
A Framework for Malware Detection with Static
Features using Machine Learning Algorithms

A THESIS

Submitted by

Ajit Kumar

in partial fulfillment of the requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF ENGINEERING AND TECHNOLOGY

PONDICHERRY UNIVERSITY
PUDUCHERRY - 605014

AUGUST 2017

Contents

Certificate vii

Declaration viii

Acknowledgement ix

Abstract xi

List of Tables xii

List of Figures xiv

List of Abbreviations xvii

1 Introduction 1

1.1 Malware: A Cyber Threat . 1

1.2 Malware Detection . 3

1.2.1 Signature-based Detection . 4

1.2.2 Anomaly-based Detection . 5

1.3 The Problem Statement . 5

1.4 The Proposed Research Framework 7

1.4.1 Research Objectives . 8

1.4.2 The Components of Research Framework 9

1.4.2.1 Computing Environments 9

1.4.2.2 Region of Interest (Source of Features) 9

1.4.2.3 Analysis Types . 10

1.4.2.4 Feature Engineering 11

1.4.2.5 Learning Types . 12

1.4.2.6 Evaluation . 13

1.5 Organization of the Thesis . 14

2 Related works 16

2.1 Features used with ML Algorithms for Malware Detection 16

2.1.1 Static Features . 17

2.1.1.1 Byte-n-grams . 18

2.1.1.2 Opcode-n-gram . 19

2.1.1.3 Strings . 19

2.1.1.4 PE headers’ fields 20

2.1.1.5 Permissions and Intents 20

2.1.1.6 Image Feature . 21

2.1.1.7 Miscellaneous . 21

2.1.2 Dynamic Features . 21

2.1.2.1 Host Trace . 22

2.1.2.2 Network Trace . 22

2.1.3 Hybrid Features . 22

2.2 Static Features from Portable Executable Headers 23

2.2.1 Headers Fields’ value . 24

2.2.2 Dynamic Link Library (DLL) 25

2.2.3 Application Programming Interface (API) calls 26

2.2.4 Data Directories . 27

2.2.5 Section Headers . 27

2.2.6 Section Name . 28

2.3 Static Features from Android’s APK 30

2.3.1 Used Feature . 30

2.3.2 Meta-data . 31

2.3.3 Code sample . 31

2.3.4 Permissions . 32

2.3.5 Image based features . 33

2.3.6 System call . 34

2.4 Observations and Motivations . 36

2.5 Summary . 37

i

3 Malicious Portable Executable Detection Using Integrated Feature Set 38

3.1 Portable Executable File Format . 38

3.1.1 DOS Header . 40

3.1.2 NT Header . 40

3.1.2.1 File Header . 40

3.1.2.2 Optional Header . 41

3.2 Method for Feature set Generation . 41

3.3 Raw Feature Set . 43

3.4 Integrated Feature Set . 45

3.4.1 Raw Features . 46

3.4.2 Derived features . 47

3.4.2.1 Entropy . 48

3.4.2.2 File Creation Year 49

3.4.2.3 Suspicious Sections Name 50

3.4.2.4 Packer Info . 50

3.4.2.5 File Size . 50

3.4.2.6 File Information . 51

3.4.2.7 Image Base . 51

3.4.2.8 Section Alignment 52

3.4.2.9 File Alignment . 52

3.4.2.10 Size of Image . 52

3.4.2.11 Size of Headers . 53

3.5 Performance comparison of Integrated versus Raw feature set 53

3.5.1 Dataset . 54

3.5.1.1 Pre-processing . 54

3.5.1.2 Class Labelling . 54

3.5.1.3 Feature extraction 55

3.5.2 Experimental System . 56

3.5.3 Results . 57

3.5.3.1 Train-Test split . 57

3.5.3.2 10-fold cross validation 58

3.5.3.3 Testing with new test dataset 60

ii

3.5.3.4 Comparison with previous works 62

3.5.3.5 Testing with selected Features 64

3.6 Summary . 66

4 Malicious Portable Executable Detection Using Section Name 68

4.1 Portable Executable Sections . 69

4.1.1 Section Table . 70

4.1.1.1 Name . 71

4.1.1.2 VirtualSize . 72

4.1.1.3 VirtualAddress . 72

4.1.1.4 SizeOfRawData . 72

4.1.1.5 PointerToRawData 72

4.1.1.6 Characteristics . 73

4.1.2 Common Sections of Portable Executable (PE) file 74

4.1.2.1 .text/.code . 74

4.1.2.2 .idata . 74

4.1.2.3 .rdata . 75

4.1.2.4 .edata . 75

4.1.2.5 .rsrc . 75

4.1.2.6 .bss . 75

4.2 Section Name as features . 76

4.2.1 Motivations . 76

4.2.2 Process and Method . 77

4.2.3 An Example of the Feature set 82

4.3 Discriminative capacity of Section Name as features 82

4.3.1 Dataset . 83

4.3.1.1 Pre-processing . 83

4.3.1.2 Class Labelling . 83

4.3.1.3 Feature extraction 84

4.3.2 Experimental System . 84

4.3.3 Results . 85

4.3.3.1 Classifiers performance without feature selection . . . 85

4.3.3.2 Classifiers performance with feature selection 86

iii

4.4 Summary . 89

5 Malicious Android Applications Triaging Using Weighted Permission 90

5.1 Andriod Security . 91

5.2 Application’s Permission . 92

5.2.1 Manifest file . 93

5.2.2 Statistical test . 94

5.2.2.1 File size . 94

5.2.2.2 Total files . 95

5.2.2.3 Total Permissions 96

5.3 Weighted Permission as Feature set . 97

5.3.1 Permission Extractor . 98

5.3.2 Scoring Engine . 99

5.3.2.1 Score Distribution 102

5.3.3 Feature Set Generator . 103

5.4 FAMOUS . 104

5.4.1 FAMOUS’ Architecture . 107

5.5 Performance of Weighted Permission based Feature Set 108

5.5.1 Dataset . 108

5.5.1.1 Pre-processing . 109

5.5.1.2 Class Labelling . 110

5.5.1.3 Feature extraction 111

5.5.2 Experimental System . 111

5.5.3 Results . 111

5.5.3.1 Experiment-I: Machine Learning classifier performance

test . 112

5.5.3.2 Experiment-II:FAMOUS performance test 114

5.5.3.3 FAMOUS: GUI Interface 115

5.5.3.4 FAMOUS: Operational result 116

5.6 Summary . 117

6 Malicious Android Applications Detection using Multimodal Image Repre-

sentations 118

iv

6.1 Image Representation of Android Applications 119

6.1.1 Color Channels . 119

6.1.1.1 Grayscale . 120

6.1.1.2 RGB . 120

6.1.1.3 CMYK . 120

6.1.1.4 HSL . 120

6.1.2 Android application to Image Conversion 121

6.1.2.1 Process and Method 121

6.1.2.2 Example of Application to Image output 124

6.2 Image features based Apps classification 125

6.2.1 Image Features . 125

6.2.1.1 Scale Invariant Feature Transform (SIFT) 126

6.2.1.2 Histogram of Oriented Gradients (HoG) 126

6.2.1.3 Speeded Up Robust Features (SURF) 127

6.2.1.4 GIST . 127

6.2.2 Process for Feature set Generation 128

6.3 Performance of Image features for Android Application Classification . 130

6.3.1 Dataset . 130

6.3.1.1 Pre-processing . 130

6.3.1.2 Class Labelling . 131

6.3.1.3 Feature extraction 131

6.3.2 Experimental System . 132

6.3.3 Results . 132

6.3.3.1 Metadata analysis 132

6.3.3.2 Basic metrics and Confusion Matrix 132

6.3.3.3 Advance metrics . 134

6.4 Summary . 137

7 Conclusions and Future scopes 139

7.1 Conclusions . 139

7.2 Answers of the Research Questions 139

7.3 Future Scopes . 141

v

References 142

List of Publications 156

Vitae 157

Certificate

This is to certify that this thesis titled “A Framework for Malware Detection with Static

Features using Machine Learning Algorithms” submitted by Mr. Ajit kumar, to the

Department of Computer Science, School of Engineering and Technology, Pondicherry

University, Puducherry, India for the award of the degree of Doctor of Philosophy in

Computer Science and Engineering is a record of bonafide research work carried out

by him under our guidance and supervision.

This work is original and has not been submitted, in part or full to this or any other

University/Institution for the award of any other degree.

Dr. K.S. Kuppusamy.,Ph.D

(Co-Supervisor)

Prof. G. Aghila.,B.E.(Hons.),M.E.,Ph.D

(Supervisor)

Department of Computer Science,

School of Engineering and Technology,

Pondicherry University,

Puducherry-605014, India.

Place: Puducherry

Date :

vii

Declaration

I hereby declare that this thesis titled “A Framework for Malware Detection with

Static Features using Machine Learning Algorithms” submitted to the Department

of Computer Science, School of Engineering and Technology, Pondicherry University,

Puducherry, India for the award of the degree of Doctor of Philosophy in Computer

Science and Engineering is a record of bonafide research work carried out by me un-

der the guidance and supervision of Prof. G. Aghila and Dr. K.S Kuppusamy.

This work is original and has not been submitted, in part or full to this or any other

University/Institution for the award of any other degree.

Place: Puducherry

Date : Ajit Kumar

viii

Acknowledgement

I thank my parents without whom this work would not have been possible. I also

would like to thank my wonderful sisters who had been very cooperative and gave me

unsolicited affection and emotional support during the course of my education and the

Research Work. I would like to acknowledge my thanks to all my family members who

have supported me and their encouragement.

It is a genuine pleasure to express my deep sense of thanks and gratitude to my

Ph.D. Supervisor, Dr. G. Aghila, Professor, Department of Computer Science and

Engineering, National Institute of Technology Puducherry, Karaikal and Co-supervisor,

Dr. K.S. Kuppusamy, Assistant Professor, Department of Computer Science, School

of Engineering and Technology, Pondicherry University, Puducherry, for their support

and encouragement throughout the course of this study. Their dedication, invaluable

suggestions and keen interest above all their overwhelming attitude to help had been

solely and mainly responsible for completing my work. Timely advice, meticulous

scrutiny and scholarly advice which I recieved from them during the study and the

preparation of this thesis empowered me to present in this form.

Besides my supervisor and co-supervisor, I would like to express my thanks to my

doctoral committee members: Dr. H.P. Patil and Dr. S.Kanmani for their invaluable

suggestions, encouragement and for the thoughtful questions which incented me to

improve my research from various perspectives.

I sincerely thank Prof. P.Dhanavanthan, Dean of School of Engineering and

Technology and Dr. T. Chithralekha Head i/c of the Department of Computer Science,

Pondicherry University for providing institutional support to carry out the research

work.

I also want to thank my former teachers Dr. S. Sivasathya, Dr. R. Sunitha,

Dr. V. Uma, Dr. P. Shanthi Bala, T. Sivakumar and all of my JNV Shekhpura

teachers. Besides my former teachers, I would like to thanks Dr. P. Thiyagarajan

ix

and Mr. Suprabhat Kumar who taught me life lessons and guided through all ups and

downs of my life.

I am also thankful to Mr. K. Suresh, senior technical assistant, who maintained the

machine in my lab so efficiently that I never had to worry about not having my own

computer.

I also would like to express my deepest gratitude to the Honorable Vice-Chancellor

(Officiating) of Pondicherry University, Prof.) Anisa Basheer Khan, the Registrar and

the Assistant Registrar of all the departments, and Director (Research) at Pondicherry

University, Puducherry for their official support to make this thesis in time.

I express my deepest gratitude to office staff of my department for their support.

I extend my thanks towards the staffs of Ananda Rangapillai Library of Pondicherry

University for their service and efforts to conduct many workshop and seminar related

to research, which helped to furnish the research in the form of thesis.

I also would like to thank all my colleagues and friends including but not limited

to, Mr. Agam Kumar, Mr. Rajesh Kumar, Mr. Uday kumar, Dr. Smarak Samarjeet,

Mr. Naveen Kumar, Dr. Richa Mishra, Mr. Rajnish Mishra, Ms. Leena Mary Francis,

Mr. Vikash Kumar, Mr. Abhishek Kumar, Mr. Rajesh Kumar, Ms. Jonti Deuri,

Dr. Bithin Thakur, Dr. Manu C. Sakaria, Ms. Lois Jose, Mr.Jayapradapan, Dr. Ajay

Harit, Mr. Shailesh Khapre, Dr. D. Chandramohan and my lab mates Mr. Balaji V.,

Mr. Gunikhan Sonowal, Mr. Abid Ismali, Mr. AB Shqoor Menengroo, Mr. Pathula

Mulridhar and Mr. Pawan Kumar Ojha for their fruitful support and encouragement

during the course of this work.

I dedicate this thesis to my parents, sisters and friends.

x

Abstract

Malicious software (Malware) are programs written intentionally to harm computing

environments. With advancements in computing, the modern malware has also evolved

in its evasion and attack techniques. Most of the current malware detection techniques

are based on the signature-based method and so suffers from inherent limitations such

as (1) inability to detect unknown and zero-day malware; (2) frequent signature updates

and larger signature database; (3) complex and time intensive malware analysis.

Generally, the signature-based methods use a sequence of bytes as the signature to

detect malware while non-signature-based methods work on profile matching which

is also known as Anomaly detection. Among different techniques, machine learning

based malware detection has major success and it is able to overcome the limitations of

signature-based detection.

Lately, research and development for malware detection techniques are moving to-

wards non-signature based method. The feature engineering is the most important step

of machine learning based malware detection. The features from malicious and benign

programs can be extracted either by static or dynamic methods. The existing research

has shown that the features extracted through static method are able to achieve good

accuracy with low false positives.

In this research work, a framework for detection of the malicious portable exe-

cutable and Android apps is developed. The framework is based on static features and

used machine learning algorithms to build malware detectors. The resulted malware de-

tectors are capable of grouping unknown and zero-day sample into its respective class

i.e. malware and benign. Under the proposed framework four feature sets are compiled

using various sets of features (raw features, derived features, section names, weighted

permission, and features from the Image representation of apps) which are created us-

ing feature engineering methods. All the four proposed feature sets, namely integrated

feature set (include raw and derived features), section-name based feature set, weighted

xi

permission based feature set and image-based feature set have been tested and com-

pared with existing feature set.

With the proposed integrated feature set built from the portable executable header

fields, Random forest achieved the accuracy of 98.4% with 10-fold cross-validation

and 89.23% accuracy with test dataset evaluation. The section-name based feature set

built with only section name of the portable executable file achieved the accuracy of

93% with features having non-zero information gain score and 92% accuracy on top 20

features with Random forest classifier.

The proposed weighted permission based feature set performed better than it’s coun-

terpart boolean feature set and was able to achieve 94.84% accuracy with Random forest

classifier. In the image-based feature set created using GIST features extracted from the

grayscale representation of Android apps, the Random forest classifier yields the best

result having 91% accuracy and only 8% error rate.

From the experimental result, it is observed that the performance of the integrated

feature set are better than commonly used raw feature set. For the feature set gener-

ated by using section name, as the boolean feature, an accuracy of 93% is achieved

which clearly indicates the potential of section name. Besides the moderate accuracy

of section name based feature set, it can be used with other features to achieve a better

performance.

The weighting of permission improves the performance of the classifiers which can

be observed by the experimental results i.e. 94.84% accuracy. The performance of most

of the classifiers are better with weighted permission based feature set. The time taken

to calculate permission frequency for permission scoring is only for the proposed feature

set but not for its counterparts feature set. The permission scoring is a one-time process

so the time consumption can be traded with the improved accuracy. By converting apk

to image it became possible to extract various image-based features which can be used

for Android malware detection. With the GIST features an accuracy of 91% is achieved

which opens a new dimension for exploring features for Android malware detection.

The performance of image-based feature would be improved further by the use of other

image features i.e. image descriptor and different image representation.

This thesis explores the potential of four proposed static feature sets with machine

learning algorithms for malware detection.

xii

List of Tables

2.1 Comparison of PE features used in earlier works 29

2.2 Comparison of Android features used in earlier works 35

3.1 Integrated Feature Set . 46

3.2 Raw and Derived Features . 49

3.3 Classifiers Result on Train-Test(70-30) Split 57

3.4 Accuracy Comparison of Classifiers with 10-Fold Cross-validation . . . 59

3.5 Type of Malware Samples and Count in Test Dataset 61

3.6 Classifiers Performance on Test Dataset 61

3.7 Result Comparison of the Proposed Work with the Earlier Work 63

3.8 Tree Method Based Selected Top 10 Features from Raw and Integrated

Feature Set . 65

4.1 Important Flags of Section Header’s Characteristics Field 73

4.2 Top 20 Features with Score and Frequency 81

4.3 An Example for Seature Set Based on Section Name as Features 82

4.4 Packed and Unpacked Sample in Dataset 83

4.5 Classifiers Result for Various Performance Metric 85

4.6 Top 20 Features with Score and Frequency 87

4.7 AUC of Classifiers with Set of Selected features and 10 Folds Cross-

Validation . 88

5.1 PuB, PuM, BSP, MSP and EMSP Values of Top 25 Permissions 101

5.2 Android Apks Collected from Third Party App Stores 110

5.3 Classifiers Performance on (70%-30%) Dataset Split with EMSP and

Boolean Feature . 114

5.4 Classifiers Performance on Test Dataset with EMSP and Boolean Feature114

xiii

5.5 FAMOUS:Scanning Results of Four Devices 116

6.1 Benign and Malware Sample Statistic 131

6.2 Confusion Matrix Values of Classifiers 134

6.3 Classifiers Performance on Various Metrics 136

1 List of header’s fields used as raw features 143

2 DOS header fields . 144

3 File header fields . 144

4 Optional header fields . 145

xiv

List of Figures

1.1 Total and New Malware During the Period 2013-17 2

1.2 Types of Malware Detection Techniques 4

1.3 The Research framework . 8

2.1 Types of Features Used for Building Machine Learning Based Malware

Classifier . 18

3.1 File Format of Portable Executable . 39

3.2 Block Diagram of Overall Work Flow 42

3.3 Example of Valid and Invalid TimeDateStamp Value 48

3.4 ROC Curves for Different Classifiers with Train-Test Split Method . . . 58

3.5 Accuracy Box Plot of Classifiers with 10-Fold Cross Validation 60

3.6 ROC of Classifiers on Test Dataset . 62

3.7 Decision Tree and Random Forest Accuracy on Top N Features 66

4.1 Section Header and Section of the Portable Executable Format 70

4.2 ROC for All Classifiers with ALL Features 86

4.3 ROC for All Classifiers with Top20 Features 88

5.1 Multi-Layered Security Measures of Android 92

5.2 A Snapshot of AndroidManifest File Showing Uses-Permission Ele-

ments . 93

5.3 A Snapshot of AndroidManifest File Showing Activity Elements 93

5.4 Histogram of File Size for Malware and Benign Samples 95

5.5 Histogram of File Count for Malware and Benign Samples 96

5.6 Histogram of Total Permissions Requested by Malware and Benign

Samples . 97

xv

5.7 Feature Extraction and Scoring System 98

5.8 Histogram of Total EMSP for Malware and Benign Apks 102

5.9 Histogram of Total BSP and MSP for Malware and Benign 103

5.10 A Snapshot of Feature Set Generated Based on EMSP and Permissions . 104

5.11 Main Window of FAMOUS: Listing All Applications of the Attached

Device . 106

5.12 Scan Result Window of FAMOUS: Showing Predicted Class Label of

All the Selected Applications . 106

5.13 Block Diagram of FAMOUS’ Architecture 107

5.14 ROC for Six Different Classifier on EMSP Based Feature 112

5.15 ROC for Five Different Value for Number of Trees in Random Forest . 113

5.16 ROC of Six Classifiers on Boolean Features 113

5.17 ROC on Test Dataset with EMSP Features 115

5.18 ROC on Test Dataset with Boolean Features 115

6.1 Workflow of Image-based Android Malware Detection System 121

6.2 A Benign and Malware Sample in All Four Image Formats 125

6.3 Size Comparison of Malicious and Benign Apps 133

6.4 Confusion Matrix for Decision Tree 135

6.5 Confusion Matrix for Random Forest 136

6.6 Confusion Matrix for Nearest Neighbour 137

6.7 Classifier Performance Comparison with Bar Chart 137

xvi

List of Abbreviations

ADB Android Debug Bridge.

API Application Programming Interface.

APK Android Package Kit.

ASCII American Standard Code for Information Interchange.

AUC Area Under Curve.

AV Anti-Virus.

COFF Common Object File Format.

COM Component Object Model.

CSV Comma Separated Value.

CYMK Cyan, Magenta, Yellow, Key (blacK).

DDoS Distributed Denial of Service.

DLL Dynamic Link Library.

DOS Disk Operating System.

DT Decision Tree.

ELF Executable and Linkable Format.

EXE Executable.

FN False Negative.

FP False Positive.

FPR False Positive Rate.

GUI Graphical User Interface.

xvii

HoG Histogram of Oriented Gradients.

HPC Hardware Performance Counter.

HSL Hue, Saturation, Lightness.

HSV Hue, Saturation, Value.

IAT Import Address Table.

IoT Internet of Things.

IR Information Retrieval.

kNN k-Nearest Neighbors.

LDA Linear Discriminant Analysis.

LR Logistic Regression.

MASM Microsoft Macro Assembler.

MD Message Digest.

ML Machine Learning.

MSDN Microsoft Developer Network.

NB Gaussian Naive Bayes.

NN Neural Networks.

OOA Objective Oriented Association.

OS Operating System.

PE Portable Executable.

RF Random Forest.

RGB Red, Green, Blue.

ROC Receiver Operating Characteristic.

RVA Relative Virtual Address.

xviii

SD Standard Deviation.

SHA Secure Hashing Algorithm.

SIFT Scale Invariant Feature Transform.

SURF Speeded Up Robust Features.

SVM Support Vector Machine.

TN True Negative.

TP True Positive.

TPR True Positive Rate.

URL Uniform Resource Locator.

USB Universal Serial Bus.

UTF Unicode Transformation Format.

VM Virtual Machine.

XML Extended Markup Language.

xix

CHAPTER 1

Introduction

This thesis entitled “A Framework for Malware Detection with Static Features using

Machine Learning Algorithms” aims to improve malware detection and overcome the

limitations of traditional signature-based detection methods. The omnipresence of mal-

ware is an established truth and is a critical threat for all kinds of computing environ-

ments. This research work focuses on Portable Executable (PE) and Android Package

Kit (APK), the file formats for Windows and Android Operating System (OS) respec-

tively. The selection of these two file formats is based on the highest number of users of

respective OS. Windows and Android have highest number of users with respect to their

competitive OSs for Desktop and Smartphone device respectively. This work statically

analyzes and uses the structure information of PE file and uses permissions extracted

from manifest file of app to build feature sets to train and test various machine learning

algorithms for malware detection.

1.1 Malware: A Cyber Threat

Today, the World is moving towards digital era where the use of Cyber technologies

have become an integral part of daily life. The use of Computer and Internet is not only

limited to personnel computation and information access,but its role is also extended to

everything by the use of technologies such as Internet of Things (IoT), crypto-currency

etc. Currently, the World is talking about digital economy to cyber colonies, such deep

involvement of Computer and various other technologies brings new challenges to the

digital World. Everyday, people and firms are witnessing different types of cyber attack

1

Figure 1.1: Total and new malware during the period 2013-17

on various cyber infrastructure from e-banking to e-commerce 1 (Anderson et al., 2013).

Phishing, Distributed Denial of Service (DDoS), identity theft, Ransomware etc. are

some of the common attack methods. Many of the modern cyber attacks are carried out

by the direct or indirect use of the Malware.

Malicious program, commonly known as Malware is a computer program is inten-

tionally developed for malicious activities, such as attacking computer networks, system

hijacks, file deletion, information stealing, spamming and malware downloads (Szor,

2005). The list of malicious activities is very extensive and is growing with new en-

tries with a fast and regular rhythm. For example, Stuxnet added Critical-Infrastructure

as target to the malicious list (Langner, 2011). There are two classes of malware: the

newly produced malware and variants of malware (Yu et al., 2011). Figure 1.1 shows

the voluminous growth rate for total malware and new malware from 2013 to June,

2017 2.

Malware sophistication in terms of, self-mutation (Bruschi et al., 2006), crypto-

virology (Young and Yung, 1996; Shivale, 2011; Leder et al., 2009), multi-propagation,

multi-payload 3 (example: Nimda worm), multi-platform 4 execution and various obfus-

1http://www.livemint.com/Industry/MBqlWLIFkpR4W34sdA6TqN/50-cyber-attack-

incidents-reported-in-financial-sector-govt.html
2https://www.av-test.org/en/statistics/malware/(Accessed:June 2017).
3http://www.sans.org/reading-room/whitepapers/malicious/worm-propagation-

countermeasures-1410,(Accessed: 2017-04-30)
4http://searchsecurity.techtarget.com/magazineContent/Malware-trends-The-

2

cation (You and Yim, 2010), and anti-analysis techniques (Moser et al., 2007; Bethen-

court et al., 2008) are improving on a daily basis. These sophisticated malware and its

exponential growth brings major challenge to the available anti-malware solutions. The

motives of malware writers 5 are also changing; initially malware were written for the

sake of fun, thrill and fame but presently the focus has shifted towards making profit

(Caballero et al., 2011), supporting terrorism (Langner, 2011) (example: Stuxnet) and

cyber espionage (Zhioua, 2013) (example: flame, duqu and dino).

1.2 Malware Detection

The exponential growth and sophistication of malware poses a critical challenge to the

digital world. To control and minimize the loss caused by malware, many security

solutions i.e. Anti-Virus (AV) techniques 6 have been developed and new approaches

have been researched. These AV techniques are broadly classified as Signature-based

and Non-Signature-based techniques. Signature-based AV software uses scanning tech-

nique. It scans the suspicious files for signature (specific sequence of bytes). This

approach is very fast and gives nearly 100% accuracy for known malware but totally

fails to detect the “zero-day7” (Bilge and Dumitras, 2012) and “unknown8” malwares

(Hodgson, 2005; Murugan and Kuppusamy, 2011; Kumar and Pant, 2009). Signature-

based techniques are limited by its signature databases and moreover signature creation

itself is a time taking and complex process which could provide a larger attack time

window9 for the attacker.

Using known tools and techniques will dramatically decrease the operation’s likeli-

hood of success for the attacker (Potter and Day, 2009). So attacker must create a new

tool for committing a successful cyber-crime and hence different anti-malware evading

rise-of-cross-platform-malware,(Accessed: 2017-04-30)
5The person who writes malware. The malware writer and the attacker can be the same or the different

individual.
6Anti-virus techniques and malware detection techniques represent the same. Anti-Virus is a security

product hence Anti-virus techniques are mostly used in business environment while malware detection

techniques used in research.
7Malware which is recently released by attacker in wild and have not detected by any AV.
8Those malware for which signature is not available. Example: targeted malware
9Time between release of a malware in wild and updating anti-malware solution (collect sample,

create and update signature, push update to AV and end-users).

3

Figure 1.2: Types of Malware Detection Techniques

techniques (Christodorescu and Jha, 2004) are being developed. Anti-malware process

involves many tasks amongst which detection is the most important and complex one.

Many malware detection techniques have been discussed in literature and many of them

are being used by the anti-malware industry.

In past, researchers have grouped malware detection techniques in different ways,

Signature-based and Anomaly-based are two main classes of malware detection tech-

niques (Idika and Mathur, 2007). Anomaly-based detection is further branched into

specification-based detection. On the basis of underlying analysis techniques, all the

aforementioned detection techniques are grouped into static, dynamic and hybrid tech-

niques. Figure 1.2 depicts the classification of Malware detection techniques (Idika

and Mathur, 2007). Static detection techniques are based on static analysis which does

not execute the sample. Dynamic detection techniques use dynamic analysis which

executes the sample in a controlled environment to extract out different behaviours of

sample. Hybrid detection techniques use both static and dynamic analysis techniques.

1.2.1 Signature-based Detection

Signature-based detection uses the signature to detect malicious programs. Signature is

a sequence of bytes extracted from previously known malware. Static signature-based

detection does not run the program whereas dynamic signature-based detection executes

the program in a safe environment and checks for the signature.

Signature-based detection gives higher accuracy for known malware but totally fails

4

when encountered with the “zero-day” and “unknown” malwares. The Signature-based

detection is also limited to the signature database which demands a regular update of

newly created signatures and storing the signature database at end-host requires space

proportional to the number of signatures.

1.2.2 Anomaly-based Detection

Anomaly based detection which is a type of Non-Signature-based detection, is capable

of overcoming the limitations of signature-based detection. The Anomaly-based detec-

tion does not use malware specific signature. For anomaly detection a normal profile

is developed and any diversion from normal profile is treated as malicious. This work

focuses on static analysis based malware detection using machine learning algorithms

which is a type of anomaly-based detection.

Basically, features are the core of the Machine Learning (ML)-based malware detec-

tor (Yan et al., 2013b). This work aims to devise and create new feature sets which can

improve the malware detection performance. In this research work, four feature sets are

created to detect malicious Portable Executable (PE) and Android applications using the

machine learning algorithms. This work has used static analysis method which is sim-

ple and fast for feature extraction and also yields effective performance. The research

problem statement and the related specific research questions which are answered by

this thesis is presented in the following section 1.3.

1.3 The Problem Statement

Portable executable and apk are two major file format used by Windows and Android

OS respectively, hence most of malware in wild are in these two file formats. Tra-

ditional signature-based malware detection techniques are unable to detect “zero-day”

and “unknown” malware, which necessitate to explore alternative non-signature-based

detection techniques. Machine Learning based methods serve an alternative solution

which can overcome the limitations of traditional system with the use of static or dy-

namic features. The exponential growth in number of malware and its increasing so-

phistication makes malware detection time consuming. In many cases malware escape

the detection which is the major concern for Cyber space and the users. The research

5

problem focused by this thesis can be stated as follows:

To build a framework for malware detection by exploring the potential of

static features with feature engineering techniques to enrich the discrimina-

tive capability of features to achieve better malware classification results with

machine learning algorithms.

This thesis explores the above stated research problem with the help of following

research questions:

Question 1: How the performance of PE headers-based features can be improved?

As stated earlier, the PE is main file format used by Windows OS. Many static

features can be extracted from PE to build ML based malware detector. Most of

the existing works have used fields value as feature value without any processing.

This thesis has proposed an integrated feature set having combination of derived

and raw features based on various fields of PE headers. All these features are

extracted with static method but values for derived features are obtained after

pre-processing the field’s value. Various experiments shows that it improve the

performance of ML based malware detector in comparison to existing feature set.

Question 2: What is the potential of section name as features to build ML based mal-

ware detector?

Each PE file is organized in various sections and each section has a name with

the respective header. In traditional signature-based system few section names are

used as the part of signature and many ML based detector uses just total section

as feature. This research has proposed a feature set based on just section name

and explores the potential of it with various ML algorithms.

