaptive PSO is to avoid the premature convergence, thereby striking a 

balance between exploration and exploitation.  The iteration number at which 

PA is high is plotted for both APSO and PSO methodologies, for mining ARs 

for the datasets used in Figure 5.19. 
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Figure 5.19 Comparison of Convergence of APSO and PSO 

 The performance of APSO is compared with SAPSO1 and SAPSO2 as 

given in Figure 5.20 and it is noted that the data dependent methodology of 

mining ARs performs better than data independent methodologies in terms of 

PA. 

 

Figure 5.20 Comparison of Convergence of APSO and SAPSO 
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 The analysis of the performance of the five datasets through the 

adaptive methods of PSO has been compared with simple PSO. The Adaptive 

PSO generated ARs with better PA and qualitative measures. To test the 

significance of the proposed APSO, it is compared with Ant Colony 

Optimization (ACO) (a similar population based search method) for mining 

rules. Four more datasets from UCI repository for which ARM using ACO 

has been carried out, have been chosen from published literature. The PA of 

the mined rules using APSO for these datasets was recorded. The comparative 

results obtained by AGA, APSO and ACO are given in Table 5.13.  

Table 5.13 Predictive Accuracy Comparison APSO with AGA and ACO 

Dataset 
Adaptive 

GA 

Adaptive 

PSO 

Lale et 

al. 2010 

Parpinelli 

et al. 2002 

Liu et 

al. 2003 

Lale et 

al. 

2008 

Lenses 87.5 98.1 - - - - 

Haberman’s 

Survival 
68 99.6 - - - - 

Car 

Evaluation 
96 99.95 - - - - 

Postoperative 

Care 
92 99.54 - - - - 

Zoo 91 99.72 - - - - 

Iris 96 98.86 98 - - 98.67 

Nursery 97.30 99.12 97.24 - - 97.16 

Tic Tac Toe 88.36 98.76 - 75.57 76.58 97.59 

Wisconsin 

Breast 

Cancer 

92.54 98.75 - 96.97 94.32 - 

Note : - Data not available in study 
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 The adaptive PSO methodology generates ARs with better PA when 

compared to other methodologies analyzed. The adaptive PSO methodology 

when applied for mining ARs generates rules with enhanced PA, increase in 

the number of rules generated, along with better rule set measures. The 

increase in the execution time of APSO when compared to simple PSO 

methodology is also minimum taking into account the complexity of the 

methodology and the increase in accuracy achieved over PSO. 

 The balance in setting the global search space between exploration 

and exploitation is also attained, while mining ARs with APSO, for all the 

datasets used. This is noted from the shift in iteration number of APSO when 

compared to simple PSO, where highest PA is noted. Adopting the 

acceleration coefficients c1 (cognitive factor) and c2 (social factor) through 

EES methodology, makes the adjustments in fixing up the global search space 

effectively with the help of local optima. The fitness value of the particles is 

used in adapting inertia weight. This helps in better balance between 

exploration and exploitation when particles fly through the search space.  

 The comparison of PA for mining ARs is between the methods 

proposed based on PSO in given in Table 5.14.  From the table it is clear that 

the APSO methodology performs better in terms of PA among the other methods 

for ARM.  Thus the data-dependent adaptation of control parameters maintains 

the diversity of the population effectively, thereby resulting in optimal PA. 

Table 5.14 Predictive Accuracy Comparison of PSO based Methods 

Dataset PSO CPSO NPSO WPSO SAPSO2 SAPSO1 SACPSO APSO 

Lenses 83.57 87.5 93.1 97.91 97.91 97.91 97.82 98.1 

Car Evaluation 97.61 99.86 97.1 99.93 99.93 99.92 99.91 99.95 

Haberman’s 

Survival 
92.86 96.15 92 99.48 99.29 99.2 99.74 99.6 

Po-opert Care 83.33 92.86 94.5 99.29 99.18 99.47 98.61 99.54 

Zoo 95.45 94.44 96.5 96.67 97.92 99.09 98.69 99.72 
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 The APSO methodology of mining association rules resulted in 

maximum PA among the modifications introduced in PSO. The data 

dependent adaption of control parameters enhanced the performance of PSO. 

The other adaptive methods proposed namely SAPSO1, SAPSO2, SACPSO 

also generates association rules with higher Predictive accuracies the reason 

again being adaptive the parameters involved throughout evolution. WPSO 

generated association rules with next level of PA due to introduction of inertia 

weight. CPSO and NPSOs performance is better than PSO in terms of PA. It 

could be noted that the parameter tuning methods performs better than 

modifications introduced in velocity displacements. 

