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Abstract 

 

Induction motors are applied today, to a wide range of applications requiring variable 

speed. Accurate speed measurement is necessary to realize high performance and 

high-precision speed control of an induction motor. The speed can be measured with 

optical encoders, electromagnetic sensors or brushless DC tacho-generators. 

However, the use of these electromechanical devices present some limitation in their 

applications, like increased cost of the drive, reduces mechanical robustness, low 

noise immunity etc. They affect the machine inertia and require special attention in 

hostile environments. To overcome the drawbacks, it is necessary to go in for speed 

estimators. Fast and accurate speed estimators are currently an active area of research.  

 

Since the late 1980s, speed-sensorless control methods of induction motors using the 

estimated speed instead of the measured speed have been reported. They have 

estimated speed from the instantaneous values of stator voltages and currents using 

induction motor model. Other approaches to estimate speed use rotor slot harmonic, 

extended Kalman filter (EKF), extended Luenbergern observer (ELO), saliency 

techniques and model reference adaptive system (MRAS). MRAS schemes offer 

simpler implementation and require less computational effort compared to other 

methods and are therefore the most popular among the strategies used for sensorless 

control IM drives. The MRAS structure with PI controller as the adaptive mechanism 

uses the rotor flux, back emf, stator currents or reactive power as state variable. The 

selection of reactive power as a function for MRAS based speed estimator deduces to 

a simpler system model, which is easier to design and implement and therefore 

advantageous on real time applications.  

 

Recently, the use of Neural Networks (NNs) for identification and control of 

nonlinear dynamic systems in power electronics and drives have been proposed as 

they are capable of approximating wide range of nonlinear functions to any desired 

degree of accuracy. Powerful learning algorithms have been developed for neural 

networks. Hence, NN based speed estimation is a good alternative to conventional 

method and is presently an active area of research. 



 vii 

The objective of the research work is to identify the best possible NN based solution 

for on-line speed estimation for sensorless vector controlled IM Drives. The use of 

neural learning algorithm in the MRAS adaptation and data based model approaches 

from input/output data are investigated.  

 

The powerful neural learning algorithm is applied for adaptation in MRAS based 

speed estimation using simplified reactive power technique. The proposed scheme 

combines the advantages of simplified reactive power technique and the capability of 

neural learning algorithm for on-line speed estimation in sensorless indirect vector 

controlled induction motor drives. The performance of proposed on-line speed 

estimator is compared with existing Q-MRAS in terms of accuracy and regenerating 

mode of operation in sensorless indirect vector controlled induction motor drives. 

  

To further exploit the advantages of neural networks it is proposed to build data based 

model from input/output data for on-line speed estimators. The objective is to design 

an accurate, simple and structurally compact, computationally less complex NN 

model which is easy to design, simple to implement and robust to parameter variation. 

Three different data based NN models are proposed and developed for on-line speed 

estimation. Neural speed estimator (NSE) model I depends on flux. In this NN Model, 

the types of neural architectures and learning algorithms are considered for 

investigation. The proposed single neuron cascaded neural network (SNC-NN) model 

trained with Levenberg Marquardt algorithm is found to be more compact, less 

complex, easy to design and accurate. The SNC-NN model trained with Levenberg 

Marquardt algorithm is identified to be the most suitable model for on-line speed 

estimation in sensorless controlled IM drives and is named as neural speed estimator 

model I. The performance of proposed neural speed estimator model I is compared 

with existing RF-MRAS in terms of accuracy. It performs as good as equation based 

models but suffers from all the drawbacks of flux estimation as flux is used as input. 

To overcome the drawbacks, neural speed estimator model II is proposed. 

 

 The proposed neural speed estimator model II is based on simplified reactive rower 

equation and it uses stator frequency as one of the input to the neural model. Neural 

speed estimator model II combines the advantages of simplified reactive power based 

techniques with the novelty of robustness to Rr variation and provides stability over a 

wide operating range in sensor-less indirect vector controlled induction motor drives. 
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However, it is suitable for only sensor-less indirect vector controlled induction motor 

drives. Also the computation of stator frequency is done using the machine model 

equation. Hence, an accurate knowledge of machine parameters is mandatory. The 

generalized model using reactive power as input (neural speed estimator model III) is 

proposed for all types of sensorless controlled IM drives. The proposed neural speed 

estimator model III is compact, less complex, easy in design, accurate and robust to 

Rs and Rr variations. It has the advantage that it is suitable for all types of sensorless 

control, does not require knowledge of motor parameters and does not require any 

additional estimators for speed estimation. Hence, this thesis proposes the neural 

speed estimator model III for on-line speed estimation as the most suitable estimator 

for sensorless vector controlled IM drives and it is verified using hardware 

 

A 3-hp three phase induction motor is considered for practical study. The 

experimental set up is built and practical data is obtained. The proposed SNC-NN 

based NSE model III for on-line speed estimator is trained and tested for real time 

data. The proposed speed estimator is implemented on FPGA (Field Programmable 

Array Logic). Hence, the implementation issues of proposed neural based on-line 

speed estimator in FPGA are investigated in terms of computational complexity, bit 

precision and effective utilization of resources. The most time consuming block in the 

FPGA implementation of neural architecture is the computation of tan-sigmoid 

function as it is an infinite series. To overcome this difficulty, a new nonlinear simple 

to compute activation function called Elliott function is used. The neural speed 

estimator model III is trained with Elliott function in the hidden layer for the real time 

data. The NSE model III with Elliott function performs as good as the NSE model III 

with tan-sigmoid function for speed estimation. To reduce the resource, a layer 

multiplexing technique is adopted. The lowest bit precision needed for good 

performance of the NSE model III with Elliott function based speed estimator is also 

identified.  

 

The performance of the proposed NSE model III with identified bit precision and 

excitation function is implemented using layer multiplexing technique and tested on 

Xilinx Spartan FPGA kit (3sd1800afg676-4). These investigations would lead to the 

development of a cheaper, efficient and intelligent speed estimator for sensorless 

controlled IM drives. 



 140 

Appendix A 

 

The parameters of the induction machine used for simulation from chapter 2 to 5 are 

given in the table below. 

 

Induction Motor Parameters 

Parameters Values Parameters Values 

Rated Power 

Rated voltage 

Rated current 

Type 

Frequency 

Number of poles 

1.1kW 

415V 

2.77A 

3 Ph 

50Hz 

4 

Stator Resistance (Rs) 

Rotor Resistance (Rr) 

Magnetizing Inductance (Lm) 

Stator  Inductance (Ls) 

Rotor  Inductance (Lr) 

Rated Speed 

6.03Ω 

6.085Ω 

0.4893H 

0.5192H 

0.5192H 

1415RPM 

 

 

The parameters of the real time induction machine used for experimental setup in 

chapter 6 are given in the table below. 

 

Induction Motor Parameters 

Parameters Values Parameters Values 

Rated Power 

Rated voltage 

Rated current 

Type 

Frequency 

Number of poles 

2.2kW 

415V 

4.7A 

3 Ph 

50Hz 

4 

Stator Resistance (Rs) 

Rotor Resistance (Rr) 

Magnetizing Inductance (Lm) 

Stator  Inductance (Ls) 

Rotor  Inductance (Lr) 

Rated Speed 

4.985Ω 

3.432Ω 

0.3229H 

0.0138H 

0.0138H 

1430RPM 
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Appendix B 

 

Synthesis report summary is shown below for proposed speed estimation. 

========================================================= 

Synthesis Options Summary 

========================================================= 

---- Source Parameters 

Input File Name                    : "NTK.prj" 

Input Format                       : mixed 

Ignore Synthesis Constraint File   : NO 

---- Target Parameters 

Output File Name                   : "NTK" 

Output Format                      : NGC 

Target Device                      : xc3sd1800a-4-fg676 

---- Source Options 

Top Module Name                    : NTK 

Automatic FSM Extraction           : YES 

FSM Encoding Algorithm             : Auto 

Safe Implementation                : No 

FSM Style                          : lut 

RAM Extraction                     : Yes 

RAM Style                          : Auto 

ROM Extraction                     : Yes 

Mux Style                          : Auto 

Decoder Extraction                 : YES 

Priority Encoder Extraction        : YES 

Shift Register Extraction          : YES 

Logical Shifter Extraction         : YES 

XOR Collapsing                     : YES 

ROM Style                          : Auto 

Mux Extraction                     : YES 

Resource Sharing                   : YES 

Asynchronous To Synchronous        : NO 

Use DSP Block                      : auto 

Automatic Register Balancing       : No 

---- Target Options 

Add IO Buffers                     : YES 

Global Maximum Fanout              : 500 

Add Generic Clock Buffer(BUFG)     : 24 

Register Duplication               : YES 

Slice Packing                      : YES 

Optimize Instantiated Primitives   : NO 

Use Clock Enable                   : Yes 

Use Synchronous Set                : Yes 

Use Synchronous Reset              : Yes 

Pack IO Registers into IOBs        : auto 

Equivalent register Removal        : YES 

---- General Options 
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Optimization Goal                  : Speed 

Optimization Effort                : 1 

Library Search Order               : NTK.lso 

Keep Hierarchy                     : NO 

Netlist Hierarchy                  : as_optimized 

RTL Output                         : Yes 

Global Optimization                : AllClockNets 

Read Cores                         : YES 

Write Timing Constraints           : NO 

Cross Clock Analysis               : NO 

Hierarchy Separator                : / 

Bus Delimiter                      : <> 

Case Specifier                     : maintain 

Slice Utilization Ratio            : 100 

BRAM Utilization Ratio             : 100 

DSP48 Utilization Ratio            : 100 

Verilog 2001                       : YES 

Auto BRAM Packing                  : NO 

Slice Utilization Ratio Delta      : 5 

---- Other Options 

Cores Search Directories           : {"ipcore_dir"  } 

 

========================================================= 

HDL Synthesis Report 

Macro Statistics 

# ROMs                                              : 3 

 46x32-bit ROM                                      : 2 

 46x34-bit ROM                                      : 1 

# Multipliers                                       : 4 

 32x11-bit multiplier                               : 1 

 32x32-bit multiplier                               : 2 

 32x8-bit multiplier                                : 1 

# Adders/Subtractors                                : 62 

 32-bit adder                                       : 61 

 7-bit adder                                        : 1 

# Counters                                          : 2 

 32-bit up counter                                  : 2 

# Registers                                         : 146 

 30-bit register                                    : 2 

 32-bit register                                    : 143 

 7-bit register                                     : 1 

# Comparators                                       : 4 

 32-bit comparator equal                            : 1 

 32-bit comparator greatequal                       : 2 

 32-bit comparator greater                          : 1 

# Multiplexers                                      : 67 

 1-bit 46-to-1 multiplexer                          : 64 

 32-bit 46-to-1 multiplexer                         : 3 

============================================================= 
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Appendix C 

 

The neural network (NN) is obtained as shown in Figure C.1. The back-propagation 

learning rule with momentum is used to minimize the energy function. (F) All 

neurons have linear activation function. The equations defining the neural learning 

adaptive model (NLAM) based on reactive power is shown in Figure C.1 (Vas. P., 

1998) 

 

Figure C.1 Neural Learning Adaptive Model (NLAM) 

The reference reactive power 
qs ds ds qs

= - V I V I
ref

Q     (C.1) 

and estimated reactive power   
2 2

1 ds 2 qs
3

= I I
est

W W WQ    
    (C.2) 

where, W1 =  2

m r
s
+σL L /L ; W2 = 

s
σL ; W3 = ωe; a1= W1

2

ds
I + W2

2

qs
I  and a0= Qest. 

 

In NN shown in Figure C.1, the adaptive weight W3 is shown with thick solid line, and 

is proportional to the speed. The adaptive weight is adjusted so that energy function 

(F) should be a minimum, and the error is (ξ(k)). Thus the weight adjustments to give 

minimum squared error have to be proportional to the negative of the gradient of the 

error with respect to the weight.  

 
21

2
Q Qref estF           (C.3) 

ξ (k)= Qref - Qest           (C.4) 
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W k
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           (C.5) 

The equation (C.5)  can be rewritten as, 
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2 2

1 2 1

3

est

ds qs

Q
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             (C.8) 

Substituting equation (C.7) and (C.8) in (C.6)   

3 1
( ) ( )W k k a             (C.9) 

To obtain W3(k), 

  3 3 3
( ) 1 ( )W k W k W k          (C.10) 

The weight adjustments require choice of learning rate (.). If  is large, it will lead 

to oscillations in the output. To overcome this difficulty a momentum () added to the 

equation (C.10), which takes the past (k-1)
th
 weight changes on the (k)

th
 weight. This 

ensures accelerated convergence of the algorithm. Thus the current weight adjustment 

W3(k) is described as 

       3 3 3 31 1W k W k W k W k            (C.11) 

The inclusion of the momentum term accelerates convergence. Also, the updated W3 

gives the estimated stator frequency (ωe). From ωe the estimated rotor speed (ωr) is 

calculated using the relation ωr = ωe - ωsl.  
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Chapter 1 

 

Introduction 

 

1.1 General 

 

An important feature of worldwide industrial progress during the past several decades 

has been enhancing of factory automation. The manufacturing lines in an industrial 

plant typically involve one or more variable speed motor drives which serve to power 

conveyor belts, robot arms, overhead cranes, steel process lines, paper mills, plastic 

and fiber processing lines to name a few. Prior to 1850s, all such applications required 

the use of a DC motor since AC motors were not capable of true adjustable or 

smoothly varying speed since they inherently operated synchronously or nearly 

synchronously with the frequency of electrical input. But, after the invention of 

inverters and its various control techniques in latter in 1920s, AC drives slowly began 

to replace DC motor drives in the above listed applications. 

 

Now, three phase induction machines are widely used in industries for variable speed 

application due to their ruggedness and low price. The induction motor can be 

operated directly from mains, but the variable speed and energy efficiency are 

achieved by means of a frequency converter between mains and the motor. A typical 

frequency converter consists of a rectifier, a voltage –stiff dc link or current stiff dc 

link and a pulse width modulated (PWM) inverter.  

 

The variable speed control methods of induction motor are basically classified into 

two types: scalar control and vector control. The vector control is further classified 

into field oriented vector control and direct torque control. The vector control method 

is used for high performance drive. The overview of the variable speed control 

methods for induction motor is shown in Figure 1.1.  

 

In the past, induction motors were controlled using scalar control methods. Scalar 

control, as the name indicates, is due to magnitude variation of the control variables 



 3 

 

only, and disregards the coupling effect in the machine. For example, the voltage of a 

machine can be controlled to control the speed and frequency or slip can be controlled 

to control the torque. Scalar control is somewhat simpler to implement, but the 

inherent coupling effect (i,e., both torque and flux are functions of voltage/current and 

frequency) gives poor and sluggish dynamic response. This scheme can control the 

speed of the motor satisfactorily under steady state only. 

 

A major revolution in the area of induction motor based drives was the invention of 

field oriented control (FOC) or vector control (VC) in the late 1960’s (Blaschke F., 

1972). In variable speed control applications, in which a small variation of motor 

speed with loading is tolerable, a scalar control system can produce adequate 

performance. However, if precision control is required, then a vector control system is 

the promising alternative (Blaschke F., 1972).  In vector control, both the magnitude 

and phase alignment of vector variables are controlled and valid for steady state as 

well as transient conditions. Thus, the vector control method is a better option than the 

scalar control to obtain the desired dynamic performance. With the advent of vector 

control schemes, the control of an induction motor is transformed similar to the 

control of a separately excited DC motor by creating independent channels for flux 

and torque control.  

 

Depending on the method of measurement of field angle, the vector control can be 

divided into two sub categories: direct vector control (DVC) and indirect vector 

control (IDVC). If the field angle is computed using the flux, it is termed as direct 

vector control. If the field angle is computed using speed and slip, it is termed as 

indirect vector control. Indirect vector control is the most popular technique among 

the industry because the speed sensing is very easy when compared to flux. Hence, in 

this thesis, indirect vector control setup is considered. However, vector control 

requires accurate knowledge of rotor speed. Speed can either be measured or 

estimated. The instantaneous rotor speed (ωr) can be measured using the speed 

sensing instruments namely DC tachogenerator, AC tachogenerator, encoders and 

electromagnetic resolvers etc. 
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1.2 Need for Speed Estimator in Vector Controlled IM 

Drives 

 

Speed sensors are usually expensive, bulky, require extra cabling and subject to 

failures under hostile industrial environments (Holtz J., 2002; Seong-Hwan, et al 

2001). Moreover at low powers (2 to 5 kW) the cost of the sensor is about the same as 

the motor. Even at 50 kW, it can still be between 20 to 30% of the machine cost. 

Therefore, the cost and size of the drive system is increased. The mounting of the 

sensor to the motor is also an obstacle in many applications. Hence, researchers have 

concentrated on the elimination of the speed sensor at the machine shaft without 

deteriorating the performance of drive control system (Krishnan R., 2000; 

Rajashekara K., et al 1996). Speed estimation is an issue of particular interest with 

induction motor drives where the mechanical speed of the rotor is generally different 

from the speed of the revolving magnetic field. The advantages of speed sensorless 

induction motor drives are reduced hardware complexity, lower cost, reduced size of 

the drive machine, elimination of the sensor cable, better noise immunity, good 

reliability and less maintenance requirements. The operation in hostile environments 

mostly requires a motor without speed sensor. There are various speed estimation 

methods available in the literature which is dealt in the following sections. 

 

1.3 Review of Speed Estimation Techniques 

 

The on-line methods of speed estimation developed so far could be broadly classified 

under the following categories. 

 Conventional Methods 

 Neural Network based techniques 

 

The conventional methods of speed estimation are 

o Slip calculation method 

o Direct synthesis from State Equation 

o Observer Based Techniques 

o Slot Harmonics 
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o Saliency Technique 

o Model Referencing Adaptive Systems (MRAS) 

 

The rotor speed can be estimated using the slip calculation method and direct 

synthesis from state equation (Abbondanti A., and Brennen, M. B., 1975; Bose B.K., 

2005; Vas P., 1998). Both the methods directly depend on motor parameters and will 

tend to give poor accuracy of estimation. The next classification of rotor speed 

identification methods can be grouped under Observer Based Techniques (Akun B., et 

al. 2004; Bodson M., et al. 1995; Du T., et al. 1995; Kim Y.R., et al. 1994; Marko 

Hinkkanen, et al. 2010; Vicente I., et al. 2010). This class of speed estimation 

technique is based on either extended Kalman filter (EKF) or extended Luenberger 

observer (ELO) (Bose B.K., 2005; Vas P., 1998). Here, the rotor time constant is 

treated as additional state variable along with rotor speed so that, the above methods 

can be used for joint state and parameter estimation efficiently. The authors have 

applied extended observer techniques for state and parameter estimation for high 

performance AC drives. However, the problems related to extended kalman filter 

(EKF) and extended Luenberger observer (ELO) are high computational complexity, 

large computation time and large memory requirement, which makes it difficult for 

real time implementation even with powerful DSP (Bose B.K., 2005).  

 

Rotor slot harmonics spectrum estimation technique (Bose B.K, 2005; Ferrah A., et al 

1997; Michael W. Degner and Robert D. Lorenz, 2000) is a kind of sensorless speed 

detection method. The rotor slot produces harmonic components in the air gap field, 

which modulate the flux interlacing on the stator with a frequency proportional to the 

rotor speed. Thus the speed can be estimated using the slot harmonics frequency. 

However, this method depends on the finite number of rotor slots, small reluctance 

variation, and the ripple frequency. The voltage magnitude become very low at low 

motor speeds and speed estimation becomes difficult. The saliency techniques (Briz 

F., et al., 2004; Caruana C., et al., 2006; Jansen P.L., and Lorenz R.D., 1996; Jung-Ik 

Ha, and Seung-Ki Sul, 1999; Schroedl M., 1996) attempt to be parameter independent 

and estimate the speed under zero or very low frequency also. They rely on the 

machine response to injected test signals; they require a high precision measurement 

and increase the overall complexity of the system. The secondary magnetic effects do 

lead to complications in their implementation. 
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MRAS schemes offer simpler implementation and require less computational effort 

compared to other methods and are therefore the most popular among the strategies 

used for speed estimation in sensor-less control IM drives (Jevremovic V.R., et al 

2010; Kojabadi H.M., 2009; 2005; Maiti S., et al 2008; Maiti S., and Chakraborty C., 

2010; Ohtani T., et al 1992; Peng F.Z., and Fukao T., 1994; Peng F.Z., et al 1994; 

Rashed M., et al 2004; Schauder C., 1992; Teresa Orlowska-Kowalska, and Mateusz 

Dybkowski, 2010). 

