
EFFICIENT AND SCALABLE UNCERTAIN EVENT 
PROCESSING IN BUSINESS INTELLIGENCE 

 
 

A Thesis 
 

submitted to 
Pondicherry University 

in partial  
fulfilment of the requirements for the award of the Degree of 

 
 
 

DOCTOR OF PHILOSOPHY 

in 

COMPUTER SCIENCE AND ENGINEERING 

 
by 

V. GOVINDASAMY 
 
 

 
 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 
PONDICHERRY ENGINEERING COLLEGE 

PUDUCHERRY – 605 014 
INDIA 

 

DECEMBER 2013 



ii 
 

 

Dr. P. THAMBIDURAI, M.E., Ph.D., F.I.E. 
Professor of CSE and Principal 
Perunthalaivar Kamarajar Institute of Engineering and Technology 
(Government of Puducherry Institution) 
Karaikal – 609 603 

 

 

CERTIFICATE 
 

 

 Certified that this Thesis entitled “EFFICIENT AND SCALABLE 

UNCERTAIN EVENT PROCESSING IN BUSINESS INTELLIGENCE” 

submitted for the award of the degree of DOCTOR OF PHILOSOPHY in 

COMPUTER SCIENCE AND ENGINEERING of the Pondicherry University, 

Puducherry is a record of original research work carried out by  

Mr. V. GOVINDASAMY during the period of study under my supervision and that 

the Thesis has not previously formed the basis for the award to the candidate of any 

Degree, Diploma, Associateship, Fellowship or other similar titles. This Thesis 

represents independent work on the part of the candidate. 

 

 

 

(Dr. P. THAMBIDURAI) 

                   Supervisor 

Date :  

Place : Puducherry 

  



iii 
 

 

ACKNOWLEDGEMENT 

 

 My first debt of gratitude goes to my supervisor, Dr. P. Thambidurai, 

Professor of Computer Science and Engineering and Principal, Perunthalaivar 

Kamarajar Institute of Engineering and Technology, Karaikal. He is not only my 

guide, but also my mentor. His patience, genuine care, concern and faith in me 

during  the  dissertation  process  enabled  me  to  attend  to  life  and  also  complete  my  

research. He has been motivating, encouraging and enlightening all these years.    

 I would like to thank my Doctoral Committee members, Dr. N. P Gopalan, 

Professor, Department of Computer Applications, National Institute of Technology, 

Tiruchirappali and Dr. K. Vivekanandan, Professor, Department of Computer 

Science and Engineering, Pondicherry Engineering College, Puducherry for their 

support, guidance and helpful suggestions. Their guidance has served me well and I 

owe them my heartfelt gratitude. 

 I register my gratitude to Dr. D. Govindarajulu, Principal, Pondicherry 

Engineering College, Puducherry and Dr. V. Prithiviraj, Former Principal, 

Pondicherry Engineering College, Puducherry for their support to pursue the 

research work. My heartfelt thanks are  due  to   Dr. D. Loganathan, Professor and 

Head, Department of Computer Science and Engineering, Pondicherry Engineering 

College, Puducherry for the   academic, technical and logistical support provided by 

the Department of Computer Science and Engineering, Pondicherry Engineering 

College, Puducherry. I take this opportunity to thank wholeheartedly  

Dr. M. Ezhilarasan,  Professor and Head, Department of Information Technology, 



iv 
 

Pondicherry Engineering College, Puducherry for the incredible leadership, timely 

and proper advice throughout the research.  

 I would like to thank all of my Fellow Researchers who have extended 

their continuous encouragement and support so as to improve the quality of the 

thesis. My special thanks goes to all the faculty members and non-teaching members 

of Department of Computer Science and Engineering and Department of 

Information Technology, Pondicherry Engineering College, Puducherry for their 

support. 

 Finally, I thank all of my family members for their understanding, help and 

patience throughout the research.  

  



v 
 

 

ABSTRACT 

 

 During the last decade, Complex Event Processing (CEP) has been one of 

the most rapidly emerging fields to identify the composite (high-level) events from 

the primitive (low-level) events that occur online. Due to the availability of massive 

amount of business transactions and numerous new technologies for information 

processing, it has now become a real challenge to provide real-time event driven 

systems that can process data under high input data rate in an automated and 

systematic approach. In recent days, many researchers have focused their attention 

on the challenges of efficient event monitoring of    real-time applications like 

monitoring RSS streams, stock tickers, RFID data streams and click streams that 

generate a number of events with high uncertainty.  The main objective of the 

research is to develop a probabilistic framework named as Probabilistic Complex 

Event Processing (PCEP) system in the context of   real-world stock ticker streams 

that execute complex event pattern queries on the continuously streaming   data with 

uncertainty.  The  PCEP  system  consists  of  two  phases  named  as  Efficient  Generic  

Event Filtering (EGEF) and Probabilistic Event Sequence Prediction (PESP).  

 In the EGEF phase, a Non-deterministic Finite Automaton-heap (NFAh) 

based event matching allows to filter the relevant events by identifying the 

occurrences of user defined event patterns in a large volume of continuously arriving 

data streams. In order to express the complex event patterns in a more efficient form, 

a CEP language named as Complex Event Pattern Subscription Language (CEPSL) 

is used. CEPSL is extended from the existing high level event query languages.  

A Predicate based Subscription Grouping algorithm (PSG) is proposed to group user 

subscriptions based on access predicates to improve the scalability. Furthermore, the 

PCEP  establishes  a  query  aware  partitioning  scheme  that  deploys  two  efficient  

techniques such as row/column scaling and pipelining that dispatch the grouped user 
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subscriptions into separate machines. It proposes an efficient distributed event 

processing approach that distributes the process based on access predicate of 

subscription clusters across a multiple number of NFAh machines. It performs a 

NFAh pattern matching mechanism to extract the relevant events from the large 

number of incoming events based on the user subscriptions. 

 The  second  phase  of  PCEP  derives  a  stateful  composite  event  sequences  

from the filtered relevant events based on the probabilistic framework. It constructs 

an event hierarchy in the form of a Dynamic Fuzzy Probabilistic Relational Model 

(DFPRM) that is used to represent the probability space in terms of the concept of 

individuals, their properties and relations among them. DFPRM computes the joint 

probability distribution using the conditional probabilistic dependencies among the 

event sequences in accordance with the rules. In order to formulate the combination 

of event sequences with the reduced overhead, Probabilistic Fuzzy Logic (PFL) is 

used to infer the semantic correlation among the event sequences to estimate the 

fuzzy linguistic variables from computed Conditional Probability Distributions 

(CPD)  in  the  large  probability  space.  PFL enhances  the  robustness  of  the  complex  

event detection process under uncertainty. 

 To evaluate the effectiveness of the PCEP system empirically, the system 

is implemented in the Publisher/Subscriber model using Java Message Service 

(JMS) subscription API in Java based prototype. The experimental results are 

presented in terms of scalability and efficiency using the prototype. Results reveal 

that PCEP system offers high scalability due to an efficient event filtering approach 

and achieves high efficiency in probabilistic complex event detection through 

handling of uncertainty using DFPRM model and PFL approximation mechanisms. 

It is inferred that the PCEP system is more efficient and scalable than the other 

existing CEP approaches. 
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CHAPTER  1 

INTRODUCTION 

 

1.1  OVERVIEW    

 In  today’s  Internet  world,  the  availability  of  real-time  data  has  increased  

enormously in size every year due to the increase in number of distributed software 

applications. These applications generate high volume of data stream continuously 

from geographically distributed multiple sources at an unpredictable rate. There is a 

need to derive events from the continuously flowing data in a timely manner [1]. 

Business processing systems are only interested in acquiring high level of 

intelligence  from  the  available  data  with  effective  reasoning.  Complex  Event  

Processing (CEP) is the essential technology in the field of event processing that is 

useful for business activity management applications [2]. In the emerging market, an 

active database system with the integration of CEP provides the essential 

functionality in the business process management to monitor and to optimize the 

process of business enterprise. In order to react automatically to all events of 

interest,  the  business  process  system must  perform effective  reasoning  in  an  event  

composition  system to  acquire  a  high  level  of  intelligence  from the  available  data.  

Therefore, the intelligent system integrates CEP technology that can process the 

large amount of data flow from multiple sources [3]. The core of the CEP is the CEP 

engine (processor) that detects event patterns from the large number of incoming 

events. An event pattern expresses the rules in a declarative language to describe the 

complex relationship among the incoming events in order to obtain the relevant 

information to trigger the output events [4].  

 The accuracy and performance of event derivation largely depend on the 

reliability of data sources. A data source has inherently unreliable data collection 

process, or generates incorrect data leading to uncertainty [5]. Further, CEP in the 

presence of uncertain events is a challenging task and this problem hampers the 
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accuracy of derived events. Many advanced technologies have been evolved to store 

and to process the large number of continuously arriving incoming data with 

uncertainty. There is a possibility for the occurrences of errors and incomplete 

information in the incoming data due to the unpredictable event sources. In event 

based systems, uncertainty arises due to the gap among the real occurrences of 

events, to which the system must react and the capability of event-driven systems to 

produce exact events. A lot of uncertain data algorithms [6] are developed to process 

the uncertain data that represent events in terms of probabilistic distributions rather 

than deterministic values. Thus, a probabilistic interpretation of data has recently 

attracted the interest of the Active Database community to process the uncertain 

data.  The  gap  between  actual  events  and  event  notifications  is  to  be  explicitly  

managed to handle the uncertainty using probabilistic framework. In order to derive 

the composite events under uncertainty, the uncertainty data can be modeled in the 

form of probabilistic graphical model to derive the events externally under 

uncertainty [7]. The main challenge of explicit probabilistic event processing is that 

the rule-based systems need to process the large number of continuously arriving 

events.  

 This research presents a generic system for the modeling, the management 

of events and the implementation of CEP and rules with uncertainty. This proposal 

highlights the  architecture in the form of Publisher/Subscriber middleware model 

that conditionally detects the required high-level information from the continuously 

arriving massive stream of data according to the user defined rules. The event 

processing is performed in two phases such as Efficient and Generic Event Filtering 

(EGEF) and Probabilistic Event Sequence Prediction (PESP). In the first phase, the 

distributed non-deterministic Finite Automata-heap (NFAh) based pattern matching 

filters the relevant event sequences from the large number of incoming events based 

on the domain experts specified rules. In the second phase, the filtered events enter 

into the PESP phase that derives stateful composite event sequences from the 

filtered relevant event sequence based on the probabilistic framework. The event 

hierarchy is constructed in the form of a graphical model called as Dynamic Fuzzy 

Probabilistic Relational Model that captures the semantics. The probabilities of 
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possible worlds are represented in terms of the concept of individuals, their 

properties and relations among them using an abstraction based on a Bayesian 

Network. To improve the materialization efficiency, this system employs a 

Probabilistic Fuzzy Logic over a set of rules that approximate the probabilities 

defined by the possible worlds of probability space. The semantic correlation among 

the event sequences is inferred using linguistic variables with reduced sample space. 

PCEP performs efficient complex event detection in a highly dynamic environment 

that achieves high throughput and efficiency while retaining less detection latency. 

Further,  PCEP  enhances  the  robustness  of  the  complex  event  detection  process  

under uncertainty by providing high flexibility and scalability.  

1.2  PREAMBLE 

 This section presents the progression from traditional Data Base 

Management Systems to the present Complex Event Processing systems. The 

explosion of data events due to the proliferation of internet and the necessity to 

process this data in near real-time propelled the arrival of Complex Event Processing 

systems. The integration of CEP with Business Intelligence, uncertainty inherent in 

event data and a broad classification of uncertainty are discussed.  

1.2.1  Evolution of Information Flow Processing  

 Database Management Systems (DBMS) process the data which are stored 

on a disk. DBMS defines the structure of the data in the form of the relational 

model.   DBMS can  analyze,  arrange,  collect  and  manipulate  the  data  according  to  

the user dynamic queries [8]. More commonly, Structured Query Language (SQL) is 

used to support the query specification in the database systems. The key feature in 

DBMS is that the data is stored permanently, whereas queries are entered 

dynamically  to  process  the  stored  data.  In  a  real-time  scenario,  the  DBMS  cannot  

store and process the continuously arriving data. Furthermore, it does not fulfill the 

concept of timeliness of flow processing that is mostly desirable in real-time 

applications that require instantaneous response. However, it is practically infeasible 

to store a large amount of data in its whole entirety. 
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 The static nature of DBMS led to the development of Information Flow 

Processing (IFP) [9]. IFP can timely process the large amount of information flows 

from multiple sources in order to extract new knowledge based on a set of 

processing rules. IFP is different from DBMS in various aspects such as 

implementation architecture, processing rule languages, the definition of a data 

model  and  the  way of  processing.  IFP is  broadly  classified  into  two types  such  as  

Data Stream Management Systems (DSMS) [10] and the Complex Event Processing 

(CEP) systems [11]. Unlike DBMS, DSMS is designed to process the transient data 

that flow continuously from multiple sources. DSMS provides updated output 

according to the current state of newly arriving data.  

1.2.2  Data Stream Management Systems  

 Continuous query community has developed Data Stream Management 

System (DSMS) to improve the scalability of centralized continuous query systems. 

DSMS is  a  specialization  of  DBMS that  processes  the  continuously  arriving  event  

streams against standing or continuous queries in a highly dynamic rate [10]. It is 

not only capable of detecting patterns in event streams but also acquires updated 

output according to the arrival of incoming event streams. A new interactive model 

is introduced to execute the queries periodically or continuously according to the 

arrival of incoming new event streams. DSMS incorporates temporal operators along 

with the relational algebra operators such as selections, aggregate and joins in the 

DBMS system. In order to process the incoming transient data in a timely manner, 

the queries are continuous in nature and stay active for a long time. DSMS provides 

the declarative subscriptions using more powerful query language. However, DSMS 

achieves only limited scalability due to the limited number of subscription 

processing and also the limited Multi-Query Optimization (MQO). DSMS differs 

from conventional DBMS in several ways: 

 Event stream is unbounded and irrespective of the arrival order of the 

event streams. 
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 It  is  difficult  to  store  and  process  the  large  number  of  continuously  

arriving event streams due to the limited resource and timing 

constraints. 

 Effective active notifications are provided according to the updated 

information rather than user explicit queries.  

1.2.3  Complex Event Processing  

 Complex Event Processing (CEP) is an emerging technology that extracts 

the high level information from the distributed message based systems. The term 

‘CEP’ was coined by David Luckham in 1990. CEP is a highly crucial technology 

that  encompasses  algorithmic  methods,  techniques  and  tools  to  process  the  events  

while they occur in a continuous and timely fashion. This technology derives the 

valuable high level knowledge (complex events) by making sense of low level 

primitive events. Here, knowledge takes the form of composite events, which are the 

combinations  of  several  primitive  events.  CEP  is  the  most  favorable  platform  to  

build and to run the various number of real-time applications. CEP performs 

processing of the large number of real-time events to trigger a suitable action [9]. 

CEP enables an organization to identify the occurrences of patterns of low level 

events by filtering, correlating, aggregating and computing multiple streams of  

high-volume, high speed business events. CEP differs from DSMS in three reasons 

as follows: 

 DSMS provides general capabilities to process streams, but CEP can 

be able to detect event patterns. 

  In CEP systems, the event languages express the correlation between 

the events and ordered constraints, but, in DSMS the long queries are 

only able to express the relation between the events. 

 CEP systems can handle a large number of concurrent queries with 

high scalability, which outperforms the DSMS [12] [13]. 
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 Gartner  defined  CEP as  follows  “CEP is  an  approach  that  identifies  data  

and application traffic as events of importance, correlates these events to reveal 

predefined patterns and reacts to them by generating actions to systems, people and 

devices” [14]. The CEP engine is responsible for processing the large number of 

continuously arriving events from distributed message systems and discovering the 

complex event patterns of interest among the events. Finally, CEP provides 

notifications to consumers about the detected high level semantic rich events. These 

applications come up in a various number of domains: trading in the financial 

markets, potential risk management, RFID-enabled monitoring in logistics 

management, supply chain management, click-stream analysis, network intrusion 

detection, business process monitoring, military power grid monitoring and 

infrastructure monitoring [2]. CEP engine processes tens of thousands of events 

while concurrently analyzing thousands of event processing strategies. The CEP 

system supports high performance, scalability, manageability and fault tolerance for 

mission-critical event-driven systems.  

1.2.3.1  Architecture   of CEP  

 CEP is a middleware designed to timely process the large amount of event 

notifications as they flow from the peripheral to the center of the system in order to 

identify the composite events relevant for the event based applications. There are 

event sources and event consumers at the periphery of the system. The general 

architecture of CEP based applications is shown in Figure 1.1.  

 

 

 

 

Figure 1.1:  Architecture of CEP 
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sources or Event Producers as its input, processes them and produces other flows of 

information (high flow of information) directed toward a set of event consumers or 

subscribers. The event patterns provide the set of event definition rules as a complex 

query language that describes how to filter, combine and aggregate incoming 

information to produce outgoing information. Complex Query language specifies the 

user-defined patterns that describe how composite events are defined from primitive 

ones. The event pattern has the ability to derive the complex relationships between 

the incoming events which are flowing into the CEP engine. After processing the 

large number of incoming event streams against the user defined query patterns, 

CEP detects the occurrences of unique patterns of (low-level) events on the higher-

level events. Further, the system notifies about the event occurrence of the event 

consumer or as an input to the other CEP engine in the system [9].    

1.2.3.2  Internal Processing of CEP   

 Figure 1.2 depicts the main functional components involved in the internal 

event processing of CEP and highlights the precise description of the functionalities 

offered by the CEP engine. CEP performs the task of identifying composite events 

from the large number of continuously arriving primitive events. This general 

behavior of CEP can be decomposed into a set of fundamental operations carried out 

by the different components as shown in Figure 1.2. 

 

 

 

 

 

 

Figure 1.2:  Internal Processing of CEP 
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 A large number of incoming events enter into the CEP engine through the 

Event Collector module that gathers the continuously arriving events from multiple 

sources.  It manages the channels connecting to the source with the CEP engine. The 

Event Collector module acts as a multiplexer to receive the large number of 

incoming  events.  Further,  it  structures  a  single  stream  of  events  from  the  multiple  

streams into the CEP engine. A periodic clock is associated to support timely 

processing. The CEP engine processes the events according to the rules in two phases 

such  as  the  Prediction  Phase  and  the  Generation  Phase.  The  user  defined  queries  are  

represented as Condition Action Processing rules. Event Predictor module checks the 

occurrence of event patterns specified in the condition clause in the large number of 

incoming events.  If  the  Event  Predictor  module  detects  the  event  pattern  of  incoming 

events, the action specified in the action clause is sent to the Event Generator module. 

Here, the Event Generator module triggers the action to produce results in the form of 

alarms, emails or messages [9]. The output result is sent to the event consumers through 

the Event Forwarder module. It can also be sent internally to the input of Event 

Collector phase to perform the event processing again.  

 In the CEP systems, all the inbound events cannot be stored for further 

processing. Any real-time event will have an uncertainty associated with it and the 

knowledge to be inferred from the events should be just in time. These unique 

requirements  of  the  CEP  systems  advocate  for  the  need  of  efficient  filtering  

techniques that filter the irrelevant events and store only the relevant events for 

further processing. Thus, there is a need for efficient event processing in the 

presence of uncertainty. 

1.2.3.3  Importance of CEP 

 The CEP system is relevant in diverse domains due to the following 

unique aspects: 

i) Ability to Give Instantaneous Repose  

 CEP is suitable for real-time applications due to its inherent nature of 

instantaneous response. It has processing capability of incoming streams greater than 
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the  event  arrival  rate.  It  is  especially  useful  in  alarm  detection  scenarios,  stock  

trading and volcanic monitoring where response time is of the order of milliseconds 

rather than seconds.  

ii) Distributed Processing 

 CEP provides distributed processing of queries that are particularly useful 

in the case of sensor network applications with limited resources. It reduces the 

energy consumption and communication overhead even under high computation 

capabilities. However, it is harder to implement in the financial applications due to 

privacy issues and high demand for consistency. 

iii) Logging and Analysis of Data Streams 

 This feature of CEP provides the basis for acquiring improvements in 

business logic. It is especially beneficial to achieve event detection for financial 

applications that require logging of data for future analysis (e.g. stock trading).   

iv) Heterogeneity of Data Sources 

 CEP can process the incoming event streams when  high heterogeneity 

exists between the external multiple sources.  

v) Learning Methods 

 CEP can directly integrate the learning methods to process and analyze the 

incoming data streams with high efficiency.  

vi) Handling of High Volume of Data  

 CEP can  handle  and  process  the  high  volume of  incoming data  with  low 

latency and high processing speed.  
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1.2.3.4  Characteristics of CEP Systems 

 The characteristics of the CEP system are summarized as follows:  

 It takes  continuous and infinite stream of events as an input from the 

external sources and not from a central database  

 It provides real-time processing and event detection with low latency 

 It processes the volatile event streams  

 It  can  cope  with  the  large  number  of  submitted  queries  as  well  as  a  

large number of events in real-time.  

 It  is  mainly  concerned  with  the  strong  temporal  relationship  that  

exists between the incoming events and their patterns rather than the 

individual events.  

 It can filter, correlate and aggregate data from multiple external 

sources to infer the high level information among the events.  

 It influences the continuously arriving real-time data directly rather 

than the historical data stored in the database.   

 It follows a DAHP (Database Active, Human Passive) model where 

the system does continuous processing of incoming event streams 

and notifies the user based on semantic information [14].  

1.2.3.5  CEP General Use Cases 

 The general belief is that the stock trading is the main use of CEP systems 

in  event  monitoring  applications  [14].  However,  in  the  present  days,  CEP  plays  a  

vital role in many other intriguing applications such as IT, Financial Markets and 

Manufacturing Organizations. These applications include:  
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i) Cleansing and Validation of Data  

 CEP performs event filtering and data validation applications to filter the 

irrelevant  events  from  the  continuously  arriving  event  streams.  It  processes  the  

incoming events based on the event patterns to determine the irrelevant events which 

fall outside the pre-defined patterns.  

ii) Alerts and Notifications 

 CEP systems generate event notifications such as alarms, messages and 

emails in a real-time business system, when problems occur. 

iii) Decision Making Systems 

 CEP systems are used in automated business decision making to take the 

best decisions using current and past information maintained in knowledge base. 

iv) Feed Handling 

 Most CEP platforms have in-built feed handlers that facilitate to process 

the common data formats. 

v) Data Standardization 

 CEP engine is capable of standardizing the data of the same entity from 

different sources within a common reference schema.  