 

5.8 SUMMARY 

 PSO algorithm with and without inertia weight was applied for 

mining ARs. Based on the results two new proposals for ARM were made 

namely; Chaotic PSO and Dynamic Neighborhood PSO.  These proposed 

methodologies generated ARs with better PA and quantitative measures. In 

data independent adaptation three different methodologies are proposed for 

mining ARs. Among SAPSO1, SAPSO2 and SACPSO the SAPSO1 performs 

better in terms of PA of the AR mined. The proposed APSO methodology is 

dependent on data for adjusting the control parameters, and the generated ARs 

with better PA and in terms of number of rules generated.  
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CHAPTER 6 

HYBRID AND MEMETIC METHODS FOR  

MINING ASSOCIATION RULES 

 

 

6.1 GENERAL  

 This chapter reviews the necessity of hybridizing GA and PSO 

methods, salient aspects of GA and PSO hybrid methods as available in 

published literature, and proposes a new hybrid methodology of GA and PSO 

for ARM. As the main drawback of PSO being weak local search, it is 

overcome by proposing Shuffle Frog Leaping Algorithm for the local search 

to mine ARs. The experimental results of both proposals are also presented, 

and discussed along with the salient inferences there from. 

6.2 NEED FOR HYBRIDIZATION 

 The PSO was inspired by insect swarms and has been proven as a 

competitor to the standard GA for function optimization. Since then several 

researchers have analyzed the performance of the PSO with different settings, 

e.g., neighborhood settings (Kennedy1999; Suganthan1999). Comparisons 

between PSOs and the standard GA were done analytically in (Eberhart and 

Shi1998) and also with regard to performance in (Angeline 1998). It has been 

pointed out that the PSO performs well in the early iterations, but has 

problems reaching a near optimal solution in several real-valued function 

optimization problems (Angeline 1998). Both Eberhart and Angeline 
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conclude that hybrid models of standard GA and PSO could lead to further 

advances. 

6.3 HYBRID OF GA AND PSO FOR ARM  

 ARM using either GA or PSO methodology often generates rules 

with high PA. But balancing between exploration and exploitation is often a 

tailback. GA has good exploration capability, but at times it leads to 

exploiting the search space.  PSO has the capability to converge quickly thus 

avoiding exploitation but results in premature convergence. Hybrid system 

combining GA and PSO is a solution for the balancing phenomena. 

 Recently the hybridization between evolutionary algorithms (EAs) 

and other metaheuristics has shown very good performance in many kinds of 

multi-objective optimization problems, and thus has attracted considerable 

attention from both academic and industrial communities. 

 An evolutionary circle detection method based on a novel Chaotic 

Hybrid Algorithm combines the strength of PSO, GA and chaotic dynamics. 

It involves the standard velocity and position update rules of PSO, with the 

ideas of selection, crossover and mutation from GA (Chun-Ho at al., 2010).  

A hybrid multi-objective evolutionary algorithm incorporating the concepts of 

personal best and global best in PSO and multiple crossover operators to 

update the population, maintains a nondominated archive of personal best 

(Tang and Wang, 2012). A hybrid method combining GA and PSO creates 

individuals in a new generation not only by crossover and mutation operations 

as found in GA, but also by mechanisms of PSO. Further the above approach 

solves the problem of local minimum of the PSO, and has higher efficiency of 

searching global space (Nie Ru and Yue Jianhua 2008).  
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 The hybridization methods of GA and PSO analyzed here are 

process based, integrating the GA steps into PSO or vice versa.  Population 

based hybridization is attempted in this study, where the population is split 

based on fitness values and both methods are run individually on the 

respective subpopulation.  The objective of this hybrid methodology is to sum 

up the advantages of both GA and PSO in overcoming the drawbacks. 

6.3.1 GA-PSO Hybrid Algorithm for ARM 

 Each evolutionary algorithm proposed in the literature has some 

advantage over the other. PSO provides a faster convergence than GA. A 

hybrid technique utilizing the effectiveness and uniqueness of these two 

algorithms can be implemented to achieve high performance (Dong et al., 

2012). The proposed hybrid methodology that is the GPSO proposed 

combines the features of GA and PSO to enhance the performance of ARM. 

The uniqueness of GA and PSO are 

 The optimization process of GA is a steady state process 

converging at global optima. 

 The global search space is maintained by GA avoiding 

premature convergence. 

 PSO is faster a process with the ability to search the solution 

space quickly 

 PSO keeps track of each particles’ best position thereby 

effectively fixing up the  search space 

 The hybrid methodology employs these features for evolution of 

individuals over generations. The total population is split into two 

subpopulations based on fitness values. The fitness function designed is for 

maximization and the individuals with maximum fitness values are aimed to 
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evolve towards the global optima. So GA is applied on the subpopulation with 

higher fitness values. PSO with the ability to converge quickly is applied on 

the lower ranked subpopulation based on fitness values. The GA with 

optimization at global optima enhances the exploration capability and PSO 

with easy convergence avoids exploitation. Thus the hybrid methodology 

effectively balances between exploration and exploitation thereby resulting in 

ARs with better PA. The upper and lower ranked subpopulations after 

evolution through GA and PSO are updated at the end of each iteration. This 

aims at consistency in performance, avoiding the loss of the better individuals 

over generations. 

 Applying GA on the upper ranked subpopulation avoids premature 

convergence. Evolution through PSO on lower ranked subpopulation avoids 

exploitation of GA of individuals, thereby increasing the speed of evolution 

process. The proposed hybrid model is shown in Figure 6.1. 