Question 3: How weighting the permission of Android applications will affect the de-

tection performance of ML algorithms?

As stated in the problem statement above Android applications are packaged only

as apk format. Each apk has many information which are used as static features to

train ML algorithms. Permission present in the manifest file inside the apk is one

among them. Earlier works have considered permission as boolean features while

this thesis assign a weight to each permission to create numerical feature set using

6

permissions. With various experiments conducted, the performance improvement

over its boolean counterpart has been studied.

Question 4: Do the image representation of Android application can improve the ma-

licious android applications detection?

Using apk structure to extract features yields only values supported by the format.

Treating apk as binary file and converting it into image can make it possible to

use features available for image classification also. This research uses apk to

image conversion and explores the effect of image features for malicious Android

application detection.

Question 5: How the various feature selection and machine learning algorithms impact

the performance of the features?

Various features have unequal discriminative capability, some are very significant

in deciding the class label while others are least. This research explores the fea-

ture selection methods to choose best performing features among various features

extracted from PE headers and Android applications. The working principle of

machine learning algorithm varies one to another. So, it is possible that an al-

gorithm can perform very well with a feature set but their performance may get

degraded with other feature sets. This research experiments with various ML al-

gorithms on the proposed feature sets which help to decide and choose the best

ML algorithm for malware detection.

In order to find answers for all the above listed research questions, this study has

conceptualized a layered research framework, under which various experiments are car-

ried out and the steps of machine learning such as pre-processing, feature extraction,

feature selection and training & testing are done. The framework and its layers are

explained in the following section 1.4.

1.4 The Proposed Research Framework

To explore the problem domain and seek answers for the proposed research questions,

a six layered research framework has been conceptualized, which helped in carrying

the research work systematically. Figure 1.3 shows the all six layers of the proposed

7

Figure 1.3: The Research framework

research framework and in subsequent sections a brief description of each layer with it

components is presented.

1.4.1 Research Objectives

The overall objective of this research work is to enrich the discriminative capacity of

existing static features and devise new features for malware detection using machine

learning algorithms. Below the specific objectives are listed.

1. To build an integrated feature set from various fields of portable executable head-

ers and compare it with the raw feature set for malware classification.

2. To construct a boolean feature set with section names of the portable executable

file and evaluate its performance for malware classification.

8

3. To extract and build a feature set from the image representation of apps for An-

droid malware classification.

4. To construct a permission based feature set using the weighted score and compar-

ing it with permission based boolean feature set for Android malware classifica-

tion.

1.4.2 The Components of Research Framework

As stated earlier, to carry out the research work, a six layered research framework has

been conceptualized. This section presents a brief summary of each layer and its com-

ponents.

1.4.2.1 Computing Environments

Computing environment is the term used to describe a complete computing platform

comprising of hardware, OS, and other software. In recent time, the exponential growth

in Cyber attacks in general and malware attacks particularly forced each computing

environment to have Anti-virus softwares. This research work aims to improve the de-

tection of such AV softwares. This work has used PE files which is the file format used

by Windows OS known for personal computing and used apk which is the application

packaging system for Android OS known for mobile computing. The selection of these

two were made on the basis of number of users. These two have highest users in re-

spective OS types 10. In Figure 1.3 the top layer is the computing environment which is

the first thing to decide to move further.

1.4.2.2 Region of Interest (Source of Features)

The PE and apk have many areas (header, meta-data and code) which can be used to

extract various features to build malware classifiers. This study has focused on PE

headers for PE files and image format & manifest files for Android applications. This

section gives a brief introduction about these feature sources. The detailed description

of each source and feature set is presented in forthcoming Chapters 3 to 6. In Figure 1.3,

10https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&

qpcustomd=0

9

the second layer is the Region of Interest which lists the sources used in this work to

extract features to build the feature set.

1.4.2.2.1 PE Headers: Every PE file has two main headers namely DOS header and

NT header having various fields to hold values used for loading and executing the PE

files. PE files are organized in section and each section has a header which has fields

holding information about the section. In existing works, these field values are used as

feature without any pre-processing (Schultz et al., 2001b; Awan and Saqib, 2016). This

work has proposed an integrated feature set based on these fields and rules applicable

on these fields. This work also considers PE sections and used section name as features

to build a boolean feature for malware detection.

1.4.2.2.2 Image: With advancements in domain of Digital image processing, many

image features have been identified to use with machine learning algorithms. To harness

the benefits of this mature field, this work has converted apk into image and used GIST

feature to train and test various ML algorithms for building malware detector based on

image features.

1.4.2.2.3 Manifest: Each Android application has a manifest file which along with

other metadata and have a list of permissions required by the application to perform

it functionalities on user device. The work has used this manifest file and extracted

permissions to build a weighted permission based feature set.

1.4.2.3 Analysis Types

Feature extraction is dependent on analysis type and so features differs on the basis of

analysis type. Sample analysis and feature extraction can be done in two ways, static

and dynamic. In Figure 1.3, the third layer is the analysis layer which mentions the

selected static analysis method.

1.4.2.3.1 Dynamic analysis: In dynamic analysis, the sample is executed in a con-

trolled environment and the behaviours are recorded to create features. It is complex,

time consuming and requires intensive processing. It is suitable for sample which are

packed and for which static analysis is not possible. Use of the virtual machine makes

10

it possible to run different OS and take snapshot 11 of its state which is very helpful for

execution of malware during dynamic analysis.

1.4.2.3.2 Static analysis: In static analysis, the sample is not executed and only the

structure is analyzed by going through the hexadecimal or assembly representation of

the sample. Static analysis is done using reverse engineering of the sample, various

disassembler and hex editors which converts the sample into assembly equivalent or

shows in hexadecimal equivalent of its binary values. This thesis work has chosen the

static analysis for all the feature extraction tasks, which is simple, fast and require less

processing than dynamic analysis.

1.4.2.4 Feature Engineering

It is the process of using domain knowledge of the data to create features that make

machine learning algorithms work. It is very fundamental to the application of machine

learning and is complex and expensive12. This thesis work is focused on the domain

of malware detection. Complex task of feature engineering is very challenging with

malware samples, since it may infect the experimental computing environment and can

misguide the analysis and extraction process. This work has created and experimented

with various features and feature set in order to improve the malware detection using

machine learning algorithms. In Figure 1.3, the fourth layer is the feature engineering

layer which is core of this research work.

1.4.2.4.1 Derived Feature: As stated earlier, earlier works have used field’s value as

feature without any processing and so those are considered and termed as raw features

in this work. Instead of using raw values from PE headers, in this work raw values are

compared with the field rule and the resulting output are considered as feature value.

1.4.2.4.2 GIST: There are various image descriptors which are being used in digital

image processing for various classification and detection tasks. In this work, GIST

descriptors of each image representation of malware and benign apk are extracted and

used to train machine learning algorithms.

11It records the state of operating system such as installed softwares, files status etc.
12https://en.wikipedia.org/wiki/Feature_engineering

11

1.4.2.4.3 Weighted Permission: Many of existing works have used permission as

boolean feature to use with machine learning algorithms (Sanz et al., 2012; Idrees et al.,

2017). In this work, each permission has been assigned a weight using their frequency

in malware and benign sample. The resulting weight were considered as feature value

instead of traditional boolean value to build feature set.

1.4.2.5 Learning Types

Learning is the process of passing feature set to machine learning algorithm where

the relation between features are learnt and the learned relation is use to classify new

sample. Learning is mainly of two types: supervised and unsupervised. In supervised

learning each row of the feature set has a respective class label whereas in unsupervised

learning feature sets are not labeled. Supervised learning mostly used for classification

task which matches the malware detection problems.

1.4.2.5.1 Machine Learning Algorithms Machine learning algorithms are mainly

of two types: 1) Supervised 2) Unsupervised. Supervised algorithms require labeled

feature set while unsupervised algorithms work without labeled feature set. Supervised

algorithms are used for classification tasks whereas unsupervised algorithms are used

for clustering task. In this thesis work eight supervised machine learning algorithms

(Logistic Regression (LR), Decision Tree (DT), k-Nearest Neighbors (kNN), Linear

Discriminant Analysis (LDA), Gaussian Naive Bayes (NB), Support Vector Machine

(SVM),Random Forest (RF), and AdaBoost) are selected which are used in various ex-

periments. LR is a type of regression that is used to estimate the probability that the

dependent variable will have on a given value, instead of estimating the value of the vari-

able. The DT is a tree based supervised learning technique which recursively partitions

the features space to model the relationship between features and the target categorical

variable. The KNN is distance based algorithm and the working principle of nearest

neighbor method is to find a predefined number of training samples closest in distance

to the new point, and predict the label from these. LDA having a linear decision surface.

It has closed-form solutions that can be easily computed and are inherently multi-class.

NB method works on applying Bayes’ theorem which assume independence between

every pair of features. SVM works by classifying data through finding the line which

12

separates data into classes. It tries to maximize the distance between the various classes

and referred as margin maximization. The RF uses ensemble methods on a number of

decision tree classifiers on various subsamples of the dataset and use averaging to im-

prove the predictive accuracy and control over-fitting. AdaBoost (Freund and Schapire,

1995) is an ensemble learner. It works by trying to fit a sequence of weak learners 13

on repeatedly modified versions of the data.

This thesis work has used Scikit-learn implementation of all the selected algorithms.

The Scikit-learn is a Python framework which has the implementation of many popular

machine learning algorithms. In this work, most of the algorithms are used with default

parameters and it has been indicated whenever any changes are made.

1.4.2.6 Evaluation

Evaluation is carried to make conclusions about the performance of feature set and the

respective machine learning algorithms. It helps in deciding the features or feature

set that performs better or how they are performing with different machine learning

algorithms. This thesis work has used standard evaluation methods to evaluate the

proposed feature set with various machine learning algorithms. This is the sixth step of

the proposed research framework and is depicted as last layer in Figure 1.3.

1.4.2.6.1 Cross-Validation: It is a technique to evaluate trained machine learning

algorithm by partitioning the original sample into a training and testing set. It works

with folds. For example in a k-fold validation, the sample is randomly partitioned into

k equal size sub-sample and k− 1 sets are used for training and the one left out set is

used to evaluate. The final result is average of k repeat, it helps in reducing the biasness

and over-fitting or under fitting. In this thesis, 10 fold cross-validation testing method

is used along with other traditional evaluation methods such as train-test split and with

news test dataset.

1.4.2.6.2 Performance Metrics The performance metrics are the systematic mea-

sures to evaluate the effectiveness of a system. In machine learning domain various

performance metrics are used to evaluate the effectiveness of the feature set, feature

selection algorithms, and machine learning algorithms. In this thesis work various

13Those models that are only slightly better than random guessings, such as small decision trees.

13

performance metrics are used to evaluate the discriminative capacity of the proposed

feature sets in comparison to its counterpart other feature sets. A set of performance

metrics is used to evaluate classification performance of the feature set along with vari-

ous machine learning algorithms. Some of these metrics are very primitive such as True

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). These

primitive metrics are used to calculate various advanced metrics such as, Precision,

Recall, Accuracy, F1-score and AUC.

The four advanced metrics accuracy, precision, recall, and F1-score have listed in

Eq. 1.1 to Eq. 1.4 which are used in this thesis work to evaluate the performance of all

the four proposed feature sets (respective section of all four feature sets are coded as I

to IV for avoiding repeated section heading.). Along with these metrics, there is two

more measure to evaluate the performance Receiver Operating Characteristic (ROC)

and Area Under Curve (AUC). The ROC curve is created by plotting the True Positive

Rate (TPR) against the False Positive Rate (FPR) at various threshold settings. The

AUC is total area under the plotted ROC curve. The result from AUC can be interpreted

as “greater the area better the performance”.

Accuracy =
T P+T N

T P+T N +FP+FN
(1.1)

Precision = T P/T P+FP (1.2)

Recall = T P/T P+FN (1.3)

F1− score = 2× precision+ recall
precision× recall

(1.4)

1.5 Organization of the Thesis

• Chapter II presents a survey of Malware detection techniques including earlier

works which have used Machine Learning algorithms and with static features.

• Chapter III introduces derived features which are the outcome of field’s values of

PE headers and associated rules for the fields. Combining derived features with

14

raw features as integrated feature set improved the classification performance (ac-

curacy, TFP etc.) of malware classifiers.

• Chapter IV explains and presents the potential of section name as binary feature

to classify sample into malware and benign class. It requires very low processing

for extraction and feature set preparation and provides adequate classification

performance.

• Chapter V presents the weighted permission as the feature and compares per-

formance with traditional binary permission feature. The permission weighting

was carried out by using a scoring engine which utilizes permissions frequency

as metric to calculate various scores. The best performing classifier was used to

build a tool for classifying installed apps of the live Android device.

• Chapter VI explore the potential of features extracted from image representa-

tion of Android apps. Each app was converted to image based on four different

color channels (Grayscale, Red, Green, Blue (RGB), Cyan, Magenta, Yellow, Key

(blacK) (CYMK),and Hue, Saturation, Value (HSV)) and GIST features were

used to train and test Machine Learning algorithms.

• Chapter VII discusses the conclusions and point out the future scopes and further

improvements.

15

CHAPTER 2

Related works

This chapter presents the existing works related to malware detection using Machine

Learning algorithms with static features. Works related to detection of both malicious

Portable Executable (PE) and Android applications are organized and presented in re-

spective sections. This study helps to understand the limitations and scope of improve-

ments in existing approaches and techniques. The entire study focuses on the existing

works which have used static features with machine learning to detect malware. In

the set of static features, works which have used Portable Executable (PE) header field

as features as well as Android application’s permissions as features or any other static

features to classify Android and PE applications have been explored.

Section 2.1 lists and explains various static features which are used with machine

learning algorithms. On the basis of analysis type, these static features are classified into

static, dynamic and hybrid. Section 2.2 groups and explains features based on Portable

Executable (PE) file whereas apk-based static features are explain in section 2.3. Sec-

tion 2.4 critically analyze the existing related works and discuss them in details.

2.1 Features used with ML Algorithms for Malware De-

tection

Feature extraction is the process of extracting or calculating value from each sample

of dataset. Feature extraction is domain dependent; for instance, Information Retrieval

(IR) domain feature extraction is straight and simple whereas for recommendation sys-

tem features set are structured and organized.

For malware research, dataset is normally the programs written in different forms

16

i.e. Dynamic Link Library (DLL), Executable (EXE), Component Object Model (COM)

and code snippets. Features extracted from these binary program files either through

static analysis or through dynamic analysis. Features extracted by static analysis tech-

niques are called as static features and features extracted by dynamic analysis are termed

as dynamic features. Figure 2.1 shows different types of static, dynamic and inte-

grated feature set used for malware detection.

Feature sets are classified into three groups: simple heuristic feature (features ex-

tracted from PE header or strings extracted from executable body), static features (fea-

tures extracted through static analysis) and dynamic features (features extracted at run-

time)(Dai et al., 2009). One of the studies considered detection techniques as structural

fingerprints which are statistical in nature and positioned it as ’fuzzier’ between static

and dynamic heuristics(Bilar, 2007). Komashinskiy et al. have presented classification

of features in detail; they have divided whole features as external and internal. Later

the internal features are grouped as static and dynamic, under these two groups generic

feature is also listed such as string, n-gram etc.(Komashinskiy and Kotenko, 2012).

Yen et al. have presented the exploration of discriminatory features for ML-based

malware classifier. They have experimented with various feature sets (byte-n-gram,

opcode-n-gram, fields of PE header and dynamic trace) for malware families classifi-

cation. They presented their result to show which algorithm works best with which

feature set and how many features are optimal. With their study, they have suggested

that Decision Tree (DT) performance is highest among all or equal to the performance

of Support Vector Machine (SVM) for all features and provides highest accuracy with

minimum features (Yan et al., 2013a).

In the following sections, static (section 2.1.1), dynamic (section 2.1.2) and hybrid

(section 2.1.3) features are listed and explained with relevant existing works.

2.1.1 Static Features

As discussed earlier, on the basis of analysis type, features are mainly grouped into

three classes i.e. static, dynamic and hybrid. In this section different class of static

features are listed and explained with the reference of relevant works. Static features

are extracted without running the executable file. Reverse engineering is a common

approach to extract static information from a binary. Disassembly and hexadecimal

17

Figure 2.1: Types of features used for building machine learning based malware classi-

fier

dumping of binary file are the two main techniques to pre-process and get static features

from the sample.

The Static features can be of two types: n-gram-based and heuristic-based. N-gram

is a concept taken from Information Retrieval (IR), which refers to the N consecutive

character with a shift of size n from a text document. N-gram for malware can be byte-

n-gram (n-consecutive byte sequences taken from a hexdump1 output) or opcode-based

(n opcode sequence taken together from a disassembled binary). Ida-pro and Objdump

are two common tools used for the disassembly.

A taxonomy for classifying detection methods of malware by machine learning

methods based on static features extracted from executable is presented by (Shab-

tai et al., 2009b). They have listed and explained five static features: Byte-n-grams,

OpCode-n-grams, Function-based, PE feature and Strings. In the following sections

each of these static features along with other static features are explained.

2.1.1.1 Byte-n-grams

Byte-n-grams are the byte sequence of length n that occurs in the target (Schultz et al.,

2001a; Nissim et al., 2014; Shahzad et al., 2010; Shabtai et al., 2012; Moskovitch et al.,

2008b; Stibor, 2010; Santos et al., 2011c; Abou-Assaleh et al., 2004a,b; Elovici et al.,
1Hexdump is a tool for converting binary file to its equivalent hexadecimal representation.

18

2007). Theoretically, it represents program’s structural components, fragments of in-

structions and data (Dube et al., 2013).

Commonly, Byte-n-grams are used as boolean or numeric feature set to train and

test with different machine learning algorithms. A generic malware detection classifier

has fabricated by determining the probability of finding specific n-grams in malicious

and non-malicious programs (Kephart and Arnold, 1994).

2.1.1.2 Opcode-n-gram

Opcode-n-gram is a sequence of n consecutive opcode, each sequence is created with

a sliding window of n over the disassembled code of the sample. Opcode-n-gram with

and without operand features has also been used as features for building malware clas-

sifier (Shahzad et al., 2011; Shahzad and Lavesson, 2012; O’Kane et al., 2013; Shabtai

et al., 2012; Karim et al., 2005; Santos et al., 2011a,b, 2010, 2013; Lakhotia et al., 2013).

A study carried out the statistical tests to verify the deviation of opcode frequency in

malware and goodware (benign files)(Bilar, 2007). The study concluded that the mal-

ware opcode frequency distribution seems to deviate significantly from non-malicious

software and rarer opcodes have more frequency variation. In the study it was also

found that malware do have undocumented opcode such as salc and icebp.

Opcodes were used in a unique way by grouping those into three opcode fea-

tures:1)branch opcodes, 2) unigrams and 3) bigrams (Raphel and Vinod, 2016). Opcode

with and without first operand were used as the feature set to train and test the Deci-

sion Tree (DT) and Gaussian Naive Bayes (NB) classifiers (Wang et al., 2003). Authors

concluded that the classifier perform well when each feature contains more information.

Opcode-n-gram can be extracted with both static and dynamic feature extraction

methods. Most of works based on opcode-n-gram have considered only opcode se-

quence as features and shown a very good accuracy. But opcode-n-gram with operand

can improve the accuracy further and reduces the False Positive Rate (FPR).

2.1.1.3 Strings

Every computer program either compiled or raw has many information in ASCII charac-

ters, for example, hard coded Uniform Resource Locator (URL), messages etc. Group-

ing these characters form strings and by limiting the length of strings, one can have

19

many meaningful strings.

These strings which are present in executable format are used as features in many

existing works (Schultz et al., 2001a; Shabtai et al., 2009a; Rieck et al., 2008). Strings

based feature set are normally of boolean type where presence and absence of the string

is represented by ’1’ and ’0’ respectively. Strings from the sample can be extracted by

static analysis (Schultz et al., 2001a; Shabtai et al., 2009a) or by the dynamic analysis

(strings from runtime traces) (Rieck et al., 2008).

2.1.1.4 PE headers’ fields

PE file format is structured through different headers and each header having different

fields. Previously, these fields are used as feature and their fields’ value considered as

feature’s value (Dube et al., 2012; Shafiq et al., 2009a; Sheen et al., 2013).

PE headers’ fields of PE file are very good heuristic indicator of discriminative

features for classifying malware and benign programs. PE header features are very

important features to build automated malware classifier since extracting fields’ value

is computationally cheaper and these features possess high discriminative power (Yan

et al., 2013a). This thesis work has proposed an integrated feature set based on the

PE header values and has achieved an improved performance than existing works by

introducing derived features which is the outcome of field’s value and the rule.

2.1.1.5 Permissions and Intents

The permissions system is one of the security feature which ensure the authorized exe-

cution of Android applications. Most of the Desktop OS have user-level or application-

level permissions. Android permissions are fine grained to action level i.e each separate

action require user permission such as Camera permission is different than Internet per-

mission for same application. The permissions and intents information are declared and

stored in manifest file of each Android application. Many of earlier works have used

permissions and Intents as feature to build malware classifiers or any other ML based

classifiers (Di Cerbo et al., 2010; Geneiatakis et al., 2015; Sanz et al., 2012).

20

2.1.1.6 Image Feature

Image features are known as image descriptors which represents an image in an abstract

form. Recently, the idea of visualizing the application and then using image feature to

classify applications is getting attention from many researchers (Kancherla and Mukka-

mala, 2013). For example, Binary files from different malware families were converted

into grey scale image and the texture of the image were used as feature to build malware

families classifier (Nataraj et al., 2011).

2.1.1.7 Miscellaneous

Apart from the earlier listed static features, there are works which have used static

analysis method to create features other than the commonly used features. In MIST,

the program behaviors are represented using a three level structure (level 1, 2 and 3)

and performed a similarity analysis of five malware classes based on level 1 and level

2 representation of the program (Trinius et al., 2009). Authors have also shown that

MIST-based features representation are smaller in size than other format such as Ex-

tended Markup Language (XML).

This section grouped and explained the classes of static features used in the malware

literature and in the following section the dynamic features are listed and explained.

2.1.2 Dynamic Features

Dynamic features are those features which can only be extracted through dynamic anal-

ysis. Dynamic features such as function call, network use, system call and Hardware

Performance Counter (Wang et al., 2016) can be recorded after executing the sample in

controlled environment. Dynamic approach overcomes some of the limitations of static

analysis. With static analysis packed, polymorphic (Aljawarneh et al., 2016), meta-

morphic (Raphel and Vinod, 2016) and encrypted or obfuscated sample can escape the

analysis or make it difficult while dynamic analysis handle this because it works by

executing malware’s payload and recording sample behaviors during run time.

Dynamic process also has limitations such as speed, native run, cleaning experi-

mental system and system overhead. A survey work has presented dynamic malware

analysis techniques and provided a detailed discussion on such analysis tools (Egele

21

et al., 2012). Dynamic features can be grouped into two major groups: host trace and

network track-based features.

2.1.2.1 Host Trace

The activities of internal memory, files and file system, registry, hardware performance

counters and status of running processes of host are considered as host trace and used

as features. Strings (Yan et al., 2013a; Moskovitch et al., 2008a), n-grams (O’Kane

et al., 2013; Ahmed et al., 2009; Salehi et al., 2012; Santos et al., 2013; Sundarkumar

and Ravi, 2013; Islam et al., 2012), system calls (Yavvari et al., 2012; Gurrutxaga et al.,

2008) and API calls (Ahmed et al., 2009; Salehi et al., 2012; Santos et al., 2013; Sun-

darkumar and Ravi, 2013; Islam et al., 2012) which have been extracted by dynamic

analysis are host based-trace. For training and testing machine learning algorithms,

these features are used in a similar way as the static features. Dynamic analysis method

produce varying features and values which impact the performance of ML algorithms.

2.1.2.2 Network Trace

Network trace-based features are log of the network activities (Bayer et al., 2009; Zhang

et al., 2016). It can be captured at host machine by network sniffing tools 2 or at network

entry point by the use of proxy system. Various implementation of Pcap 3 is used for

network packet capture and these network traces are mainly used for intrusion detection

system but can be use for malware detection.

Among aforementioned dynamic features, Hardware Performance Counter (HPC)-

based features are recent and seems to be promising for malware detection (Wang et al.,

2016). API and opcode are very interesting features because these two can be extracted

by both static and dynamic feature extraction.

2.1.3 Hybrid Features

Hybrid feature is a combination of both static and dynamic features. For creating hy-

brid feature set, features are extracted by using both static and dynamic analysis. An

2Tool which capture the network packet during transmission, such as wireshark etc.
3pcap(packet capture) consists of an (API) for capturing network traffic. Different OS have different

implementation of pcap.

22

integrated features were created by mixing both static and dynamic features. Experi-

mentally, it is found that integrated feature set yields higher accuracy than individual

feature set (Santos et al., 2013; Islam et al., 2012). A recent study has proposed the in-

tegration of static and dynamic features for malware classifier (Awan and Saqib, 2016).

In the study static features PE header information and printable strings were used along

with dynamic features API call logs (Awan and Saqib, 2016).

Comparing different features is a complex task. Based on the requirement, the se-

lection of features can be done on the basis of various metrics. Feature extraction time,

accuracy and FPR are the crucial metrics to make a choice to select a feature set. PE

header features extraction is fast and require very less space in comparison to byte-n-

gram and opcode-n-gram.

This section has presented and explained about various features which are used with

machine learning algorithms for building malware detector. This thesis work involves

static analysis and use Portable Executable (PE) file and apk file for building static

features & feature set for malware detection. So, in the following sections, features

specific to Portable Executable (PE) file and Android’s apk file are listed and discussed

with references to related earlier works.

2.2 Static Features from Portable Executable Headers

PE is a file format used in Windows OS to construct, organized and execute different

file types such as executable (.exe), (Dynamic Library (.dll) etc. Similar to PE, Exe-

cutable and Linkable Format (ELF) and Mach-o are file format used in Linux and Mac

OS X respectively. The PE format is implemented as a data structure to encapsulate the

information necessary for the loader to manage and use various Windows files. Every

file in PE format consists of two main headers (DOS header and NT headers explained

further in Section 3.1.1 and Section 3.1.2) placed at beginning and further followed

by some section header (one for each available section). The Microsoft Corporation’s

specification document provides the description of the structure of PE files (Visual and

Unit, 1999). These fields of PE headers have been used in various ways to make it

more discriminative for classification of malicious and benign samples. PE features are

divided under six categories: data extracted from PE headers, Optional PE header in-

23

formation, Import section, Export Section, Resource directory and Version information

(Shabtai et al., 2009b). This section presents a category-based discussion by grouping

previous works on the basis of features types as headers fields’ value, Dynamic Link Li-

brary (DLL), Application Programming Interface (API) calls, data directories, section

headers and section name.

2.2.1 Headers Fields’ value

File header and Optional header are specific to PE format, so the fields values from

these two headers should come under PE headers features. Previously, PE headers fields

are used as features and value from these fields were directly used as feature’s value.

For example, one of the study has used PE Header Entries as feature set and achieved

96.9% True Positive Rate (TPR) and 0.0984 False Positive Rate (FPR) with Random

forest classifier (Vinod et al., 2011). Similarly, an another study extracted a total of 38

features from file header and Optional header and used these features with other PE

features (Shafiq et al., 2009b). In one of the work, PE header entries were extracted and

the SVM classifier was trained using selected features. The trained SVM model detects

viruses and worms with considerable accuracy but the detection accuracy were lower for

Trojans and backdoors (Wang et al., 2009). A hand crafted rule based algorithm was

implemented for classification using five selected PE header fields as features (Liao,

2012). One study considered all the fields of various headers as integer features and a

feature set was created having a total of 68 features (Baldangombo et al., 2013). An

another work used all fields of PE headers except characteristic and image resource

NameID fields as the numerical feature while each bit of characteristic was used as

boolean features (Yan et al., 2013b). A recent study has used 5 fields of file header

and 16 fields of optional header and only the e l f anew field of DOS header as integer

features (Bai et al., 2014). In one of the study, only fields from the PE-optional header

are used as features (Belaoued and Mazouzi, 2015). In an earlier work, a feature set with

1867 features only has used 15 PE headers fields as numeric features (Walenstein et al.,

2010). A recent work created a feature set having 44 features which were extracted

from different PE headers and having 2 features based on section entropy (Markel and

Bilzor, 2014; Markel, 2015). A recent study created a feature set by integrating static

and dynamic features so the PE header information were used as static features and only

24

30 most relevant PE header features were selected by information gain method (Awan

and Saqib, 2016).

From the aforementioned discussion, it can be easily concluded that PE headers

fields are very effective in malicious program detection and have been used previously

either as a complete feature set or mixed with other features. Most of the works have

used raw value of fields for features but this thesis work has pre-processed these value

with the rule associated with each field and used them by calling derived features. These

derived features are then mixed with selected raw features and used as proposed Inte-

grated feature set.

2.2.2 Dynamic Link Library (DLL)

As per the discussion, PE headers are implemented as data structures which have in-

formation in linked format. The last field of Optional header is DATA DIRECTORY

which is an array of data structure having provision for 16 data directory definition.

Each data directory is specific to a different task. Information about every DLL which

would be used by PE file and need to import during linking and execution is stored in

DIRECTORY ENT RY IMPORT . By reading and parsing a PE file, one can easily list

out all required DLL. DLL precisely map the functionality of any file at an abstract

level. Using every DLL as a feature would result in more accurate malware classifier.

DLL information can be utilized in the various ways to create a feature set.

In a previous study to carried out different experiments three feature set were cre-

ated using DLL information (Schultz et al., 2001b). Those feature sets are, DLL name

as boolen features, DLL & function calls (API) as boolean features and number of dif-

ferent function calls within each DLL as integer features (Schultz et al., 2001b). The

performance of only DLL based feature sets are moderate for example detection rate for

RIPPER classifiers were 57.89%, 71.05% and 52.63% respectively. In another work 73

DLL names were used as boolean features with other PE features (Shafiq et al., 2009b).

A similar study has used 792 DLLs name as boolean features along with other PE fea-

tures (Baldangombo et al., 2013). In a different work 30 selected DLLs names were

used as boolean feature along with the number of DLLs referred by each PE file as an

integer feature (Bai et al., 2014). In one of the study, GNU Binutils objdump program

was used to extract 1852 imported DLLs name and used as boolean features (Walenstein

25

et al., 2010). A work on malicious PE file detection has used a total of 4167 boolean

features among other features DLLs name based boolean features were also used (Yan

et al., 2013b).

As one can observe that features based on DLL information have used extensively

in the literature and have limited scope of improvement. Hence, the proposed frame-

work has not included DLL features in the Integrated feature set which helps to observe

behaviors of other features more clearly. Similar to DLL earlier works have also used

API information as features which is explained in the following section.

2.2.3 Application Programming Interface (API) calls

API is a set of methods and procedures which allow accessing the features of data of

an OS, application or another service. In an operating system context, API calls which

are related to a specific task are grouped together and called as DLL or library. After

accessing the DLL information from import data directory, the necessary API calls

specific to the PE file can also be extracted. API is one level closer to OS system call

than DLL, hence the list of all API calls by a PE file can be very discriminative to

identify the real intentions of a PE file. API calls information can also be used to create

a feature set and so many of previous works have used this information as features.