 

In MRAS system, the outputs of two models, one independent of the rotor speed 

(reference model) and the other dependent (adjustable model) are used. The error 

vector is driven to zero by an adaptive mechanism (PI-controller), which yields the 

estimated rotor speed. Depending on the choice of output quantities that form the 

error vector (flux (Bose B.K., 2005; Ohtani T., 1992; Schauder C., 1992; Vas P., 

1998), back EMF (Peng F.Z., and Fukao T., 1994; Rashed M., and Stronach A.F., 

2004), reactive power (Jevremovic V.R, et al 2010; Maiti S., et al 2008; Maiti S., and 

Chakraborty C., 2010; Peng F.Z., et al 1994), active power (Kojabadi H.M., 2009), 

stator current (Teresa Orlowska-Kowalska, and Mateusz Dybkowski, 2010)), several 

MRAS structures are possible. A number of drawbacks exist with MRAS based speed 

estimation depending on the equation used, state variable chosen and type of vector 

control. Attempts to overcome the drawbacks are an active area of research. The 

selection of reactive power as a state for MRAS based speed estimator deduces to a 

simpler system model equation independent of flux and Rs, which is easier to design 

and implement and become advantage on real time applications (Jevremovic V.R, et 

al 2010; Maiti S., et al 2008; Maiti S., and Chakraborty C., 2010; Peng F.Z., et al 

1994) for sensorless indirect vector controlled induction motor drives. MRAS 

schemes are also dependent on motor parameters. However, an induction motor is 

highly coupled, non-linear dynamic plant, and its parameters vary with time and 

operating conditions. Therefore, it is very difficult to obtain good performance for the 

entire speed range using existing methods. 

 

Recently, the use of Neural Network (NNs) to identify and control nonlinear dynamic 

systems has been proposed because they can approximate a wide range of nonlinear 

functions to any desired degree of accuracy (Bose B.K., 2007; Chen T.C., and Sheu 

T.T., 2002; Dinko Vukadinović and Mateo Bašić, 2011; Heredia, J.R., et al., 2001; 
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Karanayil B., et al 2007; Lazhar Ben-Brahim, et al 1999; Lech M. Grzesiak, and 

Marian P. Kazmierkowski, 2007; Mondal S.K., et al 2002; Narendra K.S., and 

Part’ms arathy K., 1990; Seong-Hwan Kim, et al., 2001; Vas P. 1999). Powerful 

learning algorithms have been developed for neural networks (Fredric M. Ham and 

Ivica Kostanic 2008; Martin T.Hagan et al 2008). Moreover, they have the advantages 

of extremely fast parallel computation, immunity to noise and learning from input 

output data. Hence NN based speed estimation is a good alternative to conventional 

method.  

 

The powerful learning algorithms are used for MRAS adaptation instead of PI 

technique and shown to exhibit advantages such as easy tuning and wide range of 

operation (Chen T., and Sheu T., 2002; Karanayil B., et al 2007; Lazhar Ben-Brahim 

et al., 1999; Lech M. Grzesiak and Marian P. Kazmierkowski, 2007; Seong-Hwan 

Kim et al., 2001; Vas P., 1998). Vas P. in 1998 a four layer neural model is used for 

speed estimation in induction motor. Thus NN based speed estimation is still an 

emerging area of research as the full potential of NN is yet to be exploited. Hence, in 

this thesis, a NN approaches is attempted to improve the performance and reduce the 

complexity of speed estimators. 

 

1.4 Objectives of the Thesis 

 

This research work attempts to identify the best possible NN based solution for 

on-line speed estimator used in sensorless vector controlled IM drives. The use of 

neural learning algorithm and data based neural model approaches are investigated. 

This thesis aims to form the basis for the development and realization of a robust  

on-line speed estimator based on neural network, and their usefulness in complex 

sensorless vector controlled IM drives.  

 

The use of neural learning algorithm for adaptation in MRAS based on-line speed 

estimator using reactive power (Q-MRNLAS) is proposed and designed. The model is 

extensively tested over the complete operating range and its performance is to be 

obtained. It has to be compared with the conventional Q-MRAS using PI controller 

and the conclusions are to be summarized. 
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To overcome the drawbacks of equation based methods, this thesis proposes neural 

network models for on-line speed estimation. The nonlinear mapping capability of the 

neural network is to be exploited for the design of compact robust speed estimator. To 

identify the best architecture and learning algorithm for speed estimation, an 

investigation is to be carried out using different neural architectures and learning 

algorithms. The most suitable architecture and learning algorithm are to be identified 

based on comparison in terms of complexity and accuracy.  

 

Different input combinations for on-line speed estimation are to be modeled and 

analyzed. The most suitable neural based on-line speed estimator which is robust, 

compact, less complex, easy in design, accurate and generalized so as to suit for all 

types sensorless controlled IM drives has to be identified.  

 

The identified neural based on-line speed estimator has to be designed and validated 

for real time data. The implementation issues of the proposed speed estimator are to 

be addressed. From the investigations the major conclusions are to be summarized. 

 

1.5 Thesis Overview 

 

The research work reported in the thesis is organized into seven chapters. Each 

section deals with a contribution, presents the results obtained, and highlights the 

advantages and possible limitations. 

 

Chapter 2 discusses the reactive power-MRAS using neural learning adaptation (Q-

MRNLAS) for speed estimation in IFOC Drives. In MRAS method, the flux or 

reactive power is used as state variable and both require the knowledge of flux. For 

sensorless control, flux can be estimated using voltage model equations only and this 

method uses a pure integrator leading to integrator drift problems at low speeds. This 

problem can be overcome in IFOC drives by using reduced reactive power equations, 

which is independent of flux. The rotor and stator resistance vary during motor 

operation and have to be estimated online. The use of reduced reactive power 

equations for MRAS makes the speed estimation independent of flux and in-turn 

independent of stator resistance. Hence, this method eliminates the need for stator 
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resistance estimator and reduces the complexity of the drive. Conventionally the 

adaptive mechanism for MRAS is done using PI controller. However it fails in certain 

regenerative modes.  

 

The powerful NN learning rules can be used for adaptive mechanism in MRAS 

instead of PI controller. A neural learning based reactive power MRAS called Q-

MRNLAS is proposed in this chapter. Different learning algorithms are investigated. 

The simple and most suitable learning algorithm is identified. The performance of 

proposed on-line speed estimator is compared with existing Q-MRAS in terms of 

accuracy and regenerating mode of operation in sensorless indirect vector controlled 

induction motor drives and presented. The proposed simplified Q-MRNLAS is 

independent of flux, pure integrator problems and provides stable operation in 

regenerative mode. It eliminates the need for stator resistance estimation and hence 

reduces the complexity of the drive. Hence, it is concluded that the proposed 

estimator is a promising alternative for existing PI based Q-MRAS for on-line speed 

estimation in sensor-less indirect vector controlled induction motor drives. 

 

The proposed method again suffers from all the disadvantages of conventional 

equations based schemes, namely inaccuracies in motor parameters used and the need 

for an online rotor resistance estimator. To further exploit the advantages of neural 

networks it is proposed to build a data based model for on-line speed estimation. This 

is investigated in the next chapter. 

 

Chapter 3 proposes a data based NN for speed estimation. The data based approach 

using flux based NN model is discussed in this chapter and named as neural speed 

estimator model I. The data based approach has to identify the input parameters, 

choose a neural architecture which is simple and accurate, choose a learning 

algorithm for offline training and suggest the best method for implementation.  

 

The NN model for speed estimation uses flux as one of the inputs. The inputs to 

estimator are direct and quadrature axis stator currents measured at (k-1)
th
 sample 

 ( 1), ( 1)qsds k kI I  and rotor fluxes measured at  k
th
 and (k-1)

th
 sample 

 ( ), ( 1), ( ), ( 1)λ λ λ λqr qrdr drk k k k  . The output is the estimated rotor speed { r } at k
th
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sample. As accuracy is important, the activation function for hidden and output layers 

is chosen as tan-sigmoid and pure linear function respectively. 

 

The design of data based NN speed estimator to a large extent depends on the type of 

neural architecture and the neural learning algorithm. Hence suitable neural 

architecture and NN learning algorithm have to be identified for on-line speed 

estimation. The popular neural architectures considered for investigation are feed-

forward architecture and cascade architecture. The chosen NN architectures are 

trained with three different neural learning algorithms namely backpropagation with 

momentum (BPM), variable learning rate (VLR) and Levenberg Marquardt 

(LM).Training data for the NN, is taken at various operating conditions over the 

complete operating range. No parameter variation is assumed. For performance 

comparison, all the three NN architectures are trained with same input/output data, 

same learning algorithms, and same target MSE. This is repeated for different 

learning algorithms and the results obtained are reported. The performance 

comparison is further carried out in terms of structural compactness and 

computational complexity. Hence, from the investigations, it is concluded that the 

proposed “Single Neuron Cascaded Neural Network” (SNC-NN) model trained with 

LM algorithm is most suitable for speed estimation in sensorless controlled IM drives 

and it is named as neural speed estimator model I. 

 

The performance of the proposed neural speed estimator model I based on rotor flux 

is shown to be as good as the rotor flux–MRAS method for all operating conditions. 

The data based NN approach is validated using this model. However the model is flux 

dependent and suffers from the drawbacks of flux estimation in sensorless induction 

motor drives. The reactive power model can be simplified to eliminate flux and Rs for 

IFOC drives. This advantage is used to build a data based model independent of rotor 

flux for IFOC drives and is detailed in the next chapter. 

 

In Chapter 4, a novel data driven stator frequency based neural network model for on-

line speed estimation in IFOC Drives is proposed, which is independent of flux 

estimator, integration problems and parameter variations. The stator frequency based 

NN model (Model II) is presented. The inputs to neural network model are direct and 

quadrature axis stator voltages and currents measured at k
th

 sample 
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{ ( )ds kV , ( )qs kV , ( )ds kI , ( )qs kI } and stator frequency measured at  k
th
 sample {

e }. The stator 

frequency can be estimated using simplified reactive power equations. The output is 

the estimated rotor speed {
r } at k

th
 sample. The activation function for hidden and 

output layers is chosen as tan-sigmoid and pure linear function respectively. Around 

95,000 data sets are obtained through simulation is used as the training data set. The 

model is independent of Rs. The designed speed estimator is extensively tested for a 

number of operating conditions and compared with simplified Q-MRNLAS. 

 

The proposed neural speed estimator model II combines the advantages of simplified 

reactive power based techniques with the novelty of robustness to Rr variation and 

stability over a wide operating range in sensor-less indirect vector controlled 

induction motor drives. However, it is suitable for only sensor-less indirect vector 

controlled induction motor drives. Also the computation of 
e  is done using the 

machine model equation. Hence, an accurate knowledge of machine parameters is 

mandatory.  

 

A generalized data based model which is suitable for all types of IM drives control 

using a black box approach, and which does not require motor parameters would 

provide a universal solution by addressing all the above issues. This is envisaged and 

investigated in the next chapter. 

 

Chapter 5 proposes a speed estimator NN model based on reactive power (Model III) 

derived from the generalized equations. This is suitable for all types of sensorless 

controlled IM drives. The speed is defined as a function of voltages, currents and 

reactive power. This model requires only measured voltages and currents. Motor 

parameters are not required. The inputs to the SNC-NN estimator are direct and 

quadrature axis stator voltages and currents measured at k
th

 sample 

{ ( )ds kV , ( )qs kV , ( )ds kI , ( )qs kI } and reactive power measured at k
th
 sample { Q }. The output 

is the estimated rotor speed { r }. Around 95,000 data sets are obtained through 

simulation is used as the training data set. The online parameters variations are 

incorporated in the simulation model while obtaining the training datasets. However, 

in real time the datasets would include online parameter changes.  
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The designed SNC-NN model III for on-line speed estimator is extensively tested for 

a number of operating conditions in sensorless indirect vector controlled induction 

motor drive and shown to perform well. The performance of the proposed on-line 

speed estimation is compared with simplified Q-MRNLAS for 100% change of Rr in 

Sensorless Indirect Vector Controlled Induction Motor Drives and results thus 

obtained are presented. 

 

The neural speed estimator model III is found to be more compact, less complex, easy 

in design, accurate, robust to motor parameters variation namely Rs and Rr and also 

provides stability over a wide operating range. Hence, this thesis proposes the neural 

speed estimator model III for on-line speed estimation is the most suitable estimator 

for sensorless vector controlled IM drives. The proposed neural speed estimator 

model III is identified as the good alternative for conventional method of on-line 

speed estimation and it is also suitable for all types of sensorless controlled IM drives. 

The proposed novel method is verified using hardware. 

 

Chapter 6 deals with design and implementation of speed estimator using real time 

data. A 3-hp three phase induction motor is considered for practical study. The 

experimental set up is built and practical data is obtained. The proposed SNC-NN 

based model III for on-line speed estimator is trained and tested for real time data. 

The result validates the performance of neural model based speed estimator for 

practical data. From the result obtained, it is found that the estimated speed closely 

matches the measured speed. 

 

The designed SNC-NN based speed estimator is implemented using digital hardware. 

The choice can be DSP or FPGA. For fast estimation, FPGA is chosen as the target 

hardware. The most time consuming block in the FPGA implementation of neural 

architecture, is the computation of tan-sigmoid function which is an infinite series. To 

overcome this difficulty, a new nonlinear simple to compute activation function called 

Elliott function is used. The neural speed estimator model III based speed estimator is 

trained with Elliott function in the hidden layer for the real time data. The neural 

speed estimator model III with Elliott function performs as well as the neural speed 

estimator model III with tan-sigmoid function for speed estimation. The use of Elliott 

function reduces computational complexity. To reduce the resource, a layer 
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multiplexing technique is adopted. The lowest bit precision needed for good 

performance of the neural speed estimator model III with Elliott function based speed 

estimator is also identified.  

 

The performance of the proposed neural speed estimator model III with Elliott 

function based speed estimator with identified bit precision and excitation function is 

implemented and tested on Xilinx Spartan FPGA kit (3sd1800afg676-4). The concept 

of layer multiplexing is adopted for effective resource utilization. The FPGA 

implementation is tested with practical data extensively.  

 

Chapter 7 concludes the thesis by summarizing the major contributions of the 

research, advantages of the proposed speed estimator and its suitability for all types of 

sensorless controlled IM drives. The directions for future work and possible 

extensions are outlined. 
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Chapter 2 

 

Model Reference Neural Learning Adaptive Systems 

 

2.1 Introduction 

 

The Model Reference Adaptive System (MRAS) based speed estimation is one of the 

most popular method used for sensor-less controlled induction motor drives. MRAS 

scheme offers simpler implementation and requires less computational effort 

compared to other types of speed estimation techniques (Chen T.C., and Sheu T.T., 

2002; Kojabadi, H.M., 2009; 2005; Maiti S., et al 2008; Maurizio Cirrincione, and 

Marcello Pucci, 2005; Ohtani T., et al 1992; Peng F.Z., and Fukao T., 1994; Shauder 

C., 1992; Teresa Orlowska-Kowalska, and Mateusz Dybkowski, 2010; Yang G., and 

Chin T.-H., 1993). 

 

The block diagram of the MRAS based speed estimation scheme is shown in Fig 2.1. 

The state variable x is computed in two different ways using sensed variables such as 

stator voltage and current. One of them is independent of rotor speed (reference 

model) and the other is dependent on rotor speed (adaptive model). The difference 

between the outputs of these two models is used to formulate the error vector signal 

(ξ). The error vector signal is then fed to an adaptation mechanism. The output of the 

adaptation mechanism is the estimated quantity (ωr,est) which is adjusted in the 

adaptive model until the errors between the two models vanish to zero.  

 

Depending on the state variable quantity used for the formulation of the error vector 

signal, various kinds of MRAS are available, e.g., flux (Bose B.K., 2005; Ohtani T., 

1992; Schauder C., 1992; Vas P., 1998), back EMF (Peng F.Z., and Fukao T., 1994; 

Rashed M., and Stronach A.F., 2004), reactive power (Jevremovic V.R., et al 2010; 

Maiti S., et al 2008; Maiti S., and Chakraborty C., 2010; Peng F.Z., et al 1994), active 

power (Kojabadi H.M., 2009), stator current (Teresa Orlowska-Kowalska, and 

Mateusz Dybkowski, 2010) etc.  
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Figure 2.1 MRAS based Speed Estimation  

 

The most popularly used MRAS schemes are rotor flux based MRAS (RF-MRAS) 

and reactive power based MRAS (Q-MRAS). In RF-MRAS scheme, the conventional 

voltage model equations are used as the reference model. Conventional voltage model 

suffers from the problems of pure integrator and variations of stator resistance 

especially at low speeds (Bose B.K., and Patel N.R., 1997; Bose, B.K., 2005; Holtz J., 

and Quan J., 2003; Kevin D. Hurst, et al 1998). This problem can be overcome in 

IFOC drives by using reduced reactive power equation, which is independent of flux 

(Jevremovic V.R., et al 2010; Maiti S., et al 2008; Maiti, S. and Chakraborty, C., 

2010; Peng F.Z, and Fukao T., 1994). 

 

The adaptive algorithm conventionally uses a PI controller. The PI controller has to be 

tuned appropriately to obtain good stable performance. Nowadays, the use of 

advancements in Neural Networks (NNs) for identification and control of nonlinear 

dynamic systems have resulted in improved neural learning algorithms. A number of 

algorithms based on gradient techniques are proposed to update the parameters of the 

network. These techniques have been applied to MRAS based systems to update the 

estimated variable in the adaptive model. (Bose B.K., 2005; Chen T.C., and Sheu 

T.T., 2002; Karanayil B., et al 2007; Lazhar Ben-Brahim, et al 1999; Mondal S.K., et 

al 2002; Vas P., 1998). The powerful NN learning algorithms has been used for error 

adaptive mechanism in MRAS instead of PI controller and shown to perform well 

(Karanayil B., et al 2007; Lazhar Ben-Brahim, et al 1999; Vas P., 1998).  

 

The RF-MRAS based on neural learning algorithm as the error adaptive mechanism 

for speed estimation by Vas. P., (1998) and Lazhar Ben-Brahim, et al (1999) is the 
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earliest work on neural learning algorithm based MRAS strategy. The neural learning 

algorithm based MRAS has been shown to provide stable wide range operating range 

and does not require tuning. However this model is flux dependent and suffers from 

the drawbacks of flux estimation in sensorless induction motor drives.  

 

A novel neural learning algorithm based MRAS scheme named as “Model Reference 

Neural Learning Adaptive System” (MRNLAS) using reactive power as state variable 

is proposed in this chapter. The proposed scheme combines the advantages of reactive 

power technique and the capability of neural learning algorithm to form a new scheme 

named “Reactive Power based Model Reference Neural Learning Adaptive System” 

(Q-MRNLAS) for speed estimator in sensorless indirect vector controlled induction 

motor drives.  

 

2.2 Proposed Speed Estimator Using Simplified Reactive 

Power based MRNLAS Structure (Q-MRNLAS) 

 

The simplified equation for reactive power in IFOC is very useful and widely used in 

MRAS as it overcomes flux dependency and the need for stator resistance estimator. 

Therefore it reduces the complexity of the drive. However, it fails in certain 

regenerative modes of operation, and hence, wide range of speed control is not 

possible (Maiti S., et al 2008; Maiti S, and Chakraborty C., 2010). 

 

The neural learning algorithm is based on powerful steepest descent method (Fredric 

M. Ham, and Ivica Kostanic, 2008; Martin T.Hagan, et al 2008). In this method, the 

weights of NN are adjusted in steps to minimize performance index. The learning rate 

employed in the algorithm determines the step size. Larger value of learning rate 

means faster learning of NN. But, this can lead to oscillations in the output and miss 

the global minimum point. To overcome this difficulty and reduce oscillations in the 

output, a momentum term is added to smoothen the oscillations and accelerate the 

convergence.  