1.2.3.6  Applications of CEP 

 Some applications based on CEP are listed as follows: 

i) Stock Market Trading 

 Financial application needs the continuous analysis of stock data to 

identity the trends in the stock market. CEP identifies the suitable opportunities for 

buying or selling securities based on the patterns of price movements in real-time. 
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ii) Real-time Supply Chain 

 In retail and logistics industries, CEP performs continuous analysis of 
RFID readings to automate the object tracking and the supply chain management. It 
improves  the  operational  performance  of  the  industry  in  terms  of  sales  and  stock  
control, industrial process automation and human resource management.   

iii) Fraud Detection 

 In the fraud detection application, CEP detects the fraudulent use of credit 
card by inspecting the continuous streams of credit card transactions. It correlates 
the fraud-indicator events at all stages of the claim value chain in real-time. 

iv) Production Management and Quality Assurance 

 In  manufacturing  control  systems,  certain  anomalies  are  detected  and  the  
e-mails or event notifications are generated to provide alerts for the attention of the 
supervisor.  

v) Sensor Network 

 In environmental monitoring, CEP correlates the large number of sensor 
data coming from the various sensors. Furthermore, it acquires information about the 
observed world for predicting disasters as soon as possible. 

vi) Intrusion Detection 

 In intrusion detection systems, CEP processes the information from 
multiple security devices to detect promptly and to analyze the network traffic in a 
real-time. It can anticipate attacks in a corporate network to generate alerts when 
unexpected event happens.  

vii) Telecommunication 

 In  Telecommunications  systems,  CEP  captures  and  analyzes  the  
information emitted by the network elements to signify the proper allocation of 
service for delivery infrastructure in  real-time [2] [14].  
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1.2.4  Integration of Business Intelligence in CEP  

 The explosive growth in IT technology leads to the successful 

implementation of Business Intelligence (BI) techniques in highly sophisticated 

Business Process Management. BI paves the way for the business enterprise to 

monitor and to analyze the business process in  real-time to trigger necessary 

actions. It provides the right direction for the growth of an organization in a highly 

competitive world. BI is extremely helpful to support and improve the overall 

performance of the enterprise business processes. The business process integrates 

CEP to monitor, analyze and act on changing business conditions in real-time when 

the event occurs [15]. CEP [2] [11] is a highly crucial component of any enterprise 

business solutions that can empower more dynamic, real-time, profitable automated 

business applications. It gathers data from multiple external sources using different 

methods  over  different  frequency.  Thus,  there  is  a  need  to  derive  events  from  the  

continuous flow of data in a timely manner. In order to derive the event, business 

processing systems acquire the high level of intelligence from the available data 

with effective reasoning. Therefore, an effective business intelligent system must 

require CEP technology to provide event notification through the filtering, 

aggregation and correlation of the data [16]. 

1.2.4.1  Business Intelligence  

 Business Intelligence transforms raw data into useful information for 

successful  business  management.  To  transform  raw  data,  BI  encompasses  a  set  of  

methodologies, process architectures and the latest technologies to extract 

meaningful information. It facilitates the businesses to make informed decisions 

based on real-time data that supports an enterprise ahead of its competitors [17]. 

Traditionally, BI technology focuses on the core features such as reporting and 

analytics, but later, a new set of features emerges to make it suitable for various  

real-time applications in a commercial world.  Forrester's BI research explains that 

the  new  technology  is  evolving  on  the  cutting  edge  of  new  trends  to  facilitate  the  

enterprise in order to gain competitive advantage in their industries. BI consists of 

five principal components that perform multi-dimensional analysis on the business 
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process. The data warehouse of an enterprise is built in order to assemble the useful 

information about the organization. The five principal components of Business 

Intelligence are multidimensional analysis, reporting, data mining, financial 

consolidation and budgeting and Key Performance Indicators (KPIs). 

1.2.4.2  Event-driven Business Process Management 

 Event-driven  Business  Process  Management  is  a  combination  of  two key  

technologies such as Business Process Management (BPM) and CEP. BPM is a 

software platform that models and optimizes the business process in order to achieve 

significant gain in a competitive market. On the contrary, CEP is a parallel running 

platform used  to  process  the  business  information  in  the  form of  events  to  make  a  

better decision for business improvement [18]. In business processing, a large 

number  of  events  from  multiple  event  sources  are  used  to  trigger  the  business  

process that results in another business level event to improve the business. Thus, 

CEP plays a main role in the processing of a large number of business events to 

trigger a new complex event in the process of business improvement [11] [15].The 

event driven BPM acts as an event producer to generate a large number of events. 

Moreover, the event processing system is used to process the events that result in 

derived events, which are either returned to the BPM system or provided as an input 

to any other application. Now, the BPM system can act as an event consumer that 

receives  a  resultant  event  from the  event  processing  system and  triggers  a  specific  

business event according to the situations detected in the business system. 

1.2.4.3  Business Process Management 

 Business Process Management (BPM) is a unified approach that deals with 

modeling, managing, orchestrating and executing of an enterprise's business 

processes.  A business process is defined as the structured set of activities to achieve 

the goal of a business organization. Now-a-days, the systematic BPM software 

evolves in the platform of service-oriented architecture to model the business 

process in a workflow system. It promotes the business process in a more effective 

and efficient manner that also strives for innovation, flexibility and integration. In 
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order to model the large amount of data, Business Process Management Notation 

(BPMN) and Business Process Execution Language (BPEL) are the major software 

standards  of  BPM.  Further,  BPEL  is  a  standard  language  that  addresses  the  

execution process of BPM.  

1.2.4.4  Business Activity Monitoring  

 Gartner coined a term called Business Activity Monitoring (BAM) that 

aims at “providing real-time access to critical business performance indicators to 

improve the speed and effectiveness of business operations” [19]. A large number of 

external sources in multiple domains generate a massive amount of events in real-

time. Furthermore, the critical business Key Performance Indicators are identified in 

order to get a better insight into the business activities and thereby to improve the 

effectiveness of business operations. Most commercial BPM software products such 

as  Oracle  BAM,  TIBCO  Nimbus  and  IBM  Tivoli  deploy  BAM  dash-boards  to  

monitor  and  to  report  violations  of  service  level  agreements.  BAM  dash-boards  

display the performance of the system in the form of graphical meters. However, the 

main limitation in such products is that the business monitoring is performed within 

the intra-organizational setting. Nowadays, many companies outsource their 

business process to other external companies to meet their joint customer needs. 

This process leads to a cross-organizational process where the organizations 

delegate their process execution to other companies for supporting an inter-company 

cooperation [20]. However, it is difficult to monitor the business process across the 

inter-company cooperation to improve the performance. 

1.2.4.5  Key Performance Indicators 

 Key Performance Indicator (KPI) is the most crucial factor for the success 

of the business enterprise to detect problems and to trigger business decisions [21]. 

KPI encompasses a set of attributes that have strong concurrence with the data in the 

invoking business application or executing code. The domain experts utilize 

Business Metric Service (BMS) to select the suitable KPIs and to calculate the 

numerical  values  for  the  set  of  attributes  in  the  KPIs  to  maintain  the  business  
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process. BMS is a specialized business service that provides the relevant information 

by rapidly accessing the wide range of data, not being intertwined with the technical 

information of the underlying business process. Furthermore, the persistent database 

stores the derived KPIs, so that the multiple users can access the KPIs without 

incurring the expense of recalculation. The measurement of the performance of the 

business is noteworthy to identify the gaps between the current and the desired level 

of  performance  [22].  KPIs  are  to  be  carefully  selected  so  that  the  KPI  provides  

information to take action for improving the performance of the business process in 

the system.  

1.2.5  CEP Terminologies 

 CEP technology consists of a set of basic terms that play a vital role in the 

event processing functionality. This section highlights a generic idea of the standard 

terms and definitions involved in the CEP terminology [23].  

1.2.5.1  Event 

 An  event  is  an  actual  occurrence  or  a  significant  happening  that  falls  

within a domain of discourse. It is a piece of data representing the fact that 

something happened in the real world [24][25]. For example,  

 Financial market events: Buy 1,000 shares of Microsoft at $25. 45 

 Supply chain events: RFID tag 11010  is scanned at 2.45 a.m. at the 

dock door 5 

 Security events: TCP/IP addresses 134. 21. 48. 198 accessed server 7  

1.2.5.2  Representation of Events  

 In the CEP, languages such as XML, Plain Old Java Object  (POJO) and 

Tuples are used to represent the events. Among them, the tuple data structure 

provides the efficient representation of events that facilitate easier methodology to 

process the large number of incoming events faster with less computation cost and 
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overhead [23]. For example, the tuple is a simple data structure consisting of a set of 

attributes and their corresponding values.  

i) Certain Event Representation 

 The events with certain attributes can be represented by a single tuple  

with  a  set  of  attributes  and  their  corresponding  values  {Attribute1 = “val1”, 

Attribute2 = “val2”, Attribute3 = “val3”, ….Attributen = “valn”}. 

ii) Uncertain Event Representation  

 The event represents uncertain attributes as more than one tuple where 

each tuple is associated with the probability. The associated probability of every 

event  depends  on  the  occurrence  of  the  events  with  their  corresponding  set  of  

attributes and their  value. For example, the uncertain events in the stock market are  

represented as a set of tuples where each tuple has a set of attributes, each attribute 

has a certain value and each value has a corresponding probability. 

 

 

Figure 1.3:  Event Tuple 

1.2.5.3  Types of Events 

 An event  is  defined  to  be  an  occurrence  of  interest  in  time.  The  event  is  

classified  into  two  types  such  as  primitive  or  simple  events  and  complex  or  

composite events. For example, in the stock exchange scenario, a simple event refers 

to the buying and selling of stock. The simple event object consists of the stock 

symbol, the name of the company, the volume of stocks, the price and the identifier 

of the selling trader. However, the complex event is the aggregation of the number 

of simple events that are derived from the record of all the buying and the selling of 

the stocks of a company.  
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i) Primitive Events  

 The  Primitive  events  are  defined  as  the  occurrence  of  a  single  event  at  a  

point in time. They are explicitly generated from external event sources.  

ii) Composite Events 

 Composite events are an aggregation of a set of primitive events with the 

help of various operators of the underlying event algebra. They are mostly derived 

from the other events. They cannot be directly measured, but their occurrence can be 

inferred from the logical or temporal relationship between the simple events [23].  

1.2.5.4  Event Attributes 

 Each event associates with itself a set of attributes called as event 

attributes. These attributes define the information about the action that influences the 

occurrence of the event [23]. The attributes record the timestamp of the event and 

also maintain the state of the database.   

1.2.5.5  Event Stream 

 The event processing engine receives a set of events from the multiple 

sources that are grouped together and are called event streams. Event stream is a 

linearly ordered sequence of events that is ordered according to the arrival time of 

the event into the system. The usage of event streams varies according to the 

requirement of the implementation environment. Most of the applications restrict the 

implementation for pre-defined event types, but some of the implementations can 

also support event streams that consist of the user-defined or different types of 

events.  

1.2.5.6  Event History  

 An event  history  maintains  a  history  of  event  occurrences  within  a  given  

point of time. It stores all the event instances of event ‘E’ as well as their associated 



19 
 

data within a specified time. The event history E (t2, t1) is the set of event instances 

of E within occurrence time between t1 and t2 [23] [24].  

1.2.5.7  Event Instance Sequence  

 An Event Instance Sequence (EIS) is a partially ordered set of event instances. 

EIS reflects the order set of the occurrence times of its event instances [25]. 

1.2.5.8  Event Type 

 Event Type (ET) describes the essential features of the events in terms of 

the parameters in a more abstract way. ET   identifies the unambiguous nature of the 

category of the event.  

1.2.5.9  Event Instance 

 Event Instance (EI) stores and maintains the set of parameters that defines 

the relevant information about the events. EI is used to represent the concrete 

occurrences  of  the  event  within  the  system.  It  helps  to  identify  the  impact  of  the  

occurrence of the event on the other types of events [25].  

1.2.6  Event Processing Languages 

 CEP aims at deriving a more concise and high meaningful information 

from the large volume of lower level events based on the correlation acquired, from 

pre-defined event patterns. In general, the event patterns express the event queries 

which  consist  of  the  events  connected  by  event  operators  and  also  specify  the  

constraints on event attributes in the form of predicate expressions [26]. However, 

these expressions do not correlate the temporal relationship between the events in 

the dynamic nature. Thus, querying events in CEP is totally different from the 

traditional querying in the database, since the event patterns are pre-registered 

queries, which execute against the large number of continuously arriving event 

streams. In CEP, the event queries are expressed using a high level programming 

language called Event Processing Languages (EPL). EPL expresses the event 

patterns in an expressive and declarative way. EPL is classified into two categories 
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such as stream-oriented or transforming languages and rule-oriented or detecting 

languages. The stream-oriented languages are preferable in Data Stream 

Management Systems while rule-oriented languages are used in CEP systems [27]. 

1.2.6.1  Stream-oriented Languages 

 Stream-oriented languages are developed based on the context of the 

DSMS. They express the complex event queries over the DSMS in real-time 

applications, where continuously a large number of incoming event streams enter 

into the system [11]. The stream-oriented languages are an optimized language 

suitable for data streams. These types of languages are mainly extended from the 

database query language SQL. Furthermore, it consists of three types of operators 

such as relation-to-relation, stream-to-relation and relation to stream operators. First, 

the relation-to-relation operator executes complex data queries over relational tables 

that consist of standard database operators such as select,  union,  aggregate, 

intersect, except, duplicate-eliminate and different types of joins. Second, the 

stream-to-relation operators specify the different sliding window operators that 

transform the input streams into temporary relational tables. The last, relation-to-

stream operators convert the data from a relational table into output streams. On the 

contrary, the stream-oriented language pays less attention to the queries such as 

filtering, joins and aggregation to derive the timing and the temporal relation among 

the events. However, the derivation of temporal relation is extremely useful in the 

CEP because  it  helps  to  achieve   the  timely  processing  of  incoming events   Some 

examples of these types of languages are Continuous Query Language (CQL) in 

STREAM systems [28] and Continuous Computation Language (CCL) in coral8 

[29]. These query languages are suitable for financial applications, where the 

aggregation of market data is efficiently correlated to predict the future stock price 

in market trading.    

1.2.6.2  Rule-oriented Languages  

 The rule-oriented language specifies the rules for processing streams of 

event processing systems in the area of Active DBMSs. It defines the query 
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languages in the form of Event-Condition-Action rules [30] that act as a formalism 

to define the execution of events, when the incoming event satisfies the conditions 

mentioned in the rule specifications. The rule-oriented language executes the action 

well integrated with the existing query languages to implement the event queries 

such as rule languages [31]. In order to achieve high flexibility, Business Rule 

Management Systems (BRM) provides the standard specifications that implement 

the event queries as a rule language.  BRM hides the complex syntax of production 

rule languages and also supports the various temporal aspects for modeling the event 

types and data. Some of these languages include Drools Rule Language and JRules 

[32]. These languages are used for integrity constraint enforcement, authorization 

checking and versioning in production systems. Furthermore, these languages 

provide a more advanced platform for CEP in the large scale and efficient 

knowledge based expert systems.  

1.2.7  Event Filtering 

 Event filtering is the pre-processing scheme. It is performed ahead of the 

event prediction to filter out the irrelevant events from the incoming event streams. 

It is implemented based on the Publisher/Subscriber model to perform the matching 

between the large numbers of incoming events (publications) and the domain expert 

specified rules (subscriptions) [33].  
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 Figure  1.4  shows  the  exploration  of  CEP  design  patterns  with  the  basic  

filtering. The filtering is easy to implement in the number of non-CEP products or 

custom-built applications. The CEP engine performs the event filtering on the 

incoming event streams based on the queries mentioned by the subscribers or users 

in the form of subscriptions. It evaluates a specified logical condition based on event 

attributes and if the condition is true, then it publishes the relevant event to the 

destination stream. For example, the event monitoring in purchasing applications 

monitors  the  stream  of  purchase  orders  to  filter  the  events  that  meet  out  the  

condition Priority!= ‘High’ and Amount > 5000. It is a simple filter query that 

performs the matching sequentially over the number of incoming events and then 

filters  the  relevant  event,  which  satisfies  the  condition  of  a  simple  query  [34].  In  

order  to  compare  the  incoming events  with  the  other  events  in  the  same stream or  

other stream events, the complex filter is constructed where the event filtering is 

performed based on the computed metric. It achieves high efficiency and scalability 

due to the pre-processing of a large number of events based on the minimum 

specifications in the event query.   

1.2.8  Uncertainty  

 Uncertainty is defined as the lack of certainty and incomplete knowledge 

of the information which leads to a difficult situation to describe the possible 

outcome. It generates insufficient, imprecise and vague information that leads to 

various challenges in the decision making of complex systems [35]. Due to the data 

conflict, the inaccurate results lead to high uncertainty. In various real-time 

applications such as object tracking in RFID applications and weather monitoring, it 

is more difficult to capture the uncertainty in the high volume of raw data streams 

[36]. In order to analyze the uncertainty issues, various approximation techniques 

are evolved. Uncertainty is broadly classified into four classes as follows.  

1.2.8.1  Epistemic Uncertainty  

 Epistemic uncertainty arises due to the lack of knowledge. It is caused due 

to the systematic error, incompleteness, subjective uncertainty and measurement 
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uncertainty. This uncertainty is handled by various mathematical frameworks such 

as probabilistic and fuzzy approaches. However, it is a significant challenge to select 

a suitable mathematical framework for representing the uncertainty.  

1.2.8.2  Linguistic Uncertainty 

 Linguistic uncertainty is the uncertainty produced by the statements in 

natural language. It is caused due to the vagueness, context dependence, ambiguity, 

specificity and indeterminacy of the theoretical terms. This uncertainty is caused 

accidentally and therefore, create problems in risk assessment.  

1.2.8.3  Ambiguity Uncertainty 

 Ambiguity uncertainty arises in the case of ambiguous events where a 

single event may have more than one relevant meaning.  This uncertainty leads to 

high confusion and vagueness due to the lack of information. The probabilistic 

approaches handle this type of uncertainty by computing the probabilities of the 

output events in order to determine the relevant events.  

1.2.8.4  Variability Uncertainty 

 Variability uncertainty is caused due to the variations or differences in a 

process or quantity by nature. This uncertainty is caused by various environment 

parameters  and  is  difficult  to  assign  an  exact  value  to  the  events.  It  leads  to  high  

irregularity because of inherent randomness in repeated processes. This uncertainty 

can be reduced but cannot be eliminated entirely [35].  

1.2.9  Uncertainty Analysis Techniques 

 In order to reduce the potential risk in estimation, the uncertainty analysis 

is a statistical or mathematical process used to measure, recognize and identify the 

uncertainty associated with available raw data streams. In order to estimate the risk, 

various tasks such as derivation of an uncertainty factor, complex model 

specification, decision making and monitoring methods are performed [37]. It is a 
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quantitative approach to reduce the risk and estimation of uncertainty, which 

depends on the complexity of the variation of uncertainty according to the time.  

1.2.9.1  Probabilistic Analysis  

 Probabilistic analysis analyzes the various kinds of uncertainty associated 

with the noisy and sensor data from unreliable sources such as sensor networks and 

RFID applications. In order to model the uncertain data, the machine learning 

technique constructs a rich and complex Probabilistic Graphical Modeling (PGM) 

[38] to capture the uncertainty from the true state of the physical world. In addition, 

a novel inference algorithm called as probabilistic inference is used in the 

constructed probabilistic database model to speed up query processing significantly. 

To support probabilistic query processing in the presence of uncertainty, confidence 

score is assigned to the correlated tuples in the probabilistic databases [39]. 

Furthermore, the probability computation scheme computes the probability of events 

based on the assigned confidence score. Thus, the computation of data in the query 

results is directly decoupled with computed probability (confidence) values. 

Moreover, probabilistic ranking [40] performs ranking on the set of uncertain data 

based on the computed probability. Thus, the tuple with a high probability is 

identified as a relevant event in the presence of uncertainty. 

1.2.9.2 Fuzzy Analysis 

 The systematic behavior of vagueness and imprecision is handled by a 

mathematical framework called as Fuzzy Logic (FL) or Fuzzy set theory, formulated 

by Lotfi Zadeh in 1965. FL is a more robust analytic tool that performs better 

reasoning to elicit and to encode the uncertain knowledge in a  domain [41]. A fuzzy 

set provides knowledge representation in terms of uncertainty in a flexible way.  It is 

a most effective technique that relies on the human knowledge base to deal with the 

complex concepts associated with the uncertain data. In order to estimate the 

potential risk, the fuzzy rules express the human knowledge with a set of fuzzy 

values in terms of linguistic terms such as high, low, very low and very high [42]. It 

performs effective reasoning over the inaccurate data using knowledge models to 
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take rational decision in the presence of uncertainty. In risk estimation, the fuzzy 

logic is an effective multi-criteria analysis system to resolve uncertainty that consists 

of analytical tools to perform decision making. The characteristics of the fuzzy logic 

system are:  

 It deals with the uncertainty and imprecision of reasoning processes.  

 It models the heuristic knowledge in terms of mathematical equations. 

 It allows the computation of linguistic information.  

1.2.9.3  Bayesian Analysis  

 Bayesian Network (BN) is one of the most important, efficient and elegant 

models for representing and reasoning with probabilistic models. In order to 

represent the knowledge about the uncertain domains, a novel statistical and 

scientific model is constructed to model the complex systems under high uncertainty 

[43].  It  is  an  augmented,  directed  acyclic  graph  G  =  (V;  E)  consisting  of  a  set  of  

nodes where each node in the graphical model represents a set of random 

variables{X1, X2……X|V|} and each edge  represents the conditional dependence 

relationships between the random variables. BN encompasses two components such 

as (i) a qualitative model and (ii) a quantitative model. The qualitative model 

encodes the local correlation among the random variables using a direct acyclic 

graph. The quantitative model represents the joint probability distribution P(x1. . . 

xn) over a finite set {x1, . . . , xn} of random variables that possess a set of mutually 

exclusive states. BN can mathematically express one belief as a conceptual model in 

a more logical way. Furthermore, the Conditional Probability Table (CPT) models 

the probability distribution of a set of random variables that specifies how a random 

variable depends probabilistically on the values of its parent nodes Pa (Xi) [44].  

1.3  SCOPE OF THE RESEARCH  

 In recent years, the explosive growth of IT technology and Business 

Intelligence (BI) techniques pave way for the business enterprise to monitor and to 

analyze the business process in real-time in order to trigger necessary actions for 
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providing the right direction for the organization growth in a highly competitive 

world. In order to react automatically to all events of interest, the business process 

system must perform effective reasoning in the event composition system to acquire 

a high level of intelligence from the available data. Therefore, the intelligent system 

is to integrate CEP technology that timely processes the large amount of information 

by filtering, aggregating and correlating the data flows from multiple sources. In 

event based systems, uncertainty is mainly created due to the gap between the real 

occurrences of events, to which the system must react and the capability of event-

driven systems to produce exact events. The main challenge of explicit probabilistic 

event processing is that the CEP has to process a large number of rules with multiple 

event sources. Thus, the probability computation under various types of uncertainty 

is not trivial. In order to perform effective decision making, the probability of 

derived events is to be correctly quantified using an appropriate mechanism for 

probability computation. The CEP engines deployed in real-time mission-critical 

applications must satisfy the demanding performance requirements. Thus, CEP has 

to support operational requirements in terms of throughput, response time, event 

patterns and scalability. An efficient, scalable CEP engine is necessary to fulfill the 

requirements and to meet the challenges of the real-time mission-critical 

applications.       