An earlier study has used API information and created two feature set for the exper-

iment (Schultz et al., 2001b). One was the boolean feature set having DLL & function

calls as the feature and other was integer feature set having the DLLs with counted func-

tion calls as the feature. As mentioned earlier, only 71.05% and 52.63% detection rate

with RIPPER classifier was achieved in the study. In another work, API call sequence

of PE file (which were extracted using Import Address Table (IAT) field) were used as

features and with Objective Oriented Association (OOA) mining method, an accuracy

of 93.7% was achieved (Ye et al., 2008). A study has used API calls of DLL as fea-

tures and by using Information Gain reduced the total number of features to 11 in the

final feature set (Altaher et al., 2012). A similar work has used 24,662 API function call

name as boolean features along with other boolean DLL and PE features (Baldangombo

et al., 2013). A recent work has used 30 selected APIs name as the boolean feature and

also used the number of APIs referred by each PE file as an integer feature (Bai et al.,

2014).

26

2.2.4 Data Directories

Optional header has an array of structure field holding information about 16 DATA

DIRECTORY. Although, currently only 15 data directories definition are in use. Each

of these data directories gives the address and size of a table or string that OS uses.

Some of the important directory table names are, export, import, resource, exception,

certificate, debug, security, etc. These directories are having lots of information about

the PE file and so fields from the various directory can be used as features. In an earlier

work, 30 features from data directory were used as features in conjunction with other

features (Shafiq et al., 2009b). A recent work has used 16 integer features extracted

from data directories of PE files as features (Baldangombo et al., 2013). In a similar

work, 32 features were created from data directory and used as integer features (Bai

et al., 2014).

The works related to data directories information as features are limited, although

these data directories have lots of information which can be a good source for features.

One of the reasons of such limited work can be the complex structure of directories

which makes extraction process difficult.

2.2.5 Section Headers

Portable Executable (PE) file are organized and structure in various section on the basis

of nature of information, for example .CODE section contains the program text of PE

file. These sections based organization is optional and so it is not mandatory that each

PE file should have a particular section or all the sections. Each available section of

the PE file has a respective section header. The number of sections present in the PE

file is given in NumberOfSections field in the File header. There are 10 fields in every

section which holds information such as name, size, Characteristics, etc. of a particular

section. The extracted value from all fields of available sections and other information

about each section can be used as a feature.

An earlier study used 27 features from the header fields of three section (.text,.data

and .rsrc) in conjunction with other features (Shafiq et al., 2009b). A recent work used

11 features from the header fields of each of the five sections (.text, .data,.rsrc, .rdata

and .reloc) as integer features (Bai et al., 2014). From the aforementioned literature, it

27

is clearly observed that all fields of every sections are seldom used, but section related

information is used for features.

2.2.6 Section Name

Sections name has classified as suspicious and non-suspicious on the basis of standard

and non-standard name respectively (Perdisci et al., 2008). The total number of suspi-

cious sections name was used as a feature to classify packed and non-packed PE files. A

comparative analysis of various fields of malicious and benign files and analysis about

NumberOfSections in malware and benign shows that nearly 50% of malware sample

have less than or equal to 3 sections whereas only 25% of benign files fall in this range

(Yonts, 2012). After structural analysis of PE headers for the optimization of malware

detection techniques, it was observed and concluded that the presence of sections with-

out names or name has other than alphabetic character is a feature of malicious files

(David et al., 2016).

Motivated by the use of section name as features and the established fact of its

discriminative capabilities mentioned in earlier works, this thesis has proposed and ex-

plored further the potential of section name as boolean feature with machine learning

algorithms for building malware detector. Further, in Chapter 4, methods and other

details aboutsection name as boolean feature is explained.

Table 2.1 summarize and present a comparison of earlier works which have used

PE features. From the table, it can be observed that continuous works have carried

out for PE malware detection using machine learning. PE headers features are either

used independently or with other features. Use of strings present in PE files is seldom.

Combining various PE features as single feature set is also rare.

28

Table 2.1: Comparison of PE features used in earlier works

Previous Works
Type of Features Performance

DLL API Sections Headers Strings DD Mixed Others Accuracy FPR

(Schultz et al., 2001b) 3 3 7 3 3 7 7 7 97.11 3.80

(Ye et al., 2008) 7 7 7 7 7 3 7 7 93.00 NA

(Shafiq et al., 2009b) 3 7 3 3 7 3 7 7 99.00 0.50

(Wang et al., 2009) 7 7 3 3 7 3 7 7 98.86 NA

(Walenstein et al., 2010) 3 7 7 3 7 7 7 7 98.90 0.014

(Vinod et al., 2011) 7 7 3 3 7 7 7 7 96.80 0.13

(Altaher et al., 2012) 7 7 7 7 7 3 7 7 99.00 1.00

(Liao, 2012) 7 7 7 3 7 7 7 7 99.00 0.20

(Yan et al., 2013b) 3 3 3 3 7 3 7 7 NA NA

(Baldangombo et al., 2013) 3 3 7 3 7 3 3 7 99.60 NA

(Bai et al., 2014) 3 3 3 3 7 3 7 3 99.01 1.40

(Belaoued and Mazouzi, 2015) 7 7 7 3 7 7 7 7 97.25 7.14

(Awan and Saqib, 2016) 7 7 7 3 3 7 3 3 90 10

(Ahmadi et al., 2016) 7 7 7 3 7 3 7 7 99.77 NA

29

In this section, various static features based on PE file were discussed along with the

related works and relevance of these features with the thesis. In section 2.3, list of static

features which can be extracted through the apk file is discussed. The features which

are relevant to the thesis are also pointed out and explained in respective sections.

2.3 Static Features from Android’s APK

Android OS is a popular smartphone OS and has the largest number of users with re-

spect to the total number of the smartphone users. The application (apps) for Android

is packaged as apk format which is very similar to the compression because all the

required resources by the application is zipped as an apk file. So every apk file has

compiled code, metadata, configuration file and other resources such as images, font

etc.. With such vast information, apk becomes the primary source of features for creat-

ing machine learning based malware detector for Android application.

In literature, many works have used different components of apk to find out various

features and building feature set for training and testing machine learning algorithms.

By monitoring various dynamic features like system calls, network activity, event log,

user activity and static features permissions, intents, resource, and apps meta-data, nu-

merous categories in detection techniques are presented and explained (Suarez-Tangil

et al., 2014b). In this section, various features based on earlier works have been pre-

sented and discussed along with notable similar works. Special note has been included

for the features which are similar to the features used in this thesis, detailed discussion

of such similar features are presented further in Chapter 5 and Chapter 6.

2.3.1 Used Feature

Every apk file is shipped with a manifest file which has information about permissions,

activities, intents and used features required by the application. Used feature indicates

the behavior of application by listing the features required and will be use by the appli-

cation. For, this reason the used feature would be good features for building malware

detector. Earlier works, like PUMA, (Sanz et al., 2013a) and MAMA (Sanz et al.,

2013b) considered used feature by an app as feature and tested its discriminative power

individually and with combination of permissions as features.

30

2.3.2 Meta-data

Android applications are distributed by various app-stores, Google Play 4 is official

store for Android applications but there are many third-party app-stores which also dis-

tribute Android applications to the end users. Every store maintains lots of information

like user’s review, file size, application version etc. about every application and its ver-

sion. Many of this meta-data like review and rating about application directly comes

from the end users, so this tends to be very rich in deciding the nature of the application.

In many of the earlier works related to Android applications classification, these

meta-data have been source for features extraction. Along with permissions compari-

son, AForensic also used meta-data information of third-party applications for triaging

any suspicious applications (Di Cerbo et al., 2010). Printable string and meta-data such

as rating and file size are also used to build the feature set (Sanz et al., 2012). Manifest

XML based attributes and application meta information as feature are used to cluster

app into tool and business category (Samra et al., 2013).

2.3.3 Code sample

As stated earlier, the apk file also has compiled code (.dex) which can be reverse en-

gineered to get equivalent Java class files. The code has all the business logic which

decides the real functionalities of any app. The code can be manually checked which is a

time consuming and error prone process and require large number of human resources

for analyzing the application code. To overcome the limitations of manual analysis,

many features out of Java class (after .dex to .jar conversion) files are built and used

machine learning to create malware detector or other Android application classifiers.

Dendroid which uses text mining approach to analyze and classify code structures

in android malware families (Suarez-Tangil et al., 2014a). It uses code chunks as feature

which is equivalence to a method of the apps. API calls along with permission were

used to classify over-privileged malicious app (Geneiatakis et al., 2015). Features from

Java class files and other XML files were extracted to build classifier to label an apk

into tool or game category (Shabtai et al., 2010).

4https://play.google.com/store,Accessed:15-03-2017

31

2.3.4 Permissions

As aforementioned, every Android application has a manifest file which has required

permissions by the application along with other information. Permissions system in the

Android eco-system serves the purpose of user-level security, where an application will

only get installed and run if all the required and requested permissions is granted by

the user. To perform any hardware or software access, application must has related per-

mission, for example, to access device’s camera, the application must have permission

related to camera access. Such explicit permission system also provides an opportu-

nity to understand the application behavior by observing the required and requested

permissions of an application.

Most of the works have used permissions-based feature set for building various

classification system including Android malware detection system. A recent work has

presented the detail study to understand Android’s permission based security issues and

its countermeasures (Fang et al., 2014). Derbin, followed statistical approach and in-

cluded used permissions as features along with other static and dynamic features (Arp

et al., 2014). AForensic, a forensic tool which extract permissions of third-party apps

installed on a device and compare the set of extracted permissions to the permission-

based profile built using Apriori algorithm which help to triage any suspicious applica-

tion (Di Cerbo et al., 2010). Permissions (extracted from the applications and from the

app markets) along with other features are used to build a feature set to train various

machine learning based classifiers (Sanz et al., 2012). To group a given application

into 34 different categories a 2-layer Neural Networks (NN) were trained with only the

extracted permissions as features (Ghorbanzadeh et al., 2013). One study considered

over-privileged app as malicious and proposed a method that detects such app by us-

ing permissions along with API as features (Geneiatakis et al., 2015). The requested

permissions with other static features were used to cluster apps into tool and business

category (Samra et al., 2013). One of the earlier works has used manifest’s permissions

as boolean feature along with other static features for malware detection (Yerima et al.,

2013). In another study permissions with API calls and combination of these two were

used as feature set to train different machine learning algorithms for malware dectec-

tion (Peiravian and Zhu, 2013). MAMA created three feature set by extracting values

32

from different elements of manifest file (Sanz et al., 2013b). Among these three fea-

ture set, permissions and features combined, permissions and feature-only, combined

feature set performed best. Apk Evaluator, is a permission based classification system

for Android application. In training phase, it uses static analysis techniques to build a

permissions based signature database which is used to characterize profile for Android

applications in the evaluation phase (Talha et al., 2015).

It can be observed from this section discussion that permissions-based feature and

feature set has been used extensively for malware detection and for various other tasks.

Such uses established the discriminative potential of Android’s permission system. This

thesis has also proposed a weighted permission based feature set which improves the

performance of machine learning algorithms further for detecting Android malaware.

The details about feature set building process along with other methods and algorithms

is presented further in Chapter 5.

2.3.5 Image based features

Recently, the idea of visualizing the application to classify applications is getting atten-

tion from many researchers. In one of the study a similar approach was implemented

where the byte code of application was converted to machine level code and then the

opcode instruction sequence was converted into image matrices (Han et al., 2013). Few

recent works have also followed this basic approach i.e. converting application code to

images and entropy graphs to detect and classify malware (Kancherla and Mukkamala,

2013; Han et al., 2015).

Another study has converted the behaviour of an application to color maps for mal-

ware detection (Shaid and Maarof, 2014). The study used a dynamic approach i.e. run

the application in a Virtual Machine (VM) and generated color maps from the behaviour

of application (Shaid and Maarof, 2014).

Converting Android applications to the image format makes it possible to use the

tools and techniques from the field of image processing which is matured over time.

This thesis has also used image features by converting benign and malicious Android

sample into four different image format on the basis of color channels. Detail about the

methods and algorithms are elaborated further in Chapter 6.

33

2.3.6 System call

The features presented earlier are static features which are extracted without executing

the apk sample wheras the system call is a dynamic feature and can be extracted only

after executing the apk sample. System calls are the OS functions which invokes by the

user-application during the execution thus monitoring the system call reveals the true

intention of running application. Creating feature set using system call would be very

discriminative because of it represent the lower level of the application.

Most of the works have used system calls in various ways to draft features and

create feature set to train machine learning algorithms. An android malware system was

built on structural information of app which use embedded call graphs and classify the

application based on the sequence of system calls (Gascon et al., 2013). A recent work

has also defined a similar approach based on system calls for malware detection (Ham

and Lee, 2014). An earlier study extracted static features such as API calls and Linux

system commands to build a boolean feature set (Yerima et al., 2013). Permissions

were used as feature along with API calls to build malware classifiers (Peiravian and

Zhu, 2013).

This thesis is focused on static features so the system calls based feature set are not

considered in current work. Table 2.2 summarizes the static features used in the liter-

ature for classification of Android applications including Android malware detection.

The best accuracy of each work is mentioned in Table 2.2. Some of the works have

used static features along with machine learning algorithms but either results are given

on different metrics or not provided, such results are represented as NA (Not Avail-

able) in the table. Various observations have made during the literature review of the

works related to PE and apk file based static features. Few critical observations out of

these observations motivate to consider and carry out the works of this thesis. These

observations and motivations are presented and discussed in the following section 2.4.

34

Table 2.2: Comparison of Android features used in earlier works

Previous Works
Type of Features Performance

Used

feature
Metadata Code Permissions

Image-based

Feature
System call Mixed Others Accuracy FPR

(Di Cerbo et al., 2010) 7 3 7 3 7 7 3 7 NA NA

(Shabtai et al., 2010) 3 7 3 3 7 7 3 7 92.20 0.190

(Sanz et al., 2012) 7 3 7 7 7 7 3 3 93.00 NA

(Sanz et al., 2013a) 3 7 7 3 7 7 3 7 86.41 0.19

(Sanz et al., 2013b) 3 7 7 3 7 7 3 7 95.22 0.06

(Samra et al., 2013) 3 3 7 3 7 7 3 7 71.00 NA

(Ghorbanzadeh et al., 2013) 7 7 7 3 7 7 7 7 65.1 NA

(Yerima et al., 2013) 7 7 7 3 7 7 3 3 92.10 0.061

(Peiravian and Zhu, 2013) 7 7 7 3 7 3 3 7 96.88 NA

(Gascon et al., 2013) 7 7 7 7 3 7 7 7 89.00 1.00

(Ham and Lee, 2014) 7 7 7 7 3 7 7 7 NA NA

(Arp et al., 2014) 3 7 7 3 7 7 3 3 95.90 NA

(Suarez-Tangil et al., 2014a) 7 7 3 7 7 7 7 7 NA NA

(Talha et al., 2015) 7 7 7 3 7 7 7 7 NA NA

(Geneiatakis et al., 2015) 7 7 3 3 7 3 3 7 NA NA

35

2.4 Observations and Motivations

By making comprehensive analysis on various static features and feature set, many

observations have been made which motivated to carry out this thesis work. This section

explains those observations which are related to the proposed feature set and discuss

how these motivate to carry out the proposed works.

From PE headers based feature set, it is observed that all of the existing works

have taken fields’ value as it is for the header based features. Although these fields

have a set of rules which must be satisfied by any benign PE file. Use of raw value

increases the algorithms training time by having a diverse set of values. This motivate

to create derived features which is used in this thesis as part of Integrated feature set.

Derived features are those features which result from the comparison of field’s value

with the rules associated with the field. Details of the proposed integrated feature set

are presented further in Chapter 3.

From the literature, it can be observed that section name of PE file is used as feature

but have very limited use. Section name either used with other features or condenses to

one or two features. For example, count of suspicious and non-suspicious section name,

total number of sections are summarized representation of sections name. On the basis

of earlier use of section name as feature and few statistical study about section name

motivated to consider the potential of section name as feature and explore it further.

This thesis has considered section name as boolean feature and has proposed a feature

set only based on section name. The details about feature extraction and feature set

creation process are explained in Chapter 4.

Permissions are extracted from manifest file of Android’s apk and have been used

rigorously as features for building classification system. Most of the research works

have used permissions as features for building malware detector by using machine

learning algorithms. One of the major limitations observed from the survey of ex-

isting works in this domain is the boolean representation of permission i.e. permis-

sion are used as boolean features. After performing few statistical comparison, a sharp

difference between permissions pattern of benign and malicious Android applications

motivate to look for alternative representation for permission based features. This the-

sis has proposed the FAMOUS (Forensic Analysis of MObile devices Using Scoring

36

of application permissions) model which incorporates a score based representation for

permissions. These weighted permission representation are used to build a feature set

which forms the basis of the machine learning model building process. The detail about

feature building, scoring and about FAMOUS model is presented further in Chapter 5.

It is obvious from the literature that there is an upward trend for using visualization

techniques and image feature (by converting program binary to image) for program

classification. Earlier works are limited with the use of single color channel for bi-

nary to image conversion. There is also limited use of the image descriptors as feature.

These limitations are the motivation to consider the proposed work which is based on

various color channels. This thesis has used four color channels and converted each

Android sample into four different image formats. In this thesis, the GIST image de-

scriptor is experimented with all the image formats which helps to understand the best

performing image format. The detail about apk to image conversion, feature extraction

are explained and presented as algorithm in further Chapter 6.

2.5 Summary

This chapter has presented a discussion about static features for malware detection us-

ing machine learning algorithms. It has also presented and discussed the list of static

features which can be extracted from Portable Executable (PE) headers and various

files zipped inside Android’s apk file. This thesis has used PE headers’ values, section

name, permissions and image based features, so a detailed discussion has presented

in respective sections. All the feature classes have explained and supplemented with

the discussion about earlier works related to the feature class. This Chapter provides

motivations for this thesis on the basis of observations made during the study of the

literature. The details of each of the proposed feature set are explained and discussed in

forthcoming Chapter 3 to Chapter 6.

37

CHAPTER 3

Malicious Portable Executable Detection Using

Integrated Feature Set

This Chapter explains and discusses the methodology of the proposed integrated feature

set which is the amalgamation of the proposed set of derived features and other raw

features. The values for the derived features are computed by using header fields, binary

file data and the rule associated with each field. The values for the raw features are the

value directly extracted from headers’ fields. The objective of the proposed integrated

feature set is to improve the performance of machine learning algorithms than earlier

used raw feature set for malware detection.

This Chapter provides a brief introduction of PE file format by explaining it various

headers along with various key fields of each header. Further, the method of both feature

set (Raw and Integrated) generation is explained with the help of proposed feature set

generation algorithm.

This Chapter, explains the Raw and Derived features in separate sections. Each of

the derived features which encompasses entropy, year, packer information, number of

suspicious sections, number of non-suspicious sections and 5 other boolean features are

explained in detail. Details about Dataset, Experimental System and Results of Machine

Learning algorithms are presented further in section 3.5.

3.1 Portable Executable File Format

Portable Executable (PE) is a file format used in Windows OS to construct, organized

and execute different file types such as executable (.exe), (Dynamic Library (.dll) etc.

Similar to PE, Executable and Linkable Format (ELF) and Mach-o is file format used

38

Figure 3.1: File format of portable executable

in Linux and Mac OS X respectively. File header part of the PE format is adopted from

Unix Common Object File Format (COFF).

The PE format is implemented as a data structure to encapsulate the information

necessary for the loader to manage and use various Windows files. Every file in PE

format consists of two main headers (DOS header and NT headers explained further

in Section 3.1.1 and Section 3.1.2) placed at beginning and further followed by some

section header (one for each available section). Fig 3.1 shows the block diagram of PE

file format where each header is represented as a block and blocks relation is shown

through the one-sided arrow.

This section has given an overall view of PE format, further in following sections

its various headers (DOS header and NT header) and sub-headers (File header and Op-

tional header under NT header) are explained in details which will provide the neces-

sary background to understand the features and feature set based on PE format. The

important fields from every header are mentioned in discussion and explained under the

respective section, further, every field is listed with a brief description in Appendix 2 to

Appendix 4.

39

3.1.1 DOS Header

DOS header is for MS-DOS backward compatibility or graceful decline of new file

types with a stub which inform that “This program cannot be run in Disk Operating

System (DOS) mode”. The header mainly has relocation information which helps ex-

ecutable to load multiple segments at arbitrary memory addresses. DOS header have

a total of 19 fields out of which e res and e res2 fields are reserved so it should have

no value for any given sample. e csum and e lfanew which holds checksum and next

header address respectively are very important fields for anomaly detection in any exe-

cutable file. Appendix 2 lists out all the fields of DOS header and their short description
1. DOS header is followed by NT header which has two sub-headers namely File header

and Optional header which are explained and discussed in following sections.

3.1.2 NT Header

NT header which is subsequent to DOS header has three fields, a signature to recog-

nize a PE file and two data structures, and these structures are PE specific headers (File

header and Optional header). The value of Optional header’s magic field is used to

identify a 32-bit and 64-bit file type which is represented by PE32 and PE32+ respec-

tively. Except BaseOfData in PE32, optional header has same fields for both PE32 and

PE32+ formats.

File header contains info about the physical layout & properties of the file while

Optional Header has logical layout information. Details about File header and Optional

Header which sub-header under NT header is presented in following section 3.1.2.1 and

section 3.1.2.2.

3.1.2.1 File Header

File header has abstract physical information about the PE file. It has seven fields, out

of which the important fields are the Machine, which provides information about the

target machine for which the executable is compiled for; the NumberOfSections, which

tells about total available sections in file; the TimeDateStamp, which records time when

the File header get generated or another way, it records the compiled time of the PE

1http://www.pinvoke.net/default.aspx/Structures/IMAGE_DOS_HEADER.html

40

file; and the Characteristics field which has a set of bit flags, each flag holding specific

character of the file. All the seven fields of File header are listed in Appendix 3 with

brief description. Inside NT header this File header is followed by the Optional header

which is explained in following section.

3.1.2.2 Optional Header

Optional header is a sub-header within NT header and placed subsequent to File header

inside PE file. It is a compulsory header for any PE file because it holds logical infor-

mation about PE file which is used during linking and loading of the file. It has two

sets of fields: standard fields and Windows specific fields. Eight standard fields are pre-

sented in PE32 and nine are in PE32+, these fields are similar to COFF header of Linux

system. Windows specific fields are total 21 in number and mainly have information

that is required by the linker and loader in Windows OS. Appendix 4 lists out all fields

of the Optional header which also includes PE32 and PE32+ fields.

This section explained about Portable Executable (PE) file format by discussing and

explaining its various headers along with important fields of respective headers. After

understanding about PE file, following section 3.2 explains about overall methodology

adopted for the proposed integrated feature set (refer Figure 3.2) and method of feature

set generation by discussing the proposed Algorithm 1. Later in section 3.3, raw feature

set and section 3.4, integrated feature set are explained with its set of features.

3.2 Method for Feature set Generation

Feature set generation is the process of gathering values for each of the selected features

from all the sample in the dataset. PE headers fields are used in different ways to create

features and feature set. Values for each feature can be of different type i.e. Boolean,

Integer, nominal etc. This work has used Integer and Boolean/Binary type of features.

Fig. 3.2 depicts the overall process of creating raw and integrated feature set from raw

malware and benign sample. These feature set are the input to the machine learning

algorithms for comparing the performance of the two feature sets.

In Fig. 3.2, the process of building ML-based malware detector has divided into four

main tasks: data collection, pre-processing, feature extraction and training & testing.

41

Figure 3.2: Block diagram of overall work flow

Data collection for malware domain is different from other areas of research because

collecting and storing malware sample is risky and can harm the experimental system

itself. New malware samples are coming daily with improved attacking methods and

varying internal structure, in such case dataset for research must be updated with recent

samples. In this work, old and recent malware samples were collected from public

repositories whereas benign samples were collected from freshly installed Windows OS

and other software repositories. Details about dataset used for the proposed integrated

feature set is explained further in the section 3.5.1. Pre-processing is an important and

immediate step after collecting malware and benign samples because these are computer

programs so cannot be used directly with other feature extraction methods. During pre-

processing stage tasks such as duplicate & unmatched (PE file type etc.) sample removal

and representation conversion are carried out. The class labeling is a sub-process under

pre-processing which assigns proper class label to every sample of the dataset for the

supervised learning. After processing every sample process of feature extraction is

carried out. During feature extraction every sample is passed through feature extractor

module and value of each selected feature is extracted and stored with the respective

class label. This work has extracted values for raw features and derived features which

are explained in following section 3.3 and section 3.4 respectively. The output of feature

extraction process is the feature set which has values for each feature from every sample

of the dataset. During the training phase, the training part of the feature set is given

input to machine learning algorithms and their performance is tested with the testing

42

part of the feature set. There are various ways to create training and testing feature

set, the methods selected for this thesis work is explained and presented further in the

section 3.5.3. The feature set generation is done in iteration by going through every

sample of dataset and at every iteration it uses feature extraction method. Algorithm 1

summarizes the feature set generation process which is used for both feature (Raw and

Integrated) set generation. It takes three input parameters i.e. Ψ,Ω,andΦ which is set

of Malware sample, set of Benign sample, and the set of PE fields’ rules respectively.

It return Raw and Integrated feature sets as output. The set of PE fields’ rules is used

for the derived features which is part of integrated feature set. Algorithm 1 is self

explanatory, it loop through every sample of both malware and benign class and extracts

raw and derived features for creating raw and integrated feature set respectively.

After generating the Raw and Integrated feature set through Algorithm 1, it pass

as input to different machine learning algorithms. Using testing method feature set

performance is tested on various metrics for each algorithms. The best performing

features, feature set, and the algorithm can be recommended for building the real time

malware classifier.

This section explained feature set generation process in general by not detailing

about raw or integrated feature set. Further, a detail explanation is provided for both

raw and integrated feature set in following sections. In section 3.3, details about raw

feature set which is collection of only raw features is presented while section 3.4 discuss

about integrated feature set which is an amalgamation of raw and derived features, so

detail about these features are also presented in respective section.

3.3 Raw Feature Set

The raw feature set is based on the methods explained in the literature. It is created by

using only raw features (i.e. fields value are not processed). In this thesis work, the raw

feature set is created by extracting values from all fields of three main headers (DOS

header, File Header and Optional header, including standard and Windows-specific

fields) present in every PE file. Initially, raw feature set had 55 features in which 19

features were taken from DOS header, 7 features were taken from File Header and

rest of 29 were taken from Optional header. During training e res and e res2 fields

43

Algorithm 1 Feature set generation
1: procedure GENERATEFEATURESET(Ψ,Ω,Φ)

2: α ← count(Ψ) . Ψ : malware set

3: β ← count(Ω) . Ω : benign set

4: RawF [α +β][]← 0

5: IntF [α +β][]← 0

6: for κ ∈Ψ do . Extract features from malware

7: Class← 0

8: RawValue← FetchFieldsValue(κ)

9: FileValue← ExtractFileFeatures(κ)

10: for Value ∈ RawValue do

11: DerivedValue←CheckRules(Value,Φ) . Φ : PE field rules

12: RawF ←U pdateRawF(RawValue∪Class)

13: IntF ←U pdateIntF(FileValue∪DerivedValue∪Class)

14: for κ ∈Ω do . Extract features from benign

15: Class← 1

16: RawValue← FetchFieldsValue(κ)

17: FileValue← ExtractFileFeatures(κ)

18: for Value ∈ RawValue do

19: DerivedValue←CheckRules(Value,Φ)

20: RawF ←U pdateRawF(RawValue∪Class)

21: IntF ←U pdateIntF(FileValue∪DerivedValue∪Class)

22: return(RawF, IntF)

44

were removed from raw feature set because these two are reserved (according to the

PE guideline document) and have no values for all samples in the dataset (including

malware and benign sample). So, raw feature set finally has 53 features which were

used for training and testing various machine learning algorithms. PE file processing

and field’s value extraction were performed on Linux machine with the help of pefile

Python module.

Eq. 3.1 shows the features vector for raw feature set where RawF represents raw

feature set and DH, FH and OH represents the header’s fields of DOS header, File

header and Optional header respectively.

RawF = DH ∪FH ∪OH (3.1)

where, DH = {DH1, · · ·DH19},

FH = {FH1, · · ·FH7},

OH = {OH1, · · ·OH29}

This section explained about raw feature set and its various features which were

selected from different headers. This feature set symbolized the method of feature

extraction which were widely adopted in various earlier works, so in this thesis work

it is created to compare the performance of the proposed integrated feature set. The

training and testing of feature set with selected machine learning algorithms is presented

and explained in section 3.5.3. In following section, the proposed integrated feature set

along with selected raw and derived features are explained.

3.4 Integrated Feature Set

Integrated feature set is created by combining selected raw features (explained in sec-

tion 3.4.1) and set of derived features (explained in section 3.4.2). The proposed method

is designed to utilize the combinatorial benefits of both the raw and derived features as

integrated features. Integrated feature set has total of 68 features in which 28 are same

as in raw feature set, 26 boolean features are created by expanding individual flags of

Characteristics and DLLCharacteristics as feature, these two are field of File header

45

and Optional header Windows specific respectively and 14 are derived features which

are explained in further section 3.4.2. Benefits of using binary features for representing

DLLCharacteristic and Characteristics is two folds. Firstly, using all bits of DLLChar-

acteristic and Characteristics as separate binary features will provide more information

about PE file than a numeric value and secondly, the processing of boolean feature will

be easier. Eq. 3.2, represents the proposed integrated feature set which is combination

of three set of features (raw, expanded and derived). In Eq. 3.2, DH is DoS header,

FH is file header, OH Optional header, C represents Characteristics, DC is used for

DLLCharacteristics and subscript with these symbol represents the features count.

IntF = Raw∪ExpandedRaw∪Derived (3.2)

where, Raw = {{DH1 · · ·DH6}∪{FH1}∪{OH1 · · ·OH21}},

ExpandedRaw = {{C1 · · ·C11}∪{DC1 · · ·DC15}},

Derived = {D1 · · ·D14}

Table 3.1 summarizes the count for raw features, expanded raw features and derived

features which combined together create integrated feature set.

Table 3.1: Integrated feature set

Raw Expanded Derived Total

28 26 14 68

This section provided an overview of the proposed integrated feature set, in the

following section the raw features along with the fields which are used after expanded

as binary feature and all the derived features are explained in details.

3.4.1 Raw Features

Raw features are those features for which values are directly extracted from PE header

field for use. In this thesis work few of header’s field value is used directly and selection

of these header’s fields are made on the basis of comparing their statistical properties

(mean and standard deviation) between malware and benign samples. Windows OS

46

after Windows3.1 version and Windows NT do not use dos header of PE file. So most

of the fields of dos header are not useful as feature. Only the e lfanew field of dos

header is important which has offset value of the first byte of new PE header. This

work has used a total of 6 fields out of total 19 fields from DOS header. Name of all the

six fields are listed in the Appendix 1.