 

In literature, the RF-MRAS with neural learning algorithm is proposed by Vas P. 

(1998) and Lazhar Ben-Brahim et al (1999) for speed estimation. It has advantages 

like ease in tuning and stability over wide range of operation. However, this model is 
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flux dependent and suffers from the drawbacks of flux estimation in sensorless 

induction motor drives. 

 

To combine the advantages of reactive power equations and neural learning algorithm 

a novel neural learning algorithm based MRAS scheme named as “Model Reference 

Neural Learning Adaptive System” (MRNLAS) is proposed. 

 

The Q-MRNLAS proposed in this thesis uses reactive power as the state variable. The 

reference model and neural learning adaptive model compute reference reactive 

power (Qref) and estimated reactive power (Qest) respectively. The reference model is 

independent of ωe whereas the adjustable model depends on ωe. The error signal  

(ξ = Qref - Qest) is back propagated to adjust the weight (W3) of the neural learning 

adaptive model. The rotor speed (ωr) is then computed using the relationship  

ωr = ωe - ωsl, where, ωe is stator frequency (W3) and ωsl is slip frequency. 

 

The block diagram of proposed reactive power based MRNLAS (Q-MRNLAS) 

system for rotor/motor speed estimation is illustrated in Figure 2.2(a). The equations 

defining the induction motor reference model and adjustable model based on reactive 

power are given below (Maiti S., et al 2008).  

 

 

Figure 2.2(a) Speed Estimator using Reactive Power based MRNLAS  
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The d and q axis stator voltages of an induction motor can be expressed on 

synchronously rotating reference frame as given in (2.1) and (2.2).  

m m

ds s ds s ds dr s e qs e qr

r r

d L d L
V = R I +σL I + λ -σL ω I -ω λ

dt L dt L
    (2.1) 

m m

qs s qs s qs qr s e ds e dr

r r

d L d L
V = R I +σL I + λ +σL ω I +ω λ

dt L dt L
   (2.2) 

The actual instantaneous reactive power (Qref) absorbed by the induction motor can be 

expressed as in (2.3). Using the flux and parameter of the induction motor, the 

estimated reactive power (Qest) can be expressed as (2.4) (Maiti S., et al 2008).  

qs ds ds qs
= - V I V I

ref
Q         (2.3) 

   m

ds qs qr qs dr dse s e
r

2 2
= + + +

L
ω σL I I ω λ I λ I

Lest
Q      (2.4) 

Substituting the condition λdr=LmIds and λqr=0 for the indirect field oriented control 

(IFOC) IM drive in (2.4), the more simplified expression of Q is (2.5). The equation 

(2.6) is rewritten in the form of neural network and is presented in (2.7). From 

equation (2.7), the neural network is obtained as shown in Figure 2.2(b). 

  m

ds qss e e
r

2
22 2
ds= + +

L
σL ω I I ω I

Lest
Q       (2.5) 

e

2
2 2m

s
ds s qs

r

= +
L

σL I +σL I
L

ω
est

Q
 
 
 
 

 
 
 

      (2.6) 

 

Figure 2.2(b) Neural Learning Adaptive Model (NLAM)  
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All neurons have linear activation function. For the neural network shown in Figure 

2.2(b) using equations (2.6) and (2.7). where, W1 =  2

m r
s
+σL L /L ; W2 = 

s
σL ;  

W3 = ωe; a1= W1
2

dsI + W2
2

qsI  and a0= Qest. Assume, Lm, Lr and Ls are to be constant. 

The weight, W1 and W2 are fixed and W3 is adjusted in the neural learning adaptive 

model to obtain the estimated stator frequency (ωe). The energy function (F) 
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minimizes the difference between actual and estimated reactive power and is given in 

equation (2.8). The back-propagation learning rule with momentum is used to 

minimize the energy function. The error gradient is backpropagted to adjusted W3 as 

given equation (2.9) and (2.10). The stability of the neural learning adaptive 

mechanism depends on learning rate () and momentum (). Appropriate choice of 

learning rate () and momentum () will yield the best results. The learning rate () 

and momentum () should lie between 0 to 1 for the system to be stable. The update 

equations for W3 are given in (2.10). The updated W3 gives the estimated stator 

frequency (ωe). From ωe the estimated rotor speed (ωr) is calculated using the relation 

ωr = ωe - ωsl. The detailed derivation is carried out in appendix C. 
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2
Q Qref estF           (2.8) 

   3 1
Q Qref estW k a    where, 

2 2

1 1 ds 2 qs
 I  IW Wa       (2.9)  

       
3 3 3 3

1 1W k W k W k W k            (2.10) 

 

2.3 Sensorless Indirect Field Oriented Controlled IM 

Drives with Proposed Speed Estimator 

  

The indirect field oriented control presented here is rotor flux oriented control without 

flux weakening operation. Figure 2.3 shows the complete schematic of indirect field 

oriented control for sensorless induction motor drives with proposed Q-MRNLAS 

based speed estimation. The system consists of a solid state IM drive system, rotor 

flux oriented control, and Q-MRNLAS based speed estimator. Q-MRNLAS based 

speed estimator as explained in previous section. Rotor flux oriented control consists 

of a PI speed controller, a current controller, and PWM generator. 

 

The torque command is generated as a function of the speed error signal. It is 

generally processed through a PI controller. The torque and flux command are 

processed in the calculation block. The three phase reference current generated from 

the functional block is compared with the actual current in the hysteretic band current 

controller and the controller takes the necessary action to produce PWM pulses. The 

PWM pulses are used to trigger the voltage source inverter to drive the induction 
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motor. The results and discussion of sensorless indirect vector controlled induction 

motor drives with proposed Q-MRNLAS based speed estimation is carried out in the 

next section.  

 

 

Figure 2.3 Sensorless Indirect Vector Controlled IM Drive with Q-MRNLAS 

based Speed Estimator 

 

2.4 Simulation Results and Discussion of Proposed Q-

MRNLAS 

 

The performance of proposed Q-MRNLAS based rotor speed estimation utilizing the 

reactive power technique for sensorless indirect vector controlled induction motor 

drives is analyzed extensively under various operating conditions through 

Matlab/Simulink. The sample results of proposed Q-MRNLAS model are shown for 

the following operating conditions as listed below:  

 

2.4.1 Test 1- Stair Case Speed Transients from 50 to 0 to −50rad/sec 

at No Load  
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50rad/sec to zero speed in a series of five steps (25rad/sec) continuing to −50rad/sec, 

at no load. The performance of proposed speed estimation scheme is shown in Figure 

2.4(a). The mismatch error curve between actual and estimated speed is presented in 

Figure 2.4(b). The speed estimated from the proposed speed estimation scheme is 

found to closely match with the actual speed in steady state. Also the results depict 

stable operation for the proposed speed estimation scheme, particularly around zero 

speed. 

 

2.4.2 Test 2- Load Torque Impact of 100% at 100rad/sec  

 

The test condition 2 examines the load torque disturbance capability of the proposed 

speed estimation scheme. The drive is operated with reference speed of 100rad/sec. 

100% step change in load torque is applied at 2.5sec and rejected at 4sec. The 

proposed speed estimation scheme shows better steady state and dynamic 

performance with negligible steady state error between the actual and estimated 

speed, as shown in Figure 2.5(a) and Figure 2.5(b). 

 

2.4.3 Test 3- Low Speed Operation with Effect of Loading  

 

The load torque disturbance capability of the proposed speed estimation scheme at 

very low speed of 10rad/sec with load is examined. The proposed speed estimation 

scheme estimates speed with good accuracy even in the case of very low speed under 

50% load condition as presented in Figure 2.6(a). The speed estimation error between 

actual and estimated speed is observed in Figure 2.6(b). It is noticed that the 

estimation error is negligible at steady state. 

 

2.4.4 Test 4- ±100rad/sec Speed at No Load  

 

The high speed reversal capability of proposed speed estimation scheme is presented 

in test condition 4. Initially, the drive is operated with the speed command of 

100rad/sec and the speed command is gradually reduced to -100rad/sec. The 

performance of proposed speed estimation scheme is shown in Figure 2.7(a). It is 

noticed that the sensorless drive is operated with full stability in the speed reversal 
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mode. The steady state error between the actual and estimated speed is very small and 

it is presented in Figure 2.7(b). The estimated speed follows the actual speed with 

good accuracy under speed reversal mode also. The proposed speed estimation 

scheme shows better performance and is found to estimate speed with negligible 

error.  

 

2.4.5 Test 5- Very Low Speed (±1rad/sec) at No Load  

 

This condition deals with the performance of proposed speed estimation scheme for 

very low speed reversal under no load. Initially, the drive is operated with the speed 

command of 1rad/sec up to 3sec and the speed command is gradually reduced to 

-1rad/sec. The performance of proposed speed estimation scheme is shown in Figure 

2.8(a). The proposed speed estimation scheme performance better under steady state 

with negligible error and the estimated speed closely matches the actual speed. The 

error between actual and estimated speed is shown in Figure 2.8(b). 

 

2.4.6 Test 6- Zero speed operation:  

 

The performance of the proposed estimator at zero speed is tested through simulation 

and the results are presented in Figure 2.9(a) and error curve is shown in Figure 

2.9(b). The drive is operated at zero speed from 3 to 5sec. It is observed that the 

estimated speed follows the actual speed with good accuracy.  

 

2.5 Comparison of Proposed Q-MRNLAS and Existing 

Q-MRAS based Speed Estimators in Terms of 

Accuracy and Regenerating Mode of Operation 

 

The comparisons of proposed Q-MRNLAS and commonly used Q-MRAS for speed 

estimation in sensorless indirect vector controlled induction motor drives under steady 

state are carried out at 0% and 100% loaded conditions. The results obtained are 

consolidated and presented in Table 2.1 and Table 2.2. 
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Table 2.1 Performance of the Proposed Q-MRNLAS and Q-MRAS based Speed 

Estimator for Various Speed Commands under No Load Condition 

Reference 

Speed 

Actual 

Speed 

(rad/sec) 

Proposed Q-MRNLAS Existing Q-MRAS 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 144.998 0.002 144.999 0.001 

125 125.003 125.075 -0.057 125.012 -0.007 

100 99.998 99.943 0.055 100.001 -0.003 

75 75.001 75.025 -0.027 75.011 -0.013 

50 50.002 49.984 0.022 49.991 0.022 

25 24.999 24.981 0.099 25.012 -0.052 

5 5.001 4.980 0.380 5.003 -0.039 

1 0.999 1.004 -0.500 1.019 -1.001 

 

Table 2.2 Performance of the Proposed Q-MRNLAS and Q-MRAS based Speed 

Estimator for Various Speed Commands under Full Load Condition 

Reference 

Speed 

Actual 

Speed 

(rad/sec) 

Proposed Q-MRNLAS Existing Q-MRAS 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 145.012 -0.007 145.031 0.021 

125 124.998 124.984 0.011 125.001 -0.002 

100 100.002 100.124 -0.124 100.102 -0.099 

75 75.001 74.929 0.093 75.012 0.015 

50 49.999 50.031 -0.064 50,019 -0.040 

25 25.000 25.039 -0.156 25.001 -0.004 

5 5.001 5.008 -0.099 4.991 0.191 

1 1.001 1.009 -0.799 0.984 1.698 

 

From the Tables, it is observed that both the speed estimator works very well for wide 

range of operating conditions from 1rad/sec to 145rad/sec. The error between the 

actual and estimated speed from the proposed Q-MRNLAS and existing Q-MRAS for 

various operating conditions is computed at 0% and 100% loaded conditions under 

steady state and is presented in Tables 2.1 and 2.2.  

 

The error in the speed estimation from the existing Q-MRAS scheme under no load 

condition is found to be within ±0.05% for normal speed range and ±1% at low and 

very low speeds. Under full load condition, the error in the speed estimation from the 

existing Q-MRAS scheme always lies within ±0.1% for normal speed range and 
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±1.6% for low and very low speeds. The proposed Q-MRNLAS estimates the speed 

under no load condition with an accuracy of ±0.09% for normal speed range and 

±0.5% at low and very low speed. The error in the speed estimated from the proposed 

Q-MRNLAS scheme under full load condition is found to be within ±0.1% for normal 

speed range and ±0.7% for low and very low speeds. 

 

From the Tables 2.1 and 2.2, it is clear that proposed Q-MRNLAS model has same 

accuracy as that of existing Q-MRAS, but for implementation purpose required less 

complex model. The Q-MRNLAS is simpler and easy to implement in the low cost 

digital hardware when compared to existing Q-MRAS.  

 

The performance comparisons of proposed Q-MRNLAS with Q-MRAS for on-line 

speed estimation in sensorless indirect vector controlled induction motor drives for 

regenerating mode operation is also carried out in Matlab/Simulink and the results 

obtained are consolidated and presented. 

 

2.5.1 Performance of Proposed Q-MRNLAS in Regenerating Mode 

of Operation 

 

The performance of proposed Q-MRNLAS and Q-MRAS for on-line speed estimation 

is investigated for regenerating mode operation in sensorless indirect vector controlled 

induction motor drives. The estimators are tested for forward motoring, reverse 

motoring, and ramp response for very low speed under full load. Initially, the drive is 

operated with the speed command of 5rad/sec up to 3sec and the speed command is 

gradually reduced to -5rad/sec. 

 

The performance of proposed Q-MRNLAS and Q-MRAS for on-line speed estimation 

for regenerating mode operation is presented in Figure 2.10(a) and Figure 2.10(b). For 

the comparison, both the figures are shown with same scale. From the results 

obtained, it is seen that the proposed Q-MRNLAS based on-line speed estimator 

displays stable performance and tracks the actual speed very well whereas Q-MRAS 

becomes unstable and fails to estimate. The proposed Q-MRNLAS based on-line 

speed estimator is found to be less sensitive to speed reversal. Thus, the proposed
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Q-MRNLAS based on-line speed estimator exhibits stable performance whereas 

Q-MRAS model shows unstable performance for the regenerating mode operation.  

 

From the investigations, the proposed Q-MRNLAS based on-line speed estimator is 

found to be accurate, less complex, free from integrator drift problems, robust to Rs 

variation and provides stable operation in regenerating mode. So, it is a promising 

alternative to existing Q-MRAS scheme of speed estimators for sensor-less indirect 

vector controlled IM drives. 

 

2.6 Conclusion 

 

A novel Reactive Power based MRNLAS (Q-MRNLAS) for speed estimation is 

proposed. The choice of reactive power as a functional candidate in Q-MRNLAS 

based speed estimation makes the system model equations independent of flux, 

simpler and easier to design. The proposed method is compared with existing 

Q-MRAS in terms of accuracy and regenerating mode operation. The error in the 

speed estimation from the existing Q-MRAS and proposed Q-MRNLAS scheme 

under no load and full load condition for normal operations, low and very low speeds 

are compared in terms of accuracy. From the results obtained, it is clear that the 

proposed Q-MRNLAS model has the same accuracy as that of existing Q-MRAS, but 

for implementation purpose required less complex model less complex model. The 

Q-MRNLAS is simpler and easy to implement in the low cost digital hardware when 

compared to the existing Q-MRAS. 

 

The performance of proposed Q-MRNLAS and existing Q-MRAS for on-line speed 

estimation is also investigated for regenerating mode operation in sensorless indirect 

vector controlled induction motor drives. The proposed Q-MRNLAS based on-line 

speed estimator displays stable performance and tracks the actual speed very well 

whereas, popular Q-MRAS becomes unstable and fails to estimate. The proposed 

Q-MRNLAS based on-line speed estimator is accurate, less complex, free from 

integrator drift problems, robust to Rs, variation, and provides stable operation in 

regenerating mode. So, it is a promising alternative to popular Q-MRAS scheme of 

speed estimators for sensor-less indirect vector controlled IM drives. 
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The proposed method again suffers from the disadvantages of conventional equations 

based speed estimation schemes namely inaccuracies in motor parameters used and 

need for an online rotor resistance estimator. To further exploit the advantages of 

Neural Networks, it is proposed to build a data based model for on-line speed 

estimation. This is investigated in the next chapter. 
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Chapter 3 

 

Flux Based Neural Network Model for 

Speed Estimation - Model I 

 

3.1 Introduction 

 

The equation based models for speed estimation suffer from the drawback of 

parameter inaccuracies. To overcome the problem, a black box approach for speed 

estimation using Neural Networks (NN) model is presented in this chapter. The 

capability of NN model trained from input/output data is well proven in the literatures 

(Aydogan Savran 2007; Bose B.K., 2005; Fahlman S.E., and Lebiere C., 1991; 

Hornik K., et al., 1989; Hornik K., et al., 1990; Lehtokangas M., 2000; Narendra K.S., 

and Parthasarathy, K., 1990; Shady M. Gadoue, et al 2009; Vas P., 1999). 

 

A novel data based NN model using lux as input for on-line speed estimation is 

proposed. The performance of the NN model depends on the neural architecture and 

learning algorithm. The popular neural architectures used for function approximation 

are feedforward architecture and cascaded architecture (Fahlman S.E., and Lebiere C., 

1991; Lehtokangas M., 2000; Narendra K.S., and Parthasarathy, K.., 1990; Shady M. 

Gadoue, et al 2009). The neural learning algorithms are backpropagation with 

momentum (BPM), variable learning rate (VLR) and Levenberg Marquardt (LM) 

(Martin T. Hagan, and Mohammad B. Menhaj, 1994; Martin T. Hagan, et al 2008; 

Narendra K.S., and Parthasarathy, K., 1991; Setiono R. and Lucas Chi Kwong Hui, 

1995). 

 

The objective of the research is to identify the most suitable NN model for on-line 

speed estimation in terms of accuracy, design simplicity, compactness and 

computational complexity. 

 

The NN models are built from input-output data collected from the plant. Using the 

collected data three types of neural architectures and neural learning algorithm for on-
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line speed estimation are built. The performance of the NN models is compared in 

terms of estimation accuracy, compactness and computational complexity. The most 

suitable neural architecture and learning algorithm for on-line speed estimation is 

identified and named as neural speed estimator model I. The performance of the 

proposed neural speed estimator model I is compared with RF-MRAS under various 

operating conditions. The results obtained through extensive simulation are presented. 

 

3.2 Neural Architectures and Learning Algorithms 

 

The design of data based neural network model to a large extent depends on the type 

of neural architectures and learning algorithms. A brief discussion about the neural 

architectures (single layer feed-forward (SLFF) architecture, multilayer feed-forward 

(MLFF) architecture and single neuron cascaded (SNC) neural architecture) 

considered for investigation are presented. Various learning algorithms such as 

backpropagation with momentum (BPM), variable learning rate (VLR) and 

Levenberg Marquardt (LM) are chosen for investigation.  

 

3.3 Neural Architectures 

 

The neural architectures considered for investigation in the thesis are the Feedforward 

architecture and Cascaded architecture. 

 

3.3.1 Feedforward Architecture 

 

Feedforward architecture consists of a set of sensory units (source nodes) that 

constitute the input layer, one or more hidden layers and output layer. Feed-forward 

architecture for multi-input and single-output system is shown in Figure 3.1. The 

input signal propagates through the network in a forward direction, on a layer-by-

layer basis. The output neurons (computational nodes) constitute the output layers of 

the network. The remaining neurons (computational nodes) constitute hidden layers of 

the network. The first hidden layer is fed from the input layer made up of sensory 

units (source nodes). The resulting outputs of the first hidden layer are applied to the 

next hidden layer and so on. Thus, the neurons in each layer get input signals only 
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from the neurons present in the immediate previous layer. Feed-forward architecture 

with one hidden layer is called as single layer feed forward neural network (SLFF-

NN) and when multiple layers are used it is called multilayer layer feed forward 

neural network (MLFF-NN). 

 

The model of each neuron in the network includes a nonlinear activation function. 

The commonly used activation functions are tansigmoid, logsigmoid and purelinear 

functions. The choice of activation function is based on the non-linearity and output 

range of the system under consideration.  

 

 

Figure 3.1 Feed-forward Network with Multiple Inputs and Single Output 

 

The total number of parameters (PMLFF) in the multilayer feed-forward architecture 

can be obtained from equation (3.1). As SLFF-NN is a special case of MLFF-NN with 

one hidden layer, the same formula suits both types of FF-NN. The first and second 

terms in (3.1) are deduced considering separately the weights and biases respectively.  