1.4  CONTRIBUTIONS OF THE RESEARCH  

 The literature survey reveals that there is not enough scope for Complex 

Event  Processing  to  achieve  high  scalability.  The  PCEP  system  takes  one  step  

forward in this research through implementing event filtering approach in 

Publisher/Subscriber system to achieve efficient CEP with high scalability and 

efficiency. This research presents a generic system for representing events and rules 

over uncertain data. It designs such a system to manage the uncertainty of the events 

explicitly under multiple rules with multiple event sources. The main contributions 

are:  

 Event Pattern Matching: An efficient  NFAh based event matching 

algorithm is developed to filter the relevant events which match the  
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event pattern queries over  the large number of incoming events, 

where Query Aware Partitioning with Predicate based Subscription 

Grouping algorithm  is used to  scale up for a large number of queries.  

 Complex Event Detection: The Probabilistic Event Sequence 

Prediction phase supports probabilistic inference on complex 

uncertain events. Probabilistic event hierarchies are constructed in the 

form of graphical model called as Dynamic Fuzzy Probabilistic 

Relational models that infer the correlations among the sequences of 

incoming events.  

 Computation of Probability: DFPRM model computes the joint 

probability distribution based on the observation of the correlation 

between  event  sequences  to  enhance  the  robustness  of  the  event  

detection process under uncertainty.  

 Probabilistic Fuzzy Logic: Probabilistic Fuzzy Logic is used to 

estimate the fuzzy linguistic variables from computed conditional 

probability distributions in the large probability space. It formulates 

the combination of the relevant event sequences according to the 

computed probability of events with the reduced overhead.  

 Heterogeneous domains: The PCEP system is  validated  with  three  

diverse domains to ensure that its performance is consistent. 

1.5  THESIS ORGANIZATION  

 The objectives of this research are to study the existing CEP engines and 

to improve the performance CEP engines with respect to efficiency and scalability. 

The background information regarding Complex Event Processing is presented in 

the first chapter. The rest of this thesis is organized as follows:  

 Chapter 2 presents a critical survey of literature. A detailed description of 

event filtering schemes and the main features of popular CEP engines, including its 

time model, syntax, processing model and query languages are also highlighted. It 
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also explains the complex event languages, complex event detection, continuous 

queries and production systems. It also presents the probabilistic approaches to 

process the complex events in active database systems under uncertainty. The 

limitations of the existing systems are inferred from the literature. 

 Chapter 3 presents the formal problem statement of research problem with 

the objectives. The high level conceptual architecture of the PCEP system is 

presented. The information flow from the primitive events to the complex event 

through the various modules in the PCEP system is explained. 

 Chapter 4 proposes an NFA event filtering based on the design of efficient 

Publisher/Subscriber middleware CEP system. The performance of this filtering 

approach is evaluated in terms of average processing time and throughput. 

 Chapter 5 proposes Probability Fuzzy model to derive the most probable 

events using Dynamic Probabilistic Fuzzy Relational model. The performance 

evaluation of the PCEP system is highlighted in terms of processing time, scalability 

and efficiency.  

 Chapter 6 highlights the implementation of PCEP in three motivating 

application scenarios such as RFID Monitoring, trading in stock exchange and KPI 

based business activity monitoring in inter-organizational multiple domains.  

 Chapter 7 concludes the findings of this research and explores the possible 

directions for future work to optimize the Probabilistic Complex Event Processing 

under uncertainty.  
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CHAPTER 2 

CRITICAL SURVEY OF LITERATURE 

 

 This chapter describes a detailed survey of the existing research approaches as 

well as ongoing research in the field of CEP. It discusses about the existing 

approaches of the event filtering, CEP engines, query languages and probabilistic 

database systems in detail. It paves the way to fulfill the research gap in uncertain 

CEP to achieve scalability and efficiency. Finally the   limitations in the existing 

research approaches are obtained. 

2.1  REVIEW ON EVENT FILTERING SCHEMES  

 This section discusses about the existing event filtering approaches to filter 

the relevant events from the large number of incoming event streams based on the 

event queries subscribed by users.  

2.1.1  Binary Decision Diagram  

 In  this  approach,  Binary  Decision  Diagram  (BDD)  performs  an  event  

filtering that is implemented on a  large scale content based Publisher/Subscriber 

middleware architecture. BDD is a data structure that represents the Boolean 

function for model verification. In order to process the large number of incoming 

events,  an  efficient  and  scalable  event  filtering  engine  is  performed  based  on  user  

subscriptions. Here, the subscription query languages such as Simple Subscription 

Language (SiSL), Strict Subscription Language (StSL) and Default Subscription 

Language (DeSL) express the user subscriptions more effectively [45]. In order to 

enhance the performance of BDD in event filtering, this approach carries out three 

optimizations such as BDD restriction, BDD variable ordering and the BDD 

evaluation  algorithm.  It  supports  a  high  level  of  semantics  to  perform  an  event  

matching a query or subscription to handle a half million subscriptions efficiently. 

The main drawback of this approach is that the filtering operation is not distributed; 
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thus it leads to high operation overhead. Therefore, the filtering engine is not able to 

process at the arrival rate of incoming messages that results in high processing time.  

2.1.2  Bitmap Indexing  

  This approach deploys a novel event processing scheme to process the 

large scale complex events efficiently based on Bitmap Indexing technique. It 

proposes a new effective technique to detect the complex events that satisfy the 

minimum conditions in query specifications. In order to reduce the unnecessary 

resource utilization perfectly for storage and operation overhead, this approach 

eliminates unnecessary operations over incoming events. Thus, this approach 

identifies the sequence of relevant complex events with minimal resource 

consumption. This approach performs an effective pattern matching in two phases 

such as threshold phase and detection phase using query index and bitmap [46]. 

Furthermore, a tree structure is exploited to organize query index and manages the 

primitive events. Thus, the constructed tree structure is used to check whether an 

incoming event satisfies the minimum conditions required for the complex events in 

the first phase. If the incoming event satisfies the minimum conditions in the 

threshold phase, then the second phase will be invoked.  In the detection phase, the 

bitmap structure with query index performs the complex event detection.  

2.1.3  High Performance Event Filtering 

 This approach motivates to develop a scalable and a high performance 

event filtering mechanism for enterprise-wide Distributed Dynamic Multi-Point 

(DDMP) applications. It is a data reduction mechanism that minimizes the 

unnecessary operation overhead and network traffic in order to monitor, detect and 

deliver the events to interested consumers. In expressive event language models, the 

events and the user subscriptions are internally represented in the form of 

Deterministic Finite state Automata (DFA) [47]. Here, the event filtering is 

performed in an object oriented framework using filter programming interface. 

Furthermore, an effective monitoring and feedback mechanism are used to span 

multiple filtering servers between the producers and consumers in the local area or 
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wide area networks. Two filtering servers such as front-end filtering servers and 

composite filtering servers are deployed in this approach to perform effective 

filtering. Here, the front end filtering server is used to classify the primitive events 

whereas the composite filtering servers detect the composite events. Some novel 

ideas are integrated with this approach to develop a scalable, configurable and high 

performance event filtering mechanism in DDMP domain. The main problem is that 

this approach is a domain dependent application that focuses on the event filtering in 

DDMP domain. This approach is not suitable for all the other domains in a business 

enterprise system.  

2.2  REVIEW ON CEP ENGINES  

 This section highlights in detail the discussions about some of the CEP 

engines that made significant efforts to perform efficient, scalable and fault tolerant 

event processing. The CEP engines available in the market are analyzed with their 

characteristics, advantages and disadvantages It describes the significant differences 

among the CEP engine in terms of rule language, processing model, data structure 

and their overall system architecture.  

2.2.1  Simple Scalable Streaming System  

 Simple Scalable Streaming System (S4) is a general-purpose, scalable, 

fault tolerant, free stream processing platform created and released by Yahoo! This 

is a framework for “processing continuous, unbounded streams of data” [48]. It can 

perform distributed computation over constantly changing data. It shares many 

characteristics with IBM’s Stream Processing Core (SPC) middleware, but S4 

differs  from  SPC  only  in  architectural  design.  The  SPC  design  derives  from  a  

subscription model whereas the S4 design derives from the combination of both 

MapReduce and the Actor model [49]. Stream processing is carried out as in an 

Actor model where graphs connect the large number of nodes consisting of 

Processing Elements (PEs). In this mode of interaction, each and every PE has the 

capability  to  consume  and  to  emit  data  events  with  the  other  PEs  through  I/O  

queues. Thus, the messages are transmitted among between PEs in the form of data 
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events, which consist of named streams with their corresponding keys and attributes. 

The  PE  can  process  the  data  events  from  the  streams  with  the  only  one  specified  

key. This framework can effectively route the events to the appropriate PEs. This 

process leads to high level of semantic encapsulation and location transparency. 

Thus,  the  application  developers  can  process  data  streams  through  a  simple  

programming interface which offers an impressive level of simplicity for developing 

massively concurrent applications due to its symmetric nature where all nodes in the 

cluster are identical under decentralized control. It minimizes the access latency and 

eliminates I/O bottlenecks due to the accumulation of local memory in the PEs. 

Easily deployable and pluggable architecture provides a generic and customizable 

design. It provides high flexibility in the design maintenance because of 

decentralized and symmetric architecture. During handoff, the lossy failover occurs 

that automatically moves a process into standby mode and leaks a large amount of 

data events. It has inability to express the queries that span multiple input events 

thus making it as unsuitable for CEP.  

2.2.2  Aurora  

 The Aurora is a general purpose, Data Stream Management System 

(DSMS) to provide real-time monitoring applications, developed by the Brandeis 

University, the Brown University and the Massachusetts Institute of Technology. It 

provides a new imperative language called as Aurora's Stream Query Algebra 

(SQuAL) that defines the transforming rules in a graphical representation by 

adopting a boxes-and-arrows paradigm [50]. This paradigm connects the different 

operators  explicitly  and  shares  the  computation  of  different  standing  queries.  It  

constructs the network with a set of operators that consist of connection points. The 

connection points are intermediate tables in the network upon which ad hoc queries 

can be executed. In the work flow process, the data events are forwarded in the form 

of  tuples  along  the  pathways  (arrows).  In  order  to  monitor  the  performance  of  the  

system, the Aurora defines the Quality-of-Service (QoS) specifications for 

individual queries to perform several optimizations to enhance the performance or 

quality of the results. Among that, the load shedding is the most critical optimization 

where the QoS specification determines how and when to shed load. In a highly 
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overloaded  state,  the  optimization  enables  to  drop  the  number  of  tuples  relating  to  

systems that are more tolerant of missing data. The scheduler allocates resources 

based on the load of the operator and the optimized user defined plan, which is 

specified  in  QoS  constraints  [51].   It  maximizes  the  overall  QoS  from  the  

applications. It provides an intermediate storage inside the query plan to recover the 

operator’s failure. Due to the lack of semantics, it is difficult to prove the correctness 

of the query formulations.  

2.2.3  TelegraphCQ 

 In order to support the highly streaming adaptive flow of data over event 

streams, the University of California at Berkeley has developed a Telegraph Project 

(TelegraphCQ). It provides event processing capabilities in the relational database 

management by implementing the PostgreSQL27 [52]. In this approach, an open 

source database PostgreSQL27 modifies its existing architecture to process the 

continuous queries over the streaming data. It is a distributed, continuously adaptive 

parallel cluster-based processing that can process the continuous queries over the 

large number of incoming event streams. TelegraphCQ allows the access of the 

previously-arrived data with high intermittent connectivity [53]. It integrates 

efficient data management components to manage adaptively the dynamic nature of 

data availability. This approach supports an efficient event processing rather than the 

other conventional event processing due to its efficient adaptivity. It provides an 

efficient resource scheduling for groups of queries and also supports dynamic QoS.  

The main drawback is the complexity of computation. 

2.2.4  STREAM  

 Standard sTREam datA Manager (STREAM) is the distributed Data 

Stream Management System built at Stanford University. STREAM can adaptively 

process the large class of declarative continuous queries over the continuously 

arriving data streams in real-time [28]. It declaratively expresses user subscriptions 

in the form of Continuous Query Language (CQL) [54] that is extended from the 

SQL language. CQL handles continuous queries with sliding window facilities. CQL 
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consists of two layers such as an abstract semantics layer and an implementation 

layer. The query language translates the flexible query plans that support effective 

optimization and fine grained scheduling decisions. It supports effective load 

shedding to manage the dynamically varying load over time and also manipulates 

query plans during execution. The main focus of this approach is effectively running 

the various types of queries by considering the cost of self-maintenance of different 

materialized views in a bounded amount of memory [55]. Effective memory 

management and query plan based execution are integrated to achieve stream 

processing. In order to reduce resource consumption, the operations such as 

ordering, clustering and referential integrity are implemented on the event streams. 

Thus, the approximate query answering is deployed to manage the resource 

consumption in the context of limited resources. Thus, it leads to less performance 

with inaccurate results due to approximation.  

2.2.5  Esper 

 Esper is an open source and sophisticated CEP suite developed by the 

Espertech that integrates both Event Streaming and Event Analysis into a single 

framework. Esper uses an integrated part of software or as a standalone server. It 

defines a rich declarative language for rule specification called as Event Processing 

Language that includes all operators in SQL. Further, ad-hoc constructs for sliding 

window definition and interaction are provided [56]. Thus, Esper provides a 

powerful mechanism to integrate temporal relations of events using sliding event 

windows. It allows expressing the complex matching conditions to combine 

different event streams, filtering and sorting them. It expresses event patterns using 

nested constructs that include conjunctions, disjunctions, negations, sequences and 

iterations. Esper supports both centralized and clustered deployments for query 

processing. Further, it detects sequences and patterns of unrelated events.  In order to 

achieve load balancing, Qos policies are maintained effectively to integrate the 

processing  power  of  different  and  well-connected  nodes  that  increase  the  system's  

availability [57]. Esper  fails to consider the uncertain data which occurs in practical 

real-time streams.  
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2.2.6  Stream-based and Shared Event Processing (SASE) 

 In order to design an efficient and robust RFID stream processing system, 

UC Berkeley and the University of Massachusetts Amherst developed the SASE 

research project. SASE is one of the most influential efficient CEP systems modeled 

as a data flow paradigm that transforms real-time data streams into appropriate 

actionable information. Furthermore, a new abstraction of the Complex Event 

Processor is deployed to process the continuously arriving incoming event streams 

in a timely manner [58]. In order to meet the challenges including the data-

information mismatch, incomplete and noisy data in RFID-enabled real-time 

monitoring applications, SASE defines a new query language by extending the 

existing event language. In order to model the event language using native sequence 

operators, Non-deterministic Finite Automata (NFA) is constructed that  allows 

effective pipelining to predict the event sequences based on subsequent operators 

such as selection, window and negation due to the efficient implementation. SASE is 

a comprehensive system that performs effective filtering, pattern matching and an 

aggregation mechanism in order to filter and process the real-time data streams in a 

timely manner [59]. The query language supports high extensibility to develop a 

new event language for RFID enabled applications. SASE also possesses high 

flexibility in query execution that achieves several optimizations. It fails to consider 

the uncertain data, which occurs in practical real-time streams and also does not 

address the distributed system issues. It will lead to a poor performance with high 

access latency because of logic complexity to manage a large volume of data. 

2.2.7  Cayuga 

 Cayuga is a most efficient and commonly used large scale CEP system that 

supports on-line detection of complex patterns in event streams based on a large 

number of concurrent subscriptions [60]. The core components of the Cayuga 

include a query processing engine, an index component, a meta data manager and a 

memory manager. In order to support stateful subscriptions, Cayuga leverages the 

traditional Publication/Subscription techniques. The users express their interest as 

more expressive and structured Cayuga Event Language (CEL). The Cayuga query 



36 
 

translates into Non-deterministic Finite Automata (NFA) and then loads into the 

query processing engine which processes the incoming streams against queries. This 

automaton reads a finite sequence of events over a finite relational schema for a 

specific time interval.  In order to process a large number of arbitrary queries, this 

engine deploys two techniques such as row/column scaling and pipelining to 

distribute the queries among the large number of machines. The Query Engine 

manages the state transitions of NFA using predicates. Further, the custom heap 

memory  management  is  deployed  to  store  the  automaton  instances  that  satisfy  the  

predicates and also indexes the operator predicates to improve the performance of 

the system [61]. This approach deploys a novel Multi-Query Optimization (MQO) 

technique to achieve high scalability and high-speed event processing. In order to 

process the large number of concurrent subscriptions, this engine contains efficient 

in-memory processing that facilitates to achieve high scalability and high speed 

event processing. This approach does not support automated query rewriting and 

distributed detection. This leads to difficulty in distributed query processing among 

the multiple machines in the system.  

2.2.8  Coral8 Engine  

 The Coral8 processes multiple heterogeneous data streams and performs 

various operations such as filtering, aggregation, correlation, pattern matching over 

the incoming data streams in real-time. This engine supports effective pattern 

matching and native XML processing. Therefore, Coral8 is implemented in more 

powerful CEP applications to execute a real-time enterprise business function [62].  

It encompasses the familiar lightweight streaming architecture to implement faster 

and easier deployment that can process more than millions of events per second for 

simple queries and thousands of events per second for complex queries with low 

latency. The Coral8 consists of two main components such as Coral8 Server and the 

Coral8 Studio [63]. The Coral8 Server is the core of the Coral8 engine that provides 

clustering support. To monitor the performance and activity of the server, various 

features such as publication of a status data stream is included with this coral8 

engine. Furthermore, the Coral8 Studio provides an IDE-like interface that allows 

administrators to add or remove queries according to the input and output data 
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streams.  In  order  to  express  the  event  queries,  this  engine  develops  a  subscription  

language called Continuous Computational Language (CCL). In order to execute 

continuous queries in parallel for high-speed data, enterprise-class clustering is 

configured with this engine. Furthermore, parallel and asynchronous database 

integration is performed to achieve high performance event storage.  

2.3  SURVEY OF QUERY LANGUAGES  

 This section describes the details of the capabilities and the  features of 

several representative complex event query languages to express the event queries in 

the CEP systems. The main purpose of this discussion is to determine where 

extension is required for incorporating the uncertainty in the existing query 

languages. This survey discusses the event query languages in terms of types of 

complex events detected, the structure and the semantics of the query languages and 

their relative advantages and their disadvantages.  

2.3.1 Continuous Query Language in STREAM  

 STREAM introduces the Continuous Query Language (CQL). CQL 

exploits the rich expressive power of SQL [28]. It consists of three public operators 

such as stream-to-stream, relation-to-stream and relation-to-relation operators. 

Among  that,  relation-to-relation  operator  is  a  subset  of  the  SQL  language  and  the  

remaining two operators are newly extended to make suitable for a large number 

event streams. It provides well-defined semantics that can be implemented based on 

any language with the help of a composite operator and data type rules. Figure 3.1 

represents the CQL as follows: 

 

Figure 2.1: Continuous Query Language 
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 The  CQL  language  consists  of  six  clauses  such  as  OUTPUT,  SELECT,  

FROM, WHERE, GROUPBY and HAVING. Among that, the OUTPUT clause 

consists of an attribute name of the number of variables [var1, var2, var3……varn] in 

the variable list. SELECT and FROM clauses are mandatory in CQL language and it 

mainly relies on the input stream. Further, the WHERE clause selects the event from 

the input stream that satisfies the selection predicates in it. The GROUP BY clause 

contains one or more attributes used to group the events in the input stream. Finally, 

the HAVING clause selects the events based on the group selection predicates in it 

[55]. This language is like a research prototype. So, it is not applicable in the case of 

a  Complex  Event  System.  While  it  has  a  manual,  it  cannot  be  used  for  real-world  

examples because of the lack in documentation.  

2.3.2  Continuous Computation Language (CCL) in Coral8 

 CCL was the first commercial industry standard declarative language. 

CCL provides a massive head start for creating the CEP applications in the real 

world. It has the capability to process the continuously arriving dynamic data. Like 

SQL, it achieves standard event selection using SELECT/ WHERE clauses that are 

used to filter the events from the incoming event stream [63]. CCL provides 

additional capabilities such as sliding windows, event matching and output timing 

controls for manipulating data during real-time continuous processing. It is 

represented as follows: 

      

Figure 2.2: Continuous Computation Language 
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2.3.3  SASE Language  

 SASE language is a declarative, composition-operator-based language 

mainly suitable for high-performance querying of event streams. It has a high level 

structure as SQL query, but the design of the language is focused on the event 

pattern matching. The structure of the SASE language is represented as follows:  

        

Figure 2.3: SASE Language 

 In  SASE,  the  FROM  clause  specifies  the  name  of  an  input  stream.  The  

event matching consists of three mandatory clauses such as EVENT, WHERE and 

WITHIN to transform an input stream into a stream of composite events [58].  The 

EVENT  Clause  specifies  the  pattern  that  is  to  be  matched  against  the  input  event  

stream.  Further,  the  WHERE  and  the  WITHIN  clauses  specify  the  value  based  

conditional expressions and the occurrence time constraints respectively. Finally, the 

RETURN clause converts the stream of composite events as a final output. 

2.3.4  Event Processing Language in Esper 

 Esper presented a hybrid Event Processing Language (EPL), which 

combines the features of continuous query in data stream languages and the pattern 

matching constructs in a composite operator based language. This language 

expresses the event patterns using composite operators like Rapide in composite 

event language. Further, EPL processes the input streams against event patterns 

using data stream constructs like CQL data stream language as given in Figure 2.4.  
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Figure 2.4: Event Processing Language 

 In EPL, two new clauses such as ORDER BY and LIMIT are introduced to 

provide more expressive query specifications [57]. The LIMIT clause limits the 

lifetime of pattern instance if the incoming input stream consists of multiple events. 

Furthermore, EPL supports the ORDER BY clause to determine the order of events 

based on its timestamp. This language mainly concentrates on the partition of the 

functionality of event detection, but does not provide  much for the selection and the 

collection of events from the incoming event streams.  

2.3.5  Cayuga Event Language in Cayuga  

 Cayuga is the most popular and highly expressive CEP engine running 

with a large number of queries which are expressed in the form of Cayuga Event 

Language (CEL) [60]. This language offers pattern queries over event streams based 

on Cayuga Algebra in the form of regular expression. CEL is represented as follows  

 

Figure 2.5: Cayuga Event Language 
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 In CEL, the SELECT clause is optional that specifies the name of the 

attributes  in  the  output  schema.  Furthermore,  the  FROM  clause  is  the  core  of  the  

query which composes of one unary construct: FILTER and two binary constructs: 

NEXT and FOLD to specify the stream expression. The PUBLISH clause is also 

optional  that  provides  the  name  of  the  output  stream.  If  the  PUBLISH  clause  is  

omitted, then the output stream is unnamed.  

2.3.6  AMiT in IBM Websphere  

 IBM Active Middleware Technology (AMiT) proposes a XML language 

that allows the specification and the detection of the complex events, which are 

referred  as  situations  [64].  Each  situation  has  an  associated  lifespan  that  acts  as  a  

context for the event detection. The <event> tags declare the attributes of the events 

and then <lifespan> tags consist of two events such as an initiator and a terminator 

event. This language provides various parameters to correlate the termination type 

and the quantifier in order to provide more fine-grained control over lifespan 

initiation and termination. The main disadvantage of AMiT is that it does not allow 

the nested operators to be combined into number of single events to form a complex 

event. AMiT is represented as follows 

 

Figure 2.6: AMiT Language 
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2.3.7  ruleCore Markup Language  

 In  order  to  implement  Event  Condition  Action  (ECA)  rules  in  active  

databases, a high expressive XML based extendable language called as ruleCore 

Markup Language (rCML) is evolved. The ruleCore focuses on the composite event 

detection. It defines about the event patterns, situations, complex events or derived 

events. The ruleCore Markup Language is represented as follows:  

 

Figure 2.7:  rCML Language 

 In rCML, the ON clause specifies the definition of incoming event stream 

primitive events, the CONDITION clause is a set of predicates to detect the event’s 

patterns. Further, the ACTION clause specifies the action to be invoked after an 

event pattern is detected [65]. The main advantage is its reusability because a single 

block definition may be used to specify the multiple rules with slight modifications. 