File header is sub-header of NT header which is subsequent to DOS header and it

has abstract information about the whole file. NumberOfSections and Characteristics

are more important than other fields. The linker uses these two fields’ values to know

about total sections and type of the file. In this thesis work, only NumberOfSections

is used as raw features while Characteristics field’s value is used without any changes

but converted to boolean feature by using each flag as individual feature. From Op-

tional header, except for magic field, all other standard fields are used as raw features

in the proposed work whereas 13 windows specific fields are used as raw features while

DLLCharacteristics field’s value were used similar to the Characteristics field of file

header. For a complete list of raw features used in the proposed work please refer Ap-

pendix 1. In following section, all the derived features are listed and a detail explanation

is given for each feature in respective section.

3.4.2 Derived features

Derived features are features that are derived from the raw value of PE header by val-

idating with the set of rules and the result of this process is taken as the feature value.

Selection of headers’ field for derived features are done on the basis of availability of a

rule which confidently decides a value or set of value for the field.

Unlike raw features the value for the derived features are not the value extracted

from header’s field; instead, these are values that were amalgamated as result through

comparing field’s values against logical and documented rules. The derived features

are either Boolean or integer. In the proposed work, the structural and logical speci-

fications of PE file are adopted from a widely used document explaining structure of

PE file (Pietrek, 1994) and online Microsoft’s Microsoft Developer Network (MSDN)

document 2.
2https://msdn.microsoft.com/en-us/library/windows/desktop/ms680198(v=vs.85)

.aspx

47

Figure 3.3: Example of valid and invalid TimeDateStamp value

For example, in TimeDateStamp field, the raw value will be simply an integer indi-

cating a number of seconds since 1969 or if an encoding has used by extracting package

then it will be in date format. Figure 3.3 shows that ValidFile.exe has a valid date where

as InvalidFile.exe do not has a valid date, now by using the TimeDateStamp as raw

value will not provide a discriminative feature so the proposed work do not use this

value directly as feature. In this work TimeDateStamp field’s value is converted to date

and is compared with a range of valid date (From December 31st, 1969, at 4:00 P.M. to

the date of the experiment) and resulted in Boolean output taken as features. Table 3.2

summaries all the considered derived values with it counterpart raw values.

In the following sections, all the derived features are explained in detail with refer-

ence to related works and example.

3.4.2.1 Entropy

Entropy can be defined as measure of efficiency of information storage (Shannon,

1948). Entropy directly relates to the packing of the file, packed file will have high

entropy hence the high efficiency of information storage. The pefile module has method

get entropy() that calculate entropy of a given section data. This method gives result

in the form of the quantity of bits per byte and thus the maximum entropy will be 8.0.

With the inherent properties of measuring the degree of compression, entropy is a very

reliable feature to check for packer and malicious behavior. Some modern malware

or malicious Packers try to reduce entropy by inserting zero bytes in data to avoid de-

tection (because many AV software only reacts to high entropy files) from anti-virus

software. In the proposed work, the entropy of different section of PE and whole file

were also calculated and treated as features. As malware has many different names for

different sections, only standard section names were considered as the feature and if

these sections name are present then their respective entropy was added to the feature

48

set else negative one were assigned as entropy value. In total three features (E text, E -

data, E file) were used based on entropy values. A recent work has used file entropy as

two boolean feature HighEntropy and LowEntropy (Markel, 2015; Markel and Bilzor,

2014). A threshold value 7 were set to decide the value for these two boolean variables,

entropy greater than 7, set HighEntropy to 1 while lesser value set LowEntropy to 1.

Table 3.2: Raw and Derived features

Features
Raw

Value

Derived Values

Type Values

Entropy Binary value Integer [-1,0-8]

Compilation Time Integer Boolean [0,1]

Section Name String Integer –

Packer Info NA Boolean [0,1]

FileSize Integer Integer –

FileInfo String Boolean [0,1]

ImageBase Integer Boolean [0,1]

SectionAlignment Integer Boolean [0,1]

FileAlignment Integer Boolean [0,1]

SizeOfImage Integer Boolean [0,1]

SizeOfImage Integer Boolean [0,1]

3.4.2.2 File Creation Year

File Creation Year or Compilation time is very useful in identification of the malware

from the benign program because malware has the very suspicious year of creation such

as year early than 1980 or year beyond the current year, while the benign programs

have the very genuine year of creation. 1980 is considered as a starting year because

in the same year first DOS operating system was launched 3. File creation year can be

calculated by using TimeDateStamp field value of File header for a given PE file. In the

proposed work, the calculated file creation year was checked with a valid range of year

3http://windows.microsoft.com/en-IN/windows/history\#T1=era0[AccessedMay27,

2016].

49

i.e. 1980-2015, if the year is within the range than 1 were assigned as a feature value

else 0 were assigned which indicates that sample has a suspicious year of creation.

3.4.2.3 Suspicious Sections Name

Suspicious Sections Name is also a very good indicator of the malicious file. The stan-

dard compiler gives a well-defined name to each section like .data, .text, .rdata etc. The

non-standard or attackers build personal tools or packer gives either random name or

a very different section name than the standard compilers which is considered as sus-

picious sections. The section names of each sample were extracted by using sections

field value of PE header and these names of sections were compared with a set of stan-

dard section name (Pietrek, 1994) count of the match and non-matching section were

assigned to two different features variable TotalSuspiciousSections and TotalNonSuspi-

ciousSections. An earlier work has also used number of suspicious sections name as

features for detecting packed and non-packed file (Perdisci et al., 2008).

3.4.2.4 Packer Info

Packer Info would be a very good indicator of malware and benign program because, in

our analysis, it was found that nearly 18% of malware sample was packed whereas only

13% of the benign sample were packed. Benign and Malware both can be packed for

different purposes. Benign programs are being packed to protect copyright and license

key breaking attempt and also to stop reverse engineering of programs. Attackers pack

their programs to bypass the signature-based detection because packed file change the

byte structure of program and it becomes easy to surpass the signature. In the proposed

experiment, packer is a Boolean feature and will have 0 if file is not packed and 1 if

packed with any packer. Packer information of each sample is collected by using PEiD
4 signatures database with yara 5 (a Python module for signature matching).

3.4.2.5 File Size

File size is also used as a feature. The initial assumption was that malware and be-

nign file will have a larger size difference. The malware writers try to keep file size

4http://www.aldeid.com/wiki/PEiD [Accessed May 27, 2016].
5http://plusvic.github.io/yara/ [Accessed May 27, 2017]

50

minimum that helps them to distribute over the web and hide within another program.

Malware samples result smaller in size due to avoidance of Graphical User Interface

(GUI). Benign programs are free from such size requirement and have genuine size as

needed. All libraries and external resources are used as needed to run the program ef-

ficiently and effectively. The malware writers truncate the unused function and other

external resources from their malicious program, only selective API functions and DLL

are called within programs. In previous works, file size has not been considered as the

feature but in the proposed work, it has taken as the feature of type integer that will has

the file size in bytes.

3.4.2.6 File Information

FileInfo has set of strings, which contains the metadata about the PE file such as

FileVersion, ProductVersion, ProductName, CompanyName etc. Benign programs in-

corporate a rich metadata while malware writers avoid putting metadata. In the pro-

posed work, metadata information of all samples was tried to extract but it was found

that many of malware sample does not have FileInfo field or other sub-section of this

field. Set of all extracted strings about metadata were large so it was not feasible to

consider these strings as features instead of that FileInfo feature were considered as

Boolean and 1 was assigned if a sample has FileInfo metadata else 0 were assigned.

A more comprehensive feature set of metadata information can be considered but the

proposed work is limited to presence and absence of the FileInfo metadata apart from

its value.

3.4.2.7 Image Base

ImageBase is a field in the optional header, which has the preferred address of the

first byte of the image when loaded into memory (Pietrek, 1994). The condition ap-

plied to this field is must be a multiple of 64k (64X1024). Default value for DLL is

0x10000000 (268435456 in decimal), Window CE exe is 0x00010000 (65536 in deci-

mal) and 0x00400000 (4194304 in decimal) for other Windows OS like Windows XP.

To make this field more useful, a pilot study is carried on the samples and it was found

that 94.55% malware samples have specified default value while only 77.84% of the

benign sample have specified default value and all the value from both classes follow

51

the condition of multiple of 64K. The value of ImageBase field is very specific to the

type of file (DLL, exe etc.) so malware authors do not tamper this field often which is

obvious from the aforementioned percentage. With the aforementioned result, it was

decided to consider this field as Boolean and value were checked for default values and

multiple of 64 conditions.

3.4.2.8 Section Alignment

SectionAlignment is the field in the optional header and it is the alignment (in bytes) of

sections when they are loaded into memory. According to the Microsoft specification

(Pietrek, 1994), it must be greater than or equal to FileAlignment and the default is the

page size of the architecture. In the proposed work, this field is treated as Boolean and

was compared against the specifications. If extracted value follows the specification

then this field will have a value 1 else will be assigned value 0.

3.4.2.9 File Alignment

The value of FileAlignment field of the optional header is the factor (in bytes) that is

used to align the raw data of sections in the image file. Microsoft specification (Pietrek,

1994) states that this value should be power of 2 (between 512 and 65536). Default

value is 512 and if the SectionAlignment is less than the architecture’s page size, then

this value must match with SectionAlignment value. The proposed work follows the

given specification and considered this as the Boolean feature, which has value 1 if the

extracted value matches the specification else 0.

3.4.2.10 Size of Image

SizeOfImage gives the size (in bytes) of the image, including all headers, as the image

is loaded in memory (Pietrek, 1994). It must be a multiple of SectionAlignment. The

malware can manipulate this field to hide their malicious code. To verify this assump-

tion, the specified condition was checked for malware and benign samples. It was found

that almost all benign samples follow the specification but approx 4% (3.87%) malware

sample does not follow the specification. To benefit the classification process, this is a

significant proportion and hence this field is also considered as Boolean and assigned

value 1 if match the specification otherwise 0.

52

3.4.2.11 Size of Headers

SizeOfHeaders has the value that is equal to combined size of an MS-DOS stub, PE

header, and Section headers and rounded up to a multiple of FileAlignment. This spec-

ification was also validated for malware and benign samples. Only 16% of benign

samples do not follow the specification while 78% of malware samples do not follow

the specification. In the proposed work, this field is considered as Boolean and assigned

1 if extracted value follows the specification else 0 were assigned. (David et al., 2016)

have also presented and discussed the structured analysis of many of aforementioned

fields and argue that considering these as the feature can enhance the detection rate.

This section starts with explaining about the proposed integrated feature set which

is the combination of the set of raw, expanded raw and derived features. In further sec-

tions, raw and derived features are explained in details. The details of the experiments

carried out to compare raw and the proposed integrated are presented and discussed

further in section 3.5.3.

3.5 Performance comparison of Integrated versus Raw

feature set

This section presents the performance comparison between the proposed integrated fea-

ture set and commonly used raw feature set on the basis of various experiments. The

methods and process for creating these feature set are explained in aforementioned sec-

tions. This section provides details about the dataset and experimental system along

with the pre-processing steps which are taken to generate both the feature set. The re-

sults of each experiment are presented and explained in detail in the respective sections.

The following section 3.5.1 provides details about the dataset used to create both the

feature sets.

53

3.5.1 Dataset

To create raw and integrated feature set, malware and benign samples were collected.

The malware was collected from virusshare 6 7 and benign samples were taken from

freshly installed Window XP and Window 7 program files. Some of the benign samples

were also collected from online free software archive 8. Apart from this dataset, a sep-

arate test dataset (explained in detail in subsection 3.5.3.3) is also created for validation

purpose which has 129 malware samples of different type and 30 benign samples.

3.5.1.1 Pre-processing

Collected malware and the benign samples can have the duplicate sample (same sample

with the different name) and that will affect the training. Using filename to identify and

remove duplicate sample may lead to errors, hence Message Digest (MD)9 technique

(MD5) was used to retain only the unique sample from both malware and benign group.

The proposed integrated feature set is based only on PE files such as EXE, DLL

etc., so it was necessary to select and pass only PE files for next stage. There are many

methods available for file type detection, among them, Linux’s file utility was used to

get the file type of each sample and a Python script was used to filter and retain only PE

files. After duplicate removal and PE file selection, the final dataset has 2488 benign

and 2722 malware samples.

3.5.1.2 Class Labelling

For the supervised learning, it is must to have accurate class label to each of the sample

in the dataset. For labeling dataset for malware detection two methods are used in

literature, by locally installed AV engines or through online multiple AV engines. This

work has selected online multiple AV engines mode for labeling. VirusTotal provides

sample scanning through multiple AV engines over Internet and it also offers API based

service which helps to automate the scanning process. This thesis work used Virustotal

6http://virusshare.com/ [Accessed May 27, 2017]
7VirusShare.com is a repository of malware samples to provide security researchers, incident respon-

ders, forensic analysts, and the morbidly curious access to samples of live malicious code.
8http://download.cnet.com/ [Accessed May 27, 2017]
9Message digest is technique to create unique hash for the given data. Any change in data will change

the hash.

54

service to verify the class label of each sample of the dataset. VirusTotal provides scan

result of multiple anti-virus engines running in parallel but this work only considered

and fetch top n AV result based on AV-test10 result. The final decision on the class label

was made using Eq. 3.3.

CL(M|B,S) =

M, I f (E1(S)∨E2(S)∨ . . .En(S))

B, elseI f (!(E1(S))∧!(E2(S))∧ . . .!(En(S)))
(3.3)

From Eq.3.3 it’s very clear that a malware label is assigned to the sample S, if any

of the scanning engines among E1 to En returns positive whereas a benign label is only

assigned to the sample S if all of the scanning engines returns negative.

3.5.1.3 Feature extraction

For supervised learning feature extraction is performed on the pre-processed and la-

beled dataset. All pre-processed and labeled samples (2488 benign and 2722 malware

samples) were passed to feature extractor where the different header’s fields value were

extracted from the each data sample by using pefile 11 Python module. It is very efficient

and popular module for PE file processing.

The raw feature set was created by just appending class label with each set of val-

ues extracted from the sample. The set of raw values and set of derived values were

collected for creating integrated features set. Raw values were retained from the pre-

vious step and for derived values, a python script was written which has methods to

check selected field’s value with pre-defined rules (based on MSDN document) and re-

turn the result as feature’s value. As explained in Algorithm presented and discussed

in the earlier sections, all extracted fields value were passed and only selected fields’

were checked for derived features. Appending selected raw with returned derived val-

ues and class label creates the integrated feature set. Some of sample header’s fields’

values were not readable which was the result of obfuscation and hence such sample

were neglected by the extractor.

This section explained the process of dataset creation and also discussed about

adopted pre-processing steps for cleaning the collected malware and benign samples

10https://www.av-test.org/en/antivirus/home-windows/
11https://github.com/erocarrera/pefile [Accessed May 27, 2017]

55

for the dataset. This section also explained about class labeling and feature extraction

process. In the following section 3.5.2 details about the experimental system which was

used to perform various experiments.

3.5.2 Experimental System

To create raw and integrated feature sets and perform all the experiments, an exper-

imental environment was created with Ubuntu Operating system running on Intel(R)

Core (TM) 2 Duo CPU E7400@2.80GHz processor and 4GB of primary memory and

320GB of secondary memory. Ubuntu system help to stop infecting experimental sys-

tem because the sample was targeted for Windows based OS. Due to static analysis

computation cost were very low and hence all experiments were carried on the normal

end-host system. Scikit-learn (Pedregosa et al., 2011), Python based machine learning

framework was used to run all the experiments. It was used to build and test the per-

formance of different classifiers with raw and integrated feature set. Train-test split,

supply of test dataset, and 10-folds cross validation testing method of Scikit-learn were

used to perform various experiments for training and testing. It helps in comparing the

performance of various models on many metrics such as accuracy, recall, precision, and

f1-measure.

Scikit-learn has the implementation of many of well-recognized machine learning

algorithms such as Decision Tree (DT), Logistic Regression (LR), Random forest etc.

This work selected one algorithm from each group, these are grouped on the basis of un-

derlying working theories such as tree-based, Bayesian or probability-based, instance-

based, dimensionality reduction-based and ensemble-based algorithms. Finally, six al-

gorithms Logistic Regression (LR), Linear Discriminant Analysis (LDA), Random For-

est (RF), k-Nearest Neighbours (kNN), Decision Tree (DT) and Gaussian Naive Bayes

(NB) were selected and used for all the experiments. All the six aforementioned algo-

rithms were trained and tested with various configurations and different dataset for raw

and integrated feature.

This section explained about the experimental system used for carry out various

experiments. In the following section 3.5.3.1 to section 3.5.3.5 results of various exper-

iments are presented and explained.

56

3.5.3 Results

Various experiments were conducted by training classifiers with Raw Feature (RF) set

(only have PE headers field value as the feature) and Integrated Feature (IF) set (which

have few selected PE fields’ value and derived features). Their performance were mea-

sure on various metrics and a comparison were done fo find out best performing feature

set.

The section 3.5.3.1 presents and explains experimental details and result for popular

train-test split testing method.

3.5.3.1 Train-Test split

The aim of this experiment is to study the performance of raw and integrated feature

set with train and test method. The train-test split is a method of splitting the dataset

into two part training and testing. It takes the percentage as splitting threshold. The

training dataset is used for training the machine learning algorithm while testing dataset

test the classifier’s performance. This work used 70-30 ratio for splitting the raw and

integrated feature set and hence trained algorithms on 70% training dataset and tested

with remaining 30% test dataset.

Table 3.3: Classifiers result on train-test(70-30) split

Classifier
Accuracy Precision Recall F1-score

RawF IntF RawF IntF RawF IntF RawF IntF

LR 77.06 78.12 0.81 0.80 0.77 0.78 0.76 0.77

LDA 91.71 92.45 0.92 0.93 0.92 0.92 0.92 0.92

RF 97.43 98.78 0.97 0.99 0.97 0.99 0.97 0.99

DT 96.47 97.12 0.96 0.97 0.96 0.97 0.96 0.97

NB 56.04 50.09 0.74 0.77 0.56 0.58 0.48 0.51

kNN 94.73 90.79 0.95 0.91 0.95 0.91 0.95 0.91

Table 3.3 summarize the performance of all the six classifiers on selected metrics

with the train-test split. It can be observed that NB (accuracy 50−60%) performance is

minimum while Random Forest (accuracy 97.47% and 98.78% on raw and integrated

feature set respectively) performance is best among all classifiers on both dataset and

57

(a) Raw features (b) Integrated features

Figure 3.4: ROC curves for different classifiers with train-test split method

integrated feature set is performing better (accuracy+1.31%) than raw feature set. The

integrated feature set with Random Forest is performing better than raw feature set on all

metrics while other classifiers are also better on all metrics except kNN which is giving

better result on raw features than integrated feature. Figure 3.4 shows the ROC curve

for classifiers trained and tested on the raw and integrated feature set. The ROC and

AUC values are also indicating similar performance as other metrics that are integrated

feature set have better AUC value than raw feature set. Random forest performance is

best among all another classifiers.

This section explained and presented results of train-test split method for all the

six classifiers on various performance metrics. In the following section 3.5.3.2 10-folds

cross-validation method is explained and results of selected six classifiers are presented.

3.5.3.2 10-fold cross validation

The aim of this experiment is to test performance of raw and integrated feature set in

more robust testing environment, so this work has used 10-fold cross validation method

for testing. It is robust again over-fitting and under-fitting which is common in machine

learning algorithms. The train-and-test method of validation has two main limitations.

First, if a single train-and-test experiment get a split which does not represent each class

sample proportionally then the holdout estimate of error rate will be misleading. Sec-

ond, it reduces the training sample which would degrade the performance of the classi-

fier. To overcome these limitations and have a more robust method for validation, this

58

work performed this experiment with cross-validation method. The Cross-validation is

represented as k|n-fold cross validation where k or n represent the number of fold the

dataset will be split and the number of times the training and testing will be done. For

example, in a k-fold cross-validation, the dataset will be split in k folds and for k times

the k− 1 folds will be used for training and left out one fold will be used for testing.

The final result will be given as the average of all k folds. The k repeats and random

selection of fold for testing makes cross-validation method robust.

Table 3.4: Accuracy comparison of classifiers with 10-fold cross-validation

Classifier
Accuracy

Difference
Integrated Raw

LR 0.600 0.742 -0.142

LDA 0.923 0.874 +0.049

RF 0.984 0.977 +0.007

DT 0.974 0.960 +0.014

NB 0.583 0.578 +0.005

kNN 0.899 0.928 -0.029

This work performed a 10-fold cross-validation of all the classifiers on raw and inte-

grated feature set. For the comparison, the accuracy of each classifier was measure for

both raw and integrated feature set. Table 3.4 shows the 10-fold cross-validation output

of all the classifiers. It can be observed that accuracy of all classifiers is decreased by

nearly 1% than the accuracy achieved under test-split validation but difference column

clearly shows that integrated feature set is performing better than raw feature set. Four

classifiers (LDA, RF, DT, and GaussianNB) have higher accuracy while other three

classifiers (LR and kNN) are very close in the accuracy of the raw feature set. Fig-

ure 3.5 shows the box plot output of classifier’s accuracy collected during 10-fold cross

validation. It is observed that Random forest and Decision Tree have high accuracy and

low variation where others have more variation and low accuracy.

Among the classifiers, with same configuration Random forest (RF) has consumed

highest training time on both raw and integrated features set which are 9.51 & 8.25

seconds respectively, whereas Decision Tree (DT) took lowest training time for both

raw and integrated features set, 0.83 and 0.6 second respectively. It was also observed

59

that training time is less on integrated features set, for example, both RF and DT took

less time than raw feature set.

(a) Raw features (b) Integrated features

Figure 3.5: Accuracy box plot of classifiers with 10-fold cross validation

This section explained the 10-fold cross-validation testing method and presented the

results of all six classifiers which were trained with raw and integrated feature set. In

section 3.5.3.3 the results of classifiers are presented with respect to a new test dataset.

The new test dataset has all the unique samples which were not present in the raw and

integrated feature set.

3.5.3.3 Testing with new test dataset

The aim of this experiment is to test the performance of raw and integrated feature set

with new samples which represent the real world scenario where often unknown sam-

ples are given to classify. The test dataset is created with samples which are not included

in training dataset and used to validate or test the performance of the trained classifier.

After testing and comparing the performance of classifiers on the raw and integrated

feature set with train-test and cross-validation method, this work also performed an ex-

periment to validate the efficiency of integrated feature set with new test dataset. For

creating the new test dataset 129 unique malware samples (which are not present in

earlier collected samples) of different type were collected and mixed with 30 benign

samples randomly selected from earlier collected samples. The feature extraction and

feature set generation were kept same as explained earlier.

60

Table 3.5: Type of malware samples and count in test dataset

Malware

Type
Virus Worm Trojan Bot Spyware Downloader Backdoor Total

Initial

Count
20 20 20 9 20 20 20 129

After

extraction
5 18 19 7 20 13 20 102

Table 3.5 shows the count of each malware type that was included in the test dataset.

All the samples were downloaded from openmalware 12 public malware repository and

the same class label was kept as given by the aforementioned archive. The MD5 hash

comparison was done to ensure that none of the training dataset samples should be

present in the new test dataset. After pre-processing and feature extraction step, the

final test dataset had totally 102 malware and 30 benign samples.

All the six selected learning algorithms were trained with the feature set created

from a total of 5180 samples from both malware and benign class. The classifiers

performance was validated with the new test dataset which have 132 samples. The

result of raw and integrated feature set with the new test dataset on various metrics is

summarized in Table 3.6.

Table 3.6: Classifiers performance on test dataset

Classifier
Accuracy Precision Recall F1-score

RawF IntF RawF IntF RawF IntF RawF IntF

LR 73.48 70.00 0.77 0.77 0.73 0.70 0.75 0.72

LDA 81.82 88.46 0.85 0.90 0.82 0.88 0.83 0.89

RF 74.24 89.23 0.87 0.93 0.74 0.89 0.76 0.90

DT 74.24 83.85 0.86 0.90 0.74 0.84 0.76 0.85

NB 28.79 31.54 0.83 0.84 0.29 0.32 0.21 0.26

kNN 79.55 76.15 0.88 0.83 0.80 0.76 0.81 0.78

It can be observed from Table 3.6 that raw feature set based classifiers performed

12http://oc.gtisc.gatech.edu:8080 [Accessed May 27, 2016]

61

poorly on the new test dataset. The raw feature set has an accuracy range 73%− 81%

for classifiers low to high. The performance of integrated feature based classifier also

reduces and best classifier Random forest has only 89.23% accuracy which is 9.17%

less than the 10-folds cross validation result. With comparison to raw, integrated fea-

ture set performance is very high. Random forest and Decision tree have only 74.24%

accuracy on raw features while 89.23% and 83.85% accuracy with Random forest and

Decision tree respectively on integrated features.

Figure 3.6 shows the ROC curve and AUC value of different classifiers on raw (Ref.

Figure 3.6a) and integrated (Ref. Figure 3.6b) feature set. It is clearly evident that

integrated feature set is performing better than raw feature set and have 5% more AUC

value for Random forest and other classifiers also have high AUC values for integrated

than raw feature set.

(a) Raw features (b) Integrated features

Figure 3.6: ROC of classifiers on test dataset

This section explained the method of testing with a new dataset which has all unique

samples than the training dataset. The section also presented the results of six selected

classifiers on various metrics for raw and integrated feature set. The section 3.5.3.4

presents the comparison of the proposed integrated feature set with the earlier similar

works which have used feature set based on PE files.

3.5.3.4 Comparison with previous works

In the previous three experiments, it was found that the proposed integrated feature set

is performing better than the raw feature set.

62

To further validate the accuracy performance of proposed integrated features set, it

is important to compare the proposed work with earlier works based on PE files and its

header information. Best of our knowledge, except Markel and Bilzor (2014), no other

malware classification work has been carried out based on only headers’ fields values

but David et al. (2016) have discussed the structured analysis of various fields of PE

header and argue that considering these as the feature can enhance the detection rate.

There are few works close to the proposed work but most of them have used PE header’s

based feature as complementing feature and have used them with other features set such

API & DLL calls, byte-n-gram and opcode-n-gram.

Bai et al. (2014) have used API & DLL calls along with various raw values of

PE headers. Comparison with (Bai et al., 2014) work will not give a perfect merits or

demerits of the proposed work but can be tested for the nearby result. For comparing the

proposed integrated feature set, Bai. et al. work was reproduced Bai et al. (2014). The

selection of previous work was based on the similarity of work i.e. learning algorithms

and used feature set.

Table 3.7: Result comparison of the proposed work with the earlier work

Works DT RF

Proposed work 97.4 98.4

Bai et al. (2014) 98.7 98.9

Markel and Bilzor (2014)(F-score) 97.0 –

Table 3.7 summarizes the comparison result of the proposed work with the previous

works. From Table 3.7 it can be observed that Random forest with proposed feature set

has an accuracy of 98.4% which is only .5% less than the accuracy of Bai et al. (2014)

98.9%. The improvement of .5% would be due to using of API & DLL calls along with

PE headers’ fields values.

This section presented the comparative result of the proposed integrated feature set

with the earlier works. In section 3.5.3.5 performance of classifiers are tested with

selected features and results are presented.

63

3.5.3.5 Testing with selected Features

The feature selection is the process of selecting a subset of relevant features for use

in model construction 13. Generally, feature selection is performed before training and

testing and reduces the feature set dimension by selecting only features with high dis-

criminative value. The focus of the proposed work is to test the classifiers performance

with raw and integrated feature set hence feature selection were avoided on both the

feature set.

This work is interested in knowing the importance of features’ rank in raw and inte-

grated feature sets which can further help to understand the difference and importance

of features among both sets. Among model based feature selection methods (wrapper

methods) tree based methods are easiest to apply and without much tuning, it can also

model for non-linear relations.

In this work Extra Trees Classifier with 250 trees was used to get feature impor-

tance for the raw and integrated feature set. Except number of trees all other settings

kept to default. It is an ensemble classifier and by default uses Gini impurity to measure

the quality of a split. Table 3.8 list out the top 10 features from the raw and integrated

feature set. In top 10 ranked features of integrated feature set, it can be observed that

3 features are derived features, 6 features are boolean which are expansion of Charac-

teristics and DLLCharacteristics raw features and SubSystem is common in both which

clearly indicates the importance of derived features.

13https://en.wikipedia.org/wiki/Feature selection

64

Table 3.8: Tree method based selected top 10 features from raw and integrated feature

set

Raw Integrated

Features Value Features Value

Characteristics 0.202 FH Char12 0.213

ImageBase 0.107 OH DLLChar2 0.082

DLL Charaticteristics 0.079 fileinfo 0.080

MajorSubSystemVersion 0.064 OH DLLChar0 0.072

SubSystem 0.056 FH Char0 0.064

MajorOSVersion 0.037 SubSytem 0.031

MinorSubSystem 0.030 E data 0.027

e Ifanew 0.029 E file 0.025

SizeOfStackRes 0.028 OH DLLChar6 0.0248

CreationYear 0.026 FH Char3 0.0241

To verify the suitability and efficiency of proposed integrated feature set, five sub-

sets of features were selected from raw and integrated feature set. The selection was

made by considering aforementioned feature ranking and five subsets were created as

top5, top10, top15, top20 and top25 having top 5, 10, 15, 20 and 25 features respec-

tively. On this five feature sets Random forest and Decision tree classifiers were trained

with 10-fold cross validation and their accuracy was recorded and compared. Figure 3.7

shows the accuracy of RF and DT on the raw and integrated feature set. From Figure 3.7

is evident that performance of raw feature is better till top 15 features above that accu-

racy is constant and more features does not improve accuracy any further where as

integrated feature set have lower or equivalent performance below top 15 features but

get improved over top 15 and have greater accuracy than raw feature set. The reasons

for this behavior is very obvious, Characteristics and DLLCharacteristics is in top 5

features in raw feature set whereas it is separated in various boolean features in inte-

grated feature set hence top 15 features provides all accuracy for the raw feature set.

While in the case of integrated feature set more than 15 top features improves accuracy

and overtake the accuracy of raw feature set because of other informative features apart

from Characteristics and DLLCharacteristics based boolean features. Top 20 features

65

Figure 3.7: Decision tree and random forest accuracy on top N features

of integrated features set have 6 out of 14 derived features.

This section presented the experimental proof of performance improvement of the

classifiers with the proposed integrated feature set. With the help of five experiments

performance comparison of raw and integrated feature set is presented and the improve-

ments are noted and discussed with the valid reasons. The following section 4.3 presents

details of the dataset, experimental system and results of various classifiers for the pro-

posed section name-based feature set. The section presents results for showing the

effect of feature selection on the proposed section name-based feature set which helps

to understand the discriminative potential of the proposed feature set.