 
 

Figure 6.1 Hybrid GA/ PSO (GPSO) Model 
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 As can be seen in Figure 6.1, GA and PSO both work with the same 

initial population. The hybrid approach takes N individuals that are randomly 

generated. These individuals may be regarded as chromosomes in the case of 

GA, or as particles in the case of PSO. The N individuals are sorted by fitness, 

and the upper half individuals are fed into the GA to create new individuals 

by crossover and mutation operations. The lower half of the population sorted 

through fitness values are fed into PSO for evolution. The velocity update and 

position update are done based on the personal best and global best positions 

determined on the lower half individuals. The output of GA and PSO are 

combined for propagating into next generation and the process repeated till an 

end criterion is met. 

 By performing evolution based on GA on the upper half of the 

individuals sorted through fitness value the global optimal solution space is 

retained. This facilitates the steady progress towards the optimization through 

exploration. PSO applied on the other half of the individuals where fitness 

value is low, the convergence is achieved easily avoiding exploitation. Thus, 

the hybrid GPSO model balances between exploration and exploitation by 

combining the strengths of GA and PSO. The pseudo-code for GPSO is given 

below: 

Initialize all GA variables 

Initialize all PSO variables 

Repeat 

Calculate fitness value of the population 

Rank the population based on fitness function 

Split the population into two halves: higher ranked range, lower 

ranked range 

 On higher ranked range partition perform GA  
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[Selection] Select two parent chromosomes from the population 

 according to their   fitness  

[Crossover] With a crossover probability cross over the parents to 

  form a new  offspring  

[Mutation] With a mutation probability mutate new offspring at 

 each locus  

[Updation] Place the resulting new offspring in a new population  

 On low ranked partition perform PSO 

  For each particle 

   Update velocity  

   Update position  

   Update pBest and gBest 

  End for 

 Update new population combining PSO particles and GA 

 chromosomes 

Until (stopping condition) 

 The population size is fixed based on the size of the dataset for 

which ARM is applied. Binary encoding is adopted for representation of data. 

The fitness function as given in Equation (4.2) is adopted for calculating the 

fitness values. The experimental setting and results of the GPSO methodology 

for mining ARs are presented in next section. 

6.3.2  Experimental Results and Discussion 

 To test the performance of the hybrid GPSO for mining ARs, 

experiments were carried out on the well-known benchmark datasets from 

UCI repository. 
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 The parameters, which play a major role during the rule discovery in 

the hybrid GPSO methodology, are listed in Table 6.1. The population size is 

the size of the individuals taken up for experimentation. The crossover  

and mutation rates are the GA operator specifications arrived from parameter 

tuning analysis carried out in section 4.4. c1 and c2 are  

the acceleration coefficients used in velocity updation of PSO as in  

Equation (3.2),  set to default value 2 as seen from literature review. 

Table 6.1 GPSO Parameter for ARM 

Parameter Name Value 

Population Size 

 

Lenses                                :  20 

Car Evaluation                    :  700 

Haberman’s Survival           :  300 

Post-operative Patient Care  :   80 

Zoo                                        :  100 

Crossover Rate Lenses                                  :  0.6 

Car Evaluation                   :  0.7 

Haberman’s Survival          :  0.75 

Post-operative Patient Care :  0.8 

Zoo                                      :  0.8 

Mutation Rate Lenses                                  :  0.5 

Car Evaluation                     :  0.4 

Haberman’s Survival          :  0.25 

Post-operative Patient Care  :  0.2 

Zoo                                      :  0.2 

Selection Operation Roulette wheel selection 

c1 2 

c2 2 

No. of Generations 50 
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 Evolutionary algorithms are relatively simple to implement, robust 

and perform very well on a wide spectrum of problems.  This study proposes 

a hybrid methodology of evolutionary algorithms: GA and PSO for ARM. 

The scope of this study on mining ARs using GPSO is to: 

 Study the performance of GA over generations  

 Analyze the performance of PSO over generations 

 Identify the limitations of GA and PSO while mining ARs in 

terms of PA and execution speed. 

 Compare the performance of GPSO with GA and PSO 

Evolution over Generations Analysis 

 GA is known for maintaining the global optima throughout evolution 

and steady progress in performance over generations, whereas, PSO 

converges quickly with chances of converging at local optima. So to analyze 

the performance of GPSO over generations, the maximum PA of the ARs 

mined by GPSO is recorded at intervals over evolution for all the five 

datasets.  This data is plotted against the results obtained with GA and PSO as 

shown in Figure 6.2. 
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(a)  Car Evaluation  Dataset                        (b) Haberman’s Survival Dataset   

    ( c) Lenses Dataset                                   (d) Postoperative Patient Dataset 
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(e) Zoo Dataset 

Figure 6.2 Predictive accuracy vs. Number of Generations for ARM 

with GPSO 

 From Figure 6.2 it is observed that mining ARs using GA results in 

lesser PA than PSO and GPSO. The increase in PA is achieved steadily over 

generations. The PSO methodology for mining ARs generates AR with better 

PA at earlier stages of evolution. In further generations, the particles move 

away from global optima bringing down the accuracy, thus exploiting the 

search space. For all the five datasets, GPSO methodology generates ARs 

with better PA and maintains the same over generations, thereby balancing 

between exploitation and exploration. Thus the stability in performance is 

obtained while mining ARs with GPSO. 
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From the Figure 6.2 a to e it is observed that 

 The performance of GA in terms of PA increases over 

generations indicating its effectiveness in terms of global search 

capability; 

 PSO generates maximum accuracy at initial generations thereby 

converging quickly; 

 The deviation from global optima and convergence at local 

optima is attained in later generation for PSO. This exploitation 

of search space results in reduction of PA; 

 GPSO produces consistent PA with minimal difference over 

generations and 

 The PA of GPSO is better than GA and PSO. 