 

PMLFF = 
M Mm-1 m m

S S S

m=1 m=1
weights biases

         (3.1) 

 

where,  

mwij - Interconnection weight of neuron „i‟ of layer „m‟ for input from neuron „j‟ of 

layer „(m-1)‟.  
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3.3.2 Cascade Neural Network 

 

The Cascade architecture consists of an input layer, hidden layers and an output layer. 

The first hidden layer receives only external signals as inputs. Other layers receive 

external inputs and outputs from all previous (m-1) 1ayers/neurons. It is called 

cascade because the input to a neuron consists of system inputs and outputs of all 

preceding layers/neurons. This is in contrast to the feed-forward architecture where 

inputs to a neuron are only from previous layer.  

 

Cascade architecture results in a highly interconnected neural network, which makes 

learning complex if all weights are allowed to change (moving weights method). 

Hence most of the applications using this architecture use fixed weight method, where 

after training the weights are fixed for that layer (Fahlman S.E., and Lebiere C., 1991; 

Lehtokangas M., 2000). Fixed weight methods lead to larger networks (Nicholas 

K.Treadgold and Tramas D. Gedeon, 1999). In this thesis, cascade architecture with 

single neuron in every layer with moving weights to obtain compact network 

(Nicholas K.Treadgold, and Tramas D. Gedeon, 1999) is considered for investigation. 

Cascading a layer with single hidden neuron is resulted in “Single Neuron Cascaded 

(SNC) Neural Architecture”. The SNC architecture is considered for investigation as 

it is compact, self organizing and inherits the advantages of cascaded the inputs. 

  

The Single Neuron Cascaded (SNC) architecture with multiple inputs/single output is 

shown in Figure 3.2. The number of inputs to a neuron is observed to increase 

proportionally with the number of layers. Each neuron in the architecture includes 

weights, bias and a nonlinear activation function. The weights of interconnections to 

the previous layer are called as “input weights” and the weights of interconnections 

between the layers are called “link weights”. The tan-sigmoid activation function is 

used for all hidden layers while pure-linear function is used for output layer. Initially, 

a hidden layer with only one neuron between the input and output is trained. To create 

a multilayer structure, hidden layers are added one by one and the whole network 

trained repeatedly using the concept of moving weights so as to obtain more compact 

networks. This process continues till the performance index is reached. 
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The weights and biases of all neurons are the parameters of the network. The 

generalized formula to compute the total number of parameters of a given Cascade 

NN is presented. The cascade NN can have any number of neurons in each layer. The 

total number of parameters (PC) for a cascade neural network is presented in (3.2). 

The first and second terms in (3.2) are deduced considering separately the weights and 

biases respectively. All prefixes denote layers and suffixes denote neurons in a layer. 

 

 

Figure 3.2 SNC-NN with Multiple Input and Single Output 
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       (3.2) 

where,  

p - Input vector, p = [1, 2,……R]  

S
m 

- Number of neurons in the layer „m‟ where m = [1,2,…M] and S
0
 = P 

,
m

w
i R  - Input weight of neuron „i‟ of layer „m‟ for external input „R‟. 

,
,
m k

w
i j

 - 
Link weight of neuron „i‟ of layer „m‟ for input from neuron „j‟ of 

layer „k‟. 

mbi  - Bias for neuron „i‟ of layer „m‟. 

mf  - Activation functions of all neurons in a layer „m‟. 

mai  - Output of neuron „i‟ of layer „m‟ 

The structure of the SNC-NN architecture is denoted as  
1
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3.4 Neural Learning Algorithms 

 

The learning algorithms are used to obtain the optimum parameters (weights and 

biases) of the network by minimizing the performance index defined in terms of 

output mean square error function. There are different types of learning algorithms 

reported in the literature to train neural network (Martin T. Hagan, and Mohammad B. 

Menhaj, 1994; Martin T. Hagan, et al 2008; Narendra K.S., and Parthasarathy, K., 

1991, Setiono R. and Lucas Chi Kwong Hui, 1995). These are mainly grouped into 

two types: first order approach algorithms (based on steep descent method) and 

second order approach algorithms. The popularly used first order approach algorithms 

are backpropagation algorithm with momentum (BPM) and variable learning rate 

backpropagation algorithm (VLR). The popularly used second order approach 

algorithm is Levenberg-Marquardt (LM) algorithm. These algorithms are considered 

for investigation and are discussed. 

 

3.4.1 Backpropagation with Momentum (BPM) 

 

The learning rate employed in the backpropagation (BP) algorithm determines the 

step size. Larger value of learning rate means faster learning of NN. This in turn 

would result in oscillations of the output, close to convergence leading to instability. 

To overcome this difficulty and reduce oscillations in the output, a momentum term is 

added to smoothen the oscillations. The momentum factor allows larger learning rate 

and accelerates convergence. The algorithm is similar to BP. The update equations are 

modified by adding momentum term to accelerate the convergence rate and to reduce 

the oscillations in error trajectory. The update equations are given in (3.3) and (3.4). 

 

w
m
(k+1) = w

m
(k) + ∆w

m
(k-1) - (1-)αS

m
(a

m-1
)

T
    (3.3) 

b
m

(k+1) = b
m
(k) + ∆b

m
(k-1) - (1-)αS

m 
    (3.4) 

 

where, 

 - Momentum Factor,  

α - Learning rate  

S
m 

- Sensitivity Factor of m
th

 layer 
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BPM is first order algorithm allowing faster convergence as compared to BP 

Algorithm. 

 

3.4.2 Variable Learning Rate Backpropagation (VLR) 

 

Variable learning rate helps to speed up the convergence. Learning rate is increased 

on flat surfaces and decreased when the slope increases. This algorithm accelerates 

the rate of convergence with adaptable learning rate. This algorithm depends on 

several parameters such as ,, ρ and η. The update equations are similar to (BPM). 

The learning rate is changed according to the algorithm given below. 

 

1. If the mean square error (MSE) increases by more than some set percentage  

(typically 1-5%) after a weight update, then the weight update is discarded, the 

learning rate is decreased by multiplying a factor ρ (01) and the momentum 

is set zero. 

2. If the mean square error (MSE) decreases after a weight update, then the 

weight update is accepted and the learning rate is increased by multiplying the 

a factor η>1 and if momentum has been previously set to zero, it is reset to its 

original value. 

3. If the mean squared error (MSE) increases by less than ξ, then weight update is 

accepted, but the learning rate is unchanged. If momentum has been previously 

set to zero, it is reset to its original value. 

 

3.4.3 Levenberg-Marquardt algorithm (LM) 

 

BPM and VLR algorithm are based on first order approach. The algorithms based on 

the second order approach are more accurate than first order approach algorithms. The 

higher accuracy is obtained at the cost of increased complexity of update laws. LM 

algorithm is a second order approach, designed especially for minimizing sums of 

squares functions. This is well suited to neural network training where the 

performance index is the mean squared error. It gives a good compromise between the 

faster convergence of the Gauss-Newton algorithm and the guaranteed convergence of 
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the steepest descent method. The update equations for LM algorithm are given in 

(3.5) and (3.6). 

 

w(k+1) = w(k) - [J
T
J+µI]

-1
 J

T
e      (3.5) 

b(k+1) = b(k) - [J
T
J+µI]

-1
 J

T
e       (3.6) 

 

where, 

J - Jacobian Matrix 

μ - Scalar Constant 

e - Mean square error 

 

When the scalar µ is decreased to zero, the algorithm becomes Gauss Newton. When 

µ is increased, it approaches the steepest descent with a small learning rate. Gauss 

Newton's method is faster and more accurate near an error minimum, so the aim is to 

shift towards Gauss Newton's method as quickly as possible. Thus, µ is decreased 

after each successful step (if there is a reduction in MSE) and is increased only when 

there is an increase in MSE. In this way, MSE will be reduced at each iteration of the 

algorithm. 

 

1. Initialize μ to some small value (e.g., μ=0.01) and Initialize weights and biases. 

2. Present all inputs to the network and compute the corresponding network 

output and MSE. 

3. Compute the jacobian matrix.  

4. Compute the term [J
T
J+µI]

-1
 J

T
e and update weights and biases of the network. 

5. Recompute the MSE using updated weights and biases. If this new MSE is 

smaller than that computed in step 2, then divide μ by γ>1(e.g., γ=10), and go 

back to step 2. If the MSE is not reduced, then multiply μ by γ>1 and go back 

to step 4. 

 

The algorithm is assumed to have converged when the MSE has reached the target 

error goal. Comparisons of three algorithms in terms of type, suitability, rate of 

convergence and memory requirement are presented in the Table.3.1. 
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Table 3.1 Comparison of NN Algorithms 

Algorithm Type Suitability 
Rate of 

Convergence 

Memory 

Requirement 

BPM 1st order 
General error 

function 
Faster than BP Less 

VLR 1st order 
General error 

function 

Faster than BP 

and BPM 
Less 

LM 2nd order 
Sum-of –error-

squares function 

Faster than all 

the above 
More  

 

3.5 Proposed Flux based Neural Model for Speed 

Estimation 

 

The chosen three architectures and learning algorithms are used to model the on-line 

speed estimator. The systematic design process is as follows: 

 

 For SLFF-NN, single neuron is added in the hidden layer at a time till the 

target MSE is reached. 

 For SNC-NN, a hidden layer with single neuron is added at a time between the 

inputs/outputs till the target MSE is reached. 

 In MLFF-NN, the choice of number of layers and number of neurons in each 

layer is decided by trial and error.  

 

The design of SLFF and SNC is systematic and the procedure can be automated. The 

design of MLFF-NN is more of an art than a science.  

 

The inputs to estimator are current and flux, whose components are direct and 

quadrature axis stator currents measured at (k-1)
th
 sample { ( 1)kIds  , ( 1)kIqs  } and 

rotor fluxes estimated at  k
th
 and (k-1)

th
 sample { ( ), ( 1),  ( ),  ( 1)λ λ λ λk k k kqr qrdr dr   }. The 

output is the estimated rotor speed { r } at k
th
 sample. The activation function for 

hidden and output layers is chosen as tan-sigmoid and pure linear function 

respectively. The inputs and output of NN based rotor speed estimator is shown in 

Figure 3.3.  
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The NN architectures are trained with chosen learning algorithms. To train the NN, 

around 95,000 data sets were obtained for various operating conditions through 

simulation. Flux cannot be measured and hence, it is estimated. To obtain the training 

data, the voltage model is used. No parameter variation is assumed. The obtained data 

set is used as the training data set. For comparison, all the three NN models are 

trained with the same input/output data, using same learning algorithms, for the same 

number of epochs to reach the target MSE of 110
-7

.  

 

 

Figure 3.3 Inputs and Output of NN based Speed Estimator for Model I 

 

The training MSE obtained for all the NN models is tabulated in Table 3.2. From the 

Table 3.2, it is observed that all the three NN architectures trained with LM algorithm 

have performed well with minimum number of neurons when compared to BPM and 

VLR trained NN architectures. Hence, it is concluded that LM algorithm is most 

suitable for offline training of speed estimation. To determine the most suitable 

architecture, the performance of LM-trained NN models is tested for on-line 

estimation of rotor speeds extensively for various operating conditions in the next 

section. 

 

Table 3.2 Performance Comparison of NN Models Trained for Same Accuracy 

NN Architectures BPM VLR LM 

SLFF (6-75-1) 0.082603 0.046913 9.9909×10-8 

MLFF (6-15-15-1) 0.081824 0.043246 9.9943×10-8 

SNC (6-15(h)-1) 0.067260 0.039247 9.9992×10-8  

 

Neural Network 

Based 

Speed Estimator 

( 1)kI ds
  

( 1)kIqs   

( )λ kdr  

( 1)λ kdr   

( )λ kqr  

( 1)λ kqr   

r  



 

 44 

3.6 Comparison of NN Models for Rotor Speed Estimation 

 

3.6.1 Steady State and Dynamic Performance of LM-trained 

NN models for On-Line Speed Estimation 

 

The performance of all the three LM-trained NN models is compared in terms of 

accuracy. The off-line trained three NN models are tested for on-line estimation of 

rotor speed for various operating conditions extensively. The sample results for major 

operating conditions are presented. The operating conditions are explained in terms of 

operating speed and load for convenience. The operating conditions are: (1) transient 

load changes, (2) transient speed changes, and (3) very low speed. 

 

The operating condition-I examines the performance of all the three NN models for 

transient load disturbance. The step and ramp change load torque response results are 

presented at rated speed. The motor is initially operated at rated speed under 0% 

loaded condition and 100% step change in load torque is applied at 1sec and rejected 

at 2sec. The rotor speed estimated using all the three NN models for step change in 

load torque are shown in the Figure 3.4 respectively. The speed estimator 

performance for ramp change in load is presented in Figure 3.5. The motor is loaded 

gradually from no load (at 1sec) to full load (at 2sec). Similarly, the load is gradually 

decreasing from full load (3sec) to no load (4sec). The error curves between the actual 

and the estimated for all the models are shown. From the results obtained, it is 

observed that the load change capability of SNC-NN and MLFF-NN model is found 

to be similar and excellent whereas the load change capability of SLFF-NN model is 

poor as compared to SNC-NN and MLFF-NN models. 

   

The operating condition-II test the performance of NN models for change in speed 

under no load condition. The performance of the NN models during the step change 

of rotor speed is shown in Figure 3.6. Machine operation starts at t = 0sec and a 

constant reference speed of 100% is considered. A step change in the reference speed 

occurs at sec and the new reference value is 50%. At t = 2sec, another step change in 

the reference speed occurs, which goes back to 100%. The error curves between the 

actual and the estimated for step and ramp response of all the three NN models are 
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shown. The tracking performance of the all three NN model is observed in Figure 3.7 

for a ramp speed command. Rotor speed is gradually decreased from 100% to 50% 

during 1sec to 2sec. Thereafter, the speed is maintained constant at 50% up to 3sec 

and rotor speed is gradually increased from 50% to 100% during 3sec to 4sec. The 

performance of NN model for operating condition-III at very low speed is shown in 

Figure 3.8. 

 

From the results obtained, it is observed that both the SNC-NN and MLFF-NN model 

exhibit similar and excellent dynamic performance for transient speed changes 

whereas SLFF-NN model shows poor dynamic performance as compared to SNC-NN 

and MLFF-NN models. 

  

The test MSE for various operating conditions for all the three LM-trained NN 

models is evaluated and the maximum test MSE for all the three NN models are 

presented in the Table 3.3. From the Table 3.3, it is observed that the test MSE for 

SNC-NN and MLFF-NN is found to be similar and minimum as compared to SLFF-

NN model. From the above analysis, it is observed that SNC-NN and MLFF-NN 

model have excellent mapping capability as they have multilayer structure when 

compared to SLFF-NN model. The SLFF-NN model has poor nonlinear mapping 

capability as it lacks the multilayer structure. 

 

Table 3.3 Performance Comparison of LM-trained NN Models for Speed 

Estimation in Terms of Accuracy 

NN 

Architecture 

NN  

Model 

Test MSE 

Low 

Speed 

Speed 

Change 

Load  

Change 

SLFF 6-75-1 0.1017 3.2381 0.1078 

MLFF 6-15-15-1 0.0042 0.2541 0.0052 

SNC 6-15(h)-1 0.0023 0.0421 0.0044 
h - hidden layer with one neuron 

 

The structural compactness and computational complexity assumes importance in real 

time implementation to ensure faster execution time for effective control. This 

motivated the comparison of LM-trained NN models in terms of structural 

compactness and computational complexity. 



 

 56 

3.6.2 Structural Compactness and Computational Complexity of 

LM-trained NN models for On-Line Speed Estimation 

 

The structural compactness and computational complexity assume importance in real 

time implementation to ensure faster execution time for effective control. This 

motivated the comparison of NN models in terms of structural compactness and 

computational complexity. The structure of neural network model depends on the 

number of inputs, number of outputs and the degree of nonlinearity of the system.  

 

The number of neurons in the input/output layer is uniquely defined and is equal to 

that of inputs/outputs of the system to be modeled. The number of hidden layers, 

hidden neurons and the type of architecture are depended on the choice of the design 

for desired accuracy. For the desired accuracy, the number of hidden neurons is used 

as an index to measure the structural compactness of model. The neural network 

model with lesser number of hidden neurons is found to be compact and gives ease in 

real time implementation of the on-line flux estimator.  

 

The number of parameters and nonlinear function extraction in the network indicates 

its computational complexity. Each parameter warrants some mathematical 

operations. The number of parameters for SNC-NN can be calculated using (3.2). As 

SLFF-NN is a special case of MLFF-NN with one hidden layer, the same formula 

(3.1) suits both type of FF-NN. 

 

For on-line speed estimation, the complexity of the model assumes importance as the 

computation/estimation time has to be small enough for effective control of induction 

motor drives. The mathematical complexity of the model is compared by determining 

the number of basic operations needed by the NN model. This will depend upon the 

type of architecture and number of neurons. The number of hidden neurons, and 

parameters for the three LM-trained NN Models are tabulated in the Table 3.4. 

 

The parameters, no. of neurons, and computations required by the SNC-NN, MLFF-

NN and SLFF-NN models are tabulated in Table 3.4. From the Table 3.4, it is seen 

that SNC-NN model requires much lesser number of hidden neurons (15) as 
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compared to MLFF-NN and SLFF-NN that requires 30 and 75 hidden neurons 

respectively. Hence, SNC-NN model results in structurally compact model as 

compared to SLFF-NN and MLFF-NN model. The total number of parameters and 

computations required for SNC-NN is found to be lesser as compared to MLFF-NN 

and SLFF-NN. Hence, SNC-NN model is of lesser complexity as compared to SLFF-

NN and MLFF-NN model. Hence, it can be concluded that SNC-NN architecture 

gives the most compact and mathematically less complex model with faster execution 

time for on-line speed estimation. 

 

Table 3.4 Performance Comparison of LM-trained NN Models for Speed 

Estimation in Terms of Structural Compactness and Computational Complexity  

NN 

Architectures 

NN 

Models 

No. of 

Hidden 

Neurons 

No. of 

Parameters 

Computations 

No. of 

Additions 

No. of 

Multiplications 

No. of Tan-

Sigmoids 

SLFF 6-75-1 75 601 525 525 75 

MLFF 6-15-15-1 30 361 330 330 30 

SNC 6-15(h)-1 15 232 216 216 15 
h - hidden layer with one neuron 

 

Thus, it can be concluded that SNC-NN architecture trained with Levenberg 

Marquardt algorithm is found to be provide the required accuracy, structurally 

compact, computationally less complex model with faster execution time. The SNC-

NN model trained with Levenberg Marquardt algorithm is identified to be the most 

suitable model for on-line speed estimation in sensorless controlled IM drives and is 

named as neural speed estimator model I. The performance of proposed neural speed 

estimator model I is compared with existing RF-MRAS in terms of accuracy.  

 

3.7 Performance Comparison of Proposed NSE Model I 

with Existing RF-MRAS 

 

The accuracy comparisons of proposed neural speed estimator model I and commonly 

used RF-MRAS for speed estimation in sensorless indirect vector controlled induction 

motor drives under steady state are carried out for a wide range of operations. The 

results obtained are consolidated and presented in Table 3.5 
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Table 3.5 Performance Comparison of Existing RF-MRAS and  

Proposed NSE Model I in Terms of Accuracy 

Reference 

Speed 

(rad/sec) 

Actual 

Speed 

(rad/sec) 

Existing RF-MRAS Proposed NSE Model I 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 144.997 0.00275 144.990 0.00759 

125 125.003 125.002 0.00079 125.006 -0.00319 

100 99.998 100.001 -0.00300 99.999 -0.00100 

75 75.001 75.004 -0.00399 74.998 0.00399 

50 50.002 49.996 0.01199 50.021 -0.03799 

25 24.999 25.003 -0.01600 24.996 0.01200 

5 5.001 4.998 0.05998 5.006 -0.09998 

1 0.999 0.998 0.10010 1.001 -0.20020 

 

From the Tables, it is observed that both the speed estimator works very well for wide 

range of operating conditions from 1rad/sec to 145rad/sec. The error between the 

actual and estimated speed from the proposed neural speed estimator model I and 

existing RF-MRAS for various operating conditions is computed for various operating 

conditions under steady state and is presented in Tables 3.5. The error in the speed 

estimation from the existing Q-MRAS scheme is found to be within ±0.05% for 

normal operating speed range and maximum value of ±0.1% at low and very low 

speeds.  The proposed neural speed estimator model I estimates the speed with an 

accuracy of ±0.03% for normal operating speed range and maximum value of ±0.2% 

at low and very low speed. From the results, it is clear that proposed neural speed 

estimator model I is as good as the existing RF-MRAS. 