However, there is no sufficient documentation to generate the events depending 

upon the triggered action.  

2.3.8  Drools Rule Language   

 Drools or JBoss rules provide the rule specification for a business rule 

management system. This language is  extended from the domain specific language. 

The non-technical staff who are not having sound knowledge can also write the 

queries. There is no standard syntax to write these types of queries. Generally, rule 

language supports the different form of syntax according to the specific requirement 

in the production. The production engine can process the Drools language. Therefore, it 

extends the domain specific language and gives input for the production engine to 

process the incoming events. The domain specific language is represented as 

follows: 
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Figure 2.8: Drools Language 

 In Figure 2.8, the WHEN clause consists of a list of fact patterns 

represented in the form of conditions [66]. The THEN clause triggers the specific 

action if only if the condition in the WHEN clause is satisfied.  

2.3.9  Comparative Analysis of Event Query Languages    

 Having described the strengths and weaknesses of the four categories of 

the language styles, this section summarizes the comparison of event query 

languages.  

 Composition operators based language offers a compact and intuitive 

way  to  specify  the  complex  event  pattern  queries.  Thus,  it  is  

attractive in business scenarios to define the event pattern queries in a 

real-time. These types of languages support event instance selection 

and consumption which are not applicable in other type of languages. 

More commonly, operator based languages concentrates on the 

efficient creation of languages, but not on how to process the event 

queries over the large number of incoming streams. Further, the 

aggregation of the attributes from the event data is often neglected in 

these types of languages.  

 SQL-based data stream query languages are the most successful 

approach and efficient and scalable for commercial industries. 

Stream-oriented languages provide  considerable support to aggregate 

the event data which is particularly necessary for trading in the 

financial market. On the contrary, deriving the negation and temporal 

relationship between the events is mostly cumbersome in these types 
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of languages. Further, streams-to-relation conversation and vice versa 

is supposed to be unnatural in the case of discrete time axis.  

 Production rules are extremely flexible and easy to represent because 

they are well integrated with the existing domain specific languages 

of certain domain applications. Rule specifications are represented in 

the form of Condition-Action (CA) rules where certain actions are to 

be executed when specific conditions are satisfied by the incoming 

events. They are particularly useful for business applications such as 

logistics, RFID tracking and Business Activity Monitoring. 

Production rule languages are considered to be less efficient than the 

other data stream query languages and suitable for the low abstraction 

level in a primary state because it is hard to express the aggregation 

and the negation between the events.      

2.4  PROBABILISTIC DATABASE  SYSTEMS  

 The aforementioned CEP systems perform the event processing based on 

the assumption that the data is precise. In imprecise data environment, the modeling 

of the uncertainty in the form of probabilistic events rather than deterministic is 

essential, especially for RFID based mission-critical deployments and applications. 

Probabilistic database systems construct probabilistic models to capture and to 

process the incomplete or imprecise data appearing in real-time applications. 

2.4.1  Hidden Markov Model  

 Laher is an efficient uncertainty CEP system that processes the event 

streams from the uncertain or probabilistic database. In order to deal with imprecise 

data, this approach constructs a temporal graphical model called as Hidden Markov 

Model (HMM) from the uncertain data [67]. Further, a set of optimized algorithms 

are presented  to process the regular, extended, safe and general queries over 

probabilistic event streams. This approach processes the order of data more 

efficiently than a naive approach based on sampling. The probabilistic inference is 

performed on the constructed HMM to infer a hidden state based on a sequence of 



45 
 

observations  on  RFID  data  streams.  Further,  a  query  model  is  designed  for  the  

complex queries using Cayuga Event Language with the detection operators. This 

probability computation is accurate and distributed than the naive approach. 

However, this approach does not support the process to perform pattern matching 

between the query model and data model. 

2.4.2  Top-k Query Processing  

 A top-k query processing is proposed to process the imprecise data in 

uncertain databases [68] that facilitates to achieve efficient information retrieval 

over the imprecise data. This approach extends the traditional Top-k query semantic 

to manage the uncertain database settings. Due to this query answering semantics 

capability, this approach provides an efficient query processing in the context of 

uncertain and probabilistic databases. It presents two algorithms such as Uncertain 

top-k query (U-top-k) and Uncertain k-Ranks query (U-k Rank query) that extends 

the semantics of top-k queries. In order to determine the number of tuples in a state, 

the graphical model is constructed with the set of states according to the probability 

associated with the set of tuples in the probabilistic database. However, this 

construction is possible for a small database. Therefore, in the case of large 

databases, it is difficult to construct the graph for all the tuples in the database. The 

generated graph exponentially increases in accordance to both space and time. On 

the other hand, top-k approach performs query searching through all possible states 

using the arbitrary correlation in the complete model and also leading to a large 

search scope with exponentially increasing storage space. 

2.4.3  Top-k Query Processing in X-Relation Model 

 The existing top-k query processing approach can process the independent 

tuples in the set of probabilistic data against the top-k queries. However, this 

approach only processes the dependent tuples related to X-relation model. In order 

to overcome the problems of the existing approaches, a novel effective polynomial 

algorithm is proposed for processing top-k queries in uncertain databases based on 

the adopted X- relation model [69]. This approach adopts an x-relation model to 
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process  the  queries  that  limit  the  arbitrary  correlation  among  the  tuples  in  the  

uncertain database.  It consists of ‘n’ number of x-tuples and then each x-tuple 

randomly instantiate more than one number of tuple. Therefore, a novel dynamic 

programming algorithm can process the U-k Rank queries with less runtime and 

storage overhead in two modes of operation such as a single-alternative case and 

multi-alternative clause. This approach processes the U-top-k queries and U-k Rank 

queries that are significantly faster and exploits the minimum memory space under 

the X-relation model. It provides the solution for the uncertain database but not for 

the uncertain data streams continuously arriving from unreliable event sources [69]. 

In this approach, a effective linear query processing is performed with less 

polynomial time. The proposed U-top-k queries and U-k Rank queries achieve 

significantly high processing speed and less memory consumption under the  

x-relational model of tuples in uncertain databases.  

2.4.4  Efficient Top-k Query Evaluation  

 In order to process the queries effectively in a probabilistic or uncertain 

database, an efficient query evaluation framework is proposed [70]. Due to the 

imprecise data, top-k query processing generates a large number of query results 

with low quality. The query result with high probability is considered as a most 

suitable answer for the queries. However, this leads to imprecise results because of 

the probability computation based on approximation techniques. Therefore, an 

efficient query evaluation framework is proposed that provides the most optimal 

algorithm to determine the most probable top-k answers. This work shifted the focus 

from the probabilities to the confidence score of each tuple to perform ranking. In 

order to determine the most suitable query answer, the ranking is performed to rank 

the  query  results  based  on  the  confidence  score  of  the  resulting  tuples  in  the  

probabilistic database. Hence, the query results with a high confidence score is 

returned as the most probable top-k answer of the corresponding query [71]. It 

focuses on the confidence score based ranking, but does not compute the exact 

probability score to determine the most suitable query results at high quality.  
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2.4.5  Probabilistic Complex Event Triggering  

 This approach provides a Probabilistic Complex Event Triggering (PCET) 

to perform effective probabilistic reasoning on the imprecise data in the sensor 

environment. PCET provides an event architecture processing system that attempts 

to resolve the problem of robust event detection. It is triggered under high noisy sensor 

readings. In order to construct the probabilistic event hierarchies of higher-level events, 

a complex event language is developed [72]. A Bayesian Network is constructed to 

support an inference over the underlying sensor readings. This approach deploys a 

probabilistic inference mechanism that performs a probabilistic reasoning over 

uncertainty through representing the conditional dependencies between the uncertain 

events modeled in the form of Bayesian Network. It infers and reasons about the 

probabilities of triggered events for taking finer-grain decisions according to the 

event occurrences. Thus, the efficiency of the complex event detection is improved 

even for an inherent uncertain data stream.  

2.4.6  Probabilistic Inference over RFID Streams 

  Due to the inherent reader mobility, high noise and incomplete data in RFID 

streams, it is difficult to perform stream processing and monitoring applications. This 

approach is a cleaning process to translate the incomplete raw data streams from 

mobile RFID readers into precise event streams with location information. Thus, an 

effective data cleaning and transformation are performed to obtain the required data 

for query processing [73]. Furthermore, a novel mechanism is proposed to perform 

the probabilistic inference over RFID streams for acquiring information from the 

imprecise data. In order to infer the information from the raw data streams, the 

probabilistic approach is modeled to capture information from the imprecise 

readings even under the high dynamic mobility of the RFID reader and the object. In 

the probabilistic model, partial filtering based on the sampling technique which 

Event Refinement module, CEP has the capability to infer the precise information 

about the location of the object. Further, partial filtering mechanism enhances the 

process of the high volume of streams of a large number of objects. In order to 

perform enhancement, three advanced techniques such as particle factorization, 
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belief compression and spatial indexing are used for extension in a partial filtering 

mechanism. It maintains a high inference accuracy and high scalable cleaning, 

efficient and transformation of mobile RFID data streams with high precision. 

2.4.7  Probabilistic Complex Event Processing  

 This approach focuses on CEP in the context of the real-world event 

sources that generate streaming data and fuzzy or probabilistic data. The PCEP [74] 

is used to process the imprecise data from real world sources. It must reason about 

the events in scenarios where low level RFID events cannot be monitored in a crisp 

fashion. A new probabilistic model is constructed to model and to reason about the 

uncertainty  nature  of  event  streams.  In  order  to  overcome  the  limitations  in  time-

based or tuple-based windows, this approach presents the concept of semantic 

windows to process the simple events.  It  presents the notion of semantic windows, 

which goes beyond time-based or tuple-based windows. This approach encompasses 

four main modules: Event Refinement Module, CEP Engine Module, State 

Maintenance Module and Application Programming Interface. Event Refinement 

Module uses the machine learning technique to refine the primitive events based on 

the  past  information.  CEP Engine  Module  processes  the  multiple  event  streams to  

filter, correlate and aggregate them into semantically high level composite events. 

After that, the State Maintenance module maintains the state of the current event 

which is necessary in the case of fuzzy or probabilistic data. An inference based 

Application Programming Interface (API) is deployed on the top of the PCEP 

framework to access the current probability state of events. It focuses on the context-

aware ubiquitous application for the smart home and does not consider the 

instantiation in multiple real-time applications scenarios.  

2.4.8  Probabilistic Query Evaluation  

 This is a novel approach which provides a probabilistic query evaluation 

over uncertain data. This approach broadly classifies the queries into a set of 

categories over uncertain data based on a flexible model of uncertainty [75].  The 

probabilistic queries are classified in the aspect of two dimensions such as 
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aggregate/non-aggregate queries and entity-based/value-based queries. Furthermore, 

a new technique is also provided to evaluate the probabilistic queries and also to 

carry out several optimizations out to enhance the performance of query evaluation 

over uncertain data. After the classification of queries into a set of classes, the query 

evaluation has developed new algorithms to determine the typical queries and their 

corresponding probabilistic answers for each classified query class. This approach 

quantifies the novel metrics for the query evaluation for computing the quality of the 

answers. In the resource constraint environment, several data update policies or 

heuristics are provided to improve the quality of probabilistic queries.  

2.4.9  Probabilistic Event Extraction System  

 In order to overcome the limitations of deterministic event detection, this 

approach proposes a probabilistic model to enable complex event extraction in the 

face  of  uncertainty.  This  approach  implements  a  Probabilistic  Event  Extractor,  a  

middleware layer on top of a relational database management system to leverage its 

feature suitable for RFID stream processing. Probabilistic Event Extraction System 

(PEEX) approach can effectively derive the meaningful and probabilistic high level 

events from the imprecise and erroneous low-level RFID data [76]. In order to 

manage the imprecise data, PEEX deploys a probabilistic framework to process the 

inherent ambiguity in the event extraction. Further, a new expressive and declarative 

query language called as PEEXL is provided to define the composite high level 

probabilistic events from the low level primitive events. In order to handle the 

ambiguity and the reliability issues, the probability of low level RFID events is 

extracted using confidence tables [77]. Furthermore, the probability of the composite 

high level event is determined from the confidence score of the underlying lower 

level RFID data. This type of probability based complex event detection acquires 

high detection rates compared with the deterministic detection approaches. PEEX 

approach focuses on the composite event extraction. However, it fails to handle the 

query execution over the detected events.   
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2.4.10  Probabilistic Event Stream Processing with Lineage 

 This approach provides an effective probabilistic framework for query 

processing over probabilistic event streams. An Active Instance Graph, a data 

structure that constructs a sequence event processor to detect the probabilistic event 

streams [78] is proposed.  This approach deploys an NFA to maintain a record for 

the set of active states of an unbounded probabilistic event sequence. A more 

expressive query language is designed to express Kleene closure patterns that 

support probabilistic queries for composite event stream matching in the physical 

world. Further, a new probabilistic data model is constructed to compute the 

confidence score for each detected sequence pattern based on their lineage in order 

to trigger the confidence computation using NFA. It is a decoupled framework that 

performs the query processing in two steps by dividing the pattern matching and the 

probability computation. The pattern matching performs matching over the 

probabilistic event streams based on the specified sequence pattern. Thus, a matched 

pattern sequence is derived as output probabilistic events. The probability of the 

output probabilistic events is computed based on their lineage for matched patterns. 

It performs effective complex event detection over the other existing naive 

approaches.  

2.5  LIMITATIONS OF THE EXISTING SYSTEMS  

 In  the  case  of  uncertainty,  CEP  is  an  extremely  challenging  task  that  

transforms the real-time data in the physical environment into useful information 

suitable for the end user applications. In recent times, many researchers have shifted 

their  interest  in  CEP framework  and  proposed  various  CEP approaches  to  perform 

event processing under uncertainty. However, most of the existing approaches 

provide poor performance with low scalability and less efficiency under uncertainty. 

Therefore, it is a still ongoing effort to develop a suitable CEP framework to predict 

the uncertainty associated with the large number of continuously arriving events. 

The limitations in the existing approaches are:  
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i) Limited Speed  

 The existing systems fail to deliver the expected speed to timely process 

the continuously arriving incoming events to satisfy the mission-critical application. 

However, timely processing is a crucial characteristic of CEP in real-time 

applications. Therefore, the inability to process the incoming events in a timely 

manner makes CEP unsuitable for a real-time business process.  

ii) Limited Expressive Power  

 The existing systems provide query specifications with limited expressive 

power that only has the capability to process deterministic data from reliable 

sources. However, real-time applications such as RFID monitoring, click stream 

analysis may generate inherently unreliable, incomplete or incorrect data, which lead 

to uncertainty. Uncertainty is caused due to the gap between the actual occurrences 

of events and the data sources. The data errors and ambiguity are probabilistic rather 

than deterministic in nature. Therefore, the existing deterministic query languages 

cannot be able to process the uncertain events effectively from unreliable sources.  

iii) Lack of Uncertainty Handling  

 The existing CEP systems perform event processing only for a deterministic 

database but not for the uncertain data. There is no graphical or inference modeling 

approach to capture and to infer the correlation between incomplete and imprecise 

data appearing in the physical world. It leads to less efficiency in complex event 

detection with low throughput and high processing time. Thus, uncertainty handling 

becomes essential.   

iii) Low Scalability  

 In order to improve scalability, the queries must be distributed among the 

large number of state machines in the system. Some of the existing approaches are 

capable of performing distributed complex event detection. However, these 

applications are only in an operator level that can distribute the predicates among the 
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machines in the system. Nevertheless, the scalability issues are not addressed for the 

applications that require throughput for the large number of incoming events. In 

order to achieve high scalability and event detection throughput, it is essential to 

design an effective CEP system that distributes and executes the large number of 

event queries simultaneously on separate machines.  

2.6  SUMMARY 

 This chapter discusses the CEP engines that implement different data 

models, more expressive query languages, complex event detection strategies and 

several optimizations to perform effective CEP. This discussion considerably 

facilitates to get a deeper understanding about the implementation of each CEP 

engine. This is particularly useful to design the best architecture for the proposed 

probabilistic CEP engine. From the literature survey, it is inferred that the Aurora 

CEP engine describes a pipelining model that is identified as a suitable model for 

event passing in order to obtain high event processing. Aurora [50] and stream [28] 

describes query plan management to improve the efficiency of the system and also 

to approximate the data in stream management. The most important key feature 

obtained from the discussion is that the dedicated Cayuga system [60] achieves high 

throughput, efficiency and scalability through distributed pipelining architecture. 

However, it does not support uncertainty. In order to process the uncertainty in the 

data, probabilistic approaches in [72] [74] [76] [78] propose modeling and inference 

techniques to handle uncertainty. This section discusses the probabilistic approaches 

in the literature and has obtained  the guidelines to model the uncertain data in the 

form of probabilistic graphical model.  The main work of the PCEP system is the 

extension of CEP engine by incorporating the probabilistic technique to process the 

event streams under high uncertainty.  
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CHAPTER  3 

PROBLEM STATEMENT AND RESEARCH OBJECTIVES 

 

 This chapters presents a high level conceptual view of the PCEP system. A 

formal  problem  statement  and  objectives  of  the  research  work  is  formulated.  The  

chapter  explains  about  the  high  level  architecture  of  the  PCEP  system.  The  

architecture of the system depicts the various modules in the proposed PCEP 

system. The interaction among various modules in the system is given by the 

information flow diagram.  

3.1  PROBLEM STATEMENT 

 In order to achieve scalability and efficiency, this research proposes a 

Probabilistic CEP system that meets out the four main challenges in CEP under 

uncertainty. The PCEP provides a more expressive, rich environment for the 

progress of event processing applications that may derive stateful composite event 

sequences by processing thousands of events per second. Accordingly, the focus of 

this system is to transform the real-time data in the physical environment into useful 

information suitable for the end user applications. The prominent features of the 

PCEP system are listed below. 

i) Timely Processing 

 The number of distributed applications increases tremendously. There is a 

need to process the continuously arriving events from widely distributed sources at 

unpredictable rate. The prime requirement is to obtain timely responses from 

complex  queries.  Hence,  the  PCEP is  a  distributed  CEP approach  that  employs  an  

effective pipelining technique to process the large number of continuously arriving 

events in real-time. This process is to produce the instantaneous response in a timely 

manner because of effective pipelining in complex event detection to manage the 

high input rate of complex events.    
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ii) Handling a High Volume of Events  

 The existing event processing schemes fail to process the events from the 

number of multiple heterogeneous sources in real-time applications. In PCEP, the 

event matching performs event filtering according to the user subscriptions. The 

PCEP system scales effectively to a large number of events due to an effective event 

filtering performed on the distributed computing platform using effective query 

portioning and pipelining technique.  

iii) Automated Processing  

 A  large  number  of  research  works  have  been  carried  out  in  the  field  of  

CEP, where there is no automation to specify the rules correctly as well as the 

probabilities associated with the results. Therefore, the most promising and vital area 

of this research is the use of filtering techniques for the automatic generation and the 

processing of rules. The PCEP provides the solution to this problem through 

deploying the query clustering to group user subscriptions based on similar 

predicates in each subscription group. Thus, the PCEP automates the complex event 

pattern detection according to the domain expert rules.  

iv) Handling Uncertainty  

 The accuracy and performance of event derivation depends on the 

reliability of data sources. A data source has inherently unreliable data collection 

method or generates incorrect data leading to uncertainty. CEP in the presence of 

uncertain events is a challenging task and this problem hampers the accuracy of 

derived events. The PCEP system efficiently handles the uncertainty associated with 

the events by modeling the event hierarchy as a probabilistic graphical model. 

Furthermore, the approximation logic estimates the fuzzy linguistic variables from 

computed Conditional Probability Distributions in the large probability sample 

space.  
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3.2 OBJECTIVES OF THE RESEARCH   

 To overcome the limitations inferred from the literature survey, the 

research problem is formulated with the following objectives:  

1. To design an effective high performance CEP engine that evaluates 

uncertain data in order to support effective Business Intelligence.  

2. To develop a high speed event processing engine that can scale to 

handle a large volume of user subscriptions in order to achieve 

scalability and efficiency.  

3. To reduce the complexity of event processing through deploying the 

query plan based approach that manages and extends the 

expressiveness of the high volume of user subscriptions. 

4. To propose an NFA-heap event matching mechanism to filter the 

irrelevant events from the large number of incoming events based on 

the user subscriptions.  

5. To construct an event sequence prediction that supports probabilistic 

inference on complex uncertain events.  Probabilistic event 

hierarchies are constructed in the form of a Dynamic Fuzzy 

Probabilistic Relational Model that infers the correlations between 

the sequences of incoming events.   

3.3  ARCHITECTURE OF PCEP    

 In event based enterprise systems, the PCEP extracts higher level knowledge 

from the large number of incoming complex events over messaging infrastructure 

from the different external event sources. In order to provide the event notification 

under uncertainty, the PCEP system is implemented in Publisher/Subscriber 

middleware that manages a large number stream of incoming complex events 

(publications) and a more number of queries (subscriptions) [79]. The following 

Figure 5.1 illustrates the high-level architecture of PCEP in the Publisher/Subscriber 

middleware system. Here, the publishers and the subscribers connect in a 
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distributive manner where the publisher advertises input events from the multiple 

sources using the publish (e) operation, into the PCEP whereas the subscribers 

express their interests on an event in the form of subscriptions using the subscribe 

( ) operation. 

 

Figure 3.1: PCEP in the Publisher/Subscriber Middleware System 

 The PCEP architecture composes of three principal components such as i) 

Input and Output Processors. ii) Query Compilation. iii) Probabilistic Complex 

Event Processor (PCEPr). The Input processor takes the large number of incoming 

events from the multiple sources and then converts them into the tuples which are 

suitable for the internal processing of the core. The Query Compiler converts the 

access predicate of an each subscription group into a runtime executable automaton 

and deploys that in the CEP core. The core part of the approach is the Probabilistic 

CEP that process the events based on the user subscriptions. The CEP processor 

fetches the events from the incoming queue and processes the events based on the 

user subscriptions. After deriving the output events by the processor, the derived output 

events reach the event consumer through the output queues. It allows to manipulate the 

queries on the fly, such that users can add or remove the subscriptions using the 

operations such as subscribe ( ) and unsubscribe ( ) even when the complex event 

processor is running. The following sub-section highlights the description of the 

involved components and also explains the internal process and interaction between 

these components to achieve CEP under uncertainty. 
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3.4 INFORMATION FLOW IN PCEP  

 The interaction between various modules in the PCEP system is given in 

Figure 3.2. The two main modules are Query plan based approach and Probabilistic 

fuzzy prediction phase. 