Predictive Accuracy Analysis 

 The objective of the study is to enhance the PA of ARs mined by 

utilizing the uniqueness of both GA and PSO.  The PA of the ARs mined by 

GPSO is plotted for the five datasets as shown in Figure 6.3. The results 

obtained using simple GA and PSO are also shown in same figure for 

comparison.  
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Figure 6.3  Comparison of Predictive Accuracy of GPSO with GA and PSO 

 The PA of rules mined with PSO is better than GA. The PA obtained 

by GPSO is enhanced when compared to GA or PSO. The PA for the Lenses 

and Zoo datasets are equivalent to that of PSO, but better than GA.  Increase 

in PA upto 5% is achieved over PSO by GPSO. An increase of 30% is 

obtained by GPSO over GA for Haberman’s survival dataset. The difference 

in accuracy achieved by GPSO over GA and PSO is noticeable for datasets of 

larger sizes, than smaller ones.  Applying GA for higher ranked population 

enhances the optimization through global search and applying PSO for lower 

ranked population balances between exploration and exploitation, resulting in 

enhanced performance of GPSO. 

Analysis of Execution Time  

 ARM with GPSO performs both GA and PSO operations on their 

respective subpopulation. The effect of GPSO on execution time while 

mining ARs is shown in Figure 6.4. The execution time of GPSO is better 
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than genetic algorithm and takes more time than that of PSO. The evolution of 

the lower ranked population by PSO makes the convergence quicker, thereby 

reducing the execution time achieved compared to GA. The GA operations 

take more time and are complex, when compared to PSO. Thus there is an 

increase in execution time of GPSO over PSO. The increase in prediction 

accuracy over PSO compensates the time trade-off.  

 

Figure 6.4 Comparison of Execution Times of GPSO with GA and PSO 

 As standalone both GA and PSO produce results inconsistently for 
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thereby generating inconsistent results. By combining the advantages of both 

GA and PSO the GPSO method mine ARs with consistent performance. The 

GPSO method of mining AR outperforms both GA and PSO methodology in 

terms of prediction accuracy, consistence and execution time.  

6.4 PSO WITH LOCAL SEARCH  

 Some important situations that often occur in PSO is overshooting, 

which is a key issue to premature convergence and essential to the 

performance of PSO. From the velocity update mechanism of PSO, it is 

observed that the pBest and gBbest make the particles oscillate. The 

overshooting problem occurs due to the velocity update mechanism, leading 

the particles to the wrong or opposite directions against the direction to the 

global optimum. As a consequence, the pace of convergence of the whole 

swarm to the global optimum slows down. One possible way to prevent the 

overshooting problem from happening is to appropriately adjust the 

algorithmic parameters of PSO. However, it is a difficult task, as the 

parameter adjustment depends a lot on domain knowledge and the 

optimization problem. 

 In consequence of overshooting, the particle will move to the 

opposite direction against the direction to the global optimum. Two major 

approaches that can be used to tackle the overshooting problem are described 

below. 

 Analysis of problems: By analyzing the structure of problems 

or identifying the fitness landscape of problems, a lethal 

movement could be prevented. It poses great challenge on 

automated problem structure analysis (Bucci and Pollack, 2004)  
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 Generate and test strategies: There are many methods to 

generate a new solution for testing, such as: heuristics of the 

specific problem, statistic sampling, and local search 

techniques. However, the computation costs in generating and 

testing new solutions may be generally high. 

 In order to develop a general-purpose algorithm and overcome the 

overshooting problem, an efficient local search strategy – Shuffle Frog 

Leaping Algorithm (SFLA), is adopted and combined with the standard PSO 

for ARM. 

6.5 PSO WITH SFLA FOR MINING ASSOCIATION RULES 

 Population-based heuristics inherently improve the implementation 

of a local search algorithm, since the heuristic approach of a population of 

solutions results in rather poor local search properties. Incorporating local 

search algorithm into the population based heuristic is called a Memetic 

Algorithm. 

 In published literature many LS schemes have been employed with 

PSO for optimization. Petalas et al. (2007) employed a stochastic iterative LS 

technique in their MA, called RWDE, where a sequence of approximations of 

the optimizer are generated by assuming a random vector as a search velocity.  