 

3.8 Conclusion 

 

A novel data based NN model using Flux as input for on-line speed estimation is 

proposed. To build the NN model, three types of popular neural architectures (SLFF, 

MLFF and SNC) and learning algorithms (BPM, VLR and LM) are considered for 

investigation. For comparison, all the three NN models are trained with the same 

input/output data, using same learning algorithms and for the same number of epochs. 

From the training MSE obtained, NN architectures trained with LM algorithm have 

performed well with minimum number of neurons when compared to BPM, VLR 
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trained NN architectures. Hence, it is concluded that LM algorithm is the most 

suitable for offline training of speed estimation. To determine the most suitable 

architecture, the performance of LM-trained NN models using three architectures is 

tested for on-line estimation of rotor speed under various operating conditions. 

  

From the analysis, it is inferred that the steady state and dynamic performance of 

SNC-NN and MLFF-NN model are found to be similar and superior as compared to 

SLFF-NN. The SNC-NN model resulted in structurally compact, computationally less 

complex model as compared to MLFF-NN models. The SNC-NN can be self 

organized, which greatly aids design automation whereas MLFF-NN lacks the design 

methodology. Thus the SNC-NN model is observed to combine the advantage of 

multilayer mapping capability of MLFF-NN model and self-organizing feature of 

SLFF-NN model. Hence, it can be concluded that SNC-NN architecture trained with 

Levenberg Marquardt algorithm is found to provide the required accuracy, 

structurally compact, computationally less complex model with faster execution time. 

 

The SNC-NN model trained with Levenberg Marquardt algorithm is identified to be 

most suitable model for on-line speed estimation in sensorless controlled IM drives 

and it is named as neural speed estimator model I. The performance of proposed 

neural speed estimator model I is compared with existing RF-MRAS in terms of 

accuracy. The proposed neural speed estimator model I based on rotor flux is as good 

as the existing RF–MRAS method for all operating conditions. The data based NN 

approach is validated using this model.  

 

However the model is flux dependent and suffers from the drawbacks of flux 

estimation in sensorless induction motor drives. The reactive power model can be 

simplified to eliminate flux and Rs for IFOC drives. This advantage is used to build a 

data based model independent of rotor flux for IFOC drives and is detailed in the next 

chapter. 
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Chapter 4 

 

Stator Frequency Based Neural Network Model for 

Speed Estimation – Model II 

 

4.1 Introduction 

 

The proposed data driven NSE model I based on rotor flux for on-line speed 

estimation is dependent on flux and suffers from all the drawbacks of flux estimation. 

To overcome the dependency on flux, simplified reactive power equations, 

independent of flux and Rs can be used for IFOC Drives. This approach is adopted and 

a novel data driven Neural Network model based on reactive power relations to 

compute stator frequency is proposed and named as NSE model II. The NSE model II 

overcomes the drawback of Model I and Q-MRNLAS.  

 

The performance of a data based NN model to large extent depends on the choice of 

NN architecture and learning algorithm. Extensive study have been carried out in the 

pervious chapter and concluded that the single neuron cascaded neural network (SNC-

NN) model trained with Levenberg Marquardt (LM) algorithm is best suited for on-

line speed estimation. A novel data driven on-line speed estimator called Model II is 

designed using SNC-NN architecture and trained with LM algorithm for Sensor-less 

indirect vector controlled IM drives. The proposed SNC-NN Model II based on-line 

speed estimator is robust to Rr variations and stable over a wide operating range. It 

inherits the advantages of simplified reactive power (independent of flux and Rs) 

based techniques with the novelty of robustness to Rr variation and stability over a 

wide operating range.  

 

The proposed SNC-NN model based on-line speed estimator is designed and tested 

for various operating conditions and the results are presented. Its performance is 

compared with Q-MRNLAS (chapter 2) scheme, which is closest to the proposed 

Model II as both the schemes use reduced reactive power equations. 
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4.2 Proposed SNC-NN Model II based On-Line Speed 

Estimator 

 

In this chapter, a novel data driven neural network model based on-line speed 

estimator is proposed, which is independent of flux estimator, integration problems, 

Rs and Rr variations. Inputs to the neural network are voltage, current and stator 

frequency. The stator frequency can be calculated from the simplified reactive power 

equation (chapter 2) as given below.  

 

  m

ds qse s
r

2
22 2
ds= + +

L
ω / σL I I I

L
Q  

 
 

       (4.1) 

 where,  

  
qs ds ds qs

= - V I V IQ  and σ = 1- ( 2

mL /LsLr) 

 

The ωe obtained from (4.1) does not contain Rs, rotor flux, and derivative terms. The 

data driven neural network model based on-line speed estimator is designed using 

SNC-NN model. Around 95,000 data sets are obtained through simulation for a wide 

operating range. This data is used as training data set. The inputs and outputs of data 

driven NN Model II based rotor speed estimator is shown in Figure 4.1. The inputs to 

estimator are voltage, current and stator frequency, whose components are direct and 

quadrature axis stator voltages and currents measured at k
th

 sample 

{ ( )ds kV , ( )qs kV , ( )ds kI , ( )qs kI } and stator frequency measured at  k
th
 sample { e }. The 

output is the estimated rotor speed { r } at k
th

 sample. 

 

 

Figure 4.1 The Inputs and Outputs of Proposed NN Model II based Speed 

Estimator 

Neural Network 

Based 

Speed Estimator 

( )ds kV  

( )qs kV  

( )ds kI  

( )qs kI  

( )ke  

( )k
r
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The activation function for hidden and output layers is chosen as tan-sigmoid and 

pure linear function respectively. The proposed SNC-NN is trained with the 

input/output data using LM algorithm for a target mean square error  

(1×10
-7

). The obtained SNC-NN model for online speed estimation has the structure 

5-20(h)-1 (h-hidden layer with one neuron). Using the obtained data driven SNC-NN 

model based on-line speed estimator, the on-line rotor speed estimation is carried out 

in sensorless indirect vector controlled induction motor drive. The results and 

discussion are presented in next section. 

 

4.3 Simulation Results and Discussion of Proposed 

SNC-NN Model II based Speed Estimation 

 

The performance of proposed data driven SNC-NN based on-line speed estimator for 

sensorless indirect vector controlled induction motor drives is analyzed extensively 

under various operating conditions through Matlab/Simulink. The sample results for 

proposed NN based on-line speed estimator are shown for the following operating 

conditions as listed below:  

 

4.3.1 Test 1- Stair Case Speed Transients from 50 to 0 to −50rad/sec 

at No Load 

 

The sensorless indirect vector controlled IM drive is subjected to a stair case speed 

commands from 50rad/sec to zero speed in a series of five 25rad/sec steps continuing 

to −50rad/sec, at no load. The performance of proposed speed estimation scheme is 

shown in Figure 4.2(a). The mismatch error curve between actual and estimated speed 

is presented in Figure 4.2(b). The speed estimated from the proposed scheme is found 

to closely match with the actual speed in steady state with maximum error ±0.2rad/sec 

and in transient state with maximum error of ±4rad/sec. Also the results depict stable 

operation for the proposed data driven SNC-NN based speed estimation scheme, 

particularly around zero speed. 
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4.3.2 Test 2- Load Torque Impact of 100% at 100rad/sec 

 

The test condition 2 examines the load torque disturbance capability of the proposed 

data driven speed estimation scheme. The drive is operated with reference speed of 

100rad/sec. 100% step change in load torque is applied at 2.5sec and rejected at 4sec. 

The proposed speed estimation scheme shows better steady state and dynamic 

performance with negligible steady state error between the actual and estimated 

speed, as shown in Figure 4.3(a) and Figure 4.3(b). The error between actual and 

estimated speed during no load condition is ±0.2rad/sec and ±1.5rad/sec of error 

under dynamic state.  

 

4.3.3 Test 3- Low Speed Operation with Effect of Loading 

 

The load torque disturbance capability of the proposed speed estimation scheme at 

very low speed of 15rad/sec with load is examined. The proposed data driven speed 

estimation scheme estimates speed with good accuracy even in the case of very low 

speed under 100% load condition as presented in Figure 4.4(a). The speed estimation 

error between actual and estimated speed is shown in Figure 4.4(b). From the Figure 

4.4(b), it is observed that the error between actual and estimated speed under no load 

and full load condition is with in ±0.1rad/sec. It is noticed that the estimation error is 

negligible under steady and dynamic state. 

 

4.3.4 Test 4- ±100rad/sec Speed with Full Load 

 

The high speed reversal capability of proposed speed estimation scheme is presented 

in test condition 4. Initially, the drive is operated with the speed command of 

100rad/sec and the speed command is gradually reduced to -100rad/sec with 100% 

load. The performance of proposed speed estimation scheme is shown in Figure 

4.5(a). It is noticed that the sensorless drive is operated with full stability in the speed 

reversal mode even though the peak overshoot goes 5% greater than actual speed. The 

steady state error between the actual and estimated speed is very small and it is 

presented in Figure 4.5(b). The estimated speed follows the actual speed with good 
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accuracy under speed reversal mode also. The proposed speed estimation scheme 

shows better performance and is found to estimate speed with negligible error. 

  

4.3.5 Test 5- Very Low Speed (±1rad/sec) with Full Load 

 

In Figure 4.6, the proposed speed estimation scheme is tested for forward motoring, 

reverse motoring, and ramp response for very low speed under full load. Initially, the 

drive is operated with the speed command of 1rad/sec up to 3sec and the speed 

command is gradually reduced to -1rad/sec. The performance of proposed speed 

estimation scheme is shown in Figure 4.6(a). In this case also, the performance is 

good with negligible steady state error and the estimated speed is found to closely 

match with the actual. The error between actual and estimated speed is shown in 

Figure 4.6(b). From the Figure 4.6(b), it is observed that the error range between 

actual and estimated speed is ±0.03rad/sec. Hence, the proposed estimation scheme is 

very much suitable for very low speed operations also.  

 

4.3.6 Test 6- Zero Speed Operation 

 

The performance of the proposed estimator at zero speed is tested through simulation 

and the results are presented in Figure 4.7(a) and error curve is shown in Figure 

4.7(b). The drive is operated at zero speed from 3 to 5sec. It is observed that the 

estimated speed follows the actual speed with good accuracy. Hence, the proposed 

estimation scheme is very much suitable for zero speed operations also. 

 

4.4 Performance Comparison of Proposed Data Driven 

NSE Model II with Q-MRNLAS  

 

The comparisons of proposed NSE Model II and Q-MRNLAS for on-line speed 

estimation in sensorless indirect vector controlled induction motor drives under steady 

state are carried out at 0% and 100% loaded conditions. The results obtained are 

presented in Table 4.1 and Table 4.2.  
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From the Tables, it is observed that data driven neural model based speed estimator 

works very well for a wide range of operating conditions from 1rad/sec to 145rad/sec. 

The error between the actual and estimated speed under steady state for the proposed 

data driven SNC-NN model II and Q-MRNLAS for various operating conditions is 

presented in Tables 4.1 and 4.2 for no load and full load. 

 

The error in the speed estimation from the Q-MRNLAS under no load condition is 

found to be within ±0.3% for normal operating speed range and ±0.5% at low and 

very low speeds. The proposed neural speed estimator model II estimates the speed 

under no load condition with an accuracy of ±0.7% for normal operating speed range 

and maximum value of ±0.2% at low and very low speed. 

 

Under full load condition, the error Q-MRNLAS lies within ±0.1% for normal 

operating speed range and ±0.7% for low and very low speeds. For the Model II the 

error in the speed estimated under full load condition is found to be within ±0.2% for 

normal operating speed range and ±0.8% for low and very low speeds. From the 

Tables 4.1 and 4.2, it is clear that proposed data driven SNC-NN Model II is nearly as 

good as Q-MRNLAS scheme for normal, low and very low speeds. 

 

The performance comparison of proposed data driven SNC-NN Model II with Q-

MRNLAS for on-line speed estimation in sensorless indirect vector controlled 

induction motor drives for rotor resistance (Rr) variation under steady state is carried 

out and the results obtained are presented in the next section.  

 

4.5 Performance of NSE Model II for Rotor Resistance 

Variation 

 

In the literature, it is reported that the change in Rr may go upto 50% and 100% 

(B.Karanayil et al 2007; S.Maiti et al., 2008) during motor operation. The 

performance of proposed data driven SNC-NN model and Q-MRNLAS for on-line 

speed estimation in sensorless indirect vector controlled induction motor drives under 

steady state is tested for step change in rotor resistance variation. Of course, in a real 

drive, the rotor resistance never undergoes abrupt variations in response to
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temperature change due to the large thermal time constant. The step variation 

represents an extreme case and is used to show the robustness of the proposed SNC-

NN based on-line speed estimation scheme. The effect of Rr variation is investigated 

at very low speed of 1rad/sec with full load condition. Two different cases for rotor 

resistance detuning are considered. 

 

4.5.1 Slight Rr detuning  

 

The actual Rr of the induction motor are slightly detuned with respect to the nominal 

ones, as follows: 

 

 = -10%
R

r

R
r


           (4.2) 

 

In this case, the performance of proposed speed estimation scheme and Q-MRNLAS 

for speed estimation scheme is tested for 10% increase in rotor resistance effected at 

2sec. The speed estimated from the proposed data driven SNC-NN model and 

Q-MRNLAS is presented in Figure 4.8(a) and (b) respectively. For the comparison, 

both the figures are shown with same scale. From the results obtained, it is obvious 

that the speed estimated from the data driven SNC-NN model closely tracks the actual 

speed even when there is a change in the parameter and the error in the speed 

estimation is almost negligible whereas the Q-MRNLAS based speed estimation fails. 

Thus, data driven SNC-NN model based on-line speed estimator is shown to be robust 

to slight Rr detuning. 

 

4.5.2 Large Rr detuning 

 

In many real applications, the Rr may vary on ranges which are larger than those 

considered in the previous section. In order to check the robustness of the proposed 

speed estimator in the presence of larger detuning, the actual Rr of the induction 

motor is largely detuned with respect to the nominal ones as follows: 
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 = -50%
R

r

R
r


         (4.3) 

 

A step change of 50% in Rr is effected at 2sec. The robust speed estimation is 

observed from the proposed data driven SNC-NN based on-line speed estimator even 

in the case of large parameter tuning which is presented in Figure 4.9(a). Whereas the 

speed estimated from Q-MRNLAS is observed to 4.971rad/sec as shown in Figure 

4.9(b). For the purpose of comparison, both the figures are shown with the same scale. 

The error between actual and estimated speed from Q-MRNLAS is 3.97rad/sec. The 

speed keeps on increasing with the increase in Rr. Thus the proposed data driven 

SNC-NN based on-line speed estimator exhibits robust speed estimation even in the 

presence of slight and large parameter variation of Rr. 

 

The performance of proposed data driven SNC-NN model II and Q-MRNLAS are 

studied for 0-100% changes in Rr at a critical operating condition namely very low 

speed (1rad/sec) with full load. The results shown in Table 4.3 indicate that the 

proposed estimator is able to track the speed closely whereas the Q-MRNLAS fails. 

The performance of the proposed estimator at full load is studied for a large change in 

Rr (50%) at various speeds and compared with Q-MRNLAS. From the results shown 

in Table 4.4, it can be seen that the proposed estimator outperforms the Q-MRNLAS 

based estimator for Rr variations. 

 

Table 4.3 Different % Change in Rr at 1rad/sec with Full Load 

Actual Speed = 1.001rad/sec 

% Change in Rr 
NSE Model II based 

Estimated Speed (rad/sec) 

Q-MRNLAS based 

Estimated Speed (rad/sec) 

100 1.045 8.901 

80 1.011 7.128 

60 1.090 6.354 

40 1.031 3.939 

20 1.025 2.897 
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Table 4.4 50% Change in Rr at Different Speed with Full Load 

Reference 

Speed 

Actual 

Speed 

(rad/sec) 

NSE Model II based 

Estimated Speed 

(rad/sec) 

Q-MRNLAS based 

Estimated Speed 

(rad/sec) 

145 145.011 145.421 154.135 

100 100.002 100.055 107.185 

75 75.051 74.990 81.284 

50 49.979 50.009 56,345 

25 25.030 24.988 29.629 

1 1.001 1.011 4.969 

 

4.6 Conclusion 

 

This chapter proposes a novel robust data driven SNC-NN model II based on-line 

speed estimator for sensor-less indirect vector controlled IM drives. The proposed 

estimator is designed using single neuron cascading architecture and LM learning 

algorithm using 95000 data sets for a target MSE of 9.99458×10
-8

. The obtained 

SNC-NN model for online speed estimation has the structure 5-20(h)-1 (h-hidden 

layer with one neuron). The designed speed estimator is extensively tested for a 

number of operating conditions and is shown to perform well.  

 

A performance comparison is carried out in terms of steady state accuracy with 

Q-MRNLAS method under no load and full load. Both the estimators are operated at 

various speeds. It is demonstrated that the proposed neural speed estimator model II 

performs as well as the Q-MRNLAS, for all operating conditions. The robustness of 

the proposed neural speed estimator model II is illustrated for Rr variation. This is 

done for slight and large detuning. The Q-MRNLAS fails to track the speed, whereas 

the proposed estimator tracks the speed accurately with variations in Rr. The 

superiority of the proposed scheme over Q-MRNLAS is well demonstrated. 

 

The proposed on-line speed estimator combines the advantages of neural network and 

the simplified reactive power based techniques. It exhibits good performance over a 

wide operating range with good accuracy. It is less complex, robust to integrator drift 
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problems, parameter variations and provides stable operation in regenerating mode. It 

is therefore concluded that the proposed estimator is a more promising alternative to 

the Q-MRNLAS model based on-line speed estimators for sensor-less indirect vector 

controlled IM drives.  

 

However, the proposed neural speed estimator model II has a few disadvantages. 

Neural speed estimator model II can be used only for sensor-less indirect vector 

controlled induction motor drives as the reduced reactive power equations are 

applicable only for IFOC. Also the proposed estimator uses mathematical equation for 

computation of ωe. Hence, an accurate knowledge of machine parameters is 

mandatory.  

 

A generalized data based model which is suitable for all types of vector control using 

a black box approach without the need for motor parameters would provide a novel 

solution by addressing all the above issues. This is envisaged and investigated in the 

next chapter. 
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Chapter 5 

 

Reactive Power Based Neural Network Model for 

Speed Estimation – Model III 

 

5.1 Introduction 

 

The proposed NSE model II is suitable only for IFOC drives. Also it uses the machine 

model equation for computation of ωe and therefore requires accurate knowledge of 

machine parameters. To make the speed estimation a generalized data based model 

suitable for all types of sensorless control, a black box approach without the need for 

motor parameters would provide a novel solution. This is envisaged and investigated 

in this chapter. A novel data driven neural network model based on reactive power is 

proposed for on-line speed estimator and is named as NSE model III.  

 

The proposed speed estimator is independent of machine parameters, flux and is 

suitable for all applications of sensorless controlled induction motor drives. The 

proposed NSE model III is based on the chosen SNC-NN architecture trained off-line 

using LM algorithm. It combines the advantages of reactive power based techniques 

with the novelty of being independent of machine parameters and stable over a wide 

operating range. The proposed NSE model III based on-line speed estimator is 

compared in terms of accuracy and rotor resistance variations with proposed  

Q-MRNLAS scheme (chapter 2) and validated through Matlab/Simulink.  

 

5.2 Proposed Model III based On-Line Speed Estimator 

 

In this chapter, a novel data driven neural network based on-line speed estimator is 

proposed which is independent of flux estimator, integration problems, Rs and Rr 

variations. The inputs to network are voltage, current and reactive power. The reactive 

power can be expressed (chapter 2) as given below. 
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qs ds ds qs
= - V I V I Q         (5.1) 

 

The Q obtained from (5.1) is independent of motor parameters and derivative terms. 