 The publishers execute the publish (e) operation to publish a piece of 

information in the form of events to the Publisher/Subscriber system. An event ‘E’ is 

represented as a tuple (s, t) where ‘s’ is a set of attribute-value pairs as in the 

relational data model as defined by the schema ‘S’ and ‘t’ is a sequence of 

timestamps t = [ts, t2, t3……. te] where the first timestamp ‘ts’ is the start time of an 

event and the last timestamp ‘te’ is the end time. Each valid subscription and the 

event are associated with a time interval. Therefore, it is considered as valid within 

that specified time interval.  

 In the Query plan based approach phase, the event consumers express their 

interests on an event in the form of subscriptions, which is used to subscribe into a 

particular category of events within the system. A subscription ( ) is expressed in 

the form of Complex Event Language and composed of set of predicates to filter the 

relevant events from the large number of incoming events. The subscriptions are 

grouped using Prediction based subscription grouping. The subscription clusters are 

deployed using query aware portioning. The input sequence is compiled to a NFAh 

automaton using query compilation [80]. A subscriber generates and removes a 

subscription   from the Publisher/Subscriber system through executing the 

subscribe ( )  and  the  unsubscribe  ( ) operations respectively [81]. After receiving 

the large number of incoming events, CEP processor deserializes and processes the 

events based on the subscriptions. It takes the responsibility to perform the event 

matching between the large number of incoming event sequences and to detect event 

patterns represented in the form of Non deterministic Finite Automata-Heap (NFAh).  

 In the Probabilistic fuzzy prediction phase a probabilistic model is built. A 

probabilistic fuzzy logic inference engine handles the uncertainty in the relevant 

events and detects the complex events. 
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Figure 3.2:  Information Flow in PCEP 
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3.5  SUMMARY 

 In this chapter, the formal problem statement of the proposed PCEP 

system  is  presented.  The  main  research  objectives  of  the  PCEP  system  are  

formalized. The high level architecture of the proposed system is designed. The 

modules in the system are identified. Further, the interaction between various 

modules in the system is established. 
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CHAPTER 4 

GENERIC AND SCALABLE EVENT  
FILTERING BASED ON NFAh 

 

 This chapter proposes a generic and scalable event filtering in the CEP 

framework which is designed in the form of Publisher/Subscriber model to achieve 

scalability. In the Efficient and Generic Event Filtering (EGEF) approach, the 

complex event processor carries out the event filtering where NFAh event matching 

is performed between the stream data that continuously flow from the multiple 

sources  based  on  the  user  subscriptions.   In  order  to  manage  the  large  number  of  

user subscriptions, Predicate based Subscription Grouping (PSG) algorithm is 

proposed to group the number of user subscriptions into a set of clusters based on its 

available predicates. Furthermore, Query Aware Partitioning scheme dispatches the 

subscription clusters using two techniques - row/column scaling and pipelining to 

perform fast and efficient event filtering. A NFAh based effective pattern matching 

approach is proposed, that filters the required relevant events from the continuously 

arriving large stream of data according to the user defined rules. It leads to achieve 

efficient event processing in the presence of voluminous   event streams.  

4.1 EFFICIENT AND GENERIC EVENT FILTERING  

 The  Efficient  and  Generic  Event  Filtering  (EGEF)  is  performed ahead  of  

the event processing to filter out the irrelevant events in order to achieve efficiency 

and scalability. Event Filtering is implemented in the Publisher/Subscriber model 

that performs matching among the   number of incoming events (publications) and 

the domain expert specified rules (subscriptions). It is performed in two steps as 

follows: Cluster subscriptions are formed where the user subscriptions are grouped 

into clusters and thus corresponding access predicates are mapped by setting the 

predicate bit vector into one.  The NFA matching is performed based on NFAh query 

evaluation model between the  number of incoming events and user subscriptions. 
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Figure 4.1: Efficient and Generic Event Filtering 

 Figure 4.1 provides the framework for Efficient and Generic Event 

Filtering approach. It executes NFAh based event matching to filter the events which 

are relevant to the user subscriptions. This approach filters the complex events 

which  satisfy  the  minimum  conditions  that  have  common  predicates  among  the  

group of similar subscriptions [46]. This process leads to the situation of filtering out 

the irrelevant events at the early stage due to the efficient grouping of user 

subscriptions and the loading of common access predicates in each subscription 

group.  

4.2  SEQUENCE FORMATION MODULE 

 In  order  to  perform  NFAh based event matching, the large number of 

incoming events are pre-processed into a stream of sequences based on the filter 

predicate in the Complex Event Pattern Subscription Language (CEPSL) query 

specification. The sequences of events are constructed through two operators - 
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sequence traversing or scanning operator and sequence construction operator. The 

sequence traversing operator (ST ) is used to traverse the sequence of events in 

order to determine the number of sub-sequence. This is  possible in the incoming 

events and then simultaneously the sequence formation operator (SF ) is used to 

construct the detected sub-sequence with a set of sequence of events. Therefore, this 

module takes the set of incoming events as input and constructs the possible set of 

sub-sequences which are entered as an input to the NFAh based event pattern 

matching [59].  

4.3  QUERY PLAN BASED APPROACH 

 The Query Plan based Approach is deployed to manage and to extend the 

expressiveness of the volume of user subscriptions [59]. The user subscriptions are 

expressed using CEPSL which defines a set of predicates and  the user requirement 

specification in terms of attributes and their corresponding values. The query 

compilation is used to convert the event pattern queries into a NFAh model based on 

native sequence operators [82]. It takes as input  a query defined sequences from the  

number of continuously arriving events. This process improves the flexibility of the 

query execution.  

4.3.1  Predicate based Subscription Grouping  

 In order to achieve scalability, the subscriptions clusters are formed.  

These clusters help to achieve efficient event processing even under the large 

number of incoming event streams and user subscriptions. The proposed PSG 

algorithm  is  performed  using  a  cluster  vector.  A  cluster  vector   consists  of  set  of  

predicates, bit vector and reference cluster list. The algorithm is used to group the 

set  of  subscriptions  based  on  the   subscriptions.  In  this  approach,  the  subscription  

cluster consists of ‘n’ number of subscriptions that possess a set of predicates. The 

subscription cluster is maintained as n-dimensional predicate array. The predicate in 

the array refers to the position in the predicate bit vector where the predicate 

associates its binary value by either 0 or 1 [83]. The subscription array is a single 

dimensional array and consists of subscription identifiers. 
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Figure 4.2: Predicate based Subscription Grouping 

 Here, a single predicate can be present in one or more subscriptions and 

therefore,  it  is  exceedingly  simple  to  group  the  relevant  subscriptions  with  same  

predicates. The predicates present in all of the subscriptions in the cluster have to be 

assigned as an access predicate for the corresponding cluster.   Each subscription 

cluster is associated with more than one access predicates [83]. If the access 

predicates of the subscription clusters is satisfied by the incoming event, then 

subsequently it indicates that the event matches the number of subscriptions in the 

cluster.  

 Let there be ‘m’ subscriptions where there are ‘n’ unique predicates then 

the predicate bit vector B={B[1],B[2],…..,B[n]}. For a given event sequence ‘I’ the 

predicate bit vector is set according to the presence of a predicate. The subscriptions 

in the system are grouped  according to the similarity in the predicates. A cluster 

vector is an array which has one entry for each cluster. The entry in the cluster 

vector contains an access predicate ‘P’ for all the subscriptions in the cluster. A 

predicate can be an access predicate of a subscription ,if an event fails to satisfy the 
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access predicate then it does not satisfy the subscription. The algorithm is 

highlighted as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Predicate based Subscription Grouping Algorithm 

4.3.2  Query Aware Partitioning 

 After grouping the user’s subscriptions as clusters using the PSG 

approach, each subscription cluster must be assigned to a separate machine in order 

to reduce the heavy load on a single machine and also to scale up the processing 

capacity even for a number of incoming events and subscriptions. Therefore, the 

number of machines required to process the queries is determined from the number 

of clusters formed by the PSG algorithm. Furthermore, the constructed NFAh 

automaton from each of the subscription group is loaded directly into the state 

machine.  

Input: 
Event Sequence E 

Output: 
Subset of Cluster SC 

Variables: 
A bit vector B={ B[1],B[2],….,B[n]}  
where ‘n’ is the number of predicates 
Set of Subscription Cluster C={C[1],C[2],….C[l]} 
Where ‘l’ is the number of clusters 
A set of subscriptions S 

Procedure: 
Begin 
 B=0; 
 SC={NULL}; 
 S={NULL}; 
 For each predicate ‘P’ in the event sequence ‘E’   

with  reference i   
  Set B[i] = 1; 
 If ‘P’ is the Access predicate for a cluster with reference j 
  SC= SC U C[j]; 
 Return SC; 
End 
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Figure 4.4: Event Dispatching 

 
 In order to manage the   number of user subscriptions, the number of rows 

is replicated according to the increasing number of subscriptions [80]. This approach 

performs the most efficient query partitioning scheme using two techniques - 

row/column scaling and pipelining. In row/column scaling, the subscriptions are 

organized in the form of matrix ‘p’ x ‘q’ where ‘p’  number of subscriptions is 

equally arranged among the ‘q’ number of machines in the system. In addition, the 

row is replicated ‘q’ times to form a matrix, where ‘p’ is the number of subscription 

clusters and ‘q’ is the number of incoming events dispatched into the system. 

Moreover, the event dispatcher is deployed in between the source and query 

processor, where the dispatcher takes the responsibility to allow a group of ‘q’ 

number of events into the processing system.  An incoming event is dispatched to a 

row in a round robin manner. The query processing is performed between the 

incoming event and the subscriptions that are organized in the corresponding row 

[80]. It guarantees to achieve a fast and efficient processing of query with less 

complexity  and  high  scalability.  In  order  to  process  the  more  number  of  incoming 

events, the required number of rows can be added to the matrix that increases the 

parallelization. The query partitioning scheme can process the large number of 

incoming events with high scalability and equally improve  the throughput rate for 

the multiple queries by partitioning the queries across a cluster. The pipelining is 
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used to maintain the processing flow of execution of distributed queries among the 

large number of separate machines into the system.  

 

Figure 4.5: Query Aware Partitioning 

 Each state machine processes the incoming events based on subscriptions 

using the NFAh    execution model [82] and the output from one state machine is 

entered into the next subsequent machine using the pipeline [80]. The last machine 

in  the  row  is  referred  as  an  accepting  state.  Therefore,  the  event  that  satisfies  the  

subscription is considered as matched relevant event  to the user subscriptions. 

Figure 4.5 shows the Query Aware Partitioning scheme.  

 

 

 

 

 

 

 

Figure 4.6: Query Aware Partitioning Algorithm 

Input:  
Subscription Clusters [SC1, SC2, SC3…..SCn] 

Output:  
NFA Loaded State Machine 

Procedure: 
Begin 
  Dispatch (Subscription Clusters); 
  Row Column Scaling   [SC1, SC2, SC3…..SCn]pxq; 
  Pipelining (Query Compilation & NFAh and Loading); 
  Construct NFAh<- Query Compilation (Subscriptions Cluster); 

 Load State Machine <- Constructed NFAh; 
End 
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 In query partitioning, the incoming event is dispatched to the ‘q’ number 

of state machines, but only one state machine can get executed at a time. Therefore, 

the state machine are arranged in an optimal order with minimum conditions. 

Pipelining is used to maintain the flow of execution of distributed queries among the 

large number of separate machines in the system. The algorithm for the Query 

Aware Partitioning is listed out in Figure 4.6. 

4.3.3  Query Compilation  

 The NFAh based event matching engine is able to process the large number 

of incoming event sequences based on the user subscriptions, which may be 

temporal  or  conditional  queries.  Here,  the  event  pattern  queries  are  converted  into  

the suitable query evaluation model called as NFA model. This model is selected for 

the proposed pattern matching approach because it yields high quality results in 

terms  of  efficiency  and  flexibility  for  pattern  evaluation.  The  query  compilation  

technique called as Automaton Intermediate Representation (AIR) is used to convert 

the defined event pattern of CEPSL queries into a new form of automaton called as 

Non-deterministic Finite Automaton-Heap (NFAh) [82].The constructed automaton 

is loaded directly into the state machine to perform the event matching.  

 

 

 

 

 

 

 

 

Figure 4.7: Query Compilation Algorithm 

Input: User Subscriptions  
Output: NFAh  
 Number of States {st1, st2, st3…}; 
 Number of Predicates {p1, p2, p3…}; 
Procedure: 
Begin 

 NFAh <- Automaton Intermediate Representation (Subscriptions) 
 For each subscription 
  For (i=1; i < number of Predicates; i++) 
   For (j=1; j < number of States; j++) 
    Create st[j] for NFAh; 
  Assign Predicate p[i] to each state st[j]; 
  Assign Heap memory to NFA; 

Return NFAh 
End 
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 Figure 4.7 highlights the query compilation algorithm. The user 

subscriptions are given as input to this algorithm and it outputs the NFAh with 

number of states and predicates. 

4.4  NFAh BASED EVENT MATCHING ENGINE 

 In this approach, the NFA model is selected to perform the event matching 

because it yields high quality results in terms of efficiency and flexibility for pattern 

evaluation. It provides well-defined semantics for the inclusive set of event pattern 

queries and also provides a query plan approach to execute the event queries over 

the large number of incoming event streams.   

 Figure 4.8 provides the module of NFAh based Event Pattern Matching 

that takes two inputs - sub-sequences of events and the set of labeled access 

predicates of the subscription clusters. The access predicate associated with each 

subscription group is assigned to the edge of the unique automaton to perform the 

matching. Therefore, the number of NFAh automaton required to perform matching 

is equal to the number of subscription group formed. The access predicate of every 

group is loaded into a separate state machine with NFAh Automaton. In NFAh based 

Event Pattern Matching, each incoming event sequence traverses through the edge 

only if it satisfies the assigned corresponding predicate. The events which traverse 

throughout the edge and reach the final state are considered as relevant events, 

whereas the events, which do not traverse throughout the edges of the automaton are 

filtered out as irrelevant events. 

 

 

 

 

Figure 4.8: NFAh based Event Pattern Matching 
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 In NFAh, each state maintains the Active Instance Heap (AIH) to store the 

active instances of the event that trigger into the other transition state [60]. 

Therefore,  AIH  maintains  the  active  instances  of  each  state  in  a  timely  manner  to  

arrange the sequence of events in the temporal order. If the incoming event reaches 

the accepting state of the NFAh, then it constructs the event sequence using the 

Directed Acyclic Graph (DAG)[84]. This event sequence is considered as a unique 

relevant event sequence. The event sequences that reach the final state of the 

automaton are filtered as   relevant sequence of events [85]. The NFAh pattern 

matching algorithm is listed in Figure 4.9. 

 

 

 

 

 

 

 

 

Figure 4.9: NFAh Pattern Matching Algorithm 

4.4.1  NFAh Automaton  

 The NFAh model consists of four edges such as Begin Edge, Forward 

Edge, Filter Edge and Rebind Edge, where each edge deploys a heap memory to 

store the active instance which is satisfied in its current state. In NFAh, the Forward 

Edge is used to find the event using the filtering mechanism performed by the Filter 

Edge which filters the event using  the iteration operator [85]. The access predicate 

is associated with each subscription group at the edge of the automaton to perform 

matching. Therefore, the number of NFAh automaton required to perform matching 

Inputs:  
Incoming Events, NFAh 

Output: 
Relevant Events 

Procedure: 
Begin 

For (i=1; i < number of states; i++) 
  if (Incoming Event satisfy Conditional Predicates in State) 

Event Transition to Next State; 
   If (state = final state) 
    Return as relevant event; 
   Else if (not satisfy conditional predicates in state) 
    Eliminate as Irrelevant event;   
End 
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is equal to the number of subscription group formed. The access predicate of every 

group is loaded directly into a separate state machine of NFAh Automaton.  

  

 

 

 

Figure 4.10: NFAh Automaton for CEPSL Query 

 The top loop of the automaton has a Filter Edge that takes a conditional 

argument. A predicate called as name in the first fold construct of the CEPSL query 

is shown in Figure 4.10.This edge allows automaton instance of the event schema 

that consists of health deciding factors of the patients coming for the health checkup 

in the medical domain [82]. The bottom loop of the automaton is called as a Rebind 

Edge  ‘Q’  that  is  used  to  express  the  FILTER construct  of  the  CEPSL Query.  This  

edge allows the automaton instance of the patient that matches the predicates 

mentioned in the ‘P’ and ‘Q’ edges of the constructed automaton. The Forward Edge 

QR allows the automaton instance of matched event schema of the patient who has 

normal Body Mass Index (BMI) and Haemoglobin content (Hb). The Filter Edge in 

the ‘R’ state takes the conditional expression in the NEXT Construct that allows to 

find the immediately next event in the event schemes for the other patients. The last 

transition state from state ‘R’ to ‘S’ allows the automaton instance that matches the 

associated predicates in the ‘R’ edge. Thus, the automaton instance reaching the 

final state has the set of event schemes that matches the predicates associated in each 

edge of the automaton. The automaton thus predicts the health deficiency of the 

patient after the rebound.  

4.4.2  Pipelining  

 In existing systems, the event matching is carried out without pipelining 

where the incoming events are processed sequentially from left to the right where 

P Q R S 

13.5 < Hb<17.5 

18.5<BMI<22.7 

>15min 

Final >1.02* normal BP 
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each machine republishes the matching events to the next machine in the system. 

However, in the case of a large number of incoming events, it leads to high resource 

consumption and heavy workload on a single machine.  

 

 

 

   

 

 

 

Figure 4.11:  NFAh based Event Matching with Pipelining 

 In order to scale up the processing capacity, the PCEP system utilizes the 

event filtering using pipelining to process the large number of incoming events [80]. 

It  breaks  the  query  into  a  number  of  sub-queries  and  distributes  them.  The   

sub-queries are loaded onto the large numbers of separate state machines in the 

different stages of the pipeline in order to achieve scalability. Hence, the heavy load 

on a single machine is reduced and the number of sub-queries is assigned to more 

number of state machines.  Therefore, the incoming events are processed using the 

pipeline that helps to achieve faster execution and higher throughput. In the  

Figure 4.11, the event matching for certain attributes (stateless) such as Haemoglobin 

content and BMI in the complex query are replicated in order to scale up the system 

for high throughput. In the last stage of the pipeline, an uncertain attribute (stateful) 

called as increase in BP is not replicated because it changes over time. Hence, in 

order to predict the event sequences that match the uncertain attributes, Probabilistic 

Event Sequence Prediction (PESP) is needed to predict the relevant sequences which 

are discussed in the next chapter.   
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4.5  PERFORMANCE EVALUATION 

 In  order  to  evaluate  the  NFAh based event filtering, the PCEP system is 

implemented in the Publisher/Subscriber model using Java Messaging Service 

(JMS) based subscription API.   The main purpose of this prototype is to validate 

and to assess the impact of the filtering approach. The performance evaluation is 

performed in terms of scalability and efficiency.  

4.5.1  Experimental Setup 

 In the  experimental setup, the structure of generic application methodology 

used is a message oriented middleware with the set of software components to 

perform efficient event processing. These software components communicate 

through  Java Message Service which takes input as event instances from continuously 

arriving incoming events. The experiment is executed on Windows XP PC with  

3.2 GHz processor, 2 GB of RAM and 512 MB cache with the maximum java heap 

size of 800 Mbytes. It is implemented in open source Java Enterprise Edition/Netbean/ 

Glassfish /JMS environment. 

4.5.2  Datasets 

 The PCEP system is executed using  the dataset of health checkup in a 

medical  domain  for  event  triggering.  The  performance  of  the  PCEP  system  is  

evaluated based on 10000 incoming events. The dataset consists of 15 attributes. 

The first six attributes are certain attributes such as the name of the patient, age, 

address, contact number, occupation and blood group. The remaining nine attributes 

are  uncertain  attributes  such  as  Haemoglobin  content,  Body  Mass  Index,  blood  

pressure, cognitive patterns, communication and hearing patterns, dental status, 

nutrition status, disease health condition and treatment procedure. This approach 

provides 500 rules (health condition) in order to trigger relevant events (appropriate 

treatment) according to the corresponding information in the dataset.   The event rate 

per second is measured from the system.  
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4.6  EFFICIENCY AND SCALABILITY OF THE EGEF APPROACH  

 The  experiment  is  carried  out  to  compare  the  performance  of  the  PCEP  

system  with  and  without  filtering.  The  PCEP  system  achieves  high  efficiency  and  

scalability compared to the CEP without filtering. The PCEP system filters out the 

irrelevant events before the event detection starts according to the domain expert 

specified rules. The performance of the PCEP system is evaluated based on the 

throughput (the number of events executed per second) and the average processing 

time (time taken to process the number of events per second). 

4.6.1  Throughput   

 In the PCEP system, the user subscriptions are efficiently grouped based 

on the access predicate into subscription clusters. Nearly, one to ten number of 

subscription groups is formed and the corresponding access predicates are allotted to 

separate state machines. Therefore, the throughput is improved.   This implies the 

increased number of events processed per second according to the varying number 

of the state machine. On the other hand, in the existing approach, the subscriptions 

are grouped randomly.  

Hypothesis with respect to the result of the parameter T: (Throughput) 

Null hypothesis H0:  T1 = T2 where T1= Throughput obtained in 

Distributed Cayuga, T2 = Throughput obtained in 

PCEP Filtering 

    (There is no significant difference between the two 

systems that is Distributed Cayuga and  PCEP filtering 

in terms of throughput obtained) 

Alternate hypothesis H1: Throughput mean values are not equal for at least one 

pair of the result mean values of the parameter T.  

  (There is a significant difference between the two 

systems in terms of throughput obtained) 
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Figure 4.12: Throughput versus Number of Machines 

 Figure 4.12 shows the average processing time according to the varying 

number of machines. If the number of machines used to process the events increases, 

the number of events per second also increase correspondingly. Therefore, the PCEP 

system achieves scalability  in terms of execution time. 

Hypothesis Evaluation with Respect to T: (Throughput) 

Table 4.1: T-test for Distributed Cayuga and PCEP Filtering based on 
Throughput 

Events x 104 
Technique Throughput 

I II Hypothesis p value 

1-10 Distributed 
Cayuga 

PCEP 
Filtering H1 0.039 

 

 From Table 4.1, it is concluded that the calculated significance level of the 

parameter throughput of comparing two systems  Distributed Cayuga and PCEP 

filtering   satisfies the condition (p value<0.05) for number of machines. There is a 

significant difference between the results for different throughput values of   

Distributed Cayuga and PCEP with filtering. Hence, the null hypothesis for H1 is 

rejected. 
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Table 4.2:  Descriptive Statistics of Throughput Measures 

Technique Distributed 
Cayuga 

PCEP with 
Filtering 

Max 
Min 

8750 
1000 

10000 
2750 

Mean 
Median 

4575 
3875 

6875 
7375 

Standard 
Deviation 2517 2596 

 

 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum throughput. This is analyzed using descriptive statistics given in  

Table 4.2. Table 4.2 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter throughput. There is an increase in Average Throughput of PCEP-

Filtering by 33% with respect to Distributed Cayuga. 