It was noticed by Victoire and Jeyakumar (2004) that early on in the PSO 

search, particles were almost close to the proximity of the global optimum, 

then move away from these areas. For this reason the local search method was 

chosen for implementation. Inspired from literature a memetic PSO with 

SFLA for local search is proposed for mining ARs. 
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 The SFLA is a memetic metaheuristics that is designed to seek a 

global optimal solution by performing a heuristic search. It is based on the 

evolution of memes carried by individuals and a global exchange of 

information among the population (Eusuff and Lansey 2003).  The SFLA 

involves a population of possible solutions defined by a set of frogs (i.e. 

solutions) that is partitioned into subsets referred as memeplexes. The 

different memeplexes are considered as different cultures of frogs, each 

performing a local search. Within each memeplex, the individual frogs hold 

ideas that can be influenced by the ideas of other frogs, and evolve through a 

process of memetic evolution. After a number of memetic evolution steps, 

ideas are passed among memeplexes in a shuffling process (Liong and 

Atiquzzaman 2004). The local search and the shuffling processes continue 

until convergence criteria are satisfied (Eusuff and Lansey 2003). As SFLA 

and PSO both are designed for optimization problem and SFLA works in 

similar with PSO population with no new complexity additions, SFLA is 

chosen for local search in PSO for mining association rules. 

6.5.1 Methodology 

 Initially the particles are distributed in the search space and fitness of 

the particles is calculated. The velocity and position updation of the particles 

are carried out using PSO’s velocity and position update equations. Then the 

particles are sorted in descending order based on their fitness value and 

memeplexes are formed. Within each memeplex the position of the Frog with 

worst fitness is updated. Later during the shuffling process, the frogs in 

different groups communicate with each other to exchange information about 

the global best. The overall steps involved in Memetic PSO are given in the 

Figure 6.5. 
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Figure 6.5 Flowchart for PSO with SFLA for ARM 

 In SFLA, the population consists of a set of frogs (solutions) that is 

partitioned into subsets and it is named as memeplexes. The different 

memeplexes are considered as different cultures of frogs, each performing a 

local search. Within each memeplex, the individual frogs have different ideas, 

that can be influenced by the ideas of other frogs, and evolve through a 

process of memetic evolution. After a defined number of memetic evolution 

steps, ideas are passed among memeplexes in a shuffling process. The local 

search and the shuffling processes continue until defined convergence criteria 

are satisfied.  
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 The SFLA starts with an initial population of P frogs created 

randomly. Then, the frogs are sorted in a descending order of fitness. Then, 

the entire population is divided into m memeplexes, each containing N frogs. 

In this process, the first frog goes to the first memeplex, the second frog goes 

to the Second memeplex, frog M goes to the M
th

 memeplex, and frog M+1 

goes back to the first memeplex, etc. The process is as shown in Figure 6.6. 

Within each memeplex, the frogs with the best and the worst fitness are 

identified as Xb and Xw, respectively. Also, the frog with the global best 

fitness is identified as Xg. Then, a process similar to PSO is applied to 

improve only the frog with the worst fitness (not all frogs) in each cycle. 

 

Figure 6.6 Formation of Memeplexes 

 Accordingly, the position of the frog with the worst fitness is 

adjusted based on Equations (6.1) and (6.2). 

                                                                             (6.1) 

                                                                             (6.2) 

where rand ( ) is a random number between 0 and 1;    is the position of best 

frog in the group;    is the position of worst frog in the group. If this process 

produces a better solution, it replaces the worst frog. Otherwise, the 
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calculations in Equations are repeated, but with respect to the global best frog 

(i.e. Xg replaces Xb). 

 The fitness function defined in equation (4.2) is used for evaluating 

the fitness of the individuals. Both PSO and APSO methods are combined 

with SFLA resulting in two proposals, namely, PSO+SFLA and APSO+SFLA 

for ARM.  

6.5.2 Experimental Results and Discussion 

 The PSO and APSO methodologies are both combined with SFLA 

for local search to mine ARs as described in previous section. The five 

datasets used for all the other methodologies is adopted for generating ARs.  

 ARs are mined from the datasets using the two proposals and the PA 

of the generated rules are plotted as shown in Figure 6.7. 

 

Figure 6.7 Predictive Accuracy Comparison for ARM 
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 PSO+SFLA methodology of mining ARs performs better than 

simple PSO in terms of PA for all the five datasets taken up for analysis. The 

APSO+SFLA methodology for mining ARs outperforms the other three 

methods. 

 The fitness function objective is maximization. In order to enhance 

the results the fitness values generated should be optimal. The fitness values 

for the proposed methodologies are plotted in Figure 8.8 for all the five 

datasets.  

 

(a) Lenses Dataset 

 

(b) Haberman’s Survival Dataset 
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( c) Car Evaluation Dataset 

 

(d) Postoperative Patient Dataset 

 

(e) Zoo Dataset 

Figure 6.8 Fitness Value for PSO with SFLA for ARM 
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 The fitness values of both proposed methodologies; PSO +SFLA 

and APSO+SFLA are more than the respective individual PSO and APSO 

values. Thus, both methods perform better by generating ARs with enhanced 

PA, than PSO and APSO methods. 

 The performances of the proposed two methods are compared with 

GA and PSO methods discussed so far in terms of the PA of the ARs mined 

and the results for the five datasets are shown in Table 6.2. 