3.6 Summary

This Chapter proposed an Integrated feature set which is combination of the set of

derived features and the set of selected and expanded raw features based on Portable

Executable (PE) file format. The Chapter has also provided details about building raw

feature set which is created by using PE header fields’ value without any change, and

were adopted in many earlier works as explained in Chapter 2. This Chapter gave

an overview and discussed all the steps of building machine learning based malware

detector from the raw malware and benign sample. An algorithm for generating feature

66

set from malware and benign sample is also presented and discussed which was used to

generate raw and the proposed integrated feature set. Various selected ML algorithms

are trained and tested on both feature set and their performance is measured. This

Chapter also presented the details about dataset, experimental system, and results of

training and testing. In the forth coming Chapter 4, a section name based binary feature

set is proposed which uses Portable Executable (PE) file’s section name as features.

67

CHAPTER 4

Malicious Portable Executable Detection Using Section

Name

In Chapter 3, Portable Executable (PE) headers’ fields are used to create the integrated

feature set which is a combination of the set of raw and derived features. In this Chap-

ter, section name of PE files are used as boolean features to create the proposed section

name based feature set. The objective of the Chapter is to test the discriminative poten-

tial of section name as the boolean feature. To achieve this objective, various machine

learning algorithms are trained with the proposed section-name based feature set and

their performance was tested on various metrics.

This Chapter explains in details about PE sections and section name. Various com-

mon sections1 present in PE files are also listed and explained in detail. With Static

analysis, sections name can be extracted by all types of PE files such as EXE, DLL and

COM. Static analysis is simple and cost effective so building feature set from section

name is fast and suits malware classification task. Various experiments confirmed the

usability of section name as features. Malware classifiers built with section name based

feature set achieved a good detection accuracy and have low False Positive Rate (FPR).

In section 4.1, PE sections, section table and a few frequently used sections name

with their characteristics are explained in detail. During statistical study, a significant

difference in sections name frequency in malware and benign sample provides motiva-

tion to use it as feature for malware detection. This Chapter has also listed the selected

top 20 sections name with their information gain value.

This Chapter presents the method for building the proposed section name-based fea-

ture set from PE sections. The details about the dataset, experimental system and result

1This is decided based on traditional programming naming conventions and use frequency.

68

of training & testing various machine learning algorithms are presented and explained

towards the end of chapter under section 4.3.

4.1 Portable Executable Sections

PE is a file format used in Windows OS to construct, organize and execute different

file types such as executable (.exe), Dynamic Library (.dll) etc. All the aforementioned

type of PE files are organized and structured in various sections. So the section is very

important unit of a PE file because it holds the contents of the file such as code, data and

other resources. All the available sections have a respective section header which are

stacked in sequence and these headers succeed the two other PE headers namely, DoS

header and NT header(explained in detail in previous Chapter 3). Fig. 4.1 visualize the

arrangement of section headers within the section table with its respective section. As

stated earlier, left part of Fig. 4.1 shows all the sections (n) and its respective section

header along with other two PE headers while right part of Fig. 4.1 lists out all the fields

of the section header. The interest of this thesis is in the section name which is first field

of section header which is termed as Name1 2 in the figure.

There is a standard naming convention for section name such as .text, .rsrc etc.

but these names vary due to the linker and other development tools3. The standard

section name also indicates about the nature of the section (explained in detail in further

section 4.1.2, for example, .text or .code usually has executable code, while .data or

.idata has initialized data 4.

The number of sections (represented as n in Fig. 4.1) in PE file is not fixed and it

vary from file to file. The total number of sections present in a PE file depends upon

functionality and compilation and the count of total available sections can be known by

accessing NumberOfSections field’s value of the File header. The Section name is an

eight-byte array of ASCII characters, and it is meant for human i.e. loader and linker

do not use section name during the execution. The deceptive presence of this memory

space opens scopes for misuse and so is the motivation for the proposed section name

2This field would has referred as “name” but Microsoft Macro Assembler (MASM) also has one

keyword “name” so different words such as Name1 is being used for the field.
3http://wiki.osdev.org/PE#Section_header
4https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files

69

Figure 4.1: Section header and section of the portable executable format

based feature set.

This section explained about PE file in brief, a detailed explanation is provided in

the previous Chapter 3. This Chapter also provides a brief introduction about sections,

section table, section name and section header. In following section 4.1.1, section table

is explained in details which has data structure to hold the section header for all the

respective sections of the PE file.

4.1.1 Section Table

A Section table is actually an array of structure which is positioned immediately after

the optional header which is part of NT header in a PE file. The structure for the sec-

tion table is called IMAGE SECT ION HEADER i.e. each row of the section table is

a section header. The number of entry in the Section table is determined by NumberOf-

Sections field in the file header (IMAGE FILE HEADER) structure. The location of

the section table is determined by calculating the location of the first byte after header

by using the size of the optional header.

Each section header has at least 40 bytes of entry. Few important entries i.e fields

of the section header are explained in details in following sections 4.1.1.1 to 4.1.1.6.

70

4.1.1.1 Name

This thesis has used the section name as binary feature to build malware detector. The

section name is extracted from the Name field of section header. The Name field of

the section header is an 8-byte null-padded Unicode Transformation Format (UTF)8

encoding string and contains the name of the section and it even can be null. This

field would has been referred as “name” but MASM also has one keyword “name” so

different words such as Name1 is being used for the field.

The maximum length of the name field is 8 bytes. The section name works like a

label for the respective section and has no further use in loading or execution of PE file.

Any name can be used for this field or even it can be left blank. It is also worth to note

that the guideline does not mention anything about the terminating null i.e. the section

name field is not an ASCIIZ5string so it is not expected that it must terminate with a

null. A string of exactly 8 characters long does not has a terminating null. The section

name longer than 8 characters is achieved by using the string table in which case the

section name field has a slash (/) followed by the ASCII representation of a decimal

number that serves as an offset into the string table. Section name can not be longer

than 8 characters for the executable image file because it does not use a string table. In

the case of object file, longer names are truncated if the file is going to be an executable

file.

From this section, it can be observed that the section name field of the section header

is very deceptive in its structure and uses. Such deceptive nature of the section name

widen the malicious opportunity for the attacker and make it complex for static analysis

to decide nature of PE file based on the section name. This motivates this thesis work to

devise binary features based on section name. The proposed section name based feature

set can be used with machine learning algorithms to detect malicious PE files.

In following sections other fields such as virtual size, virtual address etc. of section

header are explained which help to understand the use of sections and its header.

5ASCIIZ means that the string is terminated by the \0 (ASCII code 0) NULL character.

It also called C strings. In computing, a C string is a character sequence terminated with a null

character (\0, called NUL in ASCII).

71

4.1.1.2 VirtualSize

The Virtual size field of section header has actual size (in bytes) of the section’s data

when loaded into memory. This size can be less than the size of the section on disk. The

Virtual size value greater than SizeOfRawData indicates that the section is zero-padded.

For only executable images this field is valid and should be set to zero for object files.

4.1.1.3 VirtualAddress

This is the Relative Virtual Address (RVA) of the section. The PE loader examines and

uses the value in this field when it maps the section into memory. In executable images,

this field has the address of the first byte of the section which is relative to the image

base when the section is loaded into memory. Thus if the value in this field is 1000h

and the PE file is loaded at 400000h, the section will be loaded at 401000h. In the case

of object files, it has the address of the first byte before relocation is applied.

4.1.1.4 SizeOfRawData

This field holds the size of the section for object file and the size of the initialized data

on the disk for the image file. The size of the section’s data is rounded up to the next

multiple of the file alignment. For the executable image, this value must be a multiple

of the value of the File Alignment field of the optional header. If this field’s value is

less than the value of the Virtual Size field then it indicates that the section is zero-filled.

The PE loader examines the value in this field to know, how many bytes of the section it

should map into the memory during loading. For a section which has only uninitialized

data, this field should be zero.

4.1.1.5 PointerToRawData

This field is used to find the starting address of the respective section. The value of

PointerToRawData field is the file offset of the beginning of the section. This is very

useful because the PE loader uses the value in this field to find the location of the section

data within the file.

72

4.1.1.6 Characteristics

The characteristics field of the section header has set of flags which describe the charac-

teristics of the respective section. It has flags which indicates that the section contains

executable code, initialized data, uninitialized data or has read/write permission etc.

Due to holding such sensitive information about the particular section, this field is very

important for malware detection. In many cases, it has been observed that the attacker

hide malicious code inside sections by manipulating the flags of the characteristics field.

Table 4.1 lists out some of important flags of Characteristics field of the section header

along with their decimal equivalent value and with the short description. These flags

could be potential binary features for malware detection but are out of scope for the

proposed section name based feature set.

Table 4.1: Important flags of section header’s characteristics field

S.N. Flag Value Description

1 CNT CODE 32 contains executable code.

2 CNT INITIALIZED DATA 64 contains initialized data.

3 CNT UNINITIALIZED DATA 128 contains uninitialized data.

4 LNK NRELOC OVFL 16777216 contains extended relocations.

5 MEM DISCARDABLE 33554432 can be discarded as needed.

6 MEM NOT CACHED 67108864 cannot be cached.

7 MEM NOT PAGED 134217728 not pageable.

8 MEM SHARED 268435456 can be shared in memory.

9 MEM EXECUTE 536870912 can be executed as code.

10 MEM READ 1073741824 can be read.

11 MEM WRITE 2147483648 can be written to.

Previous section presented important fields of section header and provided a de-

tailed explanation for each of the fields. In section 4.1.2, sections which are more

frequent and present in the PE file are presented with a detailed explanation.

73

4.1.2 Common Sections of Portable Executable (PE) file

As stated earlier that PE file is organized and structured in various sections and each

section has a respective header comprising many important fields used by loader and

linker. Usually, linker and loader process section with code or data without any ex-

plicit knowledge of the section contents. The contents of the section are relevant only

to the application that being linked or loaded. However, some sections have explicit

meanings with their presence in object file or image file. The explicit meanings of the

section is recognized by various tools and loaders. Each section indicates a special

function which can be identified by checking the set flags of Characteristics field of

the respective section header, special locations in the image and even the section name

(by convention). For example, an application in the Windows NT typically has nine

predefined sections, such as .text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and

.debug. Because these section names are more frequent for Windows NT application,

many other supporting tools also try to follow these section names as convention but

these names are not mandatory.

Further, frequently used section names have presented with discussion about their

conventional functionality by relating them with required set flags of Characteristics

field listed in Table 4.1.

4.1.2.1 .text/.code

The .text section of the PE file usually has the executable code which also named as

.CODE or .code. As Windows uses a page-based virtual system, having one large code

section is easier to manage for both the OS and the application developers. This section

set three important flags of Characteristics field, IMAGE SCN CNT CODE, IMAGE -

SCN MEM EXECUTE, and IMAGE SCN MEM READ.

4.1.2.2 .idata

The .idata section contains various information about imported functions, including

the import directory and import address table of the PE file. This section has read

and write permission by enabling IMAGE SCN MEM READ and IMAGE SCN MEM -

WRITE flag of Characteristics field in its header.

74

4.1.2.3 .rdata

The .rdata represents the read-only data on the file system, such as strings and con-

stants. To achieve desired properties, this section set the IMAGE SCN MEM READ

and IMAGE SCN CNT INITIALIZED DATA flags of Characteristics field.

4.1.2.4 .edata

The .edata section contains the export directory for an application or DLL. When

present, it contains information about the names and addresses of exported functions. It

also set the MEM READ and INITIALIZED DATA flags of Characteristics field.

4.1.2.5 .rsrc

The .rsrc is a resource section, which contains resource information of a PE file. In

a Graphical User Interface (GUI) application and many other cases it has icons and

images that are the part of the PE file resources.

4.1.2.6 .bss

This section has the uninitialized data for the application in free format. It has read

and write access permission and respective flags (IMAGE SCN MEM READ and IM-

AGE SCN MEM READ) are set for the same.

Apart from these common section names, there are many others names which are

used and accepted among developers and recognized by many tools & applications. But

it must be understood that these section names are just used by convention and are not

mandatory or bound to any PE specification rules.

This section discussed about PE file, section table, section header and listed few

of the frequently used section name. The frequently used section name has an explicit

nature of data which are also discussed in this section. In the following section, mo-

tivations for using section name as binary features are explained and the process and

method for creating feature set based on section name are also explained. At the end

of the following section, an example feature set is shown which mimic the proposed

binary section name based feature set.

75

4.2 Section Name as features

The deceptive nature of section name and its importance as features are explained in

the previous section. This section explains the process and method of creating feature

set based on the section name. Creating and testing a feature set based on section name

as boolean features are novel in terms that in almost all of earlier works it has been

used as dependent feature set. The section names or other related features are always

used with the combination of other features in a feature set. Despite wide scope of

possible malicious activities the use of section name as the feature is limited. This limit

the scopes and possibilities of section name as features. This work has explored the

potential of section name as boolean features and registered the possible outcome of

such features in the building of machine learning based malware detector.

4.2.1 Motivations

The section name is stored in the name field of the section header which is an 8 bytes

field and can be extended by using string table. The name field of a section header

serves as an unnoticed memory space to the attacker which can be exploited in many

ways. The attackers disturbed the normality of name field for hiding their malicious

modification in the PE file by using various off-shelf tools. The observations on these

facts motivate to carry out this work which utilizes section name as the binary feature

for building malware detector by using machine learning algorithms. Considering the

section name to use as the binary features for training machine learning algorithms is

based on various comparative statistical data and observing the difference in section

name between malicious and benign sample. Some of earlier works have also used

section name as feature with the combination of other features (Perdisci et al., 2008;

Yonts, 2012; David et al., 2016). On the basis of standard and non-standard name,

sections name has classified as suspicious and non-suspicious respectively, then only

the total number of suspicious sections name are used as an integer feature to classify

packed and non-packed PE files (Perdisci et al., 2008). The comparative analysis about

NumberOfSections in malware and benign shows that nearly 50% of malware sample

have less than or equal to 3 sections whereas only 25% of benign files fall in this range

(Yonts, 2012). The presence of section without name or if the name has other than

76

alphabetic character is seen as indication of malicious PE file (David et al., 2016).

Further, all the points which are motivation for this work are listed and summarized.

• Each section name has 8 byte space, a PE file can have many sections, some

file type can also use string table to store longer section name, summing all this

provide ample space which can be used by malware without having any effect on

the program normal execution.

• Different compilers and packers use the varying naming convention for section

name which results in large number of standard and non-standard section name.

The lack of any common standard for naming section name opens scope for any

values in those name field of each section header.

• Section name works as the label for human only because linker and loader do not

use it for any purpose which opens it for use and misuse. Any contents can be

stored in the name field in place of section name and the work of loader and linker

will be unaffected.

• There is a large difference between a number of sections in malware and benign

files (Yonts, 2012).

• Use of non-standard, blank or name with non-alphabetic character as section

name is indicator of malicious activities (Perdisci et al., 2008; David et al., 2016).

With the reference of aforementioned works, motivational points and the deceptive

nature of the section name motivate this work to create and verify the potential of feature

set based on the section name. In the following section 4.2.2, process and method of

creating the binary feature set by using section name as the feature is explained in

details.

4.2.2 Process and Method

This section explains the process and method used for creating the feature set based

on section name as the boolean feature. For all the available sections in a PE file the

name field of all the respective section header holds the section name. As explained in

the previous chapter 3, feature extraction and creating feature set is third step after data

77

collection and pre-processing, both of which is explained further in section 4.3. This

section explained the feature set generation process assuming a well-processed dataset

having raw malware and benign sample. The details of dataset preparation, experi-

mental system and machine learning algorithms training and testing are also presented

further in section 4.3.

As explained in earlier sections, every section present in a PE file has a respective

section header which is stored as the array of structure as section table. Each section

header has a set of fields including Name field which store name of the section. Count of

total sections present in a file can be known by accessing NumberOfSections field from

File header. Each field of every individual section header can be accessed by knowing

the total sections and then looping through the section table. After looping through

every section header of the PE file value stored in the Name field are extracted. Each

extracted name field value is processed and only those values are kept which satisfy

our conditions to be a feature, for example, alphabetic versus non-alphabetic character,

maximum size etc.

78

Algorithm 2 Generate SectionsName based feature set
1: procedure GENERATESECTIONSFEATURESET(Ψ,Ω)

. Ψ : Malicious PE files

. Ω : Benign PE files

2: f eatures[...]← “sectionName” . To store selected section name as feature.

3: sectionsCount[...][...]← “sectionName”,0 . Array to store section name and

frequency

. Multi-dimension array to store feature set.

4: f eatureSet[count(Ψ)+ count(Ω)][len(f eatures)+1]← 0

. Extract all section names from each sample (malware and benign)

5: for κ ∈Ψ+Ω do

6: names[]← extractSectionsName(κ)

7: sectionsCount[][]← StoreAndU pdate(names)

. Select top N section name as feature based on count

8: f eatures[]← SelectTopSection(sectionsCount[][])

9: function UPDATEFEATURESET(names, f eatures,class)

10: f eaturesValues[len(f eatures)+1]← 0

11: for name ∈ f eatures do

12: if name ∈ names then f eaturesValues← append(1)

13: else f eaturesValues← append(0)

14: f eaturesValues← append(class)

15: return featuresValues[]

16: for κ ∈Ψ do . Create features value for Malicious PE files

17: Class← 0

18: names[]← extractSectionsName(κ)

19: f eatureSet← UPDATEFEATURESET(names, f eatures,class)

20: for κ ∈Ω do . Create features value for Benign PE files

21: Class← 1

22: names[]← extractSectionsName(κ)

23: f eatureSet← UPDATEFEATURESET(names, f eatures,class)

24: return(f eatureSet)

79

Algorithm 2 summarizes the overall process of feature set generation from raw mal-

ware and benign sample. The Ψ and Ω is the set of malware and benign PE files which

are input to the algorithm and the proposed feature set (indicated as variable featureSet)

is the output of the algorithm. Variable features and sectionCount is used to store sec-

tion name and section name with their frequency respectively. Line 4 in Algorithm 2

initialized the total rows and columns of the proposed feature set. Total rows will be

equal to the sum of total malware (Ψ) and total benign (Ω) sample in the dataset. Total

columns will be one more than the size of the feature array, the one extra column will

have the class label of each sample. By looping through the dataset, all the section name

will be extracted and will be stored with their frequency in the respective variable. The

final features will be selected on the basis of frequency ranking and top features will be

selected to create the feature set.

Further the algorithm will update the feature set by using the function UpdateFea-

tureSet() and looping through all the sample from both malware and benign class. Up-

dateFeatureSet(names,features,class) function takes extracted section names from each

sample, the features list and class label as input parameter. All the section names in pa-

rameter features which is also in the parameter names will be assigned value ′1′ and rest

will be assigned ′0′. By this process, a set of values (1 and 0) for each sample will be

created which constitute a single row in the feature set after appending the class label.

Every step of Algorithm 2 is supplied with appropriate comment for better understand-

ing. The generated feature set will be passed to various machine learning algorithms

for training and testing and their performance result is presented and explained in sec-

tion 4.3.

With the aforementioned method, a global feature list is created by extracting a

total of 464 unique section names from each sample of the dataset. As explained earlier

the proposed feature set is created by extracting sections name from each sample and

comparing them with the global feature list. The different subsets of the feature set

are also created on the basis of information gain feature selection method. Table 4.2

lists out top 20 selected section name along with their information gain score and their

frequency in malware and benign sample. The details about the various subset of feature

set and experiments with results are presented and explained in section 4.3.

This section explained the process and method of feature set generation from the

80

Table 4.2: Top 20 features with score and frequency

Top 20 Frequency

Features Score Malware Benign

RELOC 0.3065 1001 2109

RSRC 0.0905 2033 2452

TEXT 0.0823 2138 2240

IDATA 0.0808 499 706

BSS 0.0603 460 43

DATA 0.0597 2575 2071

PDATA 0.0515 116 11

RDATA 0.0499 1676 969

UPX 0.0243 496 22

CRT 0.0151 119 32

TLS 0.0149 322 73

ITEXT 0.0116 54 7

CODE 0.011 326 27

NDATA 0.01 8 20

EDATA 0.007 218 29

ADATA 0.0063 18 0

OTI 0.0044 46 0

ORPC 0.0041 2 27

TEXTF 0.0038 9 0

XURI 0.0032 30 0

81

Table 4.3: An example for feature set based on section name as features

RELOC RSRC TEXT IDATA BSS DATA PDATA RDATA UPX CRT Class

1 0 0 1 0 1 0 1 0 1 Benign

1 0 1 1 1 1 1 0 0 1 Benign

0 1 0 1 0 0 1 0 0 1 Benign

0 0 1 1 0 0 0 0 0 0 Malware

0 0 1 0 1 0 0 1 1 1 Malware

0 1 1 1 0 1 1 0 1 0 Benign

0 1 0 0 1 0 0 1 1 1 Malware

1 1 0 1 1 0 1 0 1 0 Benign

raw samples. In the following section 4.2.3, an example feature set which symbolized

the original feature set.

4.2.3 An Example of the Feature set

In this section, a representative feature set is presented by using selected top 10 sec-

tion name as features and features values are filled by mock data. Table 4.3 visualizes

the essence of feature set created during the experiment. Top 10 section names (refer

Table 4.2) are used as features and their presence and absence in each sample is repre-

sented as ’1’ and ’0’ respectively. The last column of the table indicates the class label

of each sample they belong to malware or benign. This labeling of the sample is must

for supervised ML algorithms. These all information can be stored in many ways. In

this work, the feature set is stored as a Comma Separated Value (CSV) file and later

read and process to pass to ML algorithms.

4.3 Discriminative capacity of Section Name as features

This section presents the results of various experiments which were performed to test

the discriminative capacity of section name as features. The details about the section,

section table, section header, rational behind considering section name as feature, and

method for feature set generation is presented and explained in earlier sections. This

section provides details of steps taken for dataset preparation and about the experimental

system along with the experiments and their respective results.

82

4.3.1 Dataset

This work collected 2724 malware and 2529 benign sample for conducting various

experiments to test the proposed section-name feature set. The malware sample were

collected from virusshare6 and benign sample were collected from system and program

folder of freshly installed Windows OS. To make collected sample suitable for further

processing such as feature extraction and feature set generation various pre-processing

steps were taken which are explain in following section.

4.3.1.1 Pre-processing

This work is based on section name of PE files so the dataset only can has PE files. So

during pre-processing step, non-PE files and duplicate samples were removed from the

dataset. This work also removed files which were only supported by DOS and hence

do not have PE signature which indicates the presence of NT headers. The final dataset

has 2724 malware and 2501 benign sample.

The packer change the section name of PE files so dataset was checked for packed

and unpacked files. The packer information of each sample was checked using PEiD7

signature database (a total of 1660 signature) with Yara8 tool. Table 4.4 shows the

count of the packed and unpacked sample of malware and benign sample.

Table 4.4: Packed and unpacked sample in dataset

PackerInfo Malware Benign Total

Packed 1039 353 1392

Unpacked 1685 2148 3833

Total 2724 2501 5225

4.3.1.2 Class Labelling

After cleaning the dataset during pre-processing step, the dataset is passed for class

labelling. For supervised learning each sample of dataset must be labelled with proper

class label. This work adopted the same technique to label the sample as explained

6https://virusshare.com/,[Last Accessed:10 January 2017]
7PEiD detects most common packers, cryptors and compilers for PE files.
8http://virustotal.github.io/yara/,[Last Accessed:10 January 2017]

83

in Chapter 3. Each of the sample was labelled by online anti-virus scanning service

virustotal9 which provides a API service to scan sample with multiple parallel running

Anti-virus engines.

4.3.1.3 Feature extraction

This work has proposed the section name of PE files as feature so cleaned and labelled

dataset was passed for feature extraction. The Features i.e. section names from each

PE file were extracted by using pefile module by implementing a Python script. All

the feature processing task were also carried out by different Python scripts. The de-

tails explanation of feature extraction and feature set generation process is explained in

section 4.2.2.

This section explained about the dataset, pre-processing steps, labelling and feature

extraction for the section-name based feature set. The following section 4.3.2 explains

about the experimental system used for performing the various experiments to test the

performance of section-name based feature set.

4.3.2 Experimental System

The proposed feature set is created by using static analysis. This work has used Ubuntu

OS running on Intel(R) Core (TM) 2 Duo CPU E7400@2.8−GHz processor with 4GB

of primary and 500GB of secondary memory. The Python programming Language and

modules were used for scripting and for the experiments. The Pefile was used for PE

processing and scikit-learnPedregosa et al. (2011) was used for performing machine

learning task.

This section presented the details of the experimental system used for carry out

various experiments to verify the discriminative potential of the section name based

feature set. The following section 4.3.3 presents and discusses the results of various

experiments.

9https://virustotal.com/,[Last Accessed:10 January 2017]

84

4.3.3 Results

In further sections, results of different experiments are presented with explanation and

discussion. With feature selection method different sub-sets of original feature set

were created and which are used in different experiments. Six machine learning algo-

rithms were selected which are Logistic Regression (LR), Linear Discriminant Analysis

(LDA), Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes (NB), and k-

Nearest Neighbors (kNN). The four performance metrics Accuracy, Precision, Recall

and F1-score were used for compare the ML algorithms. The experiments were design

on the basis of feature selection such as performance without and with feature selection.

In following section 4.3.3.1 results of experiments without feature selection is presented

and discussed.

4.3.3.1 Classifiers performance without feature selection

In this section, all the six classifiers performance is evaluated with all the 464 features.

The evaluation result is presented and compared with Accuracy, Precision, Recall and

F1-score. Table 4.5 list out the values of these metrics for all the six classifiers. From

Table 4.5, it can be observe that Random forest has an accuracy of 87.12% which is

highest among all other classifiers.

Table 4.5: Classifiers result on various performance metric

Classifiers Accuracy Precision Recall F1-score

LR 83.67 0.84 0.84 0.84

LDA 83.99 0.84 0.84 0.84

RF 87.12 0.87 0.87 0.87

DT 86.86 0.87 0.87 0.87

NB 52.42 0.75 0.52 0.42

kNN 86.16 0.86 0.86 0.86

Figure 4.2 visualize the ROC of all classifiers with all features. Again, from Fig-

ure 4.2, it can be observe that Random forest has highest AUC value (0.93) among all

classifiers.

85

Figure 4.2: ROC for all classifiers with ALL features

This section presented the result of selected classifiers on various metrics without

any feature selection. The following section 4.3.3.2 presents and discusses the results

of experiments with feature selection.

4.3.3.2 Classifiers performance with feature selection

The feature selection is a method for constructing and selecting subsets of features that

are useful to build a good predictor. The feature selection benefits in many ways, such as

data visualization, in tackling curse of dimensionality, reducing storage requirements,

training and utilization time Guyon and Elisseeff (2003).

This work has used wrapper methods with Decision Tree for feature selection and

used entropy value for ranking the feature. Two different feature sets were created with

the importances score of features, one having all features with non-zero scores and other

having top 20 features. The non-zero feature set has 158 features, which is nearly one-

third of all the features. Table 4.6 presents the top 20 selected features (i.e. section

name) with their score and frequency in malware and benign sample.

86

Table 4.6: Top 20 features with score and frequency

Top 20 Frequency

Features Score Malware Benign

RELOC 0.3065 1001 2109

RSRC 0.0905 2033 2452

TEXT 0.0823 2138 2240

IDATA 0.0808 499 706

BSS 0.0603 460 43

DATA 0.0597 2575 2071

PDATA 0.0515 116 11

RDATA 0.0499 1676 969

UPX 0.0243 496 22

CRT 0.0151 119 32

TLS 0.0149 322 73

ITEXT 0.0116 54 7

CODE 0.011 326 27

NDATA 0.01 8 20

EDATA 0.007 218 29

ADATA 0.0063 18 0

OTI 0.0044 46 0

ORPC 0.0041 2 27

TEXTF 0.0038 9 0

XURI 0.0032 30 0

Figure 4.3 depicts the ROC of all six classifiers on the feature set with top 20 fea-

tures. Decision tree and Random forest performance are equal and are the best among

all the classifiers.

In Table 4.7, it can be observe that Random forest performance does not change with

feature selection whereas all other classifiers performance with only top 20 features get

reduced by 1% and performance of Naive Bayes get boosted by nearly 20%.

From Table 4.7, it can be derive that Random forest performance slightly (reduced

1% with top 20 features) changed while kNN performance varies with the different set

87

Figure 4.3: ROC for all classifiers with Top20 features

of features. With all non-zero score features, it achieved 90% AUC value which is 5%

more than the AUC with all the features.

Table 4.7: AUC of classifiers with set of selected features and 10 folds cross-validation

Classifiers ALL Non-Zero Top20

LR 0.89 0.89 0.88

LDA 0.90 0.89 0.88

RF 0.93 0.93 0.92

DT 0.92 0.92 0.92

NB 0.55 0.54 0.74

kNN 0.85 0.90 0.89

This section explained about dataset, experimental system and presented results of

various experiments which was performed to test the potential of section name base

feature set. The results of various classifiers were grouped on the basis of with feature

selection and without feature selection. The proposed feature set achieved 93% accu-

racy with just top 20 features and extracting section names for feature set is also simple

and computationally cheaper.

The following section 5.5 presents and explains the performance of the proposed

weighted permission based feature set. The results of proposed feature set are compared

88

with binary permission based feature set which are extensively used in the literature.

The proposed feature set is prepared from the Android’s apk files.

4.4 Summary

This Chapter has proposed a sections name based feature set which has a set of selected

sections name as boolean/binary features. It provides details about section table, section

header and sections along with the process of building the boolean feature set from the

malware and benign PE files. With the help of Algorithm 2 whole steps involved in

building sections name based feature set is summarized. Various selected machine

learning algorithms are trained and tested on proposed sections name based feature set

and their performance are measured. This chapter also presented the detail and the

results of training and testing of various feature set.

89

CHAPTER 5

Malicious Android Applications Triaging Using

Weighted Permission

In the previous two Chapters (Chapter 3 and Chapter 4), two feature sets are proposed

for the detection of malicious Portable Executable (PE) files. PE file format is for Win-

dows Operating System (OS). This Chapter and following Chapter 6 proposes feature

sets for detection of malware for Android which is a smartphone OS and holds largest

share in terms of users.

This Chapter explores the potential of Android’s permission as feature for malicious

app detection using machine learning algorithms. This thesis work has used permission

as integer feature than traditional use as boolean/binary feature. Each permission has

been assigned an effective weight and used as feature’s value instead of just using binary

value for presence and absence as feature’s value.

This Chapter explains the details of permission weighting process which assigns

weight to each of the permission. Later, the weighted permission is used as feature

to train various machine learning algorithms to build a classifier to detect malicious

and benign Android applications. Using permission weight instead of boolean value as

feature improve the classification accuracy.

This Chapter also present and discuss about the proposed tool, FAMOUS (Forensic

Analysis of MObile devices Using Scoring of application permissions) which is ma-

chine learning based triaging tool for forensic analysis. Among six trained classifiers

the best performing classifier were selected and used as back-end to build the proposed

tool FAMOUS which scan Android device and a triage installed apps into suspicious

and benign.