4.6.2  Average Processing Time  

 In PCEP system, the Average Processing Time is not increased 

significantly even when the   events per second is increased. Moreover, there is only 

a gradual increase in the average processing time of the PCEP system with EGEF 

filtering approach. This is due to the filtering of many irrelevant events using NFAh 

based effective pattern matching with minimum requirements. However, the existing 

CEP approaches acquire a significant increase in Average Processing Time.  

Hypothesis with respect to the result of the parameter A: (Average Processing 

Time) 

Null hypothesis H0:  A1 = A2, where A1= Average Processing Time in 

Distributed Cayuga, A2 = Average Processing Time in 

PCEP filtering  

   (There is no significant difference between the two 

systems in terms of Average Processing Time obtained) 
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Alternate hypothesis H2:  Average Processing Time mean values are not equal for 

at  least  one  pair  of  the  result  mean  values  of  the  

parameter A.  

   (There is a significant difference between the two 

systems in terms of Average Processing Time obtained) 

 

Figure 4.13: Average Processing Time versus Number of Events 

 Figure 4.13 shows the Average Processing Time taken to process the 

complex events according to the number of events per second. 

Table 4.3:  T-test for Distributed Cayuga and PCEP Filtering based on 
Average Processing Time 

No. of 
events x 103 

Technique Average Processing Time 

I II Hypothesis p value 

2-10 Distributed 
Cayuga 

PCEP with 
filtering H2 0.041 

 

 From Table 4.3, it is concluded that the calculated significance level of the 

parameter Average Processing Time of comparing the two systems  Distributed 

Cayuga and PCEP with filtering satisfies the condition (p value<0.05) for input 
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events from 2000 to 10000. There is a significant difference between the results for 

Average Processing Time values   Distributed Cayuga and PCEP with Filtering. 

Hence, the null hypothesis for H2 is rejected.  

 Further, it is also required to determine the systems which have the 

minimum Average Processing Time. Table 4.4 shows the descriptive statistics  

(the maximum, minimum, median, mean values and standard deviation) of each of 

the technique for the parameter Average Processing Time.  

Table 4.4:  Descriptive Statistics of Average Processing Time Measures 

Technique Distributed 
Cayuga PCEP 5 

Max 
Min 

135 
550 

135 
425 

Mean 
Median 

402 
450 

297 
300 

Standard 
Deviation 159 107 

 

 There is a decrease in Average Processing Time of PCEP-Filtering by 26% 

with respect to Distributed Cayuga. 

4.7  SUMMARY 

 In this chapter, the PCEP system is implemented based on 
Publisher/Subscriber model to achieve high scalability and efficiency. The event 
filtering approach is a pre-processing system, which is performed ahead of event 
processing in order to manage the arrival of a large number of incoming events. The 
proposed NFAh query filtering approach performs event matching between the large 

number of incoming events (publications) and rules (subscriptions). An expressive 
language called as Complex Event Pattern Subscription Language is used that 
provides high expressibility for efficient pattern queries and also supports high 
extensibility for the formal event language. A Predicate based Subscription 
Grouping algorithm is proposed to group user subscriptions based access predicate 
to improve the scalability.  
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CHAPTER 5 

A PROBABILISTIC FUZZY MODEL FOR 
REASONING OVER UNCERTAINTY 

 

 This chapter proposes a Probabilistic Complex Event Processing (PCEP) 

system that consists of two phases of Efficient and Generic Event Filtering (EGEF) 

and Probabilistic Event Sequence Prediction (PESP) phase. In the first phase, the 

relevant events are filtered   and the filtered events enter into the prediction phase. 

The second phase consists of an Efficient Event Sequence Prediction paradigm that 

triggers complex events usable by the end user application. To determine the 

effectiveness of the PCEP system, a detailed performance analysis is performed 

using the prototype implementation. As a result, it is demonstrated that the PCEP 

system outperforms the existing CEP approach. 

5.1  PROBABILISTIC EVENT SEQUENCE PREDICTION  

 After filtering out the relevant event sequences from the large number of 

incoming events, Probabilistic Event Sequence Prediction in Figure 5.1 derives a 

stateful composite event sequences from the filtered relevant events sequences based 

on the probabilistic framework. 

 

 
 
 
 
 
 

    
Figure  5.1: Efficient Event Sequence Prediction Paradigm 

 Event hierarchy is constructed in the form of graphical model called as 

Dynamic Fuzzy  Probabilistic Relational Model (DFPRM) [86] [87] that computes 
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Probability 
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joint probability distribution using the conditional probabilistic dependencies 

between the event sequences in accordance to the rules. In order to reduce the large 

sample space, the Fuzzy Logic is used to infer the correlation between the event 

sequences using the linguistic variables. It enhances the robustness of the complex 

event detection process under uncertainty. 

5.1.1  Dynamic Fuzzy Probabilistic Relational Model (DFPRM) 

 Dynamic fuzzy probabilistic relational model is constructed from a set of 

the relevant event sequences. The rules to represent the probability space are 

presented in terms of concept of individuals, their properties and relations between 

them [88]. DFPRM represents the qualitative knowledge between the set of events 

and their variable interrelationships, whereas the Conditional Probability 

Distribution [78] [88] represents the quantitative knowledge of probabilities in a 

large probability space.  

 Figure 5.2 shows the DFPRM for the event sequences ‘E’ with a set of events 

E = {e1, e2…..en} and each event ei is associated with a set of descriptive attributes and 

the reference slots. There is a direct mapping between the event classes and their set of   

attributes for all the events in the event sequence. This model consists of set of event 

classes with their associated attributes and the joint probability distribution computed 

from the arbitrary correlation between the event sequences.  

 

 

 

 

 

 

Figure 5.2: Dynamic Fuzzy Probabilistic Relational Model 

                   e1 
 
  

A1 

A2 
A3 

                    e2 
 
 
  
 

A4 

A5 
A6 

                   e3 
 
 
  

A7 

A9 

A8 

                e4 
 
  A11 

A10 



80 
 

5.1.2  Probability Computation for Event Sequence  

 The  novelty of this work is the computation of joint probability 

distribution based on the conditional probabilistic dependencies among the event 

sequences in the constructed probabilistic model. It also represents the constructed 

probability space that possesses the formal semantics in terms of probability 

distributions over a set of relational logic interpretations. It represents the probability 

space as triples {WT, T, T}  where  WT is a set of possible worlds, T is an event 

history associated with each possible world and T is a probability measure of the 

possible world. The sample space of event sequence ‘E’ consists of the conjunction 

of  set  of  possible  events  with  their  associated  probability  measure  from  the  event  

history. The probability of the constructed event sequence is computed from the 

conditional probability dependence among the set of attributes associated with the 

events . The overall probability associated with the event sequence is factorized by 

aggregating the product of local conditional probabilities of the events in the event 

sequences, according to the conditional dependence of the event given their parent 

nodes.  The  computation  of  Conditional  Probability  Distribution  (CPD)  of  event  

sequence is as follows: 

 P (ei /ei+1) =  P (ei / e i, i) 

 Here, i is  the  set  of  parental  nodes  of  ei and then i is the parameter 

vector associated with ei.   The  CPD  of  event  sequence  ‘E’  computed  from  the  

probability distribution over the values of events ‘ei’ is given as the combination of 

values for each of the parents P(ei) [72] [89]. More precisely the joint distribution of 

the incoming event can be factorized into a product of the CPDs of all the uncertain 

attributes occurred in the event.   

5.1.3  Probabilistic Fuzzy Logic based Inference Engine  

 In order to formulate the combination of event sequences according to the 

computed probability of events with  reduced overhead, Probabilistic Fuzzy Logic 

(PFL) [41][90] is used to estimate the fuzzy linguistic variables from the computed 

conditional probability distributions in the large probability space. PFL is a 
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reasoning process to model the heuristic knowledge for estimating the linguistic 

information from the degree of truth in the imprecise data using membership 

function. In order to approximate the large sample space, fuzzy partitioning scheme 

partitions  the  sample  space  with  a  set  of  possible  worlds  into  a  certain  number  of  

predetermined membership values as shown in Figure 5.3. 

 

Figure 5.3: Fuzzy Partitioning of Large Probability Space 

 Each sample space is composed of ‘n’ number of membership functions 

that span the entire  sample space of a fuzzy inference system. It is ensured that the 

probability of each event sequence must be 1 which is the sum up of the associated 

probability with all set of events in it. A fuzzy set consists of a set of linguistic 

variables, which are defined by the domain experts in the form of the characteristic 

function  called  as  Membership  Function.  It  is  represented  as  µF:P(E) [0, 1]. The 

Membership Function is used to define the certainty that element P(E) belong to that 

fuzzy set F [90]. It is used to associate a degree of membership of each of the 

possible world in the sample space to the corresponding fuzzy set. In Fuzzy 

Quantification, the fuzzy set consists of five linguistic variables -very low, low, 
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medium, high and very high [91] [92]. The linguistic variables represent the  words 

or sentences used to deal with semantic concepts of imprecise nature directly by 

means of approximate characterization using mathematical formulation. It is 

assigned to the set of events in the certain probability space based on the 

membership values. Figure 5.4 shows the Probabilistic Fuzzy Logic based Inference 

Engine. It takes the probability of combination of events as an input and then 

generates the output of event sequences in an order with a fuzzy value. It consists of 

three main components  Fuzzifier, Rule base and Inference Engine. 

 

 

 

Figure 5.4:  Probabilistic Fuzzy Logic based Inference Engine 

 The Fuzzifier is used to convert the input probability of the possible 

worlds (non- fuzzy) of a sample space into a membership degree (fuzzy) with the 

help of membership function associated with each fuzzy set in the rule input space 

using normalization of maximum likelihood [93]. The membership degree for output 

set is computed from the degrees of membership according to the relationships 

among the input fuzzy values. Moreover, the Rule base defines the fuzzy rules 

provided by the domain experts of the system. The Inference Engine executes the 

fuzzy logic inference to map the linguistic variable from the fuzzy sets based on the 

membership function in the rule base. The fuzzy value is assigned according to how 

well it matches with the membership degree of certainty of the fuzzy set. It is a 

useful and initiative approach to reduce the sample space to derive the most probable 

event sequence approximately. Therefore, the events with most priority fuzzy values 

are derived as a composite of event sequence. The procedure for probabilistic 

complex event processing is given in Figure 5.5. 
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Figure 5.5:  Procedure for Probabilistic Complex Event Processing 

5.2  PERFORMANCE EVALUATION  

 In this section, the PCEP system is implemented in the Publisher/ Subscriber 

model using JMS based subscription API and the experiments are carried out based 

on the streams of stock quote of l0,000. The PCEP approach is implemented in stock 

marketing scenario. It detects the relevant events from the large number of incoming 

events  under  uncertainty.  The  PCEP  system  is  tested  with  the  IT  stocks  of  TCS,  

Google, CTS and Microsoft. The data used for evaluating this approach was 

obtained from the website www.moneycontrol.com that provided the stock prices 

prevailing  at  NASDAQ.  The  system  takes  incoming  events  as  input  of  various  

company stocks. Further, it generates suitable output that ensures that the decision 

will be suitable for the investor to make a profit in a highly dynamic stock 

environment. The data are collected for a specific period. From the collected data, it 

is easier to predict the opening, highest, lowest and closing values of the stock price 

for each day.  

5.2.1  Experimental Setup 

 The generic application methodology is designed as a message oriented 

middleware with the set of software components to perform efficient event 

processing. These software components communicate through Java Message 

Input: Relevant Event Sequences 
Output: Derived Composite Events Sequences 
Procedure : 
Begin 

Step 1: DPFRM Model -> Construct Event Hierarchy (Relevant Event Sequences) 
Step 2: Compute Joint Probability Distribution -> Conditional Probability between  

event sequences 
Step 3: Probabilistic Fuzzy Logic (Computed Probability) 
Step 4: Fuzzy Partitioning (Large Sample Space) 
Step 5: Divide into set of possible worlds using membership function 
Step 6: Inference engine estimate Linguistic variables using Rule Base 
Step 7: Derive Composite Event Sequences 

End 
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Service, which takes input as event instances from continuously arriving incoming 

events.  The  experiment  is  executed  on  Windows  XP  PC  with  3.2  GHz  processor,   

2 GB of RAM and 512 MB cache with the maximum Java heap size of 800 Mbytes. 

It is implemented in open source Java Enterprise Edition/Netbean/Glassfish/JMS 

environment.  The  PCEP  system  triggers  the  new  composite  events  in  a  real-time  

application  of  stock  market  for  a  financial  domain.  The  performance  of  the  PCEP  

system is tested using the event stream to the order of 10,000 incoming events that 

consist of 11 attributes of which six attributes are certain attributes such as the name 

of the company, product, category, volume, number of shares, timestamp. The 

remaining five attributes are uncertain attributes such as stock price, Price-to-

Earnings ratio (P/E), Price-to-Sales Ratio (PSR), Return On Equity (ROE), Earnings 

Growth (EG)and Debt-to-Asset ratio (D/A). In order to trigger relevant events as per 

user subscriptions, it takes 500 user subscriptions which are subscribed by users 

(stock trader, stock investor). The time taken to perform matching between the 

incoming events with all user subscriptions in the system measured as Average 

Processing Time.  

5.2.2  Benchmark Application: Stock Market 

 In a real-time application scenario, a typical CEP under uncertainty can be 

found in technical analysis of the stock market. In order to attain a profit margin by 

investing money of the software market, the stock trader should observe the trading 

history (Event Instance Data) of the reputed software companies in the stock market. 

Furthermore, an appropriate decision must be taken by comparing the movement of 

stock share based on the index and thus indicate the appropriate time to invest the 

share  on  the  company.  The  core  of  the  system  implements  the  CEP  logic  that  

notifies the change in stock price of incoming event streams of the market stock data 

according to user subscriptions.  

5.2.3  Experimental Results  

 A preliminary experimental evaluation is conducted to validate the 

scalability of the PCEP system based on two metrics - Throughput (events/sec) and 

Average Processing Time (ms).  
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5.2.3.1  Throughput of PCEP  

 The throughput of the CEP scheme is defined as the number of events 

processed in a second by the processor. It relies on the power of the processing 

engine  to  process  the  incoming events  based  on  the  user  subscriptions.  In  existing  

systems, heavy workload occurs because the filtering is not distributed among the 

multiple machines. Therefore, it cannot process the more number of events, which 

decreases the throughput. In the PCEP system, a number of state machines are 

deployed to process the incoming events.  Therefore, it can manage a large number 

of incoming events with the help of the appropriate number of state machines that 

improves the throughput of the PCEP system.  

i) Effect of Varying Number of State Machines in Throughput  

Hypothesis with respect to the result of the parameter T: (Throughput) as a 

function of State Machines 

Null hypothesis H0:  T1 = T2 = T3, where T1= Throughput obtained in 

Distributed Cayuga, T2 = Throughput obtained in PCEP 

7 and T3 = Throughput obtained in PCEP 10. 

  (There is no significant difference among the three 

systems in terms of Throughput obtained) 

Alternate hypothesis H3: Throughput mean values are not equal for at least one 

pair of the result mean values of the parameter T.  

  (There is a significant difference among the three 

systems in terms of Throughput obtained) 

 In Distributed Cayuga approach, the throughput is reduced at the starting 

stage of processing of queries because the distributed filtering is not performed in 

the case of a large number of incoming events. Figure 5.6 depicts that the PCEP with 

10 state machines achieves high throughput. For example, when the number of 

incoming events is 70000, the throughput is 4800, 5900 and 7100 for Distributed 

Cayuga, PCEP with 7 machines and PCEP with 10 machines respectively  
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Figure 5.6: Throughput as a Function of Varying Number of State Machines 

 Figure 5.6 examines how both distributed Cayuga and PCEP systems can 

handle high event input rates, in the order of tens of thousands of events per second. 

PCEP outperforms existing distributed in all scenarios. More particularly, PCEP can 

process the large number of incoming events with high throughput and then it starts 

declines but less than existing distributed Cayuga scheme. It also shows that the 

throughput of PCEP is appreciable even for the large number of incoming events.  

Hypothesis Evaluation with respect to Throughput as a function of State Machines 

Table 5.1: ANOVA for Throughput as a Function of State Machines 

Events x 104 
Technique Throughput 

I II III Hypothesis p value 

1-10 Distributed 
Cayuga PCEP 7 PCEP 10 H3 0.000 

 

 From Table 5.1, it is concluded that the calculated significance level of the 
parameter throughput of comparing three systems  Distributed Cayuga, PCEP 7 and 
PCEP10 always satisfy the condition (p value<0.05) for input events ranging from 
10,000 to 1,00,000. There is significant difference between the results for different 
throughput values of  Distributed Cayuga, PCEP 7 and PCEP10. Hence, the null 
hypothesis for H3 may be rejected.  
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 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum Throughput. This is analyzed using descriptive statistics given in  

Table 5.2. Table 5.2 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Throughput.  

Table 5.2: Descriptive Statistics of Throughput Measures 

Technique Distributed 
Cayuga PCEP 7 PCEP 10 

Max 
Min 

6.800 
3.000 

8.200 
5.100 

9.300 
6.000 

Mean 
Median 

5.060 
5.000 

6.660 
6.850 

7.700 
7.700 

Standard 
Deviation 1.237 1.063 1.132 

 

 From Table 5.2, it is evident that there is an increase in mean Throughput 

values in PCEP 7 and PCEP 10 compared to Distributed Cayuga. It can be 

concluded that an increase in number of state machines increases the mean 

Throughput. The increase in the average Throughput of PCEP 7 and PCEP 10 with 

respect to Distributed Cayuga is 31.62% and 52.17% respectively. 

ii) Effect of varying Size of NFA Length in Throughput 

Hypothesis with respect to the result of the parameter T: (Throughput) as 

function of NFA length 

Null hypothesis H0 : T1 = T2 = T3, where T1= Throughput obtained in 

Distributed Cayuga, T2 = Throughput obtained in PCEP 

5 and T3 = Throughput obtained in PCEP 10. 

  (There is no significant difference between the three 

systems in terms of Throughput obtained) 



88 
 

Alternate hypothesis H4: Throughput mean values are not equal for at least one 

pair of the result mean values of the parameter T.  

  (There is a significant difference between the three 

systems in terms of Throughput obtained) 

 In NFA based event matching, the size of the NFA automaton gradually 

grows according to the increasing number of queries that may reflect on the number 

of state transitions required. The Throughput of the system is affected by  

parameters such as the number of state transitions required to process each event, 

number  of  predicates  on  the  state  of  the  automaton  needed  to  evaluate  the  queries  

and the memory requirements to store the NFA automaton. 

 

Figure 5.7: Throughput as a Function of NFA Length 

 In existing systems, the performance of the system will affected by 

running duplicate or redundant queries at a time. Therefore, the PCEP system 

deploys a Query Aware Partitioning with the help of a predicate based subscription 

grouping that manages similar sub-queries among the different queries in the 

subscription cluster. It eliminates the duplicate and redundant states even under the 
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large number of queries and also achieves faster execution with high throughput 

[94]. Figure 5.7 shows how throughput of the PCEP improves as the number of 

states of the automaton decreases. For 9000 queries, the Distributed Cayuga 

processes 18000 events per second, whereas PCEP with 10 states processes 37000 

events per second and PCEP with 5 NFA length  processes 61000 events per second.   

Hypothesis Evaluation with respect to parameter T: (Throughput) as function 

of NFA length 

Table 5.3: ANOVA for Throughput  as Function of NFA Length 

Events x 
103/sec 

Technique Throughput 

I II III Hypothesis p value 

1-10 
Distributed 

Cayuga 
PCEP 5 

PCEP 
10 

H4 0.000 

 

 From Table 5.3, it is concluded that the calculated significance level of the 

parameter throughput of comparing the three systems: Distributed Cayuga, PCEP 5 

and PCEP 10 always satisfy the condition (p value<0.05) for input events ranging 

from 1000 to 10,000. There is significant difference between the results for different 

throughput values of Distributed Cayuga, PCEP 7 and PCEP 10. Hence, the null 

hypothesis for H4 may be rejected.  

 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum Throughput. This is analyzed using descriptive statistics given in  

Table 5.4. Table 5.4 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Throughput.  

 

 



90 
 

Table 5.4: Descriptive Statistics of Throughput Measures 

Technique 
Distributed 

Cayuga 
PCEP 7 PCEP 10 

Max 

Min 

4.100 

1.500 

9.000 

5.900 

6.800 

3.200 

Mean 

Median 

2.750 

2.650 

7.390 

7.300 

4.780 

4.650 

Standard 
Deviation 

0.950 1.095 1.134 

 

 From Table 5.4, it is evident that there is an increase in mean Throughput 

values in PCEP 5 and PCEP 10 compared to Distributed Cayuga. It can be 

concluded that there is an increase in the average Throughput as a function of NFA 

length with respect to Distributed Cayuga by 42.46%. 

iii) Effect of Varying Possible World Space in Throughput 

 In the PCEP system, the Probabilistic Fuzzy Logic based inference is used 

to derive the most probable event sequence approximately with reduced sample 

space. Whereas in existing probabilistic based inference, the probability sample 

space composes of a large number of possible worlds of event sequences is defined 

by  the  EID  at  a  time  t1.  Therefore,  the  different  set  of  possible  world  will  be  

available at different time points: t2 and t3.  Hence, the probability sample space may 

vary according to the time. All the same, it is difficult to perform the probabilistic 

inference on the large number of possible worlds of the sample space. 

 Figure 5.8 shows how throughput of the PCEP system that deploys a 

Probabilistic Fuzzy Logic inference achieves high throughput (events/sec) even 

under the large number of incoming events because of reduced sample space. On the 

contrary, in the existing probabilistic inference based approach, the throughput 

declines as the number of possible worlds increases. It reduces the throughput of the 

system according to the increasing number of events because it yields a large 

probability space with the number of possible worlds. 
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 Figure 5.8: Throughput as a Function of Probability Space  

5.2.3.2  Average Processing Time of PCEP  

Hypothesis with respect to the result of the parameter A: (Average Processing 

Time) 

Null hypothesis H0:  A1 = A2 = A3, where A1= Average Processing Time in 

Distributed Cayuga, A2 = Average Processing Time in 

PCEP 5 and A3 = Average Processing Time in PCEP 10.  

  (There is no significant difference among the three 

systems in terms of Average Processing Time obtained). 

Alternate hypothesis H5:  Average Processing Time mean values are not equal for 

at  least  one  pair  of  the  result  mean  values  of  the  

parameter A.  

  (There is a significant difference between the three 

systems in terms of Average Processing Time obtained) 
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Figure 5.9: Average Processing Time for varying NFA Sequence Length 

 In the result, the PCEP system significantly decreases the Average 

Processing Time over the other existing CEP schemes such as distributed Cayuga. 