 The APSO+SFLA methodology outperforms the other methods for 

all the five datasets by generating ARs with better PA. The APSO 

methodology too generates ARs with optimal accuracy compared to other 

methods. The data independent adaptation methodologies (SAPSO1, SAPSO2 

and SACPSO) rank next in terms of performance for all the five datasets. 

However the performance of other methods varies among datasets considered 

in this study. 

 The number of rules generated by each methodology for the datasets 

taken up for analysis is given in Table 6.3. The SACPSO1 methodology 

performs better among the data independent adaptation methodologies, 

considered for analysis here as SAPSO. 

 The APSO+SFLA methodology of mining ARs generates more rules 

than the other methods discussed. The SAPSO (SAPSO1) performs better by 

generating optimal number of ARs. For Car Evaluation dataset WPSO and 

SAPSO methods generates same number of rules. The inertia weight attained 

by Eqn (5.7) of SAPSO1 and the inertia weight set for WPSO for the instance 

of execution noted might have induced the same number of rules. 

 Thus the proposed APSO+SFLA methodology performs better when 

compared to the other methods, in terms of PA and number of rules 

generated. The SFLA performs effective local search thereby balancing 

between exploration and exploitation and hence better performance.
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 Table 6.2 Comparison of  Predictive Accuracy for ARM 

 
  

 
GA AGA 

Elitist 

GA 
PSO WPSO CPSO NPSO SAPSO APSO GPS0 

PSO+ 

SFLA 

APSO 

+SFLA 

Lenses 85 91.6 91.6 83.57 97.91 87.5 93.1 97.91 98.1 87.5 93.75 98.92 

Car Evaluation 87 94 97 97.61 99.93 99.86 97.1 99.92 99.82 95.12 99.82 99.88 

Haberman’s 

Survival 
81 91.6 85 92.86 99.48 96.15 92 99.2 99.83 98.05 97.73 99.88 

Postopertative 

Care 74 79 82 83.33 99.29 92.86 94.5 99.47 99.37 90.42 98.07 99.54 

Zoo 81 86 89.54 95.45 96.67 94.44 96.5 99.09 99.72 95.35 99.38 99.84 
 

Table 6.3 Comparison of the Number of Rules Generated in ARM 

 

GA AGA Elitist GA PSO WPSO CPSO NPSO SAPSO APSO GPSO 
PSO+ 

SFLA 

APSO+ 

SFLA 

Lenses 10 12 8 3 15 4 13 14 8 3 16 18 

Post Operative 

Patient 
22 18 32 13 58 17 57 60 67 24 24 71 

Zoo 10 13 13 6 32 14 18 20 38 23 22 41 

Haberman's 

Survival 
46 38 55 35 63 24 110 114 12 47 54 121 

Car Evaluation  120 126 130 118 135 128 131 135 142 128 130 151 
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6.6 SUMMARY 

 A hybrid method combining both genetic algorithm and Particle 

Swarm Optimization called GPSO has been proposed. This method brings a 

balance between exploration and exploitation, resulting in higher prediction 

accuracy of the ARs mined and consistency in performance. Two 

methodologies using PSO with SFLA for local search (PSO+SFLA and 

APSO+SFLA) has been proposed. Among them, APSO+SFLA methodology 

generate ARs with better PA, than all other methodologies discussed so far. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1 GENERAL 

 In this research, various important issues concerned with ARM have 

been addressed. Investigations carried out in this research were mainly 

focused towards developing an efficient methodology for ARM model by 

making use of the two population based stochastic search algorithms, namely 

GA and PSO. The salient conclusions of this research work and the scope for 

future work are presented in this chapter. 

7.2 SALIENT CONCLUSIONS  

 ARM was attempted using GA and PSO methodologies. 

Modification and parameter tuning was done on both methods to enhance the 

PA of rules mined. A hybrid of GA and PSO was proposed for ARM. PSO 

with SFLA for local searched was proposed and from the results attained, The 

salient inferences arrived are as follows:. 

(i) Genetic Algorithm when used for mining ARs performs better 

than other existing traditional methods. 

(ii) Particle swarm optimization when applied for mining ARs 

produce results better than GA, but with minimum execution 

time. The increase in PA of PSO over GA is: 7.8% for Lenses 

dataset, 7.4% for Haberman’s survival dataset, 10.6% for the 

Car evaluation dataset, 9.33% for the Postoperative patient 
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dataset and 14.45% for the Zoo dataset. The reduction in 

execution of PSO over GA is achieved varying from 2 to 18 

seconds for the chosen datasets. 

(iii) Modification introduced in GA and PSO as Elitism, Chaotic 

behavior and Dynamic neighborhood selection strikes a good 

balance between exploration and exploitation, thus enhancing 

its performance when compared to its simple version. 

(iv) Variations when introduced in both GA and PSO indicate 

adaptive mechanism performs better than others.  i.e. The data 

dependent adaption method (APSO) ARs with higher PA 

when compared to methods without local search. The PA 

accuracy achieved for all the five datasets are varying from 

98.1% to 99.82%. The number of rules generated by this 

methodology is also more for all methods except the memetic 

methods. 