This Chapter starts by explaining in detail about Android security and its permis-

90

sion system. Further, details about Android apps’ manifest file are discussed and pre-

sented. This Chapter provides details about permission extraction, permission weight-

ing process with the help of scoring engine and feature set generation process. The

introduction of proposed tool FAMOUS is also presented. The details about dataset, ex-

perimental system, and results of various experiments for machine learning algorithms

performance is presented further in section 5.5.

5.1 Andriod Security

This section provide a brief introduction about Android Security and the following sec-

tion explain about Android’s permission system. The Android platform has been de-

signed with multi-layered security measures such as Linux kernel at OS level, manda-

tory application sandboxing at application level, secure inter-process communication at

process level, application signing at developer level and application-defined and user-

granted permissions at end-user level 1. Fig. 5.1 illustrates Android multi-layered se-

curity measures. Among all the aforementioned security mechanisms, the effectiveness

of application’s permission layer outcome is fully dependent upon the end-user which

would be treated as either empowering the user or burdening, from different perspec-

tives. This 100% user dependent security check is the weakest link in the Android’s

security pipeline. To perform different tasks on the device such as accessing Inter-

net, using camera, reading contacts etc., each application has to explicitly display and

acquire the required permissions during the installation and user has to decide either

granting requested permissions and proceed with installation, or denying it and can-

celling the installation. As most of the end-users are not technically aware to make an

informed decision, they grant permissions and install application without understand-

ing the malicious intentions of application. This weak spot of Android multi-layered

security has been picked by attackers and hence many malicious apps are intruding the

end-user devices through various third-party malicious app stores.

This section gave a brief introduction of Android security and in the following sec-

tion 5.2, a detailed explanation of Android application permission system is provided

along with the discussion about the manifest file.

1https://source.android.com/security/

91

Figure 5.1: Multi-layered security measures of android

5.2 Application’s Permission

This section explains about permission system of Android OS which is an user level

measure to limit the access of applications. The permissions are declared in Android-

Manifest.xml file explicitly by all the application developers during packaging of appli-

cation as APK. The detail about manifest file is explained in following section. Android

uses the permission system to provide security to user where every application requires

to declare respective permissions to access a service. During installation all permissions

required by an application is shown to the user and installation will proceed only if user

accepts and allow else installation will be aborted. All the required permissions by the

application is listed in a default system file called manifest file named as AndroidMan-

ifest.xml. All the official Android permissions are categorized into four types: Normal,

Dangerous, Signature and SignatureOrSystem.Fig. 5.2 shows a part of an example man-

ifest file which is listing six permissions required by the example application.

Permissions requested by the application clearly reveals the nature and behaviours

of the application. Studying permissions pattern for malware and benign will be help-

ful to find methods and threshold to build classification system. In the following sec-

tion 5.2.1, Android manifest is explained with an example. To understand the differ-

ence in permission request by malicious and benign few statistical tests were conducted

which is explained in further sections.

92

5.2.1 Manifest file

This section provides detail about Android manifest file which has all the declared per-

missions require by the application to provide its functionalities. Every application must

have an AndroidManifest.xml file in its root directory2. It presents essential information

about the application to the Android system, information the system must has before

it can run any of the application’s code. In this file permissions which are required by

the application and the others relevant details such as information about intents and ac-

tivities are declared. Fig. 5.2 shows a part of an example manifest file listing required

permissions by the application. It acts as a declaration file and here only the activity

which should start first is declared. It also lists the libraries that the application must

be linked and all the other components i.e. activities, services, broadcast receivers, and

content providers should also declared in the manifest file. Fig. 5.3 shows a part of an

example manifest file listing activity required by the application.

Figure 5.2: A snapshot of AndroidManifest file showing uses-permission elements

Figure 5.3: A snapshot of AndroidManifest file showing activity elements

This section provided detail about the Android manifest file and in the following

sections details of various statistical tests is explained. Results of these initial tests

2The file name AndroidManifest.xml is fixed so must have same name.

93

motivated this thesis work to use permissions as integer feature by assigning weight

according to its frequency in malware and benign class.

5.2.2 Statistical test

This section discusses the statistical tests which were carried out to understand the

differences between malicious and benign Android application. The results of the sta-

tistical tests are very helpful to understand the relationship between various variables.

To understand the differences and similarities between malware and benign, three can-

didate variables: filesize, total files in apk and total permissions were selected and an

overlay histogram of each variable were plotted. The overlay histogram provided visual

clues about the variables of both classes. In the following sections details about these

tests are explained.

5.2.2.1 File size

File size is the requirement of total bytes on disk to store all contents of a file. File size

is very important in study of understanding difference between malware and benign

applications. It is common assumptions and understanding that to propagate itself,

malware try to be as smaller as possible while benign applications do not impose such

restriction on file size. File size of each sample present in dataset were calculated to

plot the overlay histogram shown in Fig. 5.4.

Form Fig. 5.4 it can be observed that malware and benign samples have a different

file size patterns, malware seems to have smaller in size whereas benign samples are

larger in size. The mean of sample size for benign category was observed as 6.37 with

a Standard Deviation (SD) of 8.52 whereas mean of file-size for malware was recorded

as 1.31 with SD 2.02.

With these mean and SD values, it can be concluded that benign apk has an average

size of 7MB where as malware is much smaller in size and has average size of 2MB.

Larger variations in benign also suggest that benign sample file sizes spans across a

larger spectrum (i.e. 0− 20MB in Fig. 5.4) where as malware file size does not vary

much and 8MB size seems to be largest size.

This section explained about file size and presented differences observed in file

size among malware and benign Android applications. The following section 5.2.2.2,

94

Figure 5.4: Histogram of file size for malware and benign samples

explains about total number of files and its pattern among malware and benign samples.

5.2.2.2 Total files

Android’s apk is a compressed (very similar to zip compression) form of many files

present in an Android application which includes all resource files under res directory,

dex files, AndroidManifest and many other required files. Every file present in the APK

was considered as a candidate variable and counted for all samples available for the

experiment. Each APK was decompressed and all files inside the APK were counted

after which file count value is plotted as an overlay histogram as shown in Fig. 5.5.

An overview of the histogram in Fig. 5.5, reveals that malware uses very less number

of files whereas benign samples have more number of files. The mean of number of

files for benign category was observed as 342 whereas the mean of number of files for

malware category was observed only as 90. Number of files present in benign and

malware category correlated with the size of file i.e. malware have fewer number of

files resulted in small size where as benign have more number of files resulted in large

size.

This section explained about total files present in the APK and its pattern among ma-

licious and benign Android application. The following section 5.2.2.3, presents study

about permissions count among malware and benign sample.

95

Figure 5.5: Histogram of file count for malware and benign samples

5.2.2.3 Total Permissions

As explained in earlier section 5.2, Android uses a permission system to provide a user

level security and the permissions required by the application is listed in the default

system file called AndroidManifest.xml file. All the permissions from each of the APK

were extracted and counted. The total permissions of each APK in malware and benign

category were used to create an overlay histogram shown in Fig. 5.6. Fig. 5.6 shows

the comparison of permission count for malware and benign category. The mean of

permissions count for benign category was observed as 6.73 with a SD of 5.66 whereas

mean of permission count for malware category was observed as 12.43 with a SD of

7.96. It can be inferred that malware permission count is double than that of benign

category. The graph vividly shows that permission count for benign is much higher

in range of 0− 15 and very low towards higher bin sizes. Malware samples show its

presence at lower bin sizes but have a significant high presence at higher bin sizes,

where benign presence is negligible.

This section explained about permission and shown the difference in total number

of permissions among malware and benign application. Motivated by the different per-

mission patterns among malware and benign sample, this work proposed a weighted

permissions based feature set for malware detection. In the following section 5.3, de-

tails about permission extractor, scoring engine and the process of feature set generation

is explained.

96

Figure 5.6: Histogram of total permissions requested by malware and benign samples

5.3 Weighted Permission as Feature set

This section explains about the process of creating the proposed feature set from raw

malware and benign Android applications. The process of creating a feature set using

weighted permission as feature has three main components: (1) Permission Extractor,

(2) Scoring Engine and (3) Feature Set Generator. Permission Extractor extracts all

requested permissions present in an APK, scoring engine works in back end and up-

date the malicious and benign score of each permission and feature set generator use

scoring engine’s output and gives score to each permission present in a given android

application. Fig. 5.7 depicts all three components and their interaction and control flow.

The system takes malware and benign Android samples as input and produce a fea-

ture set in a multi-dimensional vector representation. Each column represents a feature

except last that store class label and each row represents a vector representation of per-

missions present in sample.

In the following section 5.3.1, process of permission extraction is explained, in sec-

tion 5.3.2, details about scoring engine is presented and in section 5.3.3, process of

feature set generation is explained.

97

Figure 5.7: Feature extraction and scoring system

5.3.1 Permission Extractor

Android application packed as an apk file has all required files to run the application.

Among other files, every apk must have a manifest file, which is a binary XML file and

must be named as ”AndroidManifest.xml” as per the Android developer guidelines 3.

Among other essential information, it declares which permissions the application must

have in order to access protected parts of the API and interact with other resources.

These permissions are declared as uses-permission and uses-feature element in manifest

file. Fig. 5.2 shows a list of permissions requested by a sample application.

Permission extractor module extracts all permissions declared in manifest file and

will write them to an external storage. In this work, Comma Separated Value (CSV)

file format is used to store all extracted permissions and pass these to further mod-

ule for processing. Permission extractor do not differentiate between Android’s stan-

dard permissions and other user defined custom permissions, so it extracts all per-

missions requested by the Android application. Android standard permissions are de-

clared as android.permission.PERMISSION-NAME while other custom permissions can

have any structure but mostly follow the package name format such as com.android,

com.motorola and org., hr..

1<uses−p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n .BLUETOOTH” />

Program 5.1: Manifest file showing BLUETOOTH permission

For example in Program 5.1, the permission in an application tell that it can control

Bluetooth which includes sending and receiving data from nearby devices.

3https://developer.android.com/guide/topics/manifest/manifest-intro.html

98

This section explained about permission extractor which extracts all permissions

from the application and is first and must component of the system. The output of

permission extractor module is served as input to the scoring engine which is explained

in the following section.

5.3.2 Scoring Engine

This section explains working of scoring engine which provides an effective score to

each of the permission. The Scoring engine takes extracted permissions file as input,

and in first iteration it extracts only standard Android’s permissions. After cleaning the

permission format, it counts the occurrences of each permission in benign and malware

category. The Scoring engine calculates values for different variables (B, M, PuB and

PuM) that is used to find the BSP, MSP and ESMP. B and M represent the total sample

used from benign and malware class respectively. Permission used in Benign (PuB)

and Permission used in Malware (PuM) variables are used to represent the frequency of

each permission in benign and malware class respectively. After calculating aforemen-

tioned preliminary variables, Benign Score of Permission (BSP) and Malicious Score

of Permission (MSP) for each permission is calculated by using Eq.5.1 and Eq.5.2 re-

spectively. In Eq. 5.1, PuB is the total number of times a permission is used in benign

group, and B is total number of benign samples.

BSP = PuB/B (5.1)

In Eq.5.2, PuM is the total number of times a permission is used in all malware

sample, and M is total number of malware sample.

MSP = PuM/M (5.2)

The Effective Maliciousness Score of Permission (EMSP) is the subtraction of BSP

value from MSP that will normalize the permission use in benign and will have value

which will represent the maliciousness weight of the permission. After calculating MSP

Eq.5.2 and BSP Eq.5.1 of a permission, the Effective Maliciousness Score of Permission

EMSP can be calculated by using Eq. 5.3.

EMSP = MSP−BSP (5.3)

99

The MSP (Eq.5.2), BSP (Eq.5.1) and EMSP (Eq.5.3) scores were calculated using

the Score Engine for all the permissions (includes uses-permissions and uses-features)

on the processed dataset. Table 5.1 shows top 25 permissions from each group and their

MSP, BSP and EMSP score.

To understand the permission’s scoring process, an example is presented and ex-

plained. Suppose, sample present in example (Ref. Fig. 5.2) is a malware, so MSP for

INTERNET permission can be calculated as (5979/5553 = 1.07671) by using Eq.5.2,

where PuM for INTERNET is 5979 (Ref. Table 5.1) and value of M i.e. total malware

sample is 5553. Similarly, if sample (Ref. Fig. 5.2) is benign, then BSP for for INTER-

NET permission can be calculated as (5536/5818 = 0.9515) by using Eq.5.1, where

PuB for INTERNET is 5536 (Ref. Table 5.1) and value of B i.e. total benign sample is

5818. Once MSP and BSP is calculated for INTERNET permission, the EMSP can be

calculated as (1.07671−0.9515 = 0.1251) by using Eq. 5.3.

Maliciousness Score (MS) of an Android’s application is sum of EMSP value of

each permission present in the given application. The MS of an app will be calculated

by using Eq. 5.4, where EMSP is a pre-calculated value for each standard Android’s

permission based on dataset, n is total permission present in the given Android applica-

tion and pi is individual EMSP of each present permission.

MS =
n

∑
i=1

EMSP(pi) (5.4)

Continuing the earlier example for sample apk (Ref. Fig. 5.2), the total malicious-

ness score can be calculated as (0.1251+ 0.6048+ (−0.0222) + 0.4951+ 0.1694+

0.1646) by using Eq.5.4, which sums EMSP value of all 6 permissions (refer Table 5.1

for all other permission’s EMSP values).

EMSP score can be used in two ways, first to calculate total maliciousness score

of a sample and second to create a feature set to train machine learning algorithm (as

explained in section 5.3.3).

MS can be used to build a light weight classifier, for which it has to be compared

with a threshold value to decide class label of a given test apk. Threshold finding can be

achieved by different ways, one of the methods can be similar to (Talha et al., 2015)’s

work which used Logistic regression to find a threshold. The proposed work is not

using MS scoring to build classifier, hence no further investigation in this direction was

100

Table 5.1: PuB, PuM, BSP, MSP and EMSP values of top 25 permissions (sorted based

on malware)

Permission PuM PuB BSP MSP EMSP

INTERNET 5979 5536 0.9515 1.0767 0.1252

READ PHONE STATE 5463 2205 0.379 0.9838 0.6048

ACCESS NETWORK STATE 4440 4781 0.8218 0.7996 -0.0222

WRITE EXTERNAL STORAGE 4146 3386 0.582 0.7466 0.1646

SEND SMS 3058 274 0.0471 0.5507 0.5036

RECEIVE BOOT COMPLETED 2755 6 0.001 0.4961 0.4951

ACCESS WIFI STATE 2563 1700 0.2922 0.4616 0.1694

WAKE LOCK 2193 1780 0.3059 0.3949 0.089

RECEIVE SMS 2151 169 0.029 0.3874 0.3584

READ SMS 2098 91 0.0156 0.3778 0.3622

ACCESS COARSE LOCATION 1920 1591 0.2735 0.3458 0.0723

ACCESS FINE LOCATION 1780 1684 0.2894 0.3205 0.0311

VIBRATE 1659 1 0.0002 0.2988 0.2986

READ CONTACTS 1334 443 0.0761 0.2402 0.1641

WRITE SMS 1246 44 0.0076 0.2244 0.2168

CHANGE WIFI STATE 1001 201 0.0345 0.1803 0.1458

INSTALL PACKAGES 829 19 0.0033 0.1493 0.146

GET TASKS 821 417 0.0717 0.1478 0.0761

RESTART PACKAGES 756 82 0.0141 0.1361 0.122

CALL PHONE 742 664 0.1141 0.1336 0.0195

WRITE SETTINGS 686 208 0.0358 0.1235 0.0877

ACCESS LOCATION

EXTRA COMMANDS
618 270 0.0464 0.1113 0.0649

WRITE APN SETTINGS 564 8 0.0014 0.1016 0.1002

WRITE CONTACTS 546 237 0.0407 0.0983 0.0576

SET WALLPAPER 530 240 0.0413 0.0954 0.0541

101

Figure 5.8: Histogram of total EMSP for malware and benign apks

done.

The calculated EMSP for each permission is passed to the next component Fea-

ture Set Generator that create a vector representation for all samples based on per-

missions present in each sample and their respective EMSP score. In the following

section 5.3.2.1, the study about distribution of EMSP score is explained.

5.3.2.1 Score Distribution

The value of EMSP and BSP & MSP were calculated and their distribution were ob-

served to know the potential of permission weighting. The effect of these scores were

study for malware and benign category by considering histogram as the visualization

tool. Individual permission’s score for each sample was calculated as explained in sec-

tion 5.3.2, total EMSP and BSP & MSP were calculated according to Eq. 5.4. Total

score for both (EMSP and BSP & MSP) were plotted for malware and benign category.

Fig. 5.8 shows histogram based on EMSP based scoring and Fig. 5.9 shows histogram

based on BSP and MSP based scoring.

In Fig. 5.8, it is visible that malware has high clustering at higher value bins whereas

benign samples values are clustered towards lower value bins. The benign samples have

a mean value 0.70 where as malware have mean value 1.99 and bin size 2 can be seen

as threshold which clearly separate benign and malware values.

This section explained about the working of scoring engine and presented various

equations which were used to calculate value for different variables. This section also

102

Figure 5.9: Histogram of total BSP and MSP for malware and benign

shown the distribution of calculated scores for malware and benign samples. In the

following section 5.3.3, the process of feature set generation is explained which takes

extracted permissions and their scores as input and produce the proposed feature set.

5.3.3 Feature Set Generator

Feature Set Generator module is dependent on previous two modules i.e. Permission

Extractor and Scoring Engine. It takes apk files as input and call permission extractor to

extract permissions and uses scoring engine output to assign value to each permission.

Fig. 5.10 shows a row from feature set based on permissions presents in sample APK

file (Ref. Fig. 5.2). It can be observe that all the available permissions have got value

same as their respective EMSP value, whereas all other permissions (features) get as-

signed zero as value. It is in contrast with earlier permission based feature set that were

considered as boolean feature. In such feature set, present permissions of a manifest get

1 and all others were assigned 0 as values. Eq. 5.5 is used to perform the mapping of

score to the feature.

I(x, p) =

Score(p), (if the application x have permission p)

0, Otherwise
(5.5)

The process of dataset to feature set generation is illustrated in Algorithm 3 and

it consolidate all actions performed at three aforementioned steps i.e. permission ex-

traction, scoring and feature set generation. In Algorithm 3, Ψ and Ω is collection of

103

Figure 5.10: A snapshot of feature set generated based on EMSP and permissions

benign and malware sample respectively and it is supplied as input to the GenerateFea-

tureSet(). The FetchPerm() and UpdatePermCount() are methods used for extracting

permissions from sample and updating each permission count respectively. The χ is

feature set’s data and λ is set for respective label of each instance in χ , χ and λ is

output of GenerateFeatureSet().

This section explained the process of feature set generation and presented the Al-

gorithm 3 which summarized all the steps taken to create the proposed feature set from

raw malware and benign Android applications. The following section 5.4, presents and

explains the proposed forensic tool built by selecting best performing machine learning

algorithm on the proposed weighted feature set.

5.4 FAMOUS

FAMOUS (Forensic Analysis of MObile devices Using Scoring of application permis-

sions) is a forensic analysis tool built to triage Android applications and to assist analyst

in selection of applications for further in-depth or manual analysis. Screenshots of main

window and result window of FAMOUS are as illustrated in Fig. 5.11 and Fig. 5.12 re-

spectively. The motivation behind FAMOUS is to overcome the limitations of signature-

based triaging forensic tool. The main functions of FAMOUS is to assign a proper class

label (among benign and malware / suspicious) to every selected Android applications

by underlying classification engine. Each classification engine is built by training and

testing different machine learning algorithms on proposed permission’s score based

feature set that are extracted from a large dataset. Currently, in the proof-of-concept

implementation it has only best performing classifier but it can be easily extended with

more classifiers.

In the further section architecture of FAMOUS and its components are explain in

detail.

104

Algorithm 3 The algorithm for the feature set generation
1: procedure GENERATEFEATURESET(Ψ,Ω)

2: ρB[perm,count]← permString,0

3: ρM[perm,count]← permString,0

4: α ← count(Ψ)

5: β ← count(Ω)

6: for κ ∈Ψ do

7: P← FetchPerm(κ)

8: PuB←U pdatePermCount(ρB[P,count])

9: for κ ∈Ω do

10: P← FetchPerm(κ)

11: PuM←U pdatePermCount(ρM[P,count])

12: for η ∈ ρ do

13: BSP[η [permString]]← η [PuB]/α

14: MSP[η [permString]]← η [PuM]/β

15: EMSP[η [permString]]←MSP−BSP

16: Initilaize(χ[α +β][count[ρB+M[perm]]],0)

17: for µ ∈ {Ψ,Ω} do

18: γ ← FetchPerm(µ)

19: λ ← updateLabel(γ)

20: if permString ∈ γ then

21: χ[permString]← Fetch(EMSP[permString])

22: return(χ,λ)

105

Figure 5.11: Main Window of FAMOUS: Listing all applications of the attached device

Figure 5.12: Scan Result Window of FAMOUS: Showing predicted class label of all

the selected applications

106

Figure 5.13: Block diagram of FAMOUS’ architecture (ML-1 to ML-n are different

machine Learning algorithms and C1 to Cn are classifiers which are output of ML

training

5.4.1 FAMOUS’ Architecture

The FAMOUS architecture has two main modules: Data acquisition and Classification.

The main task of data acquisition module is to extract apk files from attached Android

device. It uses Android Debug Bridge (ADB) protocol to connect Android device to

analyst’s system. It pulls and lists out all installed applications with size and type of

application (system and third party). FAMOUS does not require a rooted device because

”apk” can be pulled out with ADB protocol without root access on device.

Once all the ”apk” files are pulled out from attached device, access of pulled ”apk”

storage is passed to classification module that do further pre-processing and label each

apk either with benign or malware. The core of classification module is the Feature

Extraction and Scoring (FES) component which create a feature set from given data

samples. The output of FES is used to train machine learning algorithms and build

a classifier. Many pre-processing tasks such as (permissions extraction, scoring and

feature set generation) are carried out on pulled apk to generate the feature set. Fig. 5.13

shows a block diagram of FAMOUS’ architecture.

107

5.5 Performance of Weighted Permission based Feature

Set

This section presents and discusses the results of various experiments which were per-

formed to compare the performance of the proposed Weighted permission and boolean

permission based feature set. This section also presents the working result of the pro-

posed forensic tool FAMOUS. This section explains about the dataset, experimental

system and results of various experiments.

5.5.1 Dataset

To test the effectiveness of EMSP or weighted permission feature set and usability of

FAMOUS two main experiments were carried out. In the first experiment (Experiment-

I) the accuracy of different machine learning algorithms with different configuration

was tested. In the second experiment (Experiment-II), FAMOUS was tested with real

user’s device. For the purpose of experiment-I, two datasets were amalgamated. The

first dataset (dataset-1) has a total of 11,371 Android applications for the experiment.

The dataset has samples from both classes i.e. 5553 malware and 5818 benign. For

this dataset, malware samples were adopted from DREBIN project (Arp et al., 2014)

and benign samples were downloaded from PlayDrone archive (Viennot et al., 2014).

The second dataset (dataset-2), has total 4317 samples, Malware samples were gathered

from multiple online public archives such as Contagio dump (Parkour, 2016), Andro-

MalShare (Team et al., 2014) and Andrototal (Maggi et al., 2013). The benign samples

were obtained from PlayDrone collection (Viennot et al., 2014) which has a sorted list

of Google Play apks based on download count. This work downloaded top 999 and bot-

tom 979 application from sorted list by pipelining Linux’s head and tail output to grep

and wget respectively. Along with this this work also collected 755 samples from dif-

ferent third party app stores and a torrent collection 4 of 1380 Google Play’s paid apps

and games. Table 5.2 illustrates the source and various categories of benign samples.

For Experiment-II, end-users’ devices were required. So 4 users with the smart-

phone having different hardware with Android OS (different OS versions) were ran-

4https://kat.cr/1380-paid-android-apps-and-games-apk-t5344319.html

108

domly selected for the dataset. Users were guided to activate the developer options 5 on

their phone and users’ permission were obtained to activate Universal Serial Bus (USB)

mode debugging option on each phone.

5.5.1.1 Pre-processing

All third party applications were verified with VirusTotal (VirusTotal, 2004) and it was

found that 46 (7%) applications are detected as malware by minimum one antivirus

engine. For this work the MD5 hash was used to get the scan reports and hence 130

applications do not have scanned result which was eliminated from our dataset along

with the malicious applications. So the benign dataset has a total of 587 third party

applications. The MD5 hashes and Secure Hashing Algorithm (SHA) hashes along

with package names were used to identify samples uniquely.

Duplicate samples in dataset would skew the accuracy of the experiment, hence all

duplicate samples were removed by using MD5 hash and package name and only the

unique samples were in each dataset and each category. Dataset-1 was used for scoring,

feature set generation and training whereas dataset-2 was used only for testing. It was

made sure that samples present in dataset-2 are not available in dataset-1 and hence it is

not used for score calculation. This separation represents the real-world scenario where

new apps appear with new permission patterns.

5https://developer.android.com/studio/run/device.html

109

Table 5.2: Android apks collected from third party app

stores

Category 9apps
fdroid

& others
Total

Bussiness 63 2 65

Education 73 98 171

Entertainment 50 0 50

Games 79 78 157

Lifestyle 64 16 80

Multimedia 20 75 95

Personalisation 82 55 137

Total 755 + 1380†= 2135

† Torrent collection Google Play’s paid Apps and

Games

5.5.1.2 Class Labelling

All the samples in both datasets were scanned with VirusTotal (VirusTotal, 2004) and

the proper class label was given accordingly. A decision on the class label was made

separately for malware and benign based on the outcome of total positive results given

by VirusTotal (VirusTotal, 2004).

For malware, if any criteria was adopted i.e, if any of the scanning engine flag

positive (detects a sample as malware) for a given sample that considered as malware

while for benign if all criteria was adopted i.e. if and only if, all engines pass a given

sample as clean then a benign label is attached to the sample. Eq. 3.3 represents the

class labeling (CL) process adopted based on positive score of VirusTotal’s scanning

engine Ei.

CL(M|B,S) =

M, I f (E1(S)∨E2(S)∨ . . .En(S))

B, elseI f (!(E1(S))∧!(E2(S))∧ . . .!(En(S)))
(5.6)

110

5.5.1.3 Feature extraction

Features i.e. requested permissions by app which are declared in manifest file were

extracted with the help of Androguard module and a Python script. After extracting

all permissions from each sample of the dataset, further processing such as permission

frequency count, weight calculation etc. was done by using different Python scripts.

This section presented the details of the dataset used for both the experiments along

with the pre-processing steps and class labelling process. In the following section 5.5.2

details of experimental system is presented.

5.5.2 Experimental System

An experimental system was prepared to carry out various kinds of experiments for the

proposed feature set. The experimental system had Ubuntu 14.4, 64-bit OS running on

Intel Core 2 Duo CPU E7400@2.80GHzx2 processor with 4GB primary memory and

500GB secondary memory. Python programming language with various modules was

used for all experiments. APK processing was done using Androguard (Desnos, 2012),

which is a Python based tool to perform different kinds of processing on an Android

application. After collecting raw dataset (apk files), class of each apk was verified

by using VirusTotal (VirusTotal, 2004) web service, which scanned each sample by

nearly 55 parallel anti-virus engines. Scikit-learn (Pedregosa et al., 2011), a Python

library was used for the purpose of machine learning algorithms training and testing.

All the statistical calculation and graph plotting was also done using various Python

based modules. To implement FAMOUS as the forensic tool, along with other modules

wxPython module was used for developing Graphical User Interface (GUI).

This section explained about the experimental system used for various experiments.

The following section 5.5.3 presents and discusses the results of the experiments on

various performance metrics.

5.5.3 Results

In this section results of experiment-I and experiment-II are presented and the observed

findings are listed out and explained.

111

5.5.3.1 Experiment-I: Machine Learning classifier performance test

In experiment-I, the performance of all six selected machine learning algorithms are

compared by splitting dataset-I into training and testing set with a ratio of 70% and 30%

respectively. Fig. 5.14 shows the ROC and AUC values of all selected classifiers. It shall

be observed that Random Forest (RF) performance is best among all other classifiers.

This result of RF is achieved by using 100 estimators during training. To find the

optimum value for a number of estimators, Random Forest was again trained with the

same training and testing dataset by adjusting estimator’s value (10, 50, 100, 150, 200).

Figure 5.14: ROC for six different classifier on EMSP based feature

Fig. 5.15 shows the ROC and AUC value of RF with different numbers of estimators.

It can be observed that with 100 estimators RF achieves its maximum AUC value i.e.

99.0% and there is no significant change in AUC value above 100 estimators. So, the

FAMOUS has used aforementioned configuration for RF based classifier.

This work has compared the performance of proposed feature set with boolean per-

mission based feature set. Fig. 5.16 shows the ROC and AUC values of all classifiers

on boolean features. Table 5.3 shows the comparison of accuracy, precision, recall and

F1-score for EMSP and boolean based feature set for all six selected algorithms. From

Table 5.3 it is evident that EMSP based feature set is performing better than boolean

based features set. It is also observed that kNN and SVM are giving better result on the

boolean feature set.

After experimenting with train and test split of dataset-1 on EMSP (weighted fea-

112

Figure 5.15: ROC for five different value for number of trees in random forest

Figure 5.16: ROC of six classifiers on boolean features

ture set) and boolean feature, experiments were carried out to test the performance of

aforementioned machine learning algorithms with dataset-2 (test dataset). As explained

in Sec. 5.5.1, dataset-1 is used to calculate the EMSP and so even after the train-test

split of dataset-1, there are chances of over-fitting due to the presence of samples on

which score is calculated. So, to make classifiers robust and accurate on unseen data,

testing algorithms with a separate dataset is recommended in the literature. Dataset-2

have samples that are not included in dataset-1. The dataset-1 was used for training

and dataset-2 for testing. The performance of both EMSP and boolean feature set were

tested.