Furthermore,  the  number  of  state  machines  available  in  the  system  decides  the  

elapsed  time  to  process  the  incoming  events.  In  case  of  more  number  of  state  

machines, it can manage a large number of incoming events with reduced 

complexity that may reduce the Average Processing Time required to process the 

incoming events. Figure 5.9 depicts the Average Processing Time of the CEP. The 

PCEP system achieved less processing time if more state machines are deployed to 

process the incoming events. The figure also illustrates that the Average Processing 

Time of the distributed Cayuga scheme starts getting higher after 60,000 incoming 

events, indicating the bottleneck in performance due to the large number of 

incoming events. It can be eliminated by deploying an appropriate number of state 

machines according to the number of incoming events.  
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Table 5.5: Average Processing Time versus State Machines 

Scheme 
Distributed 

Cayuga 
PCEP 

5 Machines 
PCEP 

10 Machines 
Processing 

Time (ms)  
240- 798 200-640 200-490 

 

Hypothesis Evaluation with respect to parameter A: (Average Processing Time) 

as function of NFA length 

Table 5.6: ANOVA for Average Processing Time as Function of NFA Length 

Events x 103/sec 
Technique Average Processing Time 

I II III Hypothesis p value 

1-10 
Distributed 

Cayuga 
PCEP 5 

PCEP 

10 
H5 0.016 

 

 From Table 5.6, it is concluded that the calculated significance level of the 

parameter Average Processing Time of comparing three systems of Distributed 

Cayuga, PCEP 5 and PCEP10 does satisfies the condition (p value<0.05) for input 

queries. There is a significant difference between the results for different Average 

Processing Time values of Distributed Cayuga, PCEP5 and PCEP10. Hence, the null 

hypothesis for H5 may be rejected.  

 Further, it is also required to determine the system which has the minimum 

Average Processing Time. This is analyzed using descriptive statistics given in 

Table 5.7. Table 5.7 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Average Processing Time. 
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Table 5.7:  Descriptive Statistics of Average Processing Time as Function of 
NFA Length 

Technique 
Distributed 

Cayuga 
PCEP 5 PCEP 10 

Max 

Min 

780 

200 

640.0  

200  

490.0  

200  

Mean 

Median 

584 

680 

472.0 

550.0       

348.0  

310.0       

Standard 
Deviation 

226 180.7    123.2    

 

 From Table 5.7, it is evident that there is an decrease in mean Average 

Processing Time values in PCEP 5 and PCEP 10 compared to Distributed Cayuga. It 

can be concluded that an increase in NFA length affects the mean processing time. 

There is a decrease in Average Processing Time for PCEP 5 and PCEP 10 with 

respect to Distributed Cayuga by 19.17% and 40.41% respectively. 

5.2.3.3  Scalability of PCEP  

Hypothesis Evaluation  with respect to the result of the parameter S: (Scalability) 

Null hypothesis H0:  S1 = S2, where S1= Scalability obtained in Distributed 

Cayuga, S2 = Scalability obtained in PCEP with Filtering 

  (There is no significant difference between the two 

systems in terms of Scalability obtained) 

Alternate hypothesis H6:  Scalability mean values are not equal for at least one 

pair of the result mean values of the parameter S.  

  (There is a significant difference between the two 

systems in terms of Scalability obtained) 
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 Scalability is the unified performance metric. It depends on average 

processing time, throughput and workload. The existing probabilistic systems 

materialize and sort each event sequences in the possible world’s space individually. 

Therefore, they are suitable only for a small dataset of size less than 25 tuples with 

limited event pattern queries.   

 

Figure 5.10: Scalability of PCEP with and without Filtering 

 The PCEP system deploys an efficient event filtering approach to filter and 

to correlate events by performing the matching between the large number of 

incoming events (publications) and rules. Therefore, the event sequence prediction 

scheme derives the stateful event sequence based on the probabilistic ranking. It 

achieves high scalability due to the filtering of irrelevant results. It also reduces the 

complexity in predicting the event sequence for the large number of incoming event 

streams. Figure 5.10 depicts that the scalability of the PCEP with filtering is 1.62 

times greater than the Distributed Cayuga scheme. The scalability of the distributed 

Cayuga scheme is maintained around 60-70 % because it incurs less throughput and 

high average processing time for the large number of incoming events. 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Sc
al

ab
ili

ty
 (%

)

No. of Incoming Events * 104

Distributed Cayuga

PCEP with filtering



96 
 

Hypothesis Evaluation with respect to parameter S: (Scalability) 

Table 5.8: T-test for Scalability 

Events x 104 
Technique Throughput 

I II Hypothesis p value 

1-10 
Distributed 

Cayuga 
PCEP  H6 0.000 

 

 From Table 5.8, it is concluded that the calculated significance level of the 

parameter Scalability of comparing two systems, Distributed Cayuga and PCEP with 

filtering always satisfy the condition (p value<0.05) for input events ranging from 

10,000 to 1,00,000. There is a significant difference between the results for different 

Scalability values of Distributed Cayuga and PCEP with filtering. Hence, the null 

hypothesis for H6 may be rejected.  

 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum Scalability. Table 5.9 shows the descriptive statistics (the maximum, 

minimum, median, mean values and standard deviation) of each of the technique for 

the parameter scalability. It shows a increased Scalability in PCEP with filtering. 

Table 5.9: Descriptive Statistics of Scalability Measures 

Technique Distributed Cayuga PCEP with Filtering 

Max 

Min 

66.00 

25.00 

90.00 

55.00 

Mean 

Median 

46.30 

46.00 

75.10 

75.50 

Standard 
Deviation 

12.94 10.96 

 

 From Table 5.9, it is evident that there is an increase in mean Scalability 

values in PCEP with filtering compared to Distributed Cayuga by 62.20%. 
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5.3  SUMMARY  

 This chapter has proposed a probabilistic framework named as PCEP that 

performs complex event detection even in the presence of uncertain data. In the 

PCEP, the filtered events enter into a probabilistic event sequence prediction engine 

to derive the correlation between the relevant events. Then, the system transforms 

the relevant events into new composite events as output. Here, the probability space 

is constructed as DFPRM model in the form of event hierarchy. To reduce the large 

sample space, a novel probability Fuzzy Logic is used to derive the most probable 

events using approximation consistent mathematical formulation. The performance 

evaluation shows that the PCEP system is the most effective and efficient that 

achieves high scalability even under the large number of incoming events. The 

performance of PCEP against the existing Distributed Cayuga is statistically 

analyzed using ANOVA and T-Tests. 
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CHAPTER  6 

PCEP  IN SMART REAL-TIME USE CASES 

 

 The developed PCEP system is verified for consistency in performance. 

The  system is  tested  in  processing  events  from  RFID management  systems,  stock  

market  trading and business activity monitoring. The probabilistic framework deals 

with uncertainty and results in efficient CEP. Further, event filtering is performed to 

filter the relevant events for achieving high scalability.  

6.1  RFID PCEP IN A REAL-TIME PRODUCT MANUFACTURING 

 The PCEP system performs complex event detection in RFID monitoring 

for product manufacturing. It integrates CEP to detect the in-sequence error, 

incorrect assembly and delay identification in the large number of incoming parts 

(events) from the various sections. It is used to detect the misplaced or duplicate 

events effectively through real-time analysis and also notifies about the exceptional 

events to the responsible technical supervisors to trigger a needy   action in a timely 

manner. Figure 6.1 illustrates the CEP based RFID model in production manufacturing 

system. 

 The products used to manufacture the car are entered into the PCEP 

system through production path phase. This phase consists of two main components  

i)  RFID  readers  ii)  RFID  processor  that  will  be  used  for  the  RFID  based  product  

manufacturing [95]. The parts from the production phase to be assembled enter into 

the  assembly  point  through  the  CEP  core  module  for  the  car  manufacturing.  This  

module  filters  the  relevant  parts  [96]  for  the  car  manufacturing  and  discards  the  

duplicate parts based on the Complex Event Processing Language (CEPL) queries 

devised by the technical experts in the factory. 
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 Further, PCEP is carried out to predict the uncertainty in the complex 

events. Finally, it will automatically notify about the inferred events as alerts to the 

technical supervisors to initiate corrective measures in order to improve the overall 

performance.   

 

 

 

 

 

Figure 6.1: CEP based RFID Model in Product Manufacturing System 

6.1.1  Production Path 

 In a real-time smart factory, the products moving through production lines 

meet at certain assembly points where assembling is carried out. The production 

path is the starting point  for the architecture. The architecture  consists of two main 

components such as RFID readers and RFID processor. The RFID readers read the 

product information from RFID tags pasted in the product. The PCEP system does 

not directly take the raw incoming data streams as input. The data streams are not 

adaptable for the internal processing. The RFID Input Processor collects the large 

number of incoming events read by RFID readers. The RFID Input Processor 

converts the events into the form of event tuples as shown in Figure 6.2, which are 

suitable for the CEP [97].  For instance,  the RFID reader reads raw data streams in 

the form of <r, i, t>, where ‘r’ represents the RFID reader that collects information 

‘i’ from the RFID tag at a time ‘t’ [98].  The RFID Processor converts the raw data 

streams into meaningful and actionable RFID event formats which are represented 

as follows: 
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Figure 6.2: RFID Event Stream 

6.1.2  Complex Event Processing Language (CEPL) 

 In order to process the incoming event streams in the production path ,the 

technical experts express their required event patterns. They are  represented using 

the CEPL query language. CEPL language is a query language used to represent the 

event patterns under uncertainty as illustrated in Figure 6.3. CEPL provides  

declarative, expressive and sequence-based language that can express the attributes 

and  values  of  the  event  in  the  form  of  algebraic  expressions.  In  addition,  CEPL  

provides a powerful support for RFID data processing that includes data filtering, 

data transformation, aggregation and real-time monitoring. It consists of three 

clauses named as SELECT, FROM and WITHIN [99]. Among the three clauses, the 

SELECT clause  specifies  the  attributes  required  to  select  from the  incoming event  

stream which may be either uncertain or certain . The CEPL to detect the part engine 

with relevant specifications suitable to manufacture the car Ford-Figo is as follows:

  

SELECT Part Type, CC, Mileage, Part Model, Fuel Type 

FROM FILTER ({Type = “Engine”} (RFID Event Stream)) 

PATTERN ($ Model = “4A-GEC14”, CC = “1196 kmph”, Fuel = “Petrol”) 

IF true 

 DO allow      Assembly point 

ELSE 

 Set notify      Technical supervisor 

WITHIN 15Min; 
 

Figure 6.3: Complex Event Processing Language 

{Type= “Tyre-TT” , Name= “Transtone” , Model = “12R22.5” , Design= “RADIAL” }; 

{Type=  “Brake” , Name= “Detroit”, Model= “SER 12.7” , Spacers ID= “#790”}; 

{Type= “Engine” , CC= “1196” , Model= “4A-GEC14” , Fuel= “Petrol” , Milage= “116kmph”}; 
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 Figure 6.3 shows the CEPL with event specification to trigger the action 

with  IF  and  ELSE condition  [98].  When the  condition  specified  in  IF  condition  is  

satisfied then, the system allows the part into assembly point. Otherwise, the action 

specified in ELSE condition is triggered for notification. Depending upon the 

specified  attributes  of  the  SELECT  clause,  two  different  variants  of  the  FROM  

clause are declared. The FROM clause is the core part of the query that defines the 

stream expression to process a large number of incoming event streams. A stream 

expression is formulated in the form of predicates using the unary constructs  

-FILTER and PATTERN [100] [101]. The FILTER is represented as {FILTER ( )} 

which takes input as  events from the incoming event streams and then only selects 

the events which satisfy the predicate , whereas PATTERN is represented as 

{PATTREN ( 1, 2…… n} which is same as FILTER construct, but takes more  

than one inputs. 

6.1.3  Probabilistic Complex Event Processing  

 The core of the approach is the complex event processor that performs 

event processing to detect the complex events with the help of two phases - Event 

Filtering and Probabilistic CEP. 

6.1.3.1  Event Filtering 

 The Event Filtering filters the events which satisfy the FILTER construct 

of the CEPL query and then discards the remaining events as duplicate, redundant 

and abnormal RFID events from the incoming events. Event Filtering is done based 

on the query formulated by the technical experts. In the production path, many 

product parts move towards the assembly point. From these parts, the irrelevant 

parts are filtered based on the query formulated. The relevant product parts are 

forwarded to the assembly point.  Due to the filtering of irrelevant parts, the system 

can manage the large number of incoming events. This process improves scalability 

[102]. The Probabilistic Event Sequence Prediction (PESP) thus predicts  the 

relevant parts.    

 



102 
 

6.1.3.2 Probabilistic Complex Event Processing  

 Due to the uncertainty caused by data errors, the events are probabilistic 

rather than deterministic in nature. Therefore, a probabilistic model is proposed to 

enable  complex  event  detection  in  the  presence  of  uncertainty.  The  PCEP  system  

detects the duplicate or exceptional events on the production path and then notifies 

the technical experts about the most important issues.  The probability of the events 

is computed based on the correlation among the different attributes of the different 

events from the event history. The event history consist of ‘n’ number of events  

{E1, E2…… En}. Then, the overall joint probability distribution is computed based on 

aggregating the product of local conditional probabilities of the events using the 

conditional probabilistic dependencies. The  overall joint probability distribution 

represented as follows:  

 
1

( / ) ( ) / ( )
n

n n nP E E P E E P E   

 After computing the conditional probability of the events, the probabilistic 

ranking is performed to rank the event based on the conditional probability . 

Furthermore,  an  event  with  a  high  state  probability  is  triggered  and  detected  as  a  

suitable event. This phase generates  events according to the detected complex event 

based on probabilistic phase. If the detected event matches the pattern construct in 

the CEPL, then the system allows the detected event into the assembly point for 

further processing. Otherwise, the system generates a notification as an alarm, SMS 

or email to the technical supervisor. The technical supervisor takes the corrective 

measure to achieve fault recovery and to prevent this error in the future to improve 

the overall performance.  

6.1.3.3  Event Detection Phase  

 There is a possibility for unfortunate situations to occur, even after 

entering the relevant parts to assemble the car in the assembly point. The unfortunate 

situations  are  i)  there  may  not  be  synchronization  among  the  detected  parts  while  

entering into the assembly point   ii)  The product parts moving on the assembly line 
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may arrive late at the assembly point and may result in an incorrect assembly of 

products or an overall delay for the entire production. In order to overcome these 

difficulties, three types of complex event detections such as i) synchronization error 

detection, ii) delay detection and iii) incorrect assembly detection will be performed 

in the assembly point section[103].  

i) Synchronization Error Detection  

 In order to assemble the car effectively, the detected different product parts 

should arrive at the assembly points within the defined time. The parts of a product 

should reach the point of the assembly in synchronization with each other. A delay 

or  break  up  of  this  clockwork  precision  may  lead  to  incorrect  assembly  of  the  

product. The RFID reader sends read event to the virtual reader (Ri) responsible for 

monitoring the corresponding product part. If Ri is not able to detect the 

corresponding part within a defined time span, it generates a synchronization error 

and sends the notification information to the supervisor [95].  

ii)  Delay Detection 

 Delays can be caused by mechanical or human failures. In this framework, 

a delay is detected using a timer triggered an event that is fired once in ‘t’ seconds. 

The production is performed according to the plan of technical experts where each 

timer detects the new different product parts for assembling the car in the assembly 

line. If a new part is not detected on the assembly line, a new timer event is fired and 

a delay event is generated. It generates the notifications.   

iii) Incorrect Assembly Detection  

 When two parts that do not belong to the same product are assembled 

together, an incorrect assembly occurs. When a product part is assembled with 

another  part,  both  of  them  will  be  detected  at  the  same  time  at  the  next  physical  

reader. If a physical reader detects two parts, its corresponding virtual reader 

compares  these  two  parts  with  the  product  to  which  they  belong.  If  both  of  these  
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parts belong to the same product, then it triggers an event of correct assembly 

detection. However, if both the parts do not belong to the same product, the virtual 

reader generates an incorrect assembly error event and notifies the supervisor. An 

incorrect assembly error may be arising due to the delays on assembly lines or 

synchronization errors [95]. 

6.1.4   Experimental Setup 

 The system is implemented in Siddhi CEP engine with the help of WSO2 

Complex Event Processor. The experiment is run on Windows XP PC with 3.2 GHz 

processor, 2 GB of RAM with the minimum JAVA heap size of 250 Mbytes. It can 

be run in Windows XP and requires a Java Virtual Machine version 5.0 runtime or 

above. It can process in the order of 10,000 (events/sec) on a dual CPU 2GHz Intel 

based hardware with minimum latency.  

 The performance of the PCEP system is evaluated using two common 

evaluation metrics such as processing time and throughput. The experiment was 

carried out to compare the performance of the proposed RFID-PCEP with existing 

RFID-CEP approach.   

i) Throughput 

 The  Throughput  of  the  CEP  scheme  is  defined  as  the  number  of  events  

processed per second by the processor. It is demonstrated in Figure 6.4. The 

incoming events are processed based on the rules specified by the technical experts. 

In  RFID-CEP,  filtering  is  not  performed.  As  the  number  of  events  increases,  it  

cannot process the increased number of events, which decreases the Throughput. 

RFID-PCEP provides filtering approach which filters out the irrelevant events and 

processes only the most relevant events. As the number of events increases, the 

Throughput also increases.  
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Hypothesis Evaluation with respect to the result of the parameter T:(Throughput) 

Null hypothesis H0:  T1 = T2, where T1= Throughput obtained in RFID-

CEP, T2 = Throughput obtained in RFID-PCEP 

  (There is no significant difference between the two 

systems in terms of Throughput obtained) 

Alternate hypothesis H7: Throughput mean values are not equal for at least one 

pair of the result mean values of the parameter T.  

  (There is a significant difference between the two 

systems in terms of Throughput obtained) 

 

Figure 6.4:  Throughput of RFID-PCEP System 

Table 6.1: T-test for Throughput of RFID-PCEP System 

Events x 
104/sec 

Technique Throughput 

I II Hypothesis p value 
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 From Table 6.1, it is concluded that the calculated significance level of the 

parameter throughput of comparing two systems RFID-CEP and RFID-PCEP 

always satisfy the condition (p value<0.05) for input events ranging from 10000 to 

100,000. There is significant difference between the results for different throughput 

values  of  RFID-CEP  and  RFID-PCEP.  Hence,  the  null  hypothesis  for  H7  may  be  

rejected.  

Table 6.2: Descriptive Statistics of Throughput Measures of RFID-PCEP System 

Technique 
RFID-CEP 
(Existing 
System)  

RFID-PCEP 
(Proposed 
System) 

Max 

Min 

8.500 

3.000 

9.500 

6.900 

Mean 

Median 

6.500 

6.950 

8.340 

8.450 

Standard 
Deviation 

1.704 0.907 

 

 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum Throughput. This is analyzed using descriptive statistics given in  

Table 6.2. Table 6.2 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Throughput. It is evident that there is an increase in the mean Throughput 

of RFID-PCEP with respect to RFID-CEP by 28%. 

ii) Average Processing Time 

 The Average Processing Time of the proposed PCEP approach is 

calculated based on the time taken to process the complex events. Figure 6.5 

demonstrates that the proposed approach achieves better Average Processing Time 

than the existing RFID-CEP without filtering.  

 



107 
 

Hypothesis Evaluation with respect to the result of the parameter A: (Average 

Processing Time) 

Null hypothesis H0:  A1 = A2, where A1= Average Processing Time in RFID-

CEP, A2 = Average Processing Time in RFID-PCEP  

  (There is no significant difference between the two 

systems in terms of Average Processing Time obtained) 

Alternate hypothesis H8:  Average Processing Time mean values are not equal for 

at  least  one  pair  of  the  result  mean  values  of  the  

parameter A.  

  (There is a significant difference between the two 

systems in terms of Average Processing Time obtained) 

 

Figure 6.5:  Average Processing Time of RFID-PCEP System 

Table 6.3: T-test for Average Processing Time of RFID-PCEP System 

Events x 
104/sec 

Technique Average Processing Time 

I II Hypothesis p value 

1-10 RFID-CEP RFID-PCEP H8 0.109 
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 From Table 6.3, it is concluded that the calculated significance level of the 

parameter average processing time of comparing two systems  RFID-CEP and 

RFID-PCEP does not  satisfy the condition (p value<0.05) for input events. There is 

no significant difference between the results for different average processing time 

values  of   RFID-CEP and  RFID-PCEP.  Hence,  the  null  hypothesis  for  H8 may be  

accepted.  

Table 6.4: Descriptive Statistics of Average Processing Time of RFID-PCEP 
System 

Technique 
RFID-CEP 

(Existing System) 
RFID-PCEP 

(Proposed System) 

Max 

Min 

900 

175 

450 

150 

Mean 

Median 

560 

600 

300 

275 

Standard 
Deviation 

298 123.7 

 

 Further, it is also required to determine the system which has the minimum 

Average Processing Time. This is analyzed using descriptive statistics given in 

Table 6.4. Table 6.4 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Average Processing Time. It is evident that there is a decrease in the 

Average Processing Time of RFID-PCEP with respect to RFID-CEP by 46%. 

6.2  UNCERTAIN STOCK PRICE PREDICTION USING PFL 

 The stock prediction system is modeled as a Publisher/Subscriber 

middleware [82]. It is represented in the Figure 6.6. It can predict the stock value for 

stocks of companies across various sectors of the economy like Automobiles, IT and 

Oil & Gas.  
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Figure 6.6: Stock Exchange Publisher/Subscriber Middleware System 

 In Figure 6.6, the publisher (stock exchange) publishes stock quotes to a 

large number of subscribers (stock broker, traders and investors).  The stock quotes 

consist of events related to the various sectors. They  have five attributes - a global 

identifier, the name of the company, the volume of stocks, the price and the 

identifier of the selling trader. The subscribers those who are interested in stock 

trading can express their interest on the incoming events as a stock request to buy or 

sell  a  share  in  accordance  to  the  event  patterns  available  in  the  stock  market.  The  

Probabilistic Fuzzy Logic methodology predicts the future price of stock value by 

extracting the higher level knowledge from the large number of incoming complex 

events from the stock quotes.  

6.2.1  Stock Exchange Scenario  

 In the stock market, all companies in the different domains have some 

business dependencies to each other. For example, a manufacturing company is 

strongly  inter-correlated  with  a  company  for  production  of  raw  material  and  a  

finance company.  This causes business dependencies among multiple companies. 

When the stock broker needs to invest   he should  comprehend this dependency 

chain.  So he should monitor for events occurring along multiple dependency chains.  
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 The stock trading consists of two types of stock events - stock quote and 

stock request. The stock exchange disseminates the  number of continuously arriving 

stock data as a stock quote as depicted in Figure 6.7. The stock brokers use stock 

request to express their interest in buying/selling stock [104]. The publishers publish 

the continuously arriving stock exchange stream as follows: 

 {…………. 
{(Name, “TATAMOTORS”) (price, 174.88) (volume, 2,735)}, 
{(Name, “FORD”) (price, 69.31) (volume, 8,991)}, 
{(Name, “FIAT INDIA LTD”) (price, 189.31) (volume, 1,481)}, 
{(Name, “HONDA MOTORS”) (price, 87.84) (volume, 6,165)}, 
{(Name, “TOYOTA MOTORS”) (price, 91.36) (volume, 5,742)}, 
{(Name, “MARUTI SUZUKI”) (price, 150.36) (volume, 3,354)}, 
{………….. 

 

Figure 6.7: Stock Exchange Event Stream 

 The stock broker or trader will like to start a query on the event stream as a 

stock request similar to the query as represented in Figure 6.8. The stock brokers 

express their interest as event queries,  represented in the form of CEPSL [60]. The 

broker wants to invest share on car company for the product of monotonic decrease 

of stock price less than 90 with volume of 5,000. Due to the decrease in stock price, 

the stock abruptly rebounds through increasing of up to at least 5% in value in last 

15 minutes.  