(v) GPSO methodology produces consistent results in comparison 

with GA and PSO. The PA achieved is almost same 

throughout the generations for each dataset, by utilizing GA to 

maintain diversity on high ranked population and applying 

PSO’s easy convergence property, on low ranked population.  

(vi) The proposed APSO +SFLA methodology performs better 

than all other methods considered, in terms of PA and number 

of rules generated. The PA achieved by PSO+SFLA is 

maximum among all the discussed methods.  The adaptation 

of control parameters depending on data involved by APSO 

and the effective LS by SFLA resulted in PA varying from 

98.92% to 99.88% for all the five datasets. The number of 
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rules generated by this methodology is also high when 

compared to other methods (Table 6.3). 

(vii) The adaptive methods (dependent and independent) for ARs 

perform better among the other methods proposed. Increase in 

performance in terms of PA achieved over its simple version 

(GA and PSO) is: 6.6% by AGA and 14.8% by APSO for 

lenses dataset; 10% by AGA and 2.3% by SAPSO for Car 

evaluation dataset; 10.6% by AGA and 7.03% by APSO for 

Haberman’s survival dataset; 5% by AGA and 16.04% by 

APSO for Postoperative patient dataset; 5% by AGA and 

3.13% by APSO for the Zoo dataset. 

(viii) The rule set measures namely; Lift, Laplace, Leverage and 

Conviction   when tested on the ARs generated by the 

proposed methods are within specified range proposed in 

literature, signifying the quality of the rules. 

7.3 SCOPE FOR FUTURE WORK 

 The ARM methods proposed have only been experimented with 

benchmarked datasets from UCI repository. In future, this could be extended 

to complex and real life problems belonging to unexplored application-

domains, and the execution time analysis of these methods can be carried out. 

Methods to reduce the execution time could be explored. 

 

 

 

 



150 
 

 

ANNEXURE 1 

UCI  DATABASES 

 

 The datasets that have been used in this research work have been 

taken from the UCI machine learning repository. The UCI Machine Learning 

Repository is a collection of databases, domain theories, and data generators 

that are used by the machine learning community for the empirical analysis of 

machine learning algorithms. The archive was created as an ftp archive in 

1987 by David Aha and fellow graduate students at UC Irvine. The details of 

the datasets used in this study from http://archive.ics.uci.edu/ml/about.html  

are presented below. 

1.   LENSES DATASET 

Number of Instances :  24 

Number of Attributes :  4 (all nominal) 

Attribute Information :   3 Classes 

     1 : the patient should be fitted with hard contact lenses, 

     2 : the patient should be fitted with soft contact lenses, 

     3 : the patient should not be fitted with contact lenses. 

 age of the patient: (1) young, (2) pre-presbyopic, (3) presbyopic 

 spectacle prescription:  (1) myope, (2) hypermetrope 

 astigmatic:     (1) no, (2) yes 

 tear production rate:  (1) reduced, (2) normal 

 Number of Missing Attribute Values:   0 

http://archive.ics.uci.edu/ml/about.html
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2.  HABERMAN’S SURVIVAL DATASET 

Number of Instances :  306 

Number of Attributes :  4 (including the class attribute) 

Attribute Information : 

   1. Age of patient at time of operation (numerical) 

   2. Patient's year of operation (year - 1900, numerical) 

   3. Number of positive axillary nodes detected (numerical) 

   4. Survival status (class attribute) 

        1 = the patient survived 5 years or longer 

       2  =  the patient died within 5 year 

Missing Attribute Values : None 

3.   CAR EVALUATION DATASET 

Number of Instances :  1728 

      (instances completely cover the attribute space) 

Number of Attributes :  6 

Attribute Values : 

   buying       v-high, high, med, low 

   maint        v-high, high, med, low 

   doors        2, 3, 4, 5-more 

   persons      2, 4, more 

   lug_boot     small, med, big 

   safety       low, med, high 

Missing Attribute Values : none 
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4.  POST OPERATIVE PATIENT DATASET 

Number of Instances : 90 

Number of Attributes : 9 including the decision (class attribute) 

Attribute Information : 

     1. L-CORE (patient's internal temperature in C): 

              high (> 37), mid (>= 36 and <= 37), low (< 36) 

     2. L-SURF (patient's surface temperature in C): 

              high (> 36.5), mid (>= 36.5 and <= 35), low (< 35) 

     3. L-O2 (oxygen saturation in %): 

              excellent (>= 98), good (>= 90 and < 98), 

              fair (>= 80 and < 90), poor (< 80) 

     4. L-BP (last measurement of blood pressure): 

              high (> 130/90), mid (<= 130/90 and >= 90/70), low (< 90/70) 

     5. SURF-STBL (stability of patient's surface temperature): 

              stable, mod-stable, unstable 

     6. CORE-STBL (stability of patient's core temperature) 

              stable, mod-stable, unstable 

     7. BP-STBL (stability of patient's blood pressure) 

              stable, mod-stable, unstable 

     8. COMFORT (patient's perceived comfort at discharge, measured as 

              an integer between 0 and 20) 

     9. decision ADM-DECS (discharge decision): 