Around 95,000 data sets are obtained through simulation for a wide operating range. 

These data sets are used as training data set. The inputs and outputs of data driven NN 

based rotor speed estimator is shown in Figure 5.1. The inputs to estimator are 

voltage, current and stator frequency, whose components are direct and quadrature 

axis stator voltages and currents measured at k
th
 sample { ( )ds kV , ( )qs kV , ( )ds kI , ( )qs kI } and 

reactive power frequency measured at  k
th

 sample {Qest}. The output is the estimated 

rotor speed {
r } at k

th
 sample. 

 

The activation function for hidden and output layers is chosen as tan-sigmoid and 

pure linear function respectively. The proposed SNC-NN is trained with the 

input/output data using LM algorithm of the target mean square error (1×10
-7

). The 

obtained SNC-NN model for online speed estimation has the structure 5-25(h)-1 (h-

hidden layer with one neuron). Using the obtained data driven SNC-NN Model III 

based on-line speed estimator, the on-line rotor speed estimation is carried out in 

sensorless indirect vector controlled induction motor drive. The results and discussion 

are presented in next section. 

 

 

Figure 5.1 The Inputs and Outputs of Proposed NN Model III based Speed 

Estimator 

 

5.3 Simulation Results and Discussion of Proposed Data 

Driven SNC-NN Model III based Speed Estimation 

 

The performance of proposed data driven SNC-NN based on-line speed estimator for 

sensorless indirect vector controlled induction motor drives is analyzed extensively 

Neural Network 

Based 

Speed Estimator 

( )ds kV  

( )qs kV  

( )ds kI  

( )qs kI  

( )Q k  

( )k
r
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under various operating conditions through Matlab/Simulink. The sample results for 

proposed NN based on-line speed estimator are shown for the following operating 

conditions as listed below:  

 

5.3.1 Test 1- Stair Case Speed Transients from 50 to 0 to −50rad/sec 

at No Load 

 

The sensorless indirect vector controlled IM drive is subjected to a stair case speed 

command from 50rad/sec to zero speed in a series of five 25rad/sec steps continuing 

to −50rad/sec, at no load. The performance of proposed speed estimation scheme is 

shown in Figure 5.2(a). The mismatch error curve between actual and estimated speed 

is presented in Figure 5.2(b). The speed estimated from the proposed scheme is found 

to closely match with the actual speed in steady state with maximum error ±0.2rad/sec 

and in transient state with maximum error of ±8rad/sec. Also the results depict a 

stable operation for the proposed neural speed estimator model III based speed 

estimation scheme, particularly around zero speed. 

 

5.3.2 Test 2- Load Torque Impact of 100% at 100rad/sec 

 

The test condition 2 examines the load torque disturbance capability of the proposed 

data driven speed estimation scheme. The drive is operated with reference speed of 

100rad/sec. 100% step change in load torque is applied at 2.5sec and rejected at 4sec. 

The proposed speed estimation scheme shows better steady state and dynamic 

performance with negligible steady state error between the actual and estimated 

speed, as shown in Figure 5.3(a) and Figure 5.3(b). The error between actual and 

estimated speed during no load condition is ±0.1rad/sec and ±1.8rad/sec of error 

under dynamic state. 

  

5.3.3 Test 3- Low Speed Operation with Effect of Loading 

 

The load torque disturbance capability of the proposed speed estimation scheme at 

very low speed of 15rad/sec with load is examined. The proposed data driven speed 

estimation scheme estimates speed with good accuracy even in the case of very low 
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speed under 100% load condition as presented in Figure 5.4(a). The speed estimation 

error between actual and estimated speed is shown in Figure. 5.4(b). From the Figure 

5.4(b), it is observed that the error between actual and estimated speed under no load 

and full load condition is with in ±0.08rad/sec. It is noticed that the estimation error is 

negligible under steady and dynamic state. 

 

5.3.4 Test 4- ±100rad/sec Speed with Full Load 

 

The high speed reversal capability of proposed speed estimation scheme is presented 

in test condition 4. Initially, the drive is operated with the speed command of 

100rad/sec and the speed command is gradually reduced to -100rad/sec with 100% 

load. The performance of proposed speed estimation scheme is shown in Figure 

5.5(a). It is noticed that the sensorless drive is operated with full stability in the speed 

reversal mode even though the peak overshoot goes 5% greater than actual speed. The 

steady state error between the actual and estimated speed is very small and is 

presented in Figure 5.5(b). The estimated speed follows the actual speed with good 

accuracy under speed reversal mode also. The proposed speed estimation scheme 

shows better performance and found to estimate speed with negligible error.  

 

5.3.5 Test 5- Very Low Speed (±5rad/sec) with Full Load 

 

In Figure.5.6, the proposed speed estimation scheme is tested for forward motoring, 

reverse motoring, and ramp response for very low speed under full load. Initially, the 

drive is operated with the speed command of 5rad/sec up to 3sec and the speed 

command is gradually reduced to -5rad/sec. The performance of proposed speed 

estimation scheme is shown in Figure 5.6(a). In this case also, better performance 

with negligible steady state error is obtained from proposed speed estimation scheme 

and found the speed estimated is found to closely match with the actual. The error 

between actual and estimated speed is shown in Figure 5.6(b). From the Figure 5.6(b) 

presented, it is observed that the error between actual and estimated speed is with in 

±0.03rad/sec under steady state and transient state. Hence, the proposed estimation 

scheme is very much suitable for very low speed operations also.  



 

 

 88 

5.3.6 Test 6- Zero Speed Operation 

 

The performance of the proposed estimator at zero speed is tested through simulation 

and the results are presented in Figure 5.7(a) and error curve is shown in Figure 

5.7(b). The drive is operated at zero speed from 3 to 5sec. It is observed that the 

estimated speed follows the actual speed with good accuracy. Hence, the proposed 

estimation scheme is very much suitable for zero speed operations also. 

 

5.4 Performance Comparison of Proposed Data Driven 

SNC-NN Model III with Q-MRNLAS  

 

The comparisons of proposed data driven SNC-NN model III and Q-MRNLAS for 

on-line speed estimation in sensorless indirect vector controlled induction motor 

drives under steady state are carried out at 0% and 100% loaded conditions. The 

results obtained are consolidated and presented in Table 1 and Table 2.  

 

From the Tables, it is observed that data driven neural model based speed estimator 

works very well for a wide range of operating conditions from 1rad/sec to 145rad/sec. 

The error between the actual and estimated speed from the proposed data driven SNC-

NN model III and Q-MRNLAS for various operating conditions is computed at 0% 

and 100% loaded conditions under steady state and is presented in Tables 5.1 and 5.2.  

 

The error in the speed estimation from the Q-MRNLAS under no load condition is 

found to be within ±0.3% for normal operating speed range and ±0.5% at low and 

very low speeds. The proposed data driven SNC-NN model III estimates the speed 

under no load condition with an accuracy of ±0.7% for normal operating speed range 

and maximum value of ±0.8% at low and very low speed. 

 

Under full load condition, the error lies within ±0.1% for normal operating speed 

range and ±0.7% for low and very low speeds. The error in the speed estimated under 

full load condition is found to be within ±0.6% for normal operating speed range and 

±1% for low and very low speeds. From the Tables 5.1 and 5.2, it is clear that 

proposed data driven SNC-NN model III has nearly the same accuracy as
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Q-MRNLAS scheme for normal operating speed range but distinctly better under low 

and very low speeds. 

 

The performance comparisons of proposed data driven SNC-NN model III with 

Q-MRNLAS for on-line speed estimation in sensorless indirect vector controlled 

induction motor drives for rotor resistance (Rr) variation under steady state is carried 

out in Matlab/Simulink and the results obtained are consolidated and presented in the 

next section. 

 

5.5 Performance of NSE Model III for Rotor Resistance 

Variation 

 

The performance of proposed data driven SNC-NN model III and Q-MRNLAS for 

on-line speed estimation in sensorless indirect vector controlled induction motor 

drives under steady state is tested for step change in rotor resistance variation. In real 

drive, the rotor resistance never undergoes abrupt variations in response to 

temperature change due to the large thermal time constant. The step variation 

represents an extreme case and is used to show the robustness of the proposed 

SNC-NN based on-line speed estimation scheme. The effect of Rr variation is 

investigated at very low speed of 1rad/sec with full load condition. The actual Rr of 

the induction motor are detuned with respect to the nominal ones, as follows: 

 

 = -100%
R

r

R
r


     (5.2) 

 

In this case, the performance of proposed speed estimation scheme and popular  

Q-MRNLAS for speed estimation scheme is tested for 100% increase in rotor 

resistance. 100% step change in Rr is effected at 2sec. The speed estimated from the 

proposed robust data driven SNC-NN model III and existing Q-MRNLAS is 

presented in Figure 5.8(a) and 5.8(b) respectively. From the results obtained, it is 

obvious that the speed estimated from the robust data driven SNC-NN model III 

tracks closely the actual speed even when there is a change in the parameter and the 

error in the speed estimation is almost negligible whereas the speed estimated from 
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existing Q-MRNLAS is 8.94rad/sec. The error between actual and estimated speed 

from Q-MRNLAS is very large and fail to estimate the speed. The data driven SNC-

NN model III based on-line speed estimator is shown to be robust to Rr variation.  

 

Thus the proposed data driven SNC-NN model III based on-line speed estimator is 

accurate, less complex, free from integrator drift problems, robust to Rs, Rr variation, 

and provides stable operation in regenerating mode. The proposed speed estimator is 

independent of machine parameters and it can applicable to all types of sensorless 

controlled induction motor drives. 

 

The performance of proposed data driven SNC-NN based model III and Q-MRNLAS 

are studied for 0-100% changes in Rr at a critical operating condition namely very low 

speed (1rad/sec) with full load in Table 5.3. The results shown in Table 5.3 indicate 

that the proposed estimator is able to track the speed closely whereas the Q-MRNLAS 

fails. The performance of the proposed estimator at full load is studied for a 50% 

change in Rr at various speeds and compared with Q-MRNLAS. The results obtained 

are consolidated and presented in Table 5.4. From the Table 5.4, it is very clear that 

the proposed speed estimator tracks the actual speed very well with minimum error. 

From the results shown in Table 5.3 and 5.4 it is concluded that the proposed 

estimator outperforms the Q-MRNLAS based estimator for Rr variations. 

 

5.6 Comparison of Structural Complexity for the Proposed 

Three Data Based NN Models 

 

In this thesis, three different types of data based NN models are proposed. The 

proposed data based NN models are:  

 

1. Model I (rotor flux based NN model),  

2. Model II (stator frequency based NN model) and  

3. Model III (reactive power based NN model) 

 

The proposed data based NN models are compared for the structural compactness and 

computational complexity in terms of hidden neurons, total number of parameters 

(Weight and Bias) and computations involved and shown in Table 5.5.  
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The proposed NN models are trained for same numbers of data and same accuracy 

(MSE). Model I is most compact but flux dependent and suffers from all the 

drawbacks of flux estimation in sensorless induction motor drives. Model II is more 

complex than Model I but overcomes the drawbacks of Model I. However the 

proposed Model II can be used only for sensor-less indirect vector controlled 

induction motor drives as the reduced reactive power equations are applicable only for 

IFOC. Also the proposed estimator uses mathematical equation for computation of ωe. 

Hence, an accurate knowledge of machine parameters is mandatory. Model III has 

nearly 2 times the complexity of Model I and 1.4 times the complexity of Model II. 

However its advantages overweigh the disadvantages.  

 

Model III is a generalized data based model which is suitable for all types of 

sensorless controlled IM drives using a black box approach without the need for 

motor parameters. The increase in compactness and computational complexity can be 

overcome using high speed digital hardware as the time constraints are not high for 

speed estimation. Hence Model III would provide a novel solution by addressing all 

the above issues. 

 

5.7 Conclusion 

 

This chapter proposes a novel robust data driven SNC-NN based on-line speed 

estimator (Model III) for sensor-less controlled IM drives. The proposed estimator is 

designed using SNC-NN and LM learning algorithm using 95000 data sets for a target 

MSE of 9.99×10
-8

. The obtained SNC-NN model for online speed estimation has the 

structure 5-25(h)-1 (h-hidden layer with one neuron). The designed speed estimator 

was extensively tested for a number of operating conditions and shown to perform 

well.  

 

A performance comparison is carried out in terms of steady state accuracy with 

Q-MRNLAS method under no load and full load. Both the estimators were operated 

at various speeds. It is demonstrated that the proposed neural speed estimator model 

III performs as well as the Q-MRNLAS, for all operating conditions. The robustness 

of the proposed neural speed estimator model III is illustrated for Rr variation. The Q-
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MRNLAS fails to track the speed, whereas the proposed estimator tracks the speed 

accurately with variations in Rr. The superiority of the proposed scheme over Q-

MRNLAS is well demonstrated.  

 

The SNC-NN based neural speed estimator model III has several advantages 

 It is independent of flux and hence, overcomes all flux based estimation 

problems. 

 It is independent of machine parameters. 

 Uses a Black box approach. 

 It is a generalized model and hence, suitable for all type of sensorless control 

of IM drives. 

 Does not require additional estimator and hence, reduces the complexity of 

drive system. 

 The SNC architecture trained using LM algorithm is found to be compact, less 

complex, easy in design, accurate and most suitable for speed estimation. 

 

The proposed neural speed estimator model III is little more complex than neural 

speed estimators model I and II. However this drawback can be overcome with high 

speed digital implementation for speed estimation.  From the detailed investigations it 

is concluded that neural speed estimator model III is the most suitable model for on-

line speed estimation as for all types of sensor less controlled IM drives. The 

proposed novel method is implemented in digital hardware and validated using 

practical motor setup in the next chapter. 
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Chapter 6 

 

Experimental Validation and Digital Implementation 

of Proposed Neural Speed Estimator 

 

6.1 Introduction 

 

The proposed NSE model III is generalized data based model which is suitable for all 

types of sensorless controlled IM drives as it uses a black box approach, does not 

require knowledge of motor parameters and provides a novel solution by addressing 

all the issues of conventional methods. Hence, the proposed NSE model III, identified 

most suitable for on-line speed estimation in the pervious chapter is validated using 

real time data. Also the digital implementation of the proposed model is carried out 

using Field Programmable Gate Arrays (FPGA).  

 

The laboratory motor setup is constructed to obtain the practical data. The proposed 

NSE model III based on-line speed estimator is designed, modelled and validated for 

real time data. The result proves that the proposed generalized neural model based 

speed estimator performs very well for practical data also. The proposed speed 

estimator should be implementable in digital hardware for real time applications. 

FPGA is the most suitable digital hardware for neural network implementation. 

Hence, the designed speed estimator is implemented using FPGA. 

 

The major issues in FPGA implementation is the tradeoff between computation time 

and cost (resource). More complex computation will require larger resource which in 

turn would increase the cost. In this chapter, the most complex block of the NN based 

speed estimator is identified as computation of nonlinear activation function. To 

overcome this problem, the tan-sigmoid activation function is replaced by a much 

simpler Elliott function. To reduce the resource, a layer multiplexing technique is 

adopted. The lowest bit precision needed for good performance of the speed estimator 

is also identified. The proposed speed estimator is implemented with new activation 

function and identified bit precision using layer multiplexing technique and tested on 
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Xilinx Spartan FPGA kit (3sd1800afg676-4). The results obtained are reported. These 

investigations would lead to the development of a cheaper, efficient and intelligent 

speed estimator for sensorless controlled IM drives. 

 

6.2 Experimental Setup 

 

A 3-hp three phase squirrel cage induction motor is considered for practical study. 

The laboratory motor setup constructed to obtain the practical data is shown in Figure 

6.1. The induction motor is driven with intelligent power module. The pulses are 

given to the IPM module through DSPIC controller. The induction motor is operated 

with the switching frequency of 10 kHz. The three phase Hall effect voltage and 

current sensors with optical isolator are used to measure the motor phase voltages and 

currents. The measured motor speed is measured by a speed sensor (encoder) 

mounted in induction motor shaft. The LPF (low pass filter) is used to filter out the 

noise in the voltage, current and speed signals. The real time data is acquired and 

stored in PC using 12-bit USB based data acquisition system with Agilent software.  

 

6.3 Design and Validation of Proposed Speed Estimator 

for Real Time Data  

 

Around 3,300 data sets were collected from experiential setup as discussed in the 

pervious section. The proposed NSE model III based on-line speed estimator is 

designed and modelled for real time data obtained from experiential setup. Extensive 

study have been carried out in the previous chapter and concluded that the NSE model 

III is best suitable for on-line speed estimation. Hence, the same neural architecture is 

trained with real time data. The performance of proposed NSE model III based on-line 

speed estimator for real time data is analyzed extensively under various operating 

conditions. The sample results for proposed NSE model III based on-line speed 

estimator are shown below: 

1. Operating Condition 1: The motor is operated at rated speed 

2. Operating Condition 2: The motor is operated at 50% rated speed 

 

For operating condition 1, the measured and estimated rotor speed is presented in 

Figure 6.2 (a) and its error is shown in Figure 6.2 (b). The speed estimated from the 
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proposed scheme is found to closely match with the measured speed. For operating 

condition 2, the measured and estimated rotor speed is presented in Figure 6.3 (a) and 

its error is shown in Figure 6.3 (b). From the result obtained, it is concluded that the 

proposed NSE model III based speed estimator performs very well for practical data. 

Hence, the NSE model III is implemented using FPGA.  
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Figure 6.2 Rated Speed: (a) Measured and Estimated Speed,  

(b) Error between Measured and Estimated Speed 
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Figure 6.3 50% of Rated Speed: (a) Measured and Estimated Speed,  

(b) Error between Measured and Estimated Speed 

 

6.4 Issues in FPGA Implementation of Proposed NN Based 

Speed Estimator  

 

The neural network hardware implementation is broadly classified into two group 

namely (i) digital neural network hardware and (ii) analog neural network hardware. 

The digital neural network hardware implementation is preferred because of higher 
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accuracy, high repeatability, low noise sensitivity, better testability, higher flexibility, 

and compatibility with other types of preprocessors. On the other hand, analog 

systems are more difficult to be designed and can only be feasible for large-scale 

productions, or for very specific applications.  

 

The digital neural network hardware implementations are further classified as (i) 

FPGA-based implementations (ii) DSP-based implementations (iii) ASIC-based 

implementations. The FPGA programmable logic combines the best of both DSP and 

ASIC technology. FPGAs are programmable and changeable (like DSPs); the 

designers can make changes quickly, without additional cost and time of ASIC 

design. On the other hand the FPGA implemented algorithms can process information 

faster than a general purpose DSP. Also the reconfigurability of Field Programmable 

Gate Array (FPGA) has improved the flexibility in the digital system design. Greater 

density and high speed FPGAs have enhanced the ability to realize special purpose 

processors for high-end applications. 

 

Hence in this thesis, FPGA is chosen as the target hardware for the implementation of 

proposed speed estimator. There are still challenges in the FPGA implementation of 

NN, which affects chip area, performance and cost. Some of the major issues 

investigated in this thesis are;  

 Computational Complexity,  

 Bit Precision and  

 Effective Utilization of Resources.  

 

These major issues in FPGA implementation of proposed NN based speed estimator 

are investigated in the next section and their possible solutions are discussed. 

 

6.4.1 Computational Complexity 

 

The computational complexity of a neuron with n inputs is shown in Figure 6.4. The 

computations performed by a neuron are described by the following equation (6.1) 

and (6.2). The addition, multiplication and non-linear activation function are carried 

out on signed floating point numerals. 
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Figure 6.4 Computational Complexity of a Neuron 
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           (6.1) 

y = f (x)         (6.2) 

 

The most time consuming block in the FPGA implementation of a neuron, is the 

computation of activation function. Hence, the computational complexity of neuron 

directly depends on activation function. The most popularly used activation function 

is tan-sigmoid function.  The activation function used in the hidden layer of proposed 

NSE model III is also tan-sigmoid function. The tan-sigmoid function is defined as in 

equation (6.3).  
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x x

x x

e e
f x
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         (6.3) 

 

Though this function provides good accuracy the hardware implementation of this 

function is highly complex. The difficulties in computing exponential function 

(Himavathi S., et al 2001) are listed below: 

 

1. It is an infinite series and hence has to be truncated to decrease the 

computational burden. This results in large truncation errors. 