113

Table 5.3: Classifiers performance on (70%-30%) dataset split with EMSP and boolean

feature

Classifiers Accuracy Precision Recall F1-Score

EMSP Boolean EMSP Boolean EMSP Boolean EMSP Boolean

RF 94.84 93.70 0.95 0.93 0.95 0.93 0.95 0.93

DT 93.17 92.20 0.93 0.92 0.93 0.92 0.93 0.92

NB 77.22 75.26 0.81 0.80 0.77 0.75 0.76 0.74

kNN 92.44 93.23 0.92 0.93 0.92 0.93 0.92 0.93

SVM 86.48 91.44 0.87 0.92 0.86 0.91 0.86 0.91

AdaBoost 91.32 90.27 0.91 0.90 0.91 0.90 0.91 0.90

Table 5.4: Classifiers performance on test dataset with EMSP and boolean feature

Classifier accuracy precision recall f1-score

EMSP Boolean EMSP Boolean EMSP Boolean EMSP Boolean

RF 91.52 91.31 0.94 0.94 0.92 0.91 0.93 0.92

DT 88.95 88.21 0.94 0.94 0.89 0.88 0.91 0.9

NB 89.34 89.83 0.93 0.91 0.89 0.9 0.91 0.9

kNN 87.4 91.15 0.94 0.94 0.87 0.91 0.9 0.92

SVM 84.73 89.16 0.94 0.94 0.85 0.89 0.88 0.91

AdaBoost 86.5 89.53 0.94 0.94 0.86 0.9 0.89 0.91

Fig. 5.17 illustrates the ROC and AUC for classifiers with test dataset (dataset-2)

on EMSP feature set while Fig. 5.18 show the ROC and AUC for classifiers with test

dataset (dataset-2) on boolean feature set. Table 5.4 list out the performance of algo-

rithms on different metrics. Values of all selected metrics are mentioned for both EMSP

and boolean feature set.

5.5.3.2 Experiment-II:FAMOUS performance test

In Experiment-II, the performance of FAMOUS is tested with live Android devices.

This work acquired Android based smartphone from random users and performed the

scanning of their devices with FAMOUS. In this section, various aspects of experiment

114

Figure 5.17: ROC on test dataset with EMSP features

Figure 5.18: ROC on test dataset with boolean features

and result are presented and discussed. Before scanning the devices, users of the device

were requested to activate the developer options on their smartphone. The USB enabled

debugging mode with ADB was used to connect end user’s devices to our experimental

system. Once the connection was up and running, FAMOUS was executed with various

configurations.

5.5.3.3 FAMOUS: GUI Interface

Aforementioned proposed approach was implemented as a forensic tool named as FA-

MOUS. Fig. 5.11 is showing the initial screen of FAMOUS, it lists out all the installed

applications of attached device by showing its size and type of application. Type of

115

application is decided on the basis of installed location i.e. if an application is installed

on system partition it considered as system application else in all other it is considered

as 3rd party application. The initial screen of FAMOUS has options to select individual

applications or according to its type.

Once user/analyst selects the application/s, then with scan option all the selected

applications will be scanned with underlying classifiers. The scan result of all selected

applications will be displayed along with other metadata such as package, version, total

permissions, and EMSP score. Fig. 5.12 shows the output of applications selected from

one of the attached experimental device. The applications with the suspicious label

are those which are flagged malicious by the underlying classifier and so these can be

triaged for further analysis. Output window have the option to select listed applications

with their class label and after selection, those can be moved to a separate folder on

analyst’s system which will help to go for further analysis.

5.5.3.4 FAMOUS: Operational result

FAMOUS is built with the objective to assist forensic analyst by triaging the applications

into a category which enables them to make further decision. To achieve the objective,

along with accuracy it is also important to be quick in extraction and scanning of ap-

plications. The accuracy of FAMOUS mainly depends upon the underlying classifiers

that are explained in Section 5.5.3.1. This section explains the time taken by FAMOUS

on different experimental devices. Table 5.5 list out all the devices with their make

and model, applications pulling time and scanning time taken by FAMOUS. Pulling and

scanning time is an average of five runs which is done to overcome any biasness.

Table 5.5: FAMOUS:Scanning results of four devices

Devices

(Model&Version)

Total

Apks

Pulling

time(Mins.)

Scanning

time(Sec.)

Suspicious

Apks

GalaxyJ1-4.4.4 166 13.58 2.67 13

Micromax-A096-5.0.2 153 12.05 2.54 17

Lenovo-K50-5.0 249 15.62 4.25 26

It can be observed from Table 5.5 that FAMOUS is fast in pulling and scanning

116

the applications from attached devices. It took an average of 14 minutes to pulled all

applications from attached device and 4 seconds to scan them. Time given in Table 5.5

is calculated by averaging all the applications size and total time was taken, so it can

vary with devices due to installing applications’ size. Table 5.5 also shows the number

of suspicious apks which were identified as suspicious applications by FAMOUS. These

apks have a high probability of being quarantined as malware with further triaging with

a human expert.

This section explained about dataset, experimental system and results of various ex-

periments carried out to show the performance comparison of the proposed weighted

permissions (based on EMSP score) and boolean/binary permissions based feature set.

This section also explained about FAMOUS and shown the performance result of its

pulling and scanning time. The section 6.3 presents and explains the dataset, experi-

mental system and result of various experiments which were carried out to show the

performance of image based representation and image feature set for Android malware

detection.

5.6 Summary

This Chapter proposed an Weighted permission based feature set which used each per-

mission weight as feature value, oppose to the traditional boolean value based per-

mission feature set. The Chapter provided details about creating weighted permission

feature set which is accomplished by using three components: Permission extractor,

Scoring engine and Feature set generator. The feature set is novel because boolean

value were used as permission based feature set which were adopted in many earlier

works as explained in Chapter 2. Various selected ML algorithms are trained and tested

on both boolean and weighted feature set and their performance are measured. This

chapter also presented the detail and result of training and testing. The best performing

classifier is also used to create a forensic tool named FAMOUS which can be used to

scan any Android device and is able to group all installed applications as suspicious or

benign.

117

CHAPTER 6

Malicious Android Applications Detection using

Multimodal Image Representations

In the previous Chapter 5, a weighted permission based feature set is proposed to detect

Android malware by using machine learning algorithms. The Chapter explained the

process of feature generation from malware and benign Android applications samples.

This Chapter presents a new approach which involves visualizing the Android ap-

plication (here onward referred as apps) into various images format and uses machine

learning algorithms to classify the given apps as benign or malware with the help of

GIST features extracted from each image. The objective of this work is to test the dis-

criminative potential of the image representation of the Android application and study

the performance of different image format for malware detection.

This work has considered four image formats based on Grayscale, RGB, CMYK,

and HSL color channels. Every sample from malware and benign set was converted into

each of four image formats which finally resulted into four image dataset. The GIST

features were extracted from each dataset and four feature set were created to train

and test various machine learning algorithms on performance metrics such as precision,

recall, f-measure, FPR and classification accuracy.

This Chapter discusses the process of converting Android applications to image rep-

resentations and extracting features from those images for training and testing selected

machine learning algorithms. The details about the dataset, experimental system and

results of machine learning algorithms are presented in section 6.3.

118

6.1 Image Representation of Android Applications

This section explains about image representation of Android applications and discusses

the four color formats used in this work. This section also explains the process of

converting Android applications to the selected image formats.

This work has focused on the fact that “every computer program written in any high

level language can be represented as machine code equivalent” i.e. in the form of ’0s’

and ’1s’. The earlier works have considered the High-level representation of Android

applications for feature extraction and creating anti-malware solutions. In this work, the

binary equivalent of each Android apps is retrieved from disk and converted into four

different image format based on selected color channels. As one can see in the Fig. 6.1,

collected samples from both malware and the benign group were pre-processed and

stream of binary representing each Android apps file was given as input for the image

conversion algorithm (explained in further section), where each byte was represented as

a color pixel on screen. The size of the each application was used to decide the height of

image based on the given width which was selected as 256 in our all experiments. The

Fig. 6.1 shows the steps involved from raw sample to training the machine learning

algorithms. In the following section, the four image formats based on selected color

channels are explained in details.

6.1.1 Color Channels

Visualizing binary file as the image has been used in past for different purposes such

as bypassing file type restriction and classification of computer malware into it families

(Kancherla and Mukkamala, 2013). The conversion of byte stream of the Android ap-

plication (i.e. .apk 1 file format) into different color formats is chosen because it has not

experimented and it is easy to compare the features of two images rather than analyzing

the code of the application. This work has selected 4 color channels i.e. Grayscale,

RGB, CMYK, and Hue, Saturation, Lightness (HSL) and converted each Android sam-

ple into an image according to the respective color channel. In the following sections,

each color channel is explained in detail.

1Android packaging system packages application as apk which is used to share and install the appli-

cation. The apk can be symbolized as .exe file on Windows OS.

119

6.1.1.1 Grayscale

In grayscale image format, each pixel carries only intensity information by having a

single value in the range of 0− 255. Grayscale images are composed exclusively of

shades of gray varying from black at the weakest intensity to white at the strongest one
2.

6.1.1.2 RGB

The RGB color format is based on three colors Red(R), Green (G), Blue (B). Within

computer graphics or image processing applications, each color component is typically

represented by 8 bits. Thus, a color value needs 24 bits to define a single color out of 16

million possible colors. For the higher color accuracy, 10 bits (or even 12 bits) are used

for each color component. The RGB color format is very popular in computer graphics

and image processing 2.

6.1.1.3 CMYK

CMYK is similar to RGB in the way of representation but each color is described by the

color components Cyan (C), Magenta (M) and Yellow (Y), the additional component

black (K) is used for gray and black color representation 2. Visualizing both on the

computer screen will not show any difference, CMYK is used for printing purposes

while RGB is used in the digital display.

6.1.1.4 HSL

The components of HSL color model is Hue (H), Saturation(S) and Luminance (L). Hue

defines the pure color, tone out of the color spectrum, saturation defines the mixture of

the color tone with gray and finally, luminance defines the lightness of the resulting

color 2.

This section presented and explained the four selected color channel by using which

each of the Android application was converted to four different image formats. In the

following section 6.1.2, the process of converting the Android application to the image

format is explained in details.

2http://www.equasys.de/colorformat.html. [Accessed: 12-May-2017]

120

Figure 6.1: Workflow of image-based android malware detection system

6.1.2 Android application to Image Conversion

As it was stated in previous sections the binary stream of each apk file was converted

into different color formats. The image height of each apk file was calculated by divid-

ing the bytes size of apk by the given width. The Image Generation algorithm takes an

apk file as input and outputs respective image format based on the called function re-

spective to the color channel. For converting according to each color channel, a separate

function is implemented and was used by the algorithm. Algorithm 4 and Algorithm 5

presented in following section summarizes the whole process of converting malicious

and benign apps dataset to equivalent image dataset for feature extraction and machine

learning algorithms training & testing.

6.1.2.1 Process and Method

Converting processed Android dataset having malicious and benign sample was carried

out by using Algorithm 4. It takes malicious and benign Android applications along

with required color channel as input parameters and after converting all the sample into

image format output a image dataset of requested color channel. The algorithm is very

simple, it initialized the height (α) and width (β) variable which pass as parameter to

other called function. It also create two folders MApkImages, BApkImages for storing

converted malicious and benign images respectively. It loop through malicious and

benign apps folder and internally, uses ConvertToImage() function call passing each

app (κ),color channel, height (α) and width (β). ConvertToImage() is presented and

121

explained as Algorithm 5.

Algorithm 4 Algorithm for converting Apps to Image Dataset
procedure CONVERTAPKTOIMAGE(Ψ,Ω,ColorChannel)

. Ψ : Malicious Android applications

. Ω : Benign Android applications

α ← getHeight() . Calculate height for Image

β ← width . Get width for Image

. To store converted images of malicious apks

MApkImages←CreateFolder()

. To store converted images of benign apks

BApkImages←CreateFolder()

. Loop and convert malicious apks

for κ ∈Ψ do

image←ConvertToImage(κ,ColorChannel,α,β)

MApkImages←MoveFile(image)

. Loop and convert benign apks

for κ ∈Ω do

image←ConvertToImage(κ,ColorChannel,α,β)

BApkImages←MoveFile(image)

return(MApkImages,BApkImages)

Converting an Android application to an image is an iterative process where bit-

s/bytes are read and grouped on the basis of target color channel. Algorithm 5 capture

the essence of app to image conversion process. It takes four input parameters i.e. each

app (κ),color channel, height (α) and width (β) and gives an image as output. In the

proposed work, the width of the image was fixed to 256 and so depending upon the

size of the app the height of each output image were calculated. After initializing the

required variables, Algorithm 5 loop through the bits/bytes of the input application and

group these according to the requested color channel requirement. These group bit-

s/bytes are then converted to equivalent Integer value and store as in matrix format to

create an image.

The next section shows the output of Algorithm 5 by taking a sample from the

122

Algorithm 5 Algorithm for converting APK to image

procedure CONVERTTOIMAGE(κ,ColorChannel,α,β)

. κ : An Android application

. ColorChannel:Target color channel (Grayscale,RGB,CMYK,HSL

. α: Image height

. β : Image width

. Loop through the app bytes

for byte ∈ κ do

bytesmatrix[α][β]← IntegerValue(byte)

image← getPixelValue(bytesmatrix)

return(image)

malicious and benign group and converting them into image format based on the four

selected color channel. The steps which are involved in carrying out this work are listed

as:

1. Data collection: To carry out this work, as the first step malware and benign apk

files were collected from the wild, online archives and various apps stores. The

details about the dataset are presented further in section 6.3.1.

2. Pre-processing: As the second step, under preprocessing many actions are taken

such as removing duplicate and unmatched samples. During preprocessing step

the class label to each sample was also assigned. The MD5 hashing and VirusTo-

tal service were used for duplicate removal and labeling respectively. The details

about the pre-processing and experimental system are presented further in sec-

tion 6.3.1.1 and section 6.3.2 respectively.

3. Apk to Image conversion: This is the third and the important step for this pro-

posed work. By using bits/bytes stream each apk file was converted to four image

format based on the selected color channel. In the previous section 6.1.2 this con-

version process is explained in detail.

4. Feature extraction: The feature extraction is the fourth step and GIST image

feature was used for this work, so GIST image descriptor of each image was

extracted for all four image format from both malware and benign classes. The

123

details of GIST and few other popular image descriptors are explained further in

section 6.2.1 .

5. Training: At fifth step, all the four generated feature set were used to train three

selected machine learning algorithms i.e. Decision Tree (DT),Random Forest

(RF) and k-Nearest Neighbors (kNN). The 10-fold cross-validation method has

used during training to achieve a robust result.

6. Testing : At sixth and final step, performance of all three machine learning al-

gorithms have measured based on recall, precision, and detection accuracy. The

result of training and testing is explained and presented in further section 6.3.3.

This section explained the process of Android application to image conversion with

the help of Algorithm 4 and Algorithm 5. The section also listed out all the six steps

taken to achieve the objective of this work. In the following section 6.1.2.2, the output

of the Android application to four image format is shown by taking one sample each

from malware and benign class.

6.1.2.2 Example of Application to Image output

To visualize and understand the earlier explained method of app to image conversion,

this section shows the sample output of Algorithm 5 by passing two sample Android

application (apps or apk) one each from malware and benign group. The Fig. 6.2 shows

the output of both sample in four images different according to selected color channel.

The leftmost image is a grayscale proceed by RGB, CMYK and HSL and the upper

row is for the benign sample and bottom row is representing the malicious application.

It can be observed that different grouping of bits/bytes resulted in different image

representation and it can be assumed that it also has an effect on the feature extraction

and hence will affect the performance of machine learning algorithms. This assumption

is tested by training three different machine learning algorithms and their results are

presented further in section 6.3.3.

In the following section 6.2, the fourth step i.e. feature extraction is explained with

listing and discussing few other image based features. A feature set generation algo-

rithm which takes set of images as input and output a feature set is also presented in the

following section 6.2.2.

124

Figure 6.2: A benign and malware sample in all four image formats (grayscale, RGB,

CMYK and HSL / from left to right)

6.2 Image features based Apps classification

This section explains various image based features and the feature extraction process

which was used in this work. The process of feature extraction starts after the Android

applications are converted to its equivalent image representation which also makes it is

easy to apply techniques available for image classification for malware detection. The

focus of this work is on the machine learning based techniques which required to extract

features from the converted image dataset. The extracted features then pass as a feature

set to build image classifiers which in fact will work as Android malware detector.

The following section lists out and explains some of the very popular image features

which are used with machine learning algorithms.

6.2.1 Image Features

The features in the domain of image classification is known as feature descriptor. The

feature descriptor is a representation of an image or an image patch that simplifies

the image by extracting useful information and throwing away extraneous information.

From the literature, it was observed that several types of image features are defined and

125

used in the various research domain. These features help in finding the uniqueness of an

image as well as used for similarity check with other images. Some of the very popular

image features i.e. SIFT, HoG and SURF are listed and explained in following section.

6.2.1.1 Scale Invariant Feature Transform (SIFT)

SIFT (Lowe, 1999) is one of the most popular feature descriptor among other image-

based features. It is invariant to scale, rotation and translation. The popularity of SIFT

comes due to lots of efficient implementations which have good results in many real

applications. Although it is also true that there are newer image’s feature descriptors

which are proving to be better in terms of performance and simplicity.

A SIFT feature is a selected image region (also called keypoint) with an associ-

ated descriptor. Keypoints are extracted by the SIFT detector and their descriptors are

computed by the SIFT descriptor. A SIFT keypoint is a circular image region with

an orientation. It is described by a geometric frame of four parameters: the keypoint

center coordinates x and y, its scale (the radius of the region), and its orientation (an an-

gle expressed in radians). The SIFT detector uses as keypoints image structures which

resemble “blobs” 3.

6.2.1.2 Histogram of Oriented Gradients (HoG)

HoG (Dalal and Triggs, 2005) is an another popular descriptor which is simple and

faster than SIFT. The basic difference between these two is that HoG uses a “global”

feature to describe an object rather than a collection of “local” features as used by SIFT.

The HoG uses a sliding detection window which is moved around the image. At each

position of the detector window, a HOG descriptor is computed for the detection win-

dow. HoG counts occurrences of gradient orientation in localized portions of an image.

The working principle of HoG is that the target image is divided into small connected

regions called cells, and for the pixels within each cell, a histogram of gradient direc-

tions is compiled and the concatenation of these histograms create the HoG descriptor

of the image. Contrast-normalization for the local histograms is done by calculating a

measure of the intensity across a larger region of the image, called a block. This normal-

ization improves the accuracy and results in better invariance to changes in illumination

3http://www.vlfeat.org/api/sift.html [Accessed: 12-May-2017]

126

and shadowing.

6.2.1.3 Speeded Up Robust Features (SURF)

SURF (Bay et al., 2008) is very similar to SIFT but it is faster and it is proven to per-

formance better than SIFT. With improved performance yet SURF is not as popular

as SIFT. SURF can be seen as approximation of SIFT. SURF replace computing the

Gaussian scale-space and the histograms of the gradient direction by fast approxima-

tions. To detect interest points, SURF uses an integer approximation of the determinant

of Hessian blob detector, which can be computed with 3 integer operations using a pre-

computed integral image. Its feature descriptor is based on the sum of the Haar wavelet

response around the point of interest. These can also be computed with the aid of the

integral image.

6.2.1.4 GIST

GIST descriptors are the representation of an image in the low dimension that contains

enough information to identify the scene. GIST descriptor was proposed by (Oliva and

Torralba, 2001). GIST is features of an image which uses a wavelet decomposition

of the image and being used widely for scene classification and object classification

(Nataraj et al., 2011; Douze et al., 2009; Moudni et al., 2013). The gist descriptor is

built from 8 oriented edge responses at 4 scales with 4× 4 non-overlapping windows.

The Gist feature is computed by convolving an oriented filter with the image at several

different orientations and scales. This way the high- and low-frequency repetitive gra-

dient directions of an image can be measured. The scores for the filter convolution at

each orientation and scale are stored in an array, which is the Gist feature for that image.

GIST descriptors were calculated using a Gabor filter at 8 orientations at 4 scales. This

work has used GIST descriptor which was extracted from the image and passed to the

machine learning algorithms for training and testing.

This section explained about image features and listed out few very popular image

features along with the GIST which is used in this work. In the following section 6.2.2,

the process of feature set generation from the set of converted images is explained.

127

6.2.2 Process for Feature set Generation

The feature set generation is important and the prerequisite for training and testing ma-

chine learning algorithms. It is shown in Fig. 6.1 (presented at the beginning of this

Chapter), that feature extraction is the next step after converting Android apps dataset

to equivalent image dataset. The section 6.1.2 explained the process of converting apps

dataset to four equivalent image dataset based on the four selected color channel. Gen-

erating feature set which is the vector representation of image descriptor along with the

class label is an iterative process. The extraction process loop through each image of

a particular class i.e. malicious or benign and extract GIST descriptor and store in a

file along with the adequate class label. The same process is repeated for both classes

and for the all four image formats. The iterative extraction process outputs four la-

beled feature set which further used to train and test three selected machine learning

algorithms.

The Algorithm 6 presents the steps used for generating the four feature sets from

the converted image datasets. The converted images were organized in the folder based

on the color channel name and each of the color channel named folder has malicious

and benign folder having malware and benign images respectively. The algorithm takes

these four folder name as input and returns four feature set based on these color channel

name as CSV files. Each of these color channel named folder was processed one after

other and under each of these folders all the malware and benign images were iterated

for GIST feature extraction and simultaneously extracted feature with the class label

were written to the output file which has the color channel name (grayscale.csv, rgb.csv,

cmyk.csv and hsl.csv) as the file name. The ReadFolder() method was used for reading

image and the GetGIST(image) method was used for GIST features extraction from an

individual image passed as input parameter.

This section explained various popular image features and also explained the pro-

cess of feature set generation from the set of converted images. The Algorithm 6 sum-

marized all the steps taken during the feature set generation process. The all four gener-

ated feature sets were used to train and test three selected machine learning algorithms

for knowing the potential of the image representation of the Android application for

malware detection and the effect of different color channel based image on malware de-

128

Algorithm 6 The Algorithm for the feature set generation

procedure GENERATEFEATURESET([Grayscale,RGB,CMY K,HSL])

ColorChannels← [Grayscale,RGB,CMY K,HSL]

. Have images of malicious apks

MApkImages← ReadFolder()

. Have images of benign apks

BApkImages← ReadFolder()

. Loop through ColorChannel

for ColorChannel ∈ColorChannels do

out put f ile←ColorChannel.csv

. Loop and extract GIST of malicious image

for image ∈MApkImages do

class←′ malware′

f eatures← GetGIST (image)

out put f ile← (f eatures+ class)

. Loop and extract GIST of benign image

for image ∈ BApkImages do

class←′ benign′

f eatures← GetGIST (image)

out put f ile← (f eatures+ class)

return([Grayscale,RGB,CMY K,HSL].csv)

129

tection. The results of these training and testing are presented further in section 6.3.3.

6.3 Performance of Image features for Android Appli-

cation Classification

This section presents the details about the experiments which were carried out to test

the discriminative capability of feature set created from the image representation of

Android Applications. This section gives the detail about dataset, pre-processing and

experimental system. This section also presents the experiments’ result with discussion

and conclusion. The following section 6.3.1 explains about the datset used for the

proposed image-feature based feature set.

6.3.1 Dataset

Initially this work started with a total of 275 samples, out of which 136 were collected

as benign from mobile9 4, 9apps 5 and androidapksfree 6 and 139 are malware.

6.3.1.1 Pre-processing

The duplicate samples were removed by using MD5 hash comparisons. The final

dataset has total 246 samples in which 108 were benign and 138 were malicious apk.

The class label of each sample of dataset was verified by VirusTotal. The method was

similar to the technique explained in section 5.5.1.2. Table 6.1 summaries the number

of samples and pre-processing method used for preparing the dataset used in this work.

4http://www.mobile9.com/.[Accessed:20-Jul-2015]
5http://www.9apps.com/.[Accessed:20-Jul-2015]
6http://www.androidapksfree.com/.[Accessed:21-Jul-2015].

130

Table 6.1: Benign and malware sample statistic

Actions Benign Malware

Initial Count 136 139

Without Duplicates 136 138

After labelling 108 138

Average of apk (KBs) 2547 1084

Duplicate removal MD5 MD5

Labelling VirusTotal VirusTotal

6.3.1.2 Class Labelling

The VirusTotal service was used to find out the exact class (malware vs. benign) of

the collected samples. the VirusTotal7 provides API service, which checks any sam-

ple against more than 50 Anti-virus engine. Each sample’s MD5 were calculated and

submitted to VirusTotal, and if the MD5 hash is not available then the apk file itself

were uploaded to the service and result were logged. The rule to decide class label

of each sample is very simple, apk considered clean by all Anti-virus engine taken as

benign else malware. During labeling, it was found that total 28 samples from benign

collection term as malware which is the point to ponder. During this work manually 28

benign samples were submitted because for them previous analysis was not available.

6.3.1.3 Feature extraction

Apk to image conversion allows us to use image features, so GIST image descriptor

was selected among various other image features. The Python implementation of GIST

extractor with the help of the script was used to extract GIST from each image. Details

about apk to image converstion, feature set generation and image features are explained

in previous sections.

This section explained about dataset, pre-processing, class labelling and feature ex-

traction to create the image based feature set from Android’s apk files. In the following

section 6.3.2 details of the experimental system is provided.

7www.virustotal.com

131

6.3.2 Experimental System

For building classifiers and testing the performance of GIST features, scikit-learn-

0.14.1 implementation of Decision Tree (DT), Random Forest (RF) and k-Nearest Neigh-

bors (kNN) were trained on GIST feature set which were generated from converted im-

ages. DT and kNN were used with default configuration whereas in case of RF, 100

estimators were used instead of default. Scikit-learn cross-validation and confusion

matrix module were used for performance evaluation.

6.3.3 Results

This section presents the results of machine algorithms trained on GIST features ex-

tracted from converted images. The value for primitive metrics such as TP, FP etc. and

advance metrics such as accuracy, error-rate etc. are presented in different section.

6.3.3.1 Metadata analysis

This work also calculated and compared the size of each sample and it was found that

there is no considerable different in sizes of the application before and after converting

into the image. The average size calculated for normal apk files before image conversion

is 2547KB for benign apk’s and 1084KB for malware apk’s. The Grayscale image files

having an average difference in size with normal apk files as 507KB for benign and

527KB likewise all other formats also have average size difference but those are not

large enough to be considerable. In Fig. 6.3 the size range of malware and benign apk

files are presented. It has observed that malware apk are normally much smaller in size

than the benign sample, out of 138 malware samples 112 (i.e. 81%) are in the range

of 1− 1000 KBs whereas only 24 (22%) benign samples are in same range. It was

also observed that numbers of benign samples sizes are distributed in all size range.

These two observations conclude that attack tries to keep malware size low to make

distribution and installation easy while it makes detection hard.

6.3.3.2 Basic metrics and Confusion Matrix

The Table 6.2 provides the value for all the attributes of confusion matrix for each

trained classifier on all four image set. These values are used to calculate advanced per-

132

Figure 6.3: Size comparison of malicious and benign apps

formance metrics such as accuracy, error rate etc.. Results of these metrics are presented

in next section.

133

Table 6.2: Confusion matrix values of classifiers

Image Format Metric DT RF kNN

Grayscale

TP 81% 93% 89%

FP 12% 10% 10%

FN 19% 7% 11%

TN 88% 90% 90%

RGB

TP 69% 96% 82%

FP 20% 23% 20%

FN 31% 4% 18%

TN 80% 77% 80%

CMYK

TP 65% 95% 81%

FP 20% 25% 17%

FN 35% 5% 19%

TN 80% 75% 83%

HSL

TP 72% 95% 84%

FP 18% 24% 16%

FN 28% 5% 16%

TN 82% 76% 84%

This work has also created the heat map for the confusion matrix values for each

classifier on all four image format. Fig.6.4 shows the heat map of confusion matrix for

Decision Tree (DT).

Fig.6.5 shows the heat map of confusion matrix for Random Forest (RF).

Fig.6.6 shows the heat map of confusion matrix for k-Nearest Neighbors (kNN).

The heat map is the visual way to understand the performance of classifier perfor-

mance and it simplifies the process of comparison. In the current heat map, higher

reddish color in first quarter correlated to a better performance.

6.3.3.3 Advance metrics

Through bar chart Fig. 6.7 summarizes the performance of each classifier for all four

image feature set. Among three trained classifier it was observed that Random Forest

(RF) is performing best, which has an average accuracy 86% for all four color and 91%

134

(a) Grayscale (b) RGB

(c) CYMK (d) HSV

Figure 6.4: Confusion matrix for decision tree

for grayscale image feature set. The error rate for Random forest in average is 12%

and for grayscale only 8% which is minimum among all another classifier. Decision

Tree (DT) method is delivering worst accuracy percentage in classification having 76%

average classification accuracy and 22% average Error Rate. With aforementioned ob-

servations, it is concluded that Random forest on grayscale image feature is best among

all others. Table 6.3 presents the value for all the advanced metrics for all three classi-

fiers and for all the four image formats.

135

(a) Grayscale (b) RGB

(c) CYMK (d) HSV

Figure 6.5: Confusion Matrix for Random Forest

Table 6.3: Classifiers performance on various metrics

Image Format Metric DT RF kNN

Grayscale

TPR 81% 93% 89%

TNR 88% 90% 90%

F-m 83% 91% 88%

CA 84% 91% 89%

ER 15% 8% 10%

RGB

TPR 69% 96% 82%

TNR 80% 77% 80%

F-m 72% 86% 80%

CA 74% 86% 81%

ER 25% 13% 19%

CMYK

TPR 65% 95% 81%

TNR 80% 75% 83%

F-m 69% 85% 80%

CA 72% 85% 82%

ER 27% 15% 18%

HSL

TPR 72% 95% 84%

TNR 82% 76% 84%

F-m 75% 86% 83%

CA 77% 85% 84%

ER 23% 14% 16%
136

(a) Grayscale (b) RGB

(c) CYMK (d) HSV

Figure 6.6: Confusion matrix for nearest neighbour

Figure 6.7: Classifier performance comparison with bar chart

6.4 Summary

The main objective of this Chapter was to explore the discriminative potential of the

image representation of Android applications for malware detection. By representing

each app into four different types of image based on selected color channels, this work

also studies the effect of different image representation (based on color channels) on

Android malware detection process.

This Chapter proposed a method to use image features extracted from converted im-

137

age representation of Android applications. Each of the samples from both malware and

the benign group was converted to image representation in four different formats based

on selected color channel. All the converted images from each individual color formats

formed a separate dataset and so four different feature sets were created from the dataset

having malware and benign samples. Three selected machine learning algorithms are

trained and tested on all the four feature set and their performance is measured on var-

ious metrics. This chapter also present the result of training and testing along with

dataset, experimental system, and pre-processing methods.

138

CHAPTER 7

Conclusions and Future scopes

7.1 Conclusions

Under the proposed framework, with static features this work is able to achieve 98.4%

and 94.84% accuracy with Random forest for malicious portable executable and An-

droid application classification respectively. A detailed conclusion is presented below:

• With the proposed integrated feature set built from the portable executable head-

ers fields, Random forest achieved the accuracy of 98.4% with 10-fold cross-

validation and 89.23% accuracy with test dataset evaluation.

• The boolean feature set built with only section name of the portable executable

file, Random forest achieved the accuracy of 93% with features having non-zero

information gain score and 92% accuracy with top 20 selected features.

• The proposed weighted permission based feature set performed better than boolean

feature set and were able to achieve 94.84% accuracy with Random forest classi-

fier.

• The GIST features extracted from the grayscale representation of Android apps

yields the best result i.e. 91% accuracy and only 8% error rate with Random

forest classifier.