              I (patient sent to Intensive Care Unit), 

              S (patient prepared to go home), 

              A (patient sent to general hospital floor) 

Missing Attribute Values :     Attribute 8 has 3 missing values 
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5.  ZOO DATASET 

Number of Instances :  101 

Number of Attributes : 18 (animal name, 15 Boolean attributes, 2 

numerics) 

Attribute Information :  (name of attribute and type of value domain) 

   1.  animal name Unique for each instance 

   2.  hair Boolean 

   3.  feathers Boolean 

   4.  eggs Boolean 

   5.  milk Boolean 

   6.  airborne Boolean 

   7.  aquatic Boolean 

   8.  predator Boolean 

   9.  toothed Boolean 

  10. backbone Boolean 

  11. breathes Boolean 

  12. venomous Boolean 

  13. fins Boolean 

  14. legs Numeric (set of values: {0,2,4,5,6,8}) 

  15. tail Boolean 

  16. domestic Boolean 

  17. catsize Boolean 

  18. type Numeric (integer values in range [1,7]) 

Missing Attribute Values : None 
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6.   IRIS DATASET 

Number of Instances : 150 (50 in each of three classes) 

Number of Attributes : 4 numeric, predictive attributes and the class 

Attribute Information : Sepal length, Sepal width, Petal length and Petal 

width in cm 

Class Types :  Iris Setosa, Iris Versicolour and Iris Virginica. 

Missing Attribute Values :  None 

 

7.  NURSERY DATASET 

Number of Instances : 12960   (instances completely cover the attribute 

space) 

Number of Attributes :  8 

Attribute Values : 

  parents        usual, pretentious, great_pret 

   has_nurs      proper, less_proper, improper, critical, very_crit 

   form            complete, completed, incomplete, foster 

   children       1, 2, 3, more 

   housing        convenient, less_conv, critical 

   finance         convenient, inconv 

   social          non-prob, slightly_prob, problematic 

   health          recommended, priority, not_recom 

Missing Attribute Values : none 
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8.  TIC TAC TOE DATASET 

Number of Instances :  958 (legal tic-tac-toe endgame boards) 

Number of Attributes :  9, each corresponding to one tic-tac-toe square 

Attribute Information : (x=player x has taken, o=player o has taken, 

b=blank) 

    1.  top-left-square: {x,o,b} 

    2.  top-middle-square: {x,o,b} 

    3.  top-right-square: {x,o,b} 

    4.  middle-left-square: {x,o,b} 

    5.  middle-middle-square: {x,o,b} 

    6.  middle-right-square: {x,o,b} 

    7.  bottom-left-square: {x,o,b} 

    8.  bottom-middle-square: {x,o,b} 

    9.  bottom-right-square: {x,o,b} 

   10. Class: {positive,negative} 

Missing Attribute Values : None 

9.  WISCONSIN BREAST CANCER DATASET 

Number of Instances : 699  

Number of Attributes : 10 plus the class attribute 

Attribute Information :  

 Sample code number, Clump Thickness, Uniformity of Cell Size, 

Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell 

Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, Mitoses and 

Class (2 for benign, 4 for malignant). 

Missing attribute values : 16 
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10.   ADULT DATASET 

Number of Instances :  48842 

Number of Attributes :  14  

Attribute Information : Listing of attributes:  

     >50K, <=50K.  

age   :  continuous.  

workclass   :  Private, Self-emp-not-inc, Self-emp-inc, Federal-

gov, Local- gov, State-gov, Without-pay, Never-

worked.  

Fnlwgt      :  continuous.  

Education      : Bachelors, Some-college, 11th, HS-grad, Prof-

school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 

12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, 

Preschool.  

education-num  :  continuous.  

marital-status   : Married-civ-spouse, Divorced, Never-married, 

 Separated, Widowed, Married-spouse-absent, 

 Married-AF-spouse.  

Occupation        :  Tech-support, Craft-repair, Other-service, Sales, 

Exec-managerial, Prof-specialty, Handlers-

cleaners, Machine-op-inspct, Adm-clerical, 

Farming-fishing, Transport-moving, Priv-house-

serv, Protective-serv, Armed-Forces. 

Relationship     :  Wife, Own-child, Husband, Not-in-family, Other-

relative, Unmarried.  
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Race              : White, Asian-Pac-Islander, Amer-Indian-Eskimo, 

Other, Black.  

Sex                     :  Female, Male.  

capital-gain        :  continuous.  

capital-loss         :  continuous.  

hours-per-week  :  continuous.  

native-country :  United-States, Cambodia, England, Puerto-Rico, 

Canada, Germany, Outlying-US(Guam-USVI-

etc), India, Japan, Greece, South, China, Cuba, 

Iran, Honduras, Philippines, Italy, Poland, 

Jamaica, Vietnam, Mexico, Portugal, Ireland, 

France, Dominican-Republic, Laos, Ecuador, 

Taiwan, Haiti, Columbia, Hungary, Guatemala, 

Nicaragua, Scotland, Thailand, Yugoslavia, El-

Salvador, Trinadad&Tobago, Peru, Hong, 

Holand-Netherlands. 
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