2. The use of Look Up Table (LUT)is not efficient due to non-uniform spacing 

between e
-1

 and   e
-2

 and e
-3

 etc. This makes the look up table mapping 

inefficient. Interpolation between any two lookup table values is also 

complicated, as any combination is again a power of e. 
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To overcome this difficulty, a continuous, saturating nonlinear function which is 

simple to compute called Elliott function (Elliott D.L., 1993) is used. The function is 

defined in equation (6.4). This function is similar to the tan-sigmoid activation 

functions.  

 

The advantages of Elliott function are: 

 It is simple, continuous, differentiable, saturating. 

 It is computationally less complex. 

 It gives ease in digital implementation. 

 

Plot of this function along with the tan-sigmoid function is shown in Figure 6.5 and 

the plot for gradient of both the function is shown in the Figure 6.6. 

   

( )
1

x
f x

x



         (6.4) 

 

Hence, the proposed NSE model III based speed estimator is trained with Elliott 

function in the hidden layers for real time data. The obtained NSE model III with 

Elliott function for online speed estimation has the structure 5-29(h)-1 (h-hidden layer 

with one neuron). Using the obtained data driven NSE model III with Elliott function 

in the hidden layers, the on-line rotor speed estimation is carried out. The 

performance of proposed NSE model III with Elliott function is analyzed extensively 

under various operating conditions. The sample results for proposed NSE model III 

with Elliott function based on-line speed estimator are shown below:  

 

The measured and estimated rotor speed is presented in Figure 6.7(a) and its error is 

shown in Figure 6.7(b). From the result, it is clear that the proposed NSE model III 

with Elliott function estimates the speed with very good accuracy for practical data 

also. Hence, the performance of proposed NSE model III with Elliott function and 

NSE model III with Tansigmoid function are compared for speed estimation in 

various operating conditions for real data in terms of accuracy. Thus, result obtained 

are consolidate and Table 6.1. 
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Table 6.1 Performance Comparisons of the Proposed NSE Model III based 

Speed Estimator with Tan-sigmoid and Elliott Function in the Hidden Layers in 

Terms of Accuracy 

Frequency 

(Hz) 

Measured 

Speed 

(RPM) 

Tan-sigmoid Function 

(5-25-1) 

Elliott Function  

(5-29-1) 

Estimated 

Speed 

(RPM) 

% Error 

(RPM) 

Estimated 

Speed 

(RPM) 

% Error 

(RPM) 

50 1485 1486.45 -0.0976 1484.21 0.0531 

45 1355 1354.12 0.0649 1355.98 -0.0723 

40 1216 1218.03 -0.1669 1217.45 -0.1192 

35 1060 1061.09 -0.1028 1058.68 0.1245 

30 910 912.28 -0.2505 911.10 -0.1208 

25 760 758.31 0.2223 762.03 -0.2671 

 

From the Table 6.4, it is clear that proposed NSE model III with Elliott function 

estimates the speed with very good accuracy for practical data as similar as NSE 

model III with tan-sigmoid function in the hidden layer neurons. But the NSE model 

III with Elliott function required four more additional hidden neurons when compared 

to NSE model III with tan-sigmoid function.  

 

On FPGA, the execution time for the computation of a tan-sigmoid and Elliott 

function for a given input is computed. The tan-sigmoid function is implemented 

using series expansion method. Upto five terms are considered. The maximum 

frequency of operation on the FPGA is 20MHz. The execution time for tan-sigmoid 

function and Elliott function is found to be 35.05ns and 4.803ns respectively. The 

execution time of tan-sigmoid function is directly depended on number terms in the 

series expansion. If the number terms in the series increases, the time for execution 

also increases. From the results obtained, it is clear that the Elliott function is 7.2 

times faster than the tan-sigmoid function. This would result in faster estimation of 

speed and hence reduces the computational complexity.  

 

Thus it is concluded that the Elliott function performs well, superior in terms of 

computational complexity and found to be suitable for FPGA implementation. 
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However, the advantages overweigh the disadvantages. Hence, the NSE model III 

with Elliott function based speed estimator is studied for optimum bit precision. 

 

6.4.2 Bit Precision 

 

Another challenging issue in the FPGA implementation of proposed NSE model III 

with Elliott function based speed estimator is the identification of suitable bit 

precision. Bit precision or word length decides the output resolution. The inputs, 

outputs, weights and biases are represented using appropriate bits. Higher bit 

precision improves the performance of Speed estimator but increases the cost and 

memory size of the FPGA. Lower bit precision decreases cost and memory size of the 

FPGA but increases error in the speed estimation. Therefore, the optimal bit precision 

for satisfactory performance has to be identified. The N-bit precision for variable x 

can be found using the formula (6.5)-(6.7), 

 

N-bit precision for variable x  

Y = x  2
n
        (6.5) 

Y = whole part (Y)       (6.6) 

Y = x  2
-n

        (6.7) 

 Y is the n-bit precision value of x 

 

Example: X= -2.2994797852830557 

  

16-bit precision                                  

Y= -2.2994797852830557  2
16

  

Y= whole (-150698)              

Y= -150698  2
-16

  

Y= -2.2994689941406250 

 

From the Table 6.2, it is clear that as bit precision increases, the accuracy also 

increases. Using the above formulae, the weights and biases of the proposed NSE 

model III with Elliott function based speed estimator are represented as various bit 

precision. The performance of proposed NSE model III with Elliott function based 

speed estimator is studied for various bit precision for real time data. The results 

obtained are consolidated and presented. 
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Table 6.2 Bit Precision  

Actual 

value 
-2.2994797852830557 

8-bit -2.2968750000000000 

12-bit -2.2993164062500000 

16-bit -2.2994689941406250 

32-bit -2.2994797851424664 

64-bit -2.2994797852830558 

 

The proposed NSE model III with Elliott function based speed estimation for 8-bit 

precision is shown in Figure 6.8(a) and its error is shown in Figure 6.8(b). The 

proposed NSE model III with Elliott function based speed estimation for 12-bit 

precision is shown in Figure 6.9(a) and its error is shown in Figure 6.9(b). The 

proposed NSE model III with Elliott function based speed estimation for 16-bit 

precision is shown in Figure 6.10(a) and its error is shown in Figure 6.10(b). The 

proposed NSE model III with Elliott function based speed estimation for 32-bit 

precision is shown in Figure 6.11(a) and its error is shown in Figure 6.11(b).  The 

proposed NSE model III with Elliott function based speed estimation for 24-bit 

precision is shown in Figure 6.12(a) and its error is shown in Figure 6.12(b). 

 

Figure 6.8 Estimated Rotor Speed for 8-bit precision 
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Figure 6.9 Estimated Rotor Speed for 12-bit precision 

 

 

Figure 6.10 Estimated Rotor Speed for 16-bit precision 
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Figure 6.11 Estimated Rotor Speed for 32-bit precision 

 

 

Figure 6.12 Estimated Rotor Speed for 64-bit precision 
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From the results obtained, it is concluded that 8-bit precision based estimator fails to 

estimate the speed. The 12-bit precision based speed estimator shows poor 

performance. But 16-bit, 32-bit and 64-bit precision based speed estimator shows 

good accuracy. The required accuracy is achieved using 16-bit and hence chosen for 

FPGA implementation of NSE model III with Elliott function based speed estimator. 

 

6.4.3 Effective Utilization of Resources 

 

FPGA implementation of proposed NSE model III with Elliott function can be carried 

out using two methods; 

1. Implementation of whole architectures and  

2. Layer Multiplexing 

 

Implementation of whole architectures, high execution speed can be achieved. But 

resource requirement is large which in turn increases the system cost. In the literature 

(Himavathi S., et al 2007), layer multiplexing concept is proposed for NN 

implementation in FPGA to avoid the above problems. The layer multiplexing 

concept is aimed at reducing resource requirement, without much compromise on the 

execution time, so that a larger NN can be realized on a single chip at a lower cost. 

The sequential processes of SNC-NN have been exploited by using the layer 

multiplexing concept. Instead of realizing a complete network, only the neuron with a 

maximum number input is implemented in FPGA. The same neuron behaves as 

different neuron with the help of a control block. The layer multiplexing requires an 

additional control block to coordinate the computation of every layer of NN. The 

block diagram of proposed SNC-NN based Model III (Elliott function) with layer 

multiplexing concept is shown in the Figure 6.13. 

 

The neuron unit acts as a single neuron with multiple inputs. Initially the weights and 

bias of the SNC-NN architecture for speed estimation is stored in control unit. 

Initially the clock, reset and start are given as the input. When the input data is given 

to the control unit, the start signal goes high and the respective weights and bias of the 

Layer1 which are collected from the control unit is loaded to the neuron unit and the 

operation of neuron is carried out and its output is given to the activation function and 
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the final output of that Layer1 is given as the input to the control unit. Then count 

signal shows that the neuron unit is ready for the next operation. The output of the 

first layer is also the input to the next unit and hence when the Layer2 weights and 

bias are loaded, the layer1 output from the control unit is also given as the input to the 

neuron unit. This process is repeated till the final output of the network is obtained. 

Realization of complete network with a single neuron implementation leads to a 

considerable resource reduction of FPGA. Hence, the proposed NSE model III with 

Elliott function based speed estimator is implemented in FPGA using layer 

multiplexing concept. 

 

 

Figure 6.13 FPGA Implementation of Proposed Model III with Elliott Function 

Based Speed Estimator with Layer Multiplexing 

 

6.5 FPGA Implementation of Proposed NSE Model III 

with Elliott Function Based Speed Estimator 

 

The proposed NSE model III based speed estimator is implemented in Spartan-3A 

DSP FPGA kit using layer multiplexing concept with Elliott activation functions in 

the hidden layer neuron for 16-bit precision. To implement the proposed speed 

estimator, a single neuron with the maximum of 45 inputs is implemented with layer 

control block assuming that generally in real time applications of NN the number of 

inputs to a neuron rarely exceeds 45. Using this, any SNC-NN based speed estimator 

with p + (m-1) ≤ 45 can be implemented. where, p - total number of input to the 

model and m – total number of layers.  
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The speed estimator with architecture 5-29(h)-1 requires implementation of single 

layer/neuron with the maximum of 34 inputs. The implementation of proposed SNC-

NN based speed estimator using layer multiplexing concept with Elliott function is 

detailed as a schematic diagram and presented in Figure 6.14. The implementation 

includes the SNC-NN with maximum input and a layer control block. The LAYER 

CONTROL BLOCK co-ordinates the computations of the different layers by placing 

the appropriate inputs, weights, biases & select the excitation function for each layer 

 

The sequential operation of the SNC-NN NEURON block with LAYER CONTROL 

block is detailed below: 

 

(i) The start signal is used to initiate the speed estimation process. 

(ii) The LAYER CONTROL block has an internal LAYER COUNTER. 

(iii) Inputs to the first layer neuron and its corresponding weights and bias are 

placed on the internal bus and read (RD) signal is initiated by the LAYER 

CONTROL block. 

(iv) The ELLIOTT FUNCTION NEURON block reads the neuron inputs, 

weights and bias from the bus and performs the computations of a signal 

neuron. This involves Multiplication (MUL), Add (ADD) and computation 

of Elliott excitation function (E_F). 

(v) At the end of computation the output of the neuron/layer is passed back to 

the LAYER CONTROL block and output enable signal is asserted. 

(vi) On receipt of the layer output. The LAYER CONTROL block initiates the 

next layer computation. This continues for m-1 layers. 

(vii) For the output layer computation, the LINEAR FUNCTION NEURON 

block is used. 

(viii) The last layer uses LINEAR FUNCTION NEURON block and its enabled 

by LAYER COUNTER as shown in the Figure 6.14. 

(ix) The output is placed on the output line and the valid output signal indicates 

the end of estimation. 

(x) The valid output signal is used by the LAYER CONTROL block as the 

end of speed estimation process. The start signal is again asserted and the 

estimation is repeated for the next set of inputs. 
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The various steps involved in FPGA design flow are 

 Design entry 

 Synthesis 

 Simulation 

 Implementation  

 Device programming 

 

6.5.1 Design Entry  

 

It is the process in which a design is created using HDL coding. The VHSIC (very 

high-speed integrated circuit) Hardware Description Language (VHDL) is an industry 

standard language specifically developed to describe digital electronic hardware and 

its attributes. It is a flexible language that can be applied to many different design 

situations used to describe hardware from the abstract to the concrete level. VHDL is 

rapidly being embraced as the universal communication medium of design. This 

language has several key advantages, including technology independence and a 

standard language for communication. Although this language looks similar to 

conventional programming languages, there are some important differences. A 

hardware description language is inherently parallel, i.e. commands which correspond 

to logic gates, are executed (computed) in parallel as soon as a new input arrives. 

 

6.5.2 Synthesis  

 

The goal of VHDL synthesis step is to create a design that implements the required 

functionality and matches the designer’s constraint in speed, area or power. It 

translates the design into gates and optimizes it for the target architecture i.e., based 

on the data entered during the design entry stage a circuit is created. For an existing 

logical network, it must be possible to determine the function preformed by the 

network. This task is referred to as the analysis process. The reverse task of designing 

a new network that implements the desired function behavior is referred as the 

synthesis process. To convert the RTL (Register Transfer Level) description into 

gates, three steps typically occur. First, the RTL description is converted to 

unoptimized boolean description usually consisting of gates such as AND and OR 
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gates, flip-flops, and latches. This is functionally correct but completely unoptimized 

description. Next, boolean optimization algorithms are executed on this boolean 

equivalent description to produce an optimized boolean equivalent description.  

Finally, this optimized boolean equivalent description is mapped to Measured logic 

gates by making use of a technology library of the target process.   

 

6.5.3 Simulation  

 

Verify the functionality of the circuit based on the circuit, based on the input provided 

by the designer. The simulation of the complete circuit identifies the errors if any. 

Some errors may be caused by incorrect connections between the blocks or some 

blocks may not be designed correctly. Depending on the errors encountered, it may be 

necessary to go back to the design. Successful completion of functional simulation 

suggests that the designed circuit will correctly perform all its functions. 

 

6.5.4 Implementation  

 

Convert the logical design file format created during design entry into a physical file 

format for a specific Xilinx architecture. The implementation stage consists of taking 

the synthesized netlist through translation, mapping and place and route. Place and 

route tool are used to take the design netlist and implement the design in the target 

technology device. The place and route tools place each primitive from the netlist into 

an appropriate location on the target device and then route signals between the 

primitives to connect the devices according to the netlist.  

 

6.5.5 Device Programming  

 

Create a programming file that can be downloaded to the target device. Once the 

programming file is created, it can de downloaded to the target device and the results 

can be verified. The performance of the proposed estimator is tested on Xilinx Spartan 

FPGA kit (3sd1800afg676-4) with practical data extensively. The sample results 

obtained are presented from Figure 6.15 to 6.18. 
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Input 1 Input 2 Input 3 Input 4 Input 5 

-0.1411 0.7848 0.8500 0.3896 0.8353 

 

 

Actual Output FPGA Output 

+0.9713 +0.97 

 

 

Figure 6.15 Results for FPGA Implementation of Proposed Model III with Elliott 

Function Based Speed Estimator for Test Data 1 
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Input 1 Input 2 Input 3 Input 4 Input 5 

-0.1692 -0.9880 -1.0173 0.0588 0.9680 

 

 

Actual Output FPGA Output 

+0.9125 +0.91 

 

 

Figure 6.16 Results for FPGA Implementation of Proposed Model III with Elliott 

Function Based Speed Estimator for Test Data 2 
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Input 1 Input 2 Input 3 Input 4 Input 5 

0.4279 0.6281 0.9849 -0.3043 0.9006 

 

 

Actual Output Practical Output 

+0.9601 +0.95 

 

 

Figure 6.17 Results for FPGA Implementation of Proposed Model III with Elliott 

Function Based Speed Estimator for Test Data 3 

 

 

 



 

 

 121 

 

 

 

 

 

 

Input 1 Input 2 Input 3 Input 4 Input 5 

0.4745 0.6785 0.9705 -0.3579 0.9244 

 

 

Actual Output Practical Output 

+0.9056 +0.91 

 

 

Figure 6.18 Results for FPGA Implementation of Proposed Model III with Elliott 

Function Based Speed Estimator for Test Data 4 
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Device Utilization Summary 

 

Target Device                      : xc3sd1800a-4-fg676 

 

Logic Utilization Used Available Utilization 

Number of Slices 7921 16640 47% 

Number of Slice Flip Flops 7530 33280 22% 

Number of 4 input LUTs 12976 33280 38% 

Number of bonded IOBs 17 519 3% 

Number of BRAMs 1 84 1% 

Number of GCLKs 1 24 4% 

Number of DSP48s 10 84 11% 

 

On implementation, it is found that the maximum frequency of operation is 20 MHz and 

clock cycles required for the speed estimation is 5400 respectively. The timing requirement 

satisfies the requirement for speed estimation. This work would form the basis for the 

development and realization of an efficient and intelligent Speed Estimator based on neural 

network, and the usefulness in complex Sensorless Controlled IM Drives. 

 

6.6 Conclusion 

 

In this chapter, the performance of proposed NSE model III based speed estimator is 

validated for real time data. The experimental set up is built to collect the real time 

data. The NSE model III based speed estimator is designed and tested using the real 

time data extensively. The proposed NSE model III based speed estimator is found to 

perform well for the real time data. 

 

The issues in FPGA implementation of proposed NSE model III based speed 

estimator are investigated and their possible solutions are discussed. The major issues 

investigated in this thesis are; computational complexity, bit precision and effective 

utilization of resources. A new nonlinear simple to compute activation function 

named as “Elliott function” is identified and proposed for speed estimation. The NSE 

model III based speed estimator is trained with Elliott function in the hidden layer 

neurons for the real time data. The performance of NSE model III with Elliott 
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function for real time data is as good as the NSE model III with tan-sigmoid function 

for on-line speed estimation. But, the NSE model III with Elliott function required 

four more additional hidden neurons when compared to NSE model III with tan-

sigmoid function. The Elliott function is found to be 7.2 times faster than the tan-

sigmoid function. Thus the Elliott function performs well and reduces the 

computational complexity. This results in faster speed estimation. However, the 

advantages overweigh the disadvantages. Thus it is concluded that the Elliott function 

performs well, superior in terms of computational complexity and found to be suitable 

for FPGA implementation. The NSE model III with Elliott function is tested for 

various bit precision using real time data and lowest bit precision needed for good 

performance of the on-line speed estimator is identified as 16-bits. The concept of 

layer multiplexing is adopted for effective resource utilization.  

 

The proposed NSE model III based speed estimator with identified bit precision and 

Elliott function is implemented using layer multiplexing technique and tested on 

Spartan FPGA kit (xc3sd1800afg676-4). From the synthesis report it is found that the 

slices required for the proposed NSE model III with Elliott function based speed 

estimator is 7921, the maximum frequency of operation is 20 MHz and clock cycles 

required for the speed estimation is 5400 respectively. The FPGA implementation 

validates the suitability of the proposed NSE model III with Elliott function based 

speed estimator for real time applications. 

 

Thus the proposed NSE model III with Elliott function based on-line speed estimator 

performs well for practical data. It is less complex, implementable in hardware and 

hence is an efficient low cost alternative for all applications of speed estimator in 

sensor-less controlled IM Drives. 
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Chapter 7 

 

Conclusion 

 

In this chapter, the importance of research work is discussed, the major contributions 

are summarized and the possible directions for future work are indicated. 

 

7.1 Importance of Research Work 

 

The availability of high speed computing devices has made high performance vector 

controlled drives reliable and popular. The knowledge of machine speed is mandatory 

for this control. The speed can be measured with optical encoders, electromagnetic 

sensors or brushless DC tacho-generators. However, the use of these 

electromechanical devices present some limitation in their applications, like increased 

cost of the drive, reduce mechanical robustness, low noise immunity etc. They affect 

the machine inertia and require special attention in hostile environments. Hence, it 

becomes necessary to go in for speed estimators. Fast and accurate speed estimators 

are currently under study.  