7.2 Answers of the Research Questions

This thesis explores the research problem and achieved the objectives set for the re-

search problem. In this section the answers of research questions (set for the research

139

problem) is stated with the available results and observations.

Research Question 1: How the performance of PE headers-based features can be im-

proved?

The experimental results for integrated feature sets shows an improvement in the

performance of classifiers for the malware detection. This clearly indicates that

deriving new feature and value from the raw header field’s values (derived fea-

tures) by use of domain knowledge and rules applicable to the field can improve

the performance of PE headers-based features.

Research Question 2: What is the potential of section name as features to build ML

based malware detector?

In Chapter 4, the experiment with section-name based feature set is achieved

the accuracy of 93% with boolean features. This indicates that section name

has potential to be used as features to build ML based malware detector and the

performance can be improved by integrating it with other feature set.

Research Question 3: How weighting the permission of Android applications will af-

fect the detection performance of ML algorithms?

From Chapter 5, It was observed that after giving weight to the permission and

then creating feature set improved the performance of classifiers. On the basis of

experimental results and observation, it can be stated that weighting the permis-

sion of Android applications has a positive impact on detection performance of

ML algorithms.

Research Question 4: Do the image representation of Android application can im-

prove the malicious android applications detection?

In Chapter 6, the image based Android application detection has achieved the

accuracy of 91% which is better than the baseline. Apart from the accuracy im-

age based Android application detection also address some of issues of malware

detection such as code obfuscation, code packing etc. So, on the basis of experi-

mental result and the benefits of image based detection, we can clearly state that

it improve the malicious android applications detection.

140

Research Question 5: How the various feature selection and machine learning algo-

rithms impact the performance of the features?

For integrated feature set, we have observed that classifiers and feature set accu-

racy changes with the number of selected features. With experimental result, we

observed that after a fixed number of features the performance doesn’t improve

further so there is no need of using all the features, instead we can use selected

features with best accuracy. Similar, trend is observed in section name based fea-

ture set, with top 20 features Random Forest achieved 92% accuracy which 1%

lesser than the accuracy achieved with all features having non-zero information

gain. In all the experiments, we observed that with same feature set different

ML algorithms performed differently which is due to the intrinsic property of

various ML algorithms. With the experimental results and observations, we can

state that feature selection and different machine learning algorithms impact the

performance of the features.

7.3 Future Scopes

This work has utilized the static features for malicious Portable Executable (PE) and apk

files detection using machine learning algorithms. The extraction of dynamic features

is complex and time-consuming but capable of addressing issues of static features. As

future scopes of this work dynamic features can be extracted by dynamic analysis and

with the help of various experiments its discriminative capability can be measured.

This work has used the dataset with adequate samples but as future works experi-

ments can be performed with the very large dataset. The result with larger dataset will

increase the trust of the framework.

This work focused on the individual set of features such as only headers fields, sec-

tion name, permissions, and GIST, in future work these set of features can be integrated

with another set of features to boost the classification performance of algorithms. With

enhanced designed experiments, the set of discriminative features can be selected from

various sets and will be helpful to build more effective and efficient malware detector.

In future works, the scope of hybrid features i.e. the combination of static and

dynamic features can also be explored for malware detection.

141

Appendix

142

Table 1: List of header’s fields used as raw features

Header Fields

DOS HEADER(6/19)

e cblp

e cp

e cparhdr

e maxalloc

e sp

e lfanew

FILE HEADER(1/7) NumberOfSections

OPTIONAL HEADER

(Standard Fields (8))

MajorLinkerVersion

MinorLinkerVersion

SizeOfCode

SizeOfInitializedData

SizeOfUninitializedData

AddressOfEntryPoint

BaseOfCode

BaseOfData

OPTIONAL HEADER

(Windows Specific (13/22))

MajorOperatingSystemVersion

MinorOperatingSystemVersion

MajorImageVersion

MinorImageVersion

CheckSum

MajorSubsystemVersion

MinorSubsystemVersion

Subsystem

SizeOfStackReserve

SizeOfStackCommit

SizeOfHeapReserve

SizeOfHeapCommit

LoaderFlags

143

Table 2: DOS header fields

S.N. Field Description

1 e magic Magic number

2 e cblp Bytes on last page of file

3 e cp Pages in file

4 e crlc Relocations

5 e cparhdr Size of header in paragraphs

6 e minalloc Minimum extra paragraphs needed

7 e maxalloc Maximum extra paragraphs needed

8 e ss Initial (relative) SS value

9 e sp Initial SP value

10 e csum Checksum

11 e ip Initial IP value

12 e cs Initial (relative) CS value

13 e lfarlc File address of relocation table

14 e ovno Overlay number

15 e res1 Reserved words

16 e oemid OEM identifier (for e oeminfo)

17 e oeminfo OEM information; e oemid specific

18 e res2 Reserved words

19 e lfanew File address of new exe header

Table 3: File header fields

S.N. Field Description

1 Machine Target machine type

2 NumberOfSections The total number of sections

3 TimeDateStamp Time when header generated

4 PointerToSymbolTable Address

5 NumberOfSymbols Total Symbols

6 SizeOfOptionalHeader Size of PE Optional Header

7 Characteristics bit flags, each holding some characteristics

144

Table 4: Optional header fields

S.N. Field Description

1 Signature

2 MajorLinkerVersion

3 MinorLinkerVersion

4 SizeOfCode

5 SizeOfInitializedData

6 SizeOfUninitializedData

7 AddressOfEntryPoint The RVA of the code entry point

8 BaseOfCode

9 BaseOfData Only in PE32

10 ImageBase

11 SectionAlignment

12 FileAlignment

13 MajorOSVersion

14 MinorOSVersion

15 MajorImageVersion

16 MinorImageVersion

17 MajorSubsystemVersion

18 MinorSubsystemVersion

19 Win32VersionValue

20 SizeOfImage

21 SizeOfHeaders

22 Checksum

23 Subsystem

24 DLLCharacteristics

25 SizeOfStackReserve

26 SizeOfStackCommit

27 SizeOfHeapReserve

28 SizeOfHeapCommit

29 LoaderFlags

30 NumberOfRvaAndSizes

31 DataDirectory
145

References

Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. N-gram-based de-
tection of new malicious code. In Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th Annual International, volume 2,
pages 41–42. IEEE, 2004a.

Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. Detection of new
malicious code using n-grams signatures. In PST, pages 193–196, 2004b.

Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and Giorgio
Giacinto. Novel feature extraction, selection and fusion for effective malware family
classification. In Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy, pages 183–194. ACM, 2016.

Faraz Ahmed, Haider Hameed, M Zubair Shafiq, and Muddassar Farooq. Using spatio-
temporal information in api calls with machine learning algorithms for malware de-
tection. In Proceedings of the 2nd ACM workshop on Security and artificial intelli-
gence, pages 55–62. ACM, 2009.

Shadi A Aljawarneh, Raja A Moftah, and Abdelsalam M Maatuk. Investigations of au-
tomatic methods for detecting the polymorphic worms signatures. Future Generation
Computer Systems, 60:67–77, 2016.

Altyeb Altaher, Ammar ALmomani, Mohammed Anbar, Sureswaran Ramadass, et al.
Malware detection based on evolving clustering method for classification. Scientific
Research and Essays, 7(22):2031–2036, 2012.

Ross Anderson, Chris Barton, Rainer Böhme, Richard Clayton, Michel JG Van Eeten,
Michael Levi, Tyler Moore, and Stefan Savage. Measuring the cost of cybercrime. In
The economics of information security and privacy, pages 265–300. Springer, 2013.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck.
Drebin: Effective and explainable detection of android malware in your pocket. In
21th Annual Network and Distributed System Security Symposium (NDSS), 2014.

Saba Awan and Nazar Abbas Saqib. Detection of Malicious Executables Using Static
and Dynamic Features of Portable Executable (PE) File, pages 48–58. Springer
International Publishing, Cham, 2016. ISBN 978-3-319-49145-5. doi: 10.1007/978-
3-319-49145-5 6. URL http://dx.doi.org/10.1007/978-3-319-49145-5_6.

Jinrong Bai, Junfeng Wang, and Guozhong Zou. A malware detection scheme based on
mining format information. The Scientific World Journal, 2014, 2014.

146

Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng. A static malware
detection system using data mining methods. arXiv preprint arXiv:1308.2831, 2013.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer vision and image understanding, 110(3):346–359, 2008.

Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and
Engin Kirda. Scalable, behavior-based malware clustering. In NDSS, volume 9,
pages 8–11. Citeseer, 2009.

Mohamed Belaoued and Smaine Mazouzi. A real-time pe-malware detection system
based on chi-square test and pe-file features. In IFIP International Conference on
Computer Science and its Applications, pages 416–425. Springer, 2015.

John Bethencourt, Dawn Song, and Brent Waters. Analysis-resistant malware. 2008.

Daniel Bilar. Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics, 1(2):156–168, 2007.

Leyla Bilge and Tudor Dumitras. Before we knew it: an empirical study of zero-day
attacks in the real world. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 833–844. ACM, 2012.

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code normalization for
fighting self-mutating malware. In Proceedings of the International Symposium on
Secure Software Engineering, pages 37–44, 2006.

Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-per-
install: The commoditization of malware distribution. In Usenix security symposium,
page 15, 2011.

Mihai Christodorescu and Somesh Jha. Testing malware detectors. In ACM SIGSOFT
Software Engineering Notes, volume 29, pages 34–44. ACM, 2004.

Jianyong Dai, Ratan K Guha, and Joohan Lee. Feature set selection in data mining
techniques for unknown virus detection: a comparison study. In CSIIRW, page 56,
2009.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

Baptiste David, Eric Filiol, and Kévin Gallienne. Structural analysis of binary exe-
cutable headers for malware detection optimization. Journal of Computer Virology
and Hacking Techniques, pages 1–7, 2016.

Anthony Desnos. androguard/androguard, 2012. URL https://github.com/

androguard/androguard.

Francesco Di Cerbo, Andrea Girardello, Florian Michahelles, and Svetlana Voronkova.
Detection of malicious applications on android os. In Computational Forensics, pages
138–149. Springer, 2010.

147

Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and Cordelia
Schmid. Evaluation of gist descriptors for web-scale image search. In Proceedings
of the ACM International Conference on Image and Video Retrieval, page 19. ACM,
2009.

Thomas Dube, Richard Raines, Gilbert Peterson, Kenneth Bauer, Michael Grimaila,
and Steven Rogers. Malware target recognition via static heuristics. Computers &
Security, 31(1):137–147, 2012.

Thomas E Dube, Richard A Raines, Michael R Grimaila, Kenneth W Bauer, and
Steven K Rogers. Malware target recognition of unknown threats. IEEE Systems
Journal, 7(3):467–477, 2013.

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on
automated dynamic malware-analysis techniques and tools. ACM Computing Surveys
(CSUR), 44(2):6, 2012.

Yuval Elovici, Asaf Shabtai, Robert Moskovitch, Gil Tahan, and Chanan Glezer. Apply-
ing machine learning techniques for detection of malicious code in network traffic.
In Annual Conference on Artificial Intelligence, pages 44–50. Springer, 2007.

Zheran Fang, Weili Han, and Yingjiu Li. Permission based android security: Issues and
countermeasures. computers & security, 43:205–218, 2014.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational
learning theory, pages 23–37. Springer, 1995.

Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection
of android malware using embedded call graphs. In Proceedings of the 2013 ACM
workshop on Artificial intelligence and security, pages 45–54. ACM, 2013.

Dimitris Geneiatakis, Igor Nai Fovino, Ioannis Kounelis, and Paquale Stirparo. A per-
mission verification approach for android mobile applications. Computers & Secu-
rity, 49:192–205, 2015.

Mo Ghorbanzadeh, Yang Chen, Zhongmin Ma, T Charles Clancy, and Robert McGwier.
A neural network approach to category validation of android applications. In Com-
puting, Networking and Communications (ICNC), 2013 International Conference on,
pages 740–744. IEEE, 2013.

Ibai Gurrutxaga, Olatz Arbelaitz, Jesus Ma Perez, Javier Muguerza, Jose I Martin, and
Inigo Perona. Evaluation of malware clustering based on its dynamic behaviour.
In Proceedings of the 7th Australasian Data Mining Conference-Volume 87, pages
163–170. Australian Computer Society, Inc., 2008.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182, 2003.

You Joung Ham and Hyung-Woo Lee. Detection of malicious android mobile applica-
tions based on aggregated system call events. International Journal of Computer and
Communication Engineering, 3(2):149, 2014.

148

Kyoung Soo Han, Jae Hyun Lim, Boojoong Kang, and Eul Gyu Im. Malware analysis
using visualized images and entropy graphs. International Journal of Information
Security, 14(1):1–14, 2015.

KyoungSoo Han, Jae Hyun Lim, and Eul Gyu Im. Malware analysis method using
visualization of binary files. In Proceedings of the 2013 Research in Adaptive and
Convergent Systems, pages 317–321. ACM, 2013.

PW Hodgson. The threat to identity from new and unknown malware. BT technology
journal, 23(4):107–112, 2005.

Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques. Purdue
University, page 48, 2007.

Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M. Chen, and Yo-
gachandran Rahulamathavan. Pindroid: A novel android malware detection system
using ensemble learning methods. Computers Security, 68:36 – 46, 2017. ISSN
0167-4048. doi: http://dx.doi.org/10.1016/j.cose.2017.03.011.

Rafiqul Islam, Ronghua Tian, Lynn M Batten, and Steve Versteeg. Classification of
malware based on integrated static and dynamic features. Journal of Network and
Computer Applications, 2012.

Kesav Kancherla and Srinivas Mukkamala. Image visualization based malware detec-
tion. In Computational Intelligence in Cyber Security (CICS), 2013 IEEE Symposium
on, pages 40–44. IEEE, 2013.

Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. Malware
phylogeny generation using permutations of code. Journal in Computer Virology, 1
(1-2):13–23, 2005.

Jeffrey O Kephart and William C Arnold. Automatic extraction of computer virus
signatures. In 4th virus bulletin international conference, pages 178–184, 1994.

Dmitry Komashinskiy and Igor Kotenko. Using low-level dynamic attributes for mal-
ware detection based on data mining methods. In International Conference on Math-
ematical Methods, Models, and Architectures for Computer Network Security, pages
254–269. Springer, 2012.

Shishir Kumar and Durgesh Pant. Detection and prevention of new and unknown mal-
ware using honeypots. arXiv preprint arXiv:0912.2293, 2009.

Arun Lakhotia, Andrew Walenstein, Craig Miles, and Anshuman Singh. Vilo: a rapid
learning nearest-neighbor classifier for malware triage. Journal of Computer Virology
and Hacking Techniques, pages 1–15, 2013.

Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy, IEEE,
9(3):49–51, 2011.

Felix Leder, Peter Martini, and Andre Wichmann. Finding and extracting crypto rou-
tines from malware. In 2009 IEEE 28th International Performance Computing and
Communications Conference, pages 394–401. IEEE, 2009.

149

Yibin Liao. Pe-header-based malware study and detection. Retrieved from the Univer-
sity of Georgia: http://www. cs. uga. edu/˜ liao/PE Final Report. pdf, 2012.

David G Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, vol-
ume 2, pages 1150–1157. Ieee, 1999.

Federico Maggi, Andrea Valdi, and Stefano Zanero. Andrototal: a flexible, scalable
toolbox and service for testing mobile malware detectors. In Proceedings of the Third
ACM workshop on Security and privacy in smartphones & mobile devices (SPSM),
pages 49–54. ACM, November 2013.

Zane Markel and Michael Bilzor. Building a machine learning classifier for malware
detection. In Anti-malware Testing Research (WATeR), 2014 Second Workshop on,
pages 1–4. IEEE, 2014.

Zane A Markel. Machine learning based malware detection. Technical report, DTIC
Document, 2015.

Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In Computer security applications conference, 2007. ACSAC
2007. Twenty-third annual, pages 421–430. IEEE, 2007.

Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of unknown computer
worms based on behavioral classification of the host. Computational Statistics &
Data Analysis, 52(9):4544–4566, 2008a.

Robert Moskovitch, Clint Feher, Nir Tzachar, Eugene Berger, Marina Gitelman, Shlomi
Dolev, and Yuval Elovici. Unknown malcode detection using opcode representation.
In Intelligence and Security Informatics, pages 204–215. Springer, 2008b.

H Moudni, M Er-rouidi, Mustapha Oujaoura, and O Bencharef. Recognition of amazigh
characters using surf & gist descriptors. In International Journal of Advanced Com-
puter Science and Application. Special Issue on Selected Papers from Third interna-
tional symposium on Automatic Amazigh processing, pages 41–44, 2013.

S Murugan and K Kuppusamy. System and methodology for unknown malware at-
tack. In Sustainable Energy and Intelligent Systems (SEISCON 2011), International
Conference on, pages 803–804. IET, 2011.

Lakshmanan Nataraj, S Karthikeyan, Gregoire Jacob, and BS Manjunath. Malware
images: visualization and automatic classification. In Proceedings of the 8th inter-
national symposium on visualization for cyber security, page 4. ACM, 2011.

Nir Nissim, Robert Moskovitch, Lior Rokach, and Yuval Elovici. Novel active learning
methods for enhanced pc malware detection in windows os. Expert Systems with
Applications, 41(13):5843–5857, 2014.

Philip O’Kane, Sakir Sezer, Kieran McLaughlin, and E Im. Svm training phase reduc-
tion using dataset feature filtering for malware detection. 2013.

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic rep-

150

resentation of the spatial envelope. International journal of computer vision, 42(3):
145–175, 2001.

Mila Parkour. contagio, 2016. URL http://contagiodump.blogspot.com.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Naser Peiravian and Xingquan Zhu. Machine learning for android malware detection
using permission and api calls. In Tools with Artificial Intelligence (ICTAI), 2013
IEEE 25th International Conference on, pages 300–305. IEEE, 2013.

Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Classification of packed executables
for accurate computer virus detection. Pattern Recognition Letters, 29(14):1941–
1946, 2008.

Matt Pietrek. Peering inside the pe: a tour of the win32 (r) portable executable file
format. Microsoft Systems Journal-US Edition, pages 15–38, 1994.

Bruce Potter and Greg Day. The effectiveness of anti-malware tools. Computer Fraud
& Security, 2009(3):12–13, 2009.

Jithu Raphel and P Vinod. Heterogeneous opcode space for metamorphic malware
detection. Arabian Journal for Science and Engineering, pages 1–22, 2016.

Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.
Learning and classification of malware behavior. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 108–125. Springer, 2008.

Zahra Salehi, Mahboobeh Ghiasi, and Ashkan Sami. A miner for malware detection
based on api function calls and their arguments. In Artificial Intelligence and Sig-
nal Processing (AISP), 2012 16th CSI International Symposium on, pages 563–568.
IEEE, 2012.

Aiman A Abu Samra, Kangbin Yim, and Osama A Ghanem. Analysis of clustering
technique in android malware detection. In Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2013 Seventh International Conference on, pages
729–733. IEEE, 2013.

Igor Santos, Felix Brezo, Javier Nieves, Yoseba K Penya, Borja Sanz, Carlos Laor-
den, and Pablo G Bringas. Idea: Opcode-sequence-based malware detection. In In-
ternational Symposium on Engineering Secure Software and Systems, pages 35–43.
Springer, 2010.

Igor Santos, Felix Brezo, Borja Sanz, Carlos Laorden, and Pablo Garcia Bringas. Using
opcode sequences in single-class learning to detect unknown malware. IET informa-
tion security, 5(4):220–227, 2011a.

Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Opcode se-
quences as representation of executables for data-mining-based unknown malware

151

detection. Information Sciences, 2011b.

Igor Santos, Javier Nieves, and Pablo G Bringas. Semi-supervised learning for un-
known malware detection. In International Symposium on Distributed Computing
and Artificial Intelligence, pages 415–422. Springer, 2011c.

Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo Garcia Bringas.
Opem: A static-dynamic approach for machine-learning-based malware detection.
In International Joint Conference CISIS-ICEUTE, pages 271–280. Springer, 2013.

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, and Pablo Garcia
Bringas. On the automatic categorisation of android applications. In Consumer
Communications and Networking Conference (CCNC), 2012 IEEE, pages 149–153.
IEEE, 2012.

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas,
and Gonzalo Álvarez. Puma: Permission usage to detect malware in android. In
International Joint Conference CISIS’12-ICEUTE´ 12-SOCO´ 12 Special Sessions,
pages 289–298. Springer, 2013a.

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Javier Nieves,
Pablo G Bringas, and Gonzalo Álvarez Marañón. Mama: manifest analysis for mal-
ware detection in android. Cybernetics and Systems, 44(6-7):469–488, 2013b.

Matthew G Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J Stolfo. Data mining
methods for detection of new malicious executables. In Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 38–49. IEEE, 2001a.

Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. Data mining
methods for detection of new malicious executables. In Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 38–49. IEEE, 2001b.

Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan Glezer. Detection of
malicious code by applying machine learning classifiers on static features: A state-
of-the-art survey. Information Security Technical Report, 14(1):16–29, 2009a.

Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan Glezer. Detection of
malicious code by applying machine learning classifiers on static features: A state-
of-the-art survey. Information Security Technical Report, 14(1):16–29, 2009b.

Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated static code analysis for clas-
sifying android applications using machine learning. In Computational Intelligence
and Security (CIS), 2010 International Conference on, pages 329–333. IEEE, 2010.

Asaf Shabtai, Robert Moskovitch, Clint Feher, Shlomi Dolev, and Yuval Elovici. De-
tecting unknown malicious code by applying classification techniques on opcode pat-
terns. Security Informatics, 1(1):1–22, 2012.

M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Farooq. Pe-miner:
Mining structural information to detect malicious executables in realtime. In In-
ternational Workshop on Recent Advances in Intrusion Detection, pages 121–141.
Springer, 2009a.

152

M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Farooq. Pe-miner:
Mining structural information to detect malicious executables in realtime. In In-
ternational Workshop on Recent Advances in Intrusion Detection, pages 121–141.
Springer, 2009b.

Raja Khurram Shahzad and Niklas Lavesson. Veto-based malware detection. In Avail-
ability, Reliability and Security (ARES), 2012 Seventh International Conference on,
pages 47–54. IEEE, 2012.

Raja Khurram Shahzad, Syed Imran Haider, and Niklas Lavesson. Detection of spyware
by mining executable files. In Availability, Reliability, and Security, 2010. ARES’10
International Conference on, pages 295–302. IEEE, 2010.

Raja Khurram Shahzad, Niklas Lavesson, and Henric Johnson. Accurate adware de-
tection using opcode sequence extraction. In Availability, Reliability and Security
(ARES), 2011 Sixth International Conference on, pages 189–195. IEEE, 2011.

Syed Zainudeen Mohd Shaid and Mohd Aizaini Maarof. Malware behavior image for
malware variant identification. In Biometrics and Security Technologies (ISBAST),
2014 International Symposium on, pages 238–243. IEEE, 2014.

CE Shannon. A mathematical theory of communication, bell system technical journal
27: 379-423 and 623–656. Mathematical Reviews (MathSciNet): MR10, 133e, 1948.

Shina Sheen, R Anitha, and P Sirisha. Malware detection by pruning of parallel ensem-
bles using harmony search. Pattern Recognition Letters, 2013.

Saurabh Anandrao Shivale. Cryptovirology: Virus approach. arXiv preprint
arXiv:1108.2482, 2011.

Thomas Stibor. A study of detecting computer viruses in real-infected files in the n-
gram representation with machine learning methods. In Trends in Applied Intelligent
Systems, pages 509–519. Springer, 2010.

Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Jorge Blasco. Den-
droid: A text mining approach to analyzing and classifying code structures in android
malware families. Expert Systems with Applications, 41(4):1104–1117, 2014a.

Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Arturo Ribagorda.
Evolution, detection and analysis of malware for smart devices. IEEE Communica-
tions Surveys & Tutorials, 16(2):961–987, 2014b.

G Ganesh Sundarkumar and Vadlamani Ravi. Malware detection by text and data min-
ing. In Computational Intelligence and Computing Research (ICCIC), 2013 IEEE
International Conference on, pages 1–6. IEEE, 2013.

Peter Szor. The art of computer virus research and defense. Pearson Education, 2005.

Kabakus Abdullah Talha, Dogru Ibrahim Alper, and Cetin Aydin. Apk auditor:
Permission-based android malware detection system. Digital Investigation, 13:1–14,
2015.

153

Botnet Research Team et al. Sanddroid: An apk analysis sandbox. xi’an jiaotong uni-
versity, 2014.

Philipp Trinius, Carsten Willems, Thorsten Holz, and Konrad Rieck. A malware in-
struction set for behavior-based analysis. 2009.

Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google play.
In ACM SIGMETRICS Performance Evaluation Review, volume 42, pages 221–233.
ACM, 2014.

P Vinod, Vijay Laxmi, and Manoj Singh Gaur. Scattered feature space for malware
analysis. In International Conference on Advances in Computing and Communica-
tions, pages 562–571. Springer, 2011.

VirusTotal VirusTotal. Virustotal - free online virus, malware and url scanner, 2004.
URL https://www.virustotal.com/.

C+ Visual and Business Unit. Microsoft portable executable and common object file
format specification, 1999.

Andrew Walenstein, Daniel J Hefner, and Jeffery Wichers. Header information in mal-
ware families and impact on automated classifiers. In Malicious and Unwanted Soft-
ware (MALWARE), 2010 5th International Conference on, pages 15–22. IEEE, 2010.

Jau-Hwang Wang, Peter S Deng, Yi-Shen Fan, Li-Jing Jaw, and Yu-Ching Liu. Virus
detection using data mining techinques. In Security Technology, 2003. Proceedings.
IEEE 37th Annual 2003 International Carnahan Conference on, pages 71–76. IEEE,
2003.

Tzu-Yen Wang, Chin-Hsiung Wu, and Chu-Cheng Hsieh. Detecting unknown malicious
executables using portable executable headers. In INC, IMS and IDC, 2009. NCM’09.
Fifth International Joint Conference on, pages 278–284. IEEE, 2009.

Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and Ramesh Karri. Hardware
performance counter-based malware identification and detection with adaptive com-
pressive sensing. ACM Transactions on Architecture and Code Optimization (TACO),
13(1):3, 2016.

Guanhua Yan, Nathan Brown, and Deguang Kong. Exploring discriminatory features
for automated malware classification. In Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 41–61. Springer, 2013a.

Guanhua Yan, Nathan Brown, and Deguang Kong. Exploring discriminatory features
for automated malware classification. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pages 41–61. Springer, 2013b.

Chaitanya Yavvari, Arnur Tokhtabayev, Huzefa Rangwala, and Angelos Stavrou. Mal-
ware characterization using behavioral components. In International Conference on
Mathematical Methods, Models, and Architectures for Computer Network Security,
pages 226–239. Springer, 2012.

Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. An intelligent

154

pe-malware detection system based on association mining. Journal in Computer
Virology, 4(4):323–334, 2008.

Suleiman Y Yerima, Sakir Sezer, Gavin McWilliams, and Igor Muttik. A new android
malware detection approach using bayesian classification. In Advanced Information
Networking and Applications (AINA), 2013 IEEE 27th International Conference on,
pages 121–128. IEEE, 2013.

Joel Yonts. Attributes of malicious files. SANS Institute InfoSec Reading Room, 2012.

Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In
BWCCA, pages 297–300, 2010.

Adam Young and Moti Yung. Cryptovirology: Extortion-based security threats and
countermeasures. In Security and Privacy, 1996. Proceedings., 1996 IEEE Sympo-
sium on, pages 129–140. IEEE, 1996.

Sheng Yu, Shijie Zhou, Leyuan Liu, Rui Yang, and Jiaqing Luo. Detecting malware
variants by byte frequency. Journal of Networks, 6(4):638–645, 2011.

Hao Zhang, Danfeng Daphne Yao, Naren Ramakrishnan, and Zhibin Zhang. Causality
reasoning about network events for detecting stealthy malware activities. computers
& security, 58:180–198, 2016.

Sami Zhioua. The middle east under malware attack dissecting cyber weapons. In 2013
IEEE 33rd International Conference on Distributed Computing Systems Workshops,
pages 11–16. IEEE, 2013.

155

List of Publications

List of Publications

Peer Reviewed & Indexed International Journals

1. Ajit Kumar, K.S Kuppusamy, and G. Aghila, FAMOUS: Forensic Analysis of

MObile Devices Using Scoring of application permissions, Future Generation

Computer Systems,2018, Elsevier, https://doi.org/10.1016/j.future.2018.02.001,

ISSN: 0167-739X.Impact Factor: 3.997

2. Ajit Kumar, K.S Kuppusamy, and G. Aghila, A learning model to detect ma-

liciousness of portable executable using integrated feature set, Journal of King

Saud University - Computer and Information Sciences,2017, Elsevier, ISSN: 1319-

1578.

3. Ajit Kumar, K.S Kuppusamy, and G. Aghila,Features for Detecting Malware

on Computing Environments, IJEACS Volume : 01, Issue: 02, December 2016

,Empirical Research Press,UK

4. Ajit Kumar, K.S Kuppusamy, and G. Aghila, CASroid: A two level certification

framework for building trust in third party android application stores,International

Journal of Information Security Science, (provisionally accepted) ISSN: 2147-

0030

International Conference Publications

5. Kumar, Ajit, and G. Aghila. ”Portable executable scoring: What is your mali-

cious score?.” Science Engineering and Management Research (ICSEMR), 2014

International Conference on. IEEE, 2014.

156

6. Ajit kumar, G. Aghila, “ PoToMAC: A Pre-processing Tool for Malware Clas-

sification”, In proceedings of ICIIT 2014, Chennai, India.

7. Ajit Kumar, Pramod Sagar K, K.S.Kuppusamy,Aghila G.,Machine learning based

Malware Classification for Android Applications using Multimodal Image Rep-

resentations, 10th International Conference on Intelligent Systems and Control

(ISCO), 2016

157

VITAE

Mr. Ajit Kumar, the author of this thesis is a Ph.D full time, research scholar in the

Department of Computer Science, School of Engineering and Technology, Pondicherry

University. He was born on 7th Feb 1990 at Lakhisarari, Bihar, India.

He has received his Bachelor of Computer Application (BCA) from IGNOU in the

year 2009 and Master of Computer Science in the year 2011, from Pondicherry Univer-

sity. With his formal education he has received Post Graduate Diploma in Statistical and

Research Methods from Pondicherry University in 2015 and Post Graduate Diploma in

Information Security from IGNOU in 2016. His area of interest includes Information

Security, Malware detection and Machine learning.

He qualified UGC-NET for Lecturer exam in 2014, besides UGC-NET he has also

qualified three states (Rajasthan, Andhra Pradesh and Tamilnadu) SET (State Eligibil-

ity Test) lectureship exam. He is all India first rank holder in Ph.D entrance exam of

Pondicherry University in year 2012.

He has published 4 peer-reviewed International Journal papers and presented and

published 6 papers in International IEEE and Elsevier conferences.

158