 

Figure 6.8: Stock Request 
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6.2.2  Stock Prediction using DFPRM 

 From the web, the historical stock (open, close, low, high) prices of 

different companies hare collected. The event hierarchy called as Dynamic Fuzzy 

Probabilistic Relational Model (DFPRM) is constructed [86] as portrayed in the 

Figure  6.7.  The  DFPRM  consists  of  set  of  event  classes  with  their  associated  

attributes. The joint probability distribution is computed using the conditional 

probabilistic dependencies among the event sequences in accordance to the stock 

request. The constructed graphical DFPRM model is used to learn the non-linear and 

dynamic functional relationships among the incoming events. DFPRM predicts the 

future trends of the stock market.  

 

Figure 6.9:  Dynamic Fuzzy Probabilistic Relational Model 

 This model has capability to perform the technical analysis on the 

incoming stock quotes based on different parameters to predict the future. This 

model is used by the investor for evaluating the opening price, closing price, highest 
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price and lowest price of a company stock based on the technical indices- Relative 

Strength Index (RSI), Gross Domestic Product (GDP), Manufacturing Index (MI) 

and Interest Rate (IR) and   the fundamental indices namely Price-to-Earnings Ratio 

(P/E), Price-to-Sales Ratio (PSR), Return On Equity (ROE), Earnings Growth 

(EG)and Debt-to-Asset ratio (D/A). Figure 6.9 shows the DFPRM for the event 

sequences  ‘E’  with  a  set  of  events  ‘E’  =  {e1,  e2…..en}  and  each  event  ‘ei’ is 

associated with a set of descriptive attributes and reference slots. The sample space 

of  event  sequence  ‘E’  is  represented  as  the  conjunction  of  set  of  possible  stock  

events with its associated probability measure from the stock event history.  

6.2.3  Conditional Probability Computation of Stock Events  

 The novelty of work is that the constructed probabilistic model (DFPRM) 

is used to compute the probability of future stock price based on the conditional 

probabilistic independencies among the events in stock history. The probability 

space is represented as triple {WT, T, T} where WT is a set of possible stock values, 

T is a history associated with each possible stock and T is a probability measure of 

the  stock  value.  The  conditional  probability  distribution  of  event  ei is determined 

using the probability distribution over the values of events given each combination 

of stock values in its stock history P(ei). The conditional probability distribution is 

computed as follows: 

 P (ei/ei+1) =  P (ei / e i, i) 

 Here, i is the set of stock values in stock history of ei and   i is the 

parameter vector associated with ei. The overall probability associated with the stock 

events is factorized by aggregating the product of local conditional dependence of 

the event given their stock history events [72].  

6.2.4  Probabilistic Fuzzy Logic based Inference Engine  

 In order to make a better decision whether to buy or sell the share for 

making a profit in the stock market, Probabilistic Fuzzy Logic [90] estimates the 

fuzzy linguistic variables from the computed conditional probability distributions in 
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the large probability space. The fuzzy partitioning scheme reduces the large sample 

space by partitioning the more number of possible worlds into  pre-determined 

classes using membership function. A fuzzy system consists of set of rules defined 

by the characteristic function called as membership function, which is represented as 

F:  P  (E)   [0,  1]  [91]  [92].  It  is  used  to  define  the  certainty  that  element  P  (E)  

belong in that fuzzy set ‘F’. The performance of fuzzy logic is influenced by the 

selection of membership functions and the fuzzy logic rules. 

 

 

 

 

Figure 6.10:  Probabilistic Fuzzy Logic for Stock Prediction 

 Figure 6.10 shows the Probabilistic Fuzzy Logic used in DFPRM model in 

which the Fuzzifier converts the input probability of the possible worlds (non fuzzy) 

of a sample space into fuzzy values [93] to train the DFPRM model. Further, the 

knowledge  base  consists  of  fuzzy  if-then  rules.  The  set  of  statements  listed  below  

give an idea about the rules that are implemented: 

  If (MAV is negative) and (%price change is Positive) and (Low RSI) 

THEN “BUY” (Tomorrow close price value > than today’s price)  

  If (MAV is negative) and (%price change is Positive) and (High RSI) 

THEN “SELL” (tomorrow close price < than today’s price) 

  If (MAV is null) and (%price change is null) and (Stable RSI) THEN 

“NO ACTION” (tomorrow close price value remains same as today’s price). 

 The inference engine executes the fuzzy logic to map any one of the 

linguistic variable from the fuzzy sets. The fuzzy sets consist of three linguistic 

variables {“Buy”, “Sell”, “No Action”} according to the rule base. Finally, the 

 

Fuzzifier 

Knowledge base 
 (IF… THEN) 

 

Inference 
Engine 

MAV = low/high 
RSI = low/high 

Pchange =low/high 

“Buy” 
“Sell” 
“Noact” P(e1,e2,e3,..en) 
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satisfied condition throws the corresponding linguistic variable as the output 

whether to buy or sell the share to gain profit. In addition to daily stock prediction, 

the  system  is  also  capable  of  predicting  the  open,  high,  low  and  close  prices  of  

desired stock on a weekly and monthly basis. It is proposed for predicting the future 

direction of stock prices using past historical datasets. The PFL approach enhances 

the decision making for investors in the stock market by offering more accurate 

stock prediction compared to existing approaches. The experimental evaluation is 

carried out to test the methodology under real-time financial data.  

6.2.5   Experimental Setup 

 The PCEP system for stock price prediction was tested with the 

automobile stocks of TATA motors, Honda motors, Toyota motors, Fiat India Ltd 

and Ford.  The data used for evaluating this approach was obtained from the website 

www.moneycontrol.com that provided the stock prices prevailing at NASDAQ stock 

quotes. The data was collected for the period from July 2012 to April 2013. From 

the collected data, the opening, highest, lowest and closing values of the stock price 

for each day within this period was collected. A publisher/subscriber system using 

Java Message Service based subscription API in the environment of Java Enterprise 

Edition/NetBeans/Apache/JMS was implemented. It takes incoming events as inputs 

of various company stocks. The system generates suitable output to indicate the type 

of decision suitable for the investor. 

 The performance of the system is evaluated using two common evaluation 

metrics accuracy in predicted stock price versus actual price and Mean Absolute 

Percentage Error (MAPE). 

i) Accuracy of Stock Prediction 

 The  stock  price  prediction  system  performs  effective  prediction  in  the  

stock price. The Figure 6.11 shows that the accuracy of stock prediction over a 

period from July 2012 to April 2013. The performance of PCEP system in stock for 

Throughput and Average Processing Time is already discussed in chapter 5. 
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Figure 6.11:  Accuracy of Stock Prediction 

ii) Mean Average Error Percentage in Stock Prediction 

 The error rate of PFL approach of NASDAQ stock is calculated in terms 

of mean square error which is represented in Figure 6.12. 

 

Figure 6.12:  Mean Average Error Percentage in Stock Prediction 
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6.3  KPI BASED CEP AND CBAM  

 The PCEP system is Complex business Activity Monitoring with Event 

Processing (CAMEP). CAMEP combines two main platforms such as CEP and 

BAM into a single framework. It is an integrated end-to-end developer environment 

that performs real-time analysis on the input events under uncertainty.  Figure 6.13 

shows the four-tier architecture of CAMEP which consists of four layers: Event 

Collection layer, Event Filtering Layer, Complex Event Processing Layer and Event 

Display or Delivery Layer.  

 

 

  

 

 

 

 

 

 

 

Figure 6.13: CAMEP in Real -Time Enterprise of Multiple Domains 
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events  based  on  the  Key  Performance  Indicators.  This  layer  filters  the  relevant  

events which are related KPIs mentioned for the specified domain and then discards 

the exceptional events which are unrelated to the domain. The next layer is the 

Complex Event Processing Layer; where the relevant events are entered into this 

processing  layer  that  deploys  a  Persistent  Object  Engine  (POE)  to  perform  CEP  

under uncertainty.  It identifies the divergence in the business performance 

according to the concurrent values in KPIs. The Event Delivery and Display layer is 

the final layer which activates automated action to help Business Process 

Management(BMP) tools. Further, it generates and communicates alerts via various 

communication systems to ensure the reaction to performing changes to improve the 

business performance.  

6.3.1  Event Collection Layer  

 In this CAMEP model, the first layer is the Event Collection Layer.  

Owing to the heterogeneity of the incoming events coming from multiple domains, 

the  CAMEP  approach  does  not  directly  take  the  raw  incoming  data  streams  as  an  

input. It collects messages from heterogeneous transactional systems. The incoming 

messages in the middleware are aggregated into events. Therefore, an object 

oriented middleware layer is deployed to manage all the messages that enter into the 

system and to convert the events as objects suitable for continuous real-time 

analysis. The incoming event messages are pre-processed into event instances, 

which are suitable to process the events in upcoming layers.  

6.3.2  Selection of KPIs 

 The event-driven CAMEP approach supports a universal system 

architecture that provides the high abstraction and projection capabilities for the 

selection of KPIs, which is used to monitor the business process continuously at run 

time. Domain experts utilize Business Metric Service (BMS) to select suitable KPIs 

and to calculate the numerical values for the set of attributes in the KPIs to maintain 

the business process. BMS is a specialized business service that provides relevant 

information based on rapidly accessing the wide range of data not being intertwined 
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with the technical information of the underlying business process. Furthermore, the 

derived KPIs are stored in a persistent database so that multiple users can access the 

KPIs without incurring the expense of recalculation. 

6.3.3  Event Filtering Layer  

 Events collected and pre-processed by the Event Collection Layer are 

entered into the Event Filtering Layer. It filters the incoming events/messages which 

are related to the KPIs specified by domain experts. The PCEP system deploys an 

inbuilt analytical model called as a transactional bitmap indexing. It performs 

extremely fast filtering of the large number of continuously arriving events based on 

the KPIs [21] [22]. Here, the formulated KPIs are organized in the form of matrix 

‘u’ x ‘v’ where ‘u’ is the set of identifiers (object) and then ‘v’ is the corresponding 

values (property) that are maintained as an object. When a bit of the corresponding 

row is set to 1, it means that the row/object has that value for the column/property. 

The  Bitmap  Indexing  performs  Boolean  operations  (AND,  OR)  on  the  indexes  to  

determine exactly which event instances match the attribute in the KPIs without 

searching throughout the entire database.   

6.3.4  Complex Event Processing Layer 

 The Complex Event Processing Layer accepts the filtered events from the 

filtering layer. This layer considers the uncertainty associated with the set of 

attributes of the incoming filtered events. This layer consists of a Persistent Object 

Engine (POE) which has two highly integrated components – a virtual machine and 

an object store. The object store maintains all the incoming messages entering  the 

system persistently which also increases system reliability [105]  The virtual 

machine deploys event-driven logic so that processes can react rapidly to the number 

of incoming events from the multiple heterogeneous domains.  The monitoring of 

the business process is carried out based on the KPIs to detect exceptional events.  If 

the numerical values of the KPIs in the incoming events exceed the specified range, 

then corrective reasonable action must be a triggered to take over the enterprise to a 

good position. 
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6.3.5  Event Delivery and Display Layer 

 After analyzing and processing the business events based on KPIs, this 

layer is responsible for notifying the impact and severity of the events in the 

business performance of the recipients. Here, the notification may be in the form of 

graphical display or alerts to the user about the deviation of the concurrent values in 

the KPIs of the incoming events. The KPIs values can be displayed on dashboards 

via one or more meters and then corresponding actions are triggered to improve 

business operations and processes.   Further, it provides the notification as feedback 

to the relevant business process to react dynamically according to changes in the 

incoming events [105].  

6.3.6   Experimental Setup 

 The CAMEP approach is implemented in open source Siddhi CEP engine 

that runs on a WSO2 Complex Event Processor. The hardware configuration consists 

of the  Intel Core 2 Duo of 2.10 GHz with Memory 1.9 GB with the maximum JAVA 

heap  size  of  800  Mbytes.  It  is  implemented  in  open  source  Java  Enterprise  

Edition/Eclipse/WSO2. The system requires Java Virtual Machine version 5.0  or 

above. The CAMEP approach is implemented to monitor the large number of 

incoming events from the multiple domains. It can process more than 500 events/sec 

on a dual CPU 2GHz Intel based hardware. The performance of the proposed 

approach is evaluated using  a stock brokerage system. 

 The heterogeneous sources of events in this case study  are Customer, 

Bank, Stock Brokerage and Stock Market. One sample KPI to be calculated for this 

case study is Customer Order Fulfillment Time (COFT). The COFT is computed 

from three metrics. They are Customer Order Placement Time, Money Transfer 

Time and Stock Transfer Time. Of this, Customer Order Placement Time metric is 

sourced from Customer domain, Money Transfer Time metric is sourced from Bank 

domain and Stock Transfer Time from Stock Market domain. All the metrics have to 

be processed using Complex Event Processing to calculate the COFT. The event 

streams is  in  the  order  of  10,000  incoming events  .The  overall  performance  of  the  
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business process is evaluated by monitoring the incoming streams in terms of KPI, 

which is derived by the technical experts in the corresponding domain. 

i) Throughput 

Hypothesis Evaluation with respect to the result of the parameter T:(Throughput) 

Null hypothesis H0:  T1 = T2, where T1= Throughput obtained in BAM,  

T2 = Throughput obtained in CAMEP 25 KPI 

  (There is no significant difference between the two 

systems in terms of throughput obtained) 

Alternate hypothesis H9:  Throughput mean values are not equal for at least one 

pair of the result mean values of the parameter T.  

  (There is a significant difference between the two 

systems in terms of throughput obtained) 

 The throughput of CAMEP 25 KPI is compared with that of BAM is 

illustrated in Figure 6.14. 

 

Figure 6.14:  Throughput of CAMEP System 
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Table 6.5: T-test for Throughput of CAMEP 25 KPI System 

Events x 
104/sec 

Technique Throughput 
I II Hypothesis p value 

1-10 BAM CAMEP 25 KPI H9 0.009 
 

 From Table 6.5, it is concluded that the calculated significance level of the 

parameter Throughput of comparing two systems ,BAM and CAMEP 25 KPI 

always satisfy the condition (p value<0.05) for input events ranging from 10000 to 

100,000. There is significant difference between the results for different Throughput 

values of BAM and CAMEP 25 KPI. Hence, the null hypothesis for H9 may be 

rejected.  

Table 6.6: Descriptive Statistics of Throughput Measures of CAMEP 25 KPI 
System 

Technique BAM CAMEP 25 KPI 
Max 
Min 

8.200 
5.600 

9.500 
6.800 

Mean 
Median 

7.160 
7.300 

8.330 
8.450 

Standard 
Deviation 0.846 0.925 

 

 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum Throughput. This is analyzed using descriptive statistics given in  

Table 6.6. Table 6.6 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Throughput. It is evident that there is an increase in the average 

Throughput of CAMEP 25 KPI with respect to BAM by 16.34%. 

ii) Average Processing Time  

 The Average Processing Time taken to monitor the incoming large number 

of heterogeneous events from the multiple domains is evaluated. Figure 6.15 

illustrates that the proposed CAMEP approach outperforms the existing BAM 
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approaches due to the integration of CEP in the BAM. In addition, event filtering is 

performed to filter out the irrelevant events based on the KPIs. Furthermore, the 

number of KPIs available for monitoring decides the elapsed time to monitor the 

incoming events. In case of the more number of KPIs, the average processing time 

required to process the incoming events gets gradually increased.   

Hypothesis Evaluation with respect to the treatment of the factor A: (Average 

Processing Time) 

Null hypothesis H0:  A1=A2=A3, where A1= BAM, A2=CAMEP 50 KPI and 

A3=CAMEP 25 KPI 

  (There is no significant difference among the three 

systems in terms of Average Processing Time obtained.) 

Alternate hypothesis H10: Treatment means are not equal for at least one pair of the 

treatment means of the factor A 

  (There is a significant difference among the three 

systems in terms of Average Processing Time) 

 

Figure 6.15:  Average Processing Time of CAMEP System 
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Table 6.7:  ANOVA Results of Average Processing Time of CAMEP System 

Technique Preprocessing time 

I II III Hypothesis p value 

BAM CAMEP 
50 KPI 

CAMEP 
25 KPI H10 0.001 

 

 From Table 6.7, it is concluded that the calculated significance level of the 

parameter detection time of comparing three systems BAM, CAMEP 50 KPI and 

CAMEP 25 KPI always satisfy the condition (p value<0.05). There is significant 

difference between the results for different Average Processing Times of  BAM, 

CAMEP 50 KPI and CAMEP 25 KPI. Hence, the null hypothesis for H10 can be 

rejected. 

 Further,  it  is  also  required  to  determine  the  system  which  has  the  

maximum Throughput. This is analyzed using descriptive statistics given in  

Table 6.8. Table 6.8 shows the descriptive statistics (the maximum, minimum, 

median, mean values and standard deviation) of each of the technique for the 

parameter Throughput.  

Table 6.8: Descriptive Statistics of Average Processing Time of CAMEP System 

Technique BAM CAMEP 50 KPI CAMEP 25 KPI 

Max 

Min 

1000.0 

300.0 

800.0 

150.0 

500.0 

100.0 

Mean 

Median 

715.0 

762.5 

497.5 

512.5 

335.0 

362.5 

Standard 
Deviation 

223.7 225.0 140.5 

 

 From Table 6.8, it is evident that there is decrease in Average Processing 

Time values in CAMEP 25 KPI and CAMEP 50 KPI compared BAM by 53.14% 

and 30.4%respectively. 
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6.4  PERFORMANCE EVALUATION OF SMART REAL-TIME USE 

CASES 

 The performance of PCEP system with respect to Throughput and 

Processing time is tested in multiple domains such as stock, RFID and KPI to verify 

the consistency and generalness of PCEP system. 

6.4.1  Throughput Comparison 

 The Figure 6.16 illustrates the performance of Distributed Cayuga with 

PCEP implemented in Stock domain, RFID domain and KPI domain. From the 

chart, it is evident that the Throughput of PCEP is consistently increasing with 

respect to the throughput of Distributed Cayuga.  Thus, it can be concluded that the 

performance of PCEP in Throughput does not depend on the application domain. 

 

Figure 6.16:  Throughput Comparison for Smart Real-Time Use Cases 
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Cayuga.  Thus, it can be concluded that the performance of PCEP in Average 

Processing Time does not depend on the application domain. 

 

Figure 6.17: Average Processing Time Comparison for Smart Real-Time Use 
Cases 
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perform an efficient monitoring of events coming from the multiple domains based 

on Key Performance Indicators. It triggers the necessary action for maintaining the 

overall business performance that displays the performance of the business process 

in terms of KPIs . The performance of PCEP against the existing Distributed Cayuga 

is statistically analyzed using ANOVA and T-Tests. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

 The last chapter of the Thesis provides a brief summary of the various 

research contributions and highlights the advantages of the PCEP system. Further it 

list a few problems for future research. 

7.1  CONCLUSION 

 The  main  focus  of  the  research  is  to  develop  a  scalable  and  efficient  

Probabilistic Complex Event Processing (PCEP) system that can handle uncertain 

event stream. The research objectives has been formulated from the literature 

survey. In order to achieve the research objectives, experimental setup has been 

designed. The PCEP system is evaluated using the designed experimental setup. It is 

inferred that all the objectives have been achieved effectively. The performance of 

the system was compared with the existing Distributed Cayuga System. The 

statistical  analysis  of  the  results  obtained  has  been  performed  using  T-test  and  

ANOVA.  

 The PCEP system is an integrated approach that comprises of Efficient 

Generic Event Filtering (EGEF) and Probabilistic Event Sequence Prediction 

(PSEP). The EGEF module incorporates Predicate based Subscription Grouping 

Algorithm, NFAh based filtering, row/column scaling and pipelining techniques. The 

PSEP module incorporates the Dynamic Fuzzy Probabilistic Relational Model 

(DFPRM) and Probabilistic Fuzzy Logic. 

 The EGEP module was validated for the events from the health domain 

against the parameters, Throughput and Average Processing Time. The results 

indicate that the EGEF module has an increased Throughput of 33% and decreased 

Average Processing Time of 26%, compared to the existing Distributed Cayuga 

system.  
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 The PCEP system was also validated for the events from the stock market 

domain with the parameters, Throughput and Average Processing Time. The 

Throughput is considered along the following two dimensions: Throughput as a 

function  of  State  Machines  and  Throughput  as  a  function  of  NFA  Length.  The  

results  point  out  that  PCEP  system  has  an  increase  of  31.62%  with  respect  to  

Throughput as a function of State Machines compared to Distributed Cayuga. It is 

inferred from the results that PCEP system has an increase of 42.46% with respect to 

Throughput as a function of NFA Length compared to Distributed Cayuga. The 

performance  of  the  PCEP  system  with  respect  to  Average  Processing  Time  

decreases by 19.17% compared to Distributed Cayuga. The scalability inferred from 

the observed Throughput and Average Processing Time signifies that the PCEP 

system   is better than Distributed Cayuga by 62%.  

 To validate the performance of the PCEP across multiple heterogeneous 

domains in addition to the stock market domain, the PCEP system was tested with 

events from RFID event data of product manufacturing domain and Key 

Performance Indicators. The results show that the PCEP system processes the RFID 

events with increased Throughput of 28% and decreased Average Processing Time 

of 46%, compared to the existing Distributed Cayuga system. It is inferred that the 

PCEP system processes the KPI as events with increased Throughput of 16.34% and 

decreased Average Processing Time of 30.4%, compared to the existing Distributed 

Cayuga system. 

 The PCEP system has an efficient pre-event filtering module, which filters 

and allows the relevant events to the next prediction phase. The unnecessary 

computation for the irrelevant events is reduced and this improves the throughput of 

the  event  detection.  The  significant  contribution  of  the  PCEP  system  is  the  

fabrication of the probabilistic framework for the CEP. 

 This research has made a noteworthy contribution in the field of Complex 

Event Processing in two aspects: Improving the efficiency of the filtering and 

handling the uncertain data using Probabilistic Relational Model.  As a successful 

attempt in the field of Probabilistic Event Processing, various interesting and 

challenging directions are introduced for future exploration.   
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7.2  FUTURE WORK 

 The PCEP system is limited to perform effective business monitoring 

within the intra-organizational setting and explicit dependency is 

available between the interacting parties to achieve high scalability. 

However, in the case of an inter-company cooperation, CEP is a 

challenging task to perform a robust pattern matching over uncertain 

events due to the lack of cooperation and heterogeneity available 

between the interacting parties in multiple domains. Thus, there is a 

need to perform semantic decoupling between the publishers and 

subscribers in terms of three temporal parameters such as time, space 

and synchronization. The system needs to acquire an explicit 

independency between the interacting participants to perform 

semantic matching and to achieve high scalability even under 

heterogeneous environments. 

 The other possible direction is the extension of query languages to 

support the various monitoring applications. This will achieve 

effective query processing to execute multiple event queries 

simultaneously over inferred data to detect business opportunities and 

risks.  

 The  efficiency  of  DFPRM  model  can  be  further  improved  by  self-

optimizing its scaling inference for handling continuous variables that 

provide timely processing of a large number of uncertain events with 

high scalability.  

 The notion of Concept Drift can also be included when generating 

complex events. 
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