 

It is possible to estimate the speed from machine terminal voltages and currents. The 

conventional methods are direct synthesis from state equations, rotor slot harmonic, 

extended Kalman filter (EKF), extended Luenbergern observer (ELO), saliency 

techniques and model reference adaptive system (MRAS). All these techniques use 

complex mathematical model of the motor which includes many assumptions. The 

estimation also is not robust to parameter variations. The time taken for computation 

is long. 

 

Neural Network (NN) based speed estimator is robust to parameter variations, 

immune to noise and avoids the use of mathematical models. Such a system is not 

restricted by the many assumptions used in the conventional methods and is capable 

of mapping to any degree of non linearity. It can also be designed to yield the results 
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more quickly. This thesis investigates the potential of Neural Network based on-line 

speed estimation for sensorless vector controlled IM drives and their possible 

solutions are discussed. 

 

The objective of the research work is to identify the best possible NN based solution 

for on-line speed estimation for sensorless vector controlled IM Drives. The use of 

neural learning algorithm for adaptation in MRAS based systems and data based 

neural network models for all types of vector control are investigated in this thesis. 

 

7.2 Summary of the Thesis 

 

The thesis investigates the use of neural learning algorithm for adaptation in MRAS 

based speed estimation schemes. A number of drawbacks exist with MRAS based 

speed estimation depending on the equation used, state variable chosen and type of 

vector control. The advantages of reactive power based MRAS is more prominent 

when used for sensorless indirect rotor field oriented controlled (IRFOC) drives. The 

equation becomes independent of rotor flux and stator resistance. Hence, the 

simplified equation for reactive power in IRFOC is very useful and widely used with 

PI adaptation. However, it fails in certain regenerative modes. A novel simplified 

reactive power based MRNLAS (Q-MRNLAS) for speed estimation is proposed in 

this thesis to overcome the above problem.  

 

The proposed scheme combines the advantages of simplified reactive power 

technique and the capability of neural learning algorithm for on-line speed estimation 

in sensorless indirect vector controlled induction motor drives. The performance of 

proposed on-line speed estimator is compared with existing Q-MRAS in terms of 

accuracy and regenerating mode of operation. The proposed simplified Q-MRNLAS 

is independent of flux and pure integrator problems. It eliminates the need for stator 

resistance estimation and hence reduces the complexity of the drive. The neural 

adaptation is accurate, simple and provides stable operation in regenerating modes. 

Hence, it is concluded that the proposed estimator is a promising alternative for 

existing PI based Q-MRAS for on-line speed estimation in sensor-less indirect vector 

controlled induction motor drives. 
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The proposed method again suffers from the disadvantages of conventional equations 

based speed estimation schemes namely inaccuracies in motor parameters used and 

the need for an online rotor resistance estimator. To further exploit the advantages of 

neural networks, it is proposed to build a data based model for on-line speed 

estimation. In this thesis, three types neural network model based on-line speed 

estimator trained from input/output data are developed and proposed for sensorless 

controlled induction motor drives.  

 

To build the NN model, three types of popular neural architectures (SLFF, MLFF and 

SNC) and learning algorithms (BPM, VLR and LM) are considered for investigation. 

For comparison, all the three NN models are trained with the same input/output data, 

using same learning algorithms, for the same number of epochs. From the training 

MSE obtained, NN architectures trained with LM algorithm have performed well with 

minimum number of neurons when compared to BPM and VLR trained NN 

architectures. Hence, it is concluded that LM algorithm is most suitable for offline 

training of speed estimation. To determine the most suitable architecture, the 

performance of LM-trained NN models using three architectures is designed for on-

line estimation of rotor speed under various operating conditions. 

  

From the analysis, it is inferred that the steady state and dynamic performance of 

SNC-NN and MLFF-NN model are found to be similar and superior as compared to 

SLFF-NN. The SNC-NN model resulted in structurally compact and computationally 

less complex model as compared to MLFF-NN models. The SNC-NN can be self 

organized which greatly aids design automation whereas MLFF-NN lacks the design 

methodology. Thus, SNC-NN model is observed to combine the advantage of 

multilayer mapping capability of MLFF-NN model and self-organizing feature of 

SLFF-NN model. Hence, it can be concluded that SNC-NN architecture trained with 

Levenberg Marquardt algorithm is found to be most suitable. 

 

The SNC-NN model trained with Levenberg Marquardt algorithm using flux based 

relationship is named as neural speed estimator model I. The performance of proposed 

neural speed estimator model I is compared with existing RF-MRAS in terms of 

accuracy. The proposed neural speed estimator model I based on rotor flux is as good 

as the existing RF–MRAS method for all operating conditions. The data based NN 
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approach is validated using this model. However, neural speed estimator model I is 

flux dependent and suffers from all the drawbacks of flux estimation in sensorless 

controlled induction motor drives.  

 

Neural speed estimator model II based on stator frequency is proposed to overcome 

the drawbacks of neural speed estimator model I. The proposed neural speed 

estimator model II based speed estimator is independent of motor flux and combines 

the advantages of neural network and the simplified reactive power based techniques. 

It exhibits good performance over a wide operating range with good accuracy. A 

performance comparison is carried out with Q-MRNLAS method under no load and 

full load. It is demonstrated that the proposed neural speed estimator model II 

performs as well as the Q-MRNLAS, for all operating conditions. The robustness of 

the proposed neural speed estimator model II is illustrated for Rr variation. This is 

done for slight and large detuning for Rr. The Q-MRNLAS fails to track the speed, 

whereas the proposed estimator tracks the speed accurately with variations in Rr. The 

superiority of the proposed neural speed estimator model II over Q-MRNLAS is well 

demonstrated.  

 

However, the proposed neural speed estimator model II has a few disadvantages. It 

can be used only for sensor-less indirect vector controlled induction motor drives as 

the simplified reactive power equations are applicable only for IFOC. Also the 

proposed estimator uses mathematical equation for computation of ωe. Hence, an 

accurate knowledge of machine parameters is mandatory. 

 

A generalized data driven neural network model based on reactive power is proposed 

for on-line speed estimator and it is named has neural speed estimator model III. The 

proposed NSE model III based speed estimator is suitable for all types of sensorless 

control; a black box approach without the need for motor parameters would provide a 

novel solution. The NSE model III based speed estimator was extensively tested for a 

number of operating conditions and shown to perform well. Its performances are 

compared with Q-MRNLAS and superiority of the proposed scheme over Q-

MRNLAS is well demonstrated. 
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The NSE model III based speed estimator has a number of advantages 

 It is independent of flux and hence, overcomes all flux based estimation 

problems. 

 It is independent of machine parameters. 

 Uses a Black box approach. 

 It is a generalized model and hence, suitable for all type of sensorless control 

of IM drives. 

 Does not require additional estimator and hence, reduces the complexity of 

drive system. 

 The SNC architecture trained using LM algorithm is found to be compact, less 

complex, easy in design, accurate and most suitable for speed estimation. 

 

Based on the detailed investigations, it is concluded that NSE model III is the most 

suitable model for on-line speed estimation as for all types of sensor less controlled 

IM drives. The proposed novel method is implemented in digital hardware and 

validated using practical motor setup. 

 

The experimental set up is built to collect the real time data. The NSE model III based 

speed estimator is designed and tested using the real time data extensively. The 

proposed NSE model III based speed estimator is shown to perform very well for the 

real time data. The issues in FPGA implementation of proposed NSE model III based 

speed estimator are investigated and their possible solutions are discussed. The major 

issues investigated in this thesis are; computational complexity, bit precision and 

effective utilization of resources.  

 

To overcome the computational complexity of tan sigmoid excitation functions a new 

nonlinear simple and compute activation function named as “Elliott function” is 

identified and proposed for speed estimation. The NSE model III based speed 

estimator is trained with Elliott function in the hidden layer neurons for the real time 

data. The performance of NSE model III with Elliott function in the hidden layer 

neurons for real time data is as good as the NSE model III with tan-sigmoid function 

for on-line speed estimation. But, the NSE model III with Elliott function required 

four more additional hidden neurons when compared to NSE model III with 
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tan-sigmoid function. The Elliott function neuron is found to be 7.3 times faster than 

that of tan-sigmoid function and the advantages overweigh the disadvantages. Thus, it 

is concluded that the Elliott function performs well, superior in terms of 

computational complexity and found to be suitable for FPGA implementation. The 

NSE model III with Elliott function is tested for various bit precision using real time 

data and lowest bit precision needed for good performance of the on-line speed 

estimator is identified as 16-bits. For effective resource utilization, the concept of 

layer multiplexing is adopted for NSE model III with Elliott function based speed 

estimator in FPGA implementation.  

 

The proposed NSE model III with Elliott function based speed estimator with 

identified bit precision and activation function is implemented using layer 

multiplexing technique and tested on Spartan FPGA kit (xc3sd1800afg676-4). From 

the synthesis report, it is found that the slices required for the proposed NSE model III 

with Elliott function based speed estimator is 7921, the maximum frequency of 

operation is 20 MHz and clock cycles required for the speed estimation is 5400 

respectively. The FPGA implementation validates the suitability of the proposed NSE 

model III with Elliott function based speed estimator for real time applications. 

 

Thus the proposed NSE model III with Elliott function based on-line speed estimator 

performs well for practical data. It is less complex and implementable in hardware. 

Hence, it is an efficient low cost alternative for all applications of speed estimator in 

sensor-less controlled IM Drives. 

 

7.3 Major Contributions of the Thesis 

 

The major contributions of the research work are listed below: 

 Neural learning algorithm is proposed for simplified Q-MRAS based speed 

estimator in sensor-less indirect vector controlled IM drives. 

 The proposed Q-MRNLAS provides stable operation for a wide operating 

range. It overcomes the problem of instability present in PI adaptation in 

regenerating mode. 
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 Three different type of data based NN model for speed estimation is proposed 

and most suitable model is identified. 

 SNC-NN architecture trained with LM algorithm is identified to have high 

degree of nonlinear mapping capability and suitable for on-line speed 

estimation. 

 Proposed NSE model III based speed estimator is identified as accurate, 

independent flux, less complex, robust to integrator drift problems, 

independent motor parameters and most suitable model for all types of 

sensorless IM Drives. 

 Proposed NSE model III based speed estimator is trained and validated for real 

time data. 

 Proposed NSE model III based speed estimator is investigated for FPGA 

implementation issues are: computational complexity, bit precision and 

effective utilization of resources. 

 The most time consuming block in the FPGA implementation of a neuron, is 

the computation of tan-sigmoid function and it is replaced by new function 

called “Elliott function”. 

 Proposed NSE model III based speed estimator is trained and tested using 

Elliott function in hidden layers for real time data. 

 Reduction in computational complexity for online speed estimation using 

Elliott function for FPGA implementation. 

 The lowest bit precision needed for good performance of the on-line speed 

estimation of proposed speed estimator is identified.  

 The concept of layer multiplexing is adopted for proposed speed estimator in 

FPGA implementation for effective resource utilization. 

 

This work would form the basis for the realization of NN based estimator trained from 

the input/output data, and their usefulness in complex sensorless vector controlled IM 

drives.     

 

7.4 Scope for Future Work 

 

In this thesis, the proposed speed estimators have been thoroughly investigated for 

sensorless indirect vector controlled induction motor drives. The same estimator can 
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be tested for other types of speed-sensorless controlled induction motor drives in 

future. The proposed NN models for speed estimation are trained with direct search 

techniques (Gradient based optimization) could still be trained with random search 

techniques (Soft computing based optimization) to improve NN model accuracy and 

compactness in future. The FPGA implementation can be replaced by neural chip 

using SNC architecture. The speed estimator coding can be optimized and developed 

for embedded application in future. In the future, speed estimator may be embedded 

in the motor setup to facilitate sensorless controlled IM drives. 

 

 



 

 

 

Figure 1.1 Overview of Induction Motor Control Strategies 
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(a) 

 

(b) 

Figure 2.4 Performance Curves for Test Condition-1: (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated 
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(a) 

 

(b) 

Figure 2.5 Performance Curves for Test Condition-2: (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated 
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(a) 

 

(b) 

Figure 2.6 Performance Curves for Test Condition-3: (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated 
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(a) 

 

(b) 

Figure 2.7 Performance Curves for Test Condition-4: (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated 
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(a) 

 

(b) 

Figure 2.8 Performance Curves for Test Condition-5: (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated 
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(a) 

 

(b) 

Figure 2.9 Performance Curves for Test Condition-6: (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated 
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(a) 

 

(b) 

Figure 2.10 Response of Speed Estimator for Regenerating Mode:  

(a) Q-MRNLAS (b) Q-MRAS 
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(c) 

Figure 3.4 Operating Condition-I for Step Change in Load: 

(a) SNC-NN (b) MLFF-NN (c) SLFF-NN 
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(c) 

Figure 3.5 Operating Condition-I for Ramp Change in Load: 

(a) SNC-NN (b) MLFF-NN (c) SLFF-NN 
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(c) 

Figure 3.6 Operating Condition-II for Step Change in Speed: 

(a) SNC-NN (b) MLFF-NN (c) SLFF-NN 
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(c) 

Figure 3.7 Operating Condition-II for Ramp Change in Speed: 

(a) SNC-NN (b) MLFF-NN (c) SLFF-NN 
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(b) 
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(c) 

Figure 3.8 Operating Condition-III for Low Speed: 

(a) SNC-NN (b) MLFF-NN (c) SLFF-NN 
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(a) 

 

(b) 

Figure 4.2 Stair Case Speed Change: (a) Actual and Estimated Speed, (b) Error 

between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 4.3 Effect of Loading at 100rad/sec: (a) Actual and Estimated Speed, (b) 

Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 4.4 Effect of Loading at 15rad/sec: (a) Actual and Estimated Speed, (b) 

Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 4.5 Regenerating Mode Operation (±100rad/sec): (a) Actual and 

Estimated Speed, (b) Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 4.6 Regenerating Mode Operation (±1rad/sec): (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated Speed 



 70 

 

(a) 

 

(b) 

Figure 4.7 Zero Speed Operation: (a) Actual and Estimated Speed, (b) Error 

between Actual and Estimated Speed 
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Table 4.1 Performance Comparisons of the Proposed Data Driven SNC-NN with  

Q-MRNLAS for Various Speed Commands under No Load Condition 

Reference 

Speed 

(rad/sec) 

Actual 

Speed 

(ra d/sec) 

NSE model II Q-MRNLAS 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 145.021 -0.014 144.998 0.002 

125 125.003 124.089 0.731 125.075 -0.057 

100 99.998 100.012 -0.014 99.943 0.055 

75 75.004 74.998 0.003 75.025 -0.027 

50 49.995 50.013 -0.021 49.984 0.022 

25 25.006 25.001 -0.008 24.981 0.099 

5 4.999 4.999 0.039 4.980 0.380 

1 0.999 1.001 -0.200 1.004 -0.500 

 

 

Table 4.2 Performance Comparisons of the Proposed Data Driven SNC-NN with  

Q-MRNLAS for Various Speed Commands under Full Load Condition 

Reference 

Speed 

(rad/sec) 

Actual 

Speed 

(rad/sec) 

NSE model II Q-MRNLAS 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 145.401 -0.275 145.012 -0.007 

125 124.998 125.021 -0.018 124.984 0.011 

100 100.002 100.042 -0.039 100.124 -0.124 

75 75.001 74.990 0.015 74.929 0.093 

50 49.999 50.098 -0.198 50.031 -0.064 

25 25.000 24.998 0.008 25.039 -0.156 

5 5.001 5.010 -0.179 5.008 -0.099 

1 1.001 1.010 -0.899 1.009 -0.799 
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(a) 

 

(b) 

Figure 4.8 Rotor Speed with Slight Rr Detuning: (a) SNC-NN (b) Q-MRNLAS 
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(a) 

 

(b) 

Figure 4.9 Rotor Speed with Large Rr Detuning: (a) SNC-NN (b) Q-MRNLAS 



 82 

 

(a) 

 

(b) 

Figure 5.2 Stair Case Speed Change: (a) Actual and Estimated Speed, (b) Error 

between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 5.3 Effect of Loading at 100rad/sec: (a) Actual and Estimated Speed, (b) 

Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 5.4 Effect of Loading at 15rad/sec: (a) Actual and Estimated Speed, (b) 

Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 5.5 Regenerating Mode Operation (±100rad/sec): (a) Actual and 

Estimated Speed, (b) Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 5.6 Regenerating Mode Operation (±5rad/sec): (a) Actual and Estimated 

Speed, (b) Error between Actual and Estimated Speed 
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(a) 

 

(b) 

Figure 5.7 Zero Speed Operation: (a) Actual and Estimated Speed, (b) Error 

between Actual and Estimated Speed 
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Table 5.1 Performance Comparisons of the Proposed NSE Model III with  

Q-MRNLAS for Various Speed Commands under No Load Condition 

Reference 

Speed 

(rad/sec) 

Actual 

Speed 

(ra d/sec) 

NSE model III Q-MRNLAS 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 145.201 -0.137 144.998 0.002 

125 125.003 124.099 0.723 125.075 -0.057 

100 99.998 99.699 0.299 99.943 0.055 

75 75.004 75.012 0.015 75.025 -0.027 

50 49.995 49.998 -0.021 49.984 0.022 

25 25.006 25.012 -0.052 24.981 0.099 

5 4.999 5.009 -0.159 4.980 0.380 

1 0.999 0.991 -0.801 1.004 -0.500 

 

 

 

 

Table 5.2 Performance Comparisons of the Proposed NSE Model III with  

Q-MRNLAS for Various Speed Commands under Full Load Condition 

Reference 

Speed 

(rad/sec) 

Actual 

Speed 

(rad/sec) 

NSE model III Q-MRNLAS 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

Estimated 

Speed 

(rad/sec) 

% Error 

(rad/sec) 

145 145.001 144.012 0.682 145.012 -0.007 

125 124.998 125.082 -0.067 124.984 0.011 

100 100.002 100.030 -0.027 100.124 -0.124 

75 75.001 75.101 -0.013 74.929 0.093 

50 49.999 50.009 -0.020 50.031 -0.064 

25 25.000 25.025 -0.100 25.039 -0.156 

5 5.001 5.035 -0.679 5.008 -0.099 

1 1.001 1.011 -1.098 1.009 -0.799 
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(a) 

 

(b) 

Figure 5.8 Rotor Speed with 100% Rr Detuning: (a) SNC-NN Model III 

(b) Q-MRNLAS 
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Table 5.3 Performance Comparison for Changes in Rr at 1rad/sec with Full Load 

% Change in Rr 
Model III based 

Estimated Speed (rad/sec) 

Q-MRNLAS based 

Estimated Speed (rad/sec) 

100 1.025 8.901 

80 1.041 7.128 

60 1.060 6.354 

40 1.072 3.939 

20 1.050 2.897 

 

 

Table 5.4 Performance Comparison for 50% Change in Rr at Different Speeds 

on Full Load 

Reference 

Speed 

Actual 

Speed 

(rad/sec) 

Model III based 

Estimated Speed 

(rad/sec) 

Q-MRNLAS based 

Estimated Speed 

(rad/sec) 

145 145.011 145.324 154.135 

100 100.002 100.070 107.185 

75 75.051 74.903 81.284 

50 49.979 49.908 56,345 

25 25.030 25.008 29.629 

1 1.001 0.998 4.969 

 

 

Table 5.5 Comparison of Structural Compactness and Computational 

Complexity for the Proposed NN Models  

NN 

Models 

NN 

Architectures 

No. of 

Hidden 

Neurons 

No. of 

Parameters 

Computations 

No. of 

Additions 

No. of 

Multiplications 

No. of Tan-

Sigmoids 

Model I 6-15(h)-1 15 232 216 216 15 

Model II 5-20(h)-1 20 336 315 315 20 

Model III 5-25(h)-1 25 481 455 455 25 

h - hidden layer with one neuron 



 

Figure 6.1 Experimental Setup to obtain the Practical Data. 
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Figure 6.5 Plot of Non-linearity for Tansigmoid and Elliott Function 

 

 

 

    

Figure 6.6 Plot of Gradient for Tan-sigmoid and Elliott Function 
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Figure 6.7 Experimental Result for Model III with Elliott function based Speed 

Estimator: (a) Measured and Estimated Speed, (b) Error between Measured and 

Estimated Speed 
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