
EFFICIENT AND SCALABLE UNCERTAIN EVENT
PROCESSING IN BUSINESS INTELLIGENCE

A Thesis

submitted to
Pondicherry University

in partial
fulfilment of the requirements for the award of the Degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

V. GOVINDASAMY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
PONDICHERRY ENGINEERING COLLEGE

PUDUCHERRY – 605 014
INDIA

DECEMBER 2013

ii

Dr. P. THAMBIDURAI, M.E., Ph.D., F.I.E.
Professor of CSE and Principal
Perunthalaivar Kamarajar Institute of Engineering and Technology
(Government of Puducherry Institution)
Karaikal – 609 603

CERTIFICATE

 Certified that this Thesis entitled “EFFICIENT AND SCALABLE

UNCERTAIN EVENT PROCESSING IN BUSINESS INTELLIGENCE”

submitted for the award of the degree of DOCTOR OF PHILOSOPHY in

COMPUTER SCIENCE AND ENGINEERING of the Pondicherry University,

Puducherry is a record of original research work carried out by

Mr. V. GOVINDASAMY during the period of study under my supervision and that

the Thesis has not previously formed the basis for the award to the candidate of any

Degree, Diploma, Associateship, Fellowship or other similar titles. This Thesis

represents independent work on the part of the candidate.

(Dr. P. THAMBIDURAI)

 Supervisor

Date :

Place : Puducherry

iii

ACKNOWLEDGEMENT

 My first debt of gratitude goes to my supervisor, Dr. P. Thambidurai,

Professor of Computer Science and Engineering and Principal, Perunthalaivar

Kamarajar Institute of Engineering and Technology, Karaikal. He is not only my

guide, but also my mentor. His patience, genuine care, concern and faith in me

during the dissertation process enabled me to attend to life and also complete my

research. He has been motivating, encouraging and enlightening all these years.

 I would like to thank my Doctoral Committee members, Dr. N. P Gopalan,

Professor, Department of Computer Applications, National Institute of Technology,

Tiruchirappali and Dr. K. Vivekanandan, Professor, Department of Computer

Science and Engineering, Pondicherry Engineering College, Puducherry for their

support, guidance and helpful suggestions. Their guidance has served me well and I

owe them my heartfelt gratitude.

 I register my gratitude to Dr. D. Govindarajulu, Principal, Pondicherry

Engineering College, Puducherry and Dr. V. Prithiviraj, Former Principal,

Pondicherry Engineering College, Puducherry for their support to pursue the

research work. My heartfelt thanks are due to Dr. D. Loganathan, Professor and

Head, Department of Computer Science and Engineering, Pondicherry Engineering

College, Puducherry for the academic, technical and logistical support provided by

the Department of Computer Science and Engineering, Pondicherry Engineering

College, Puducherry. I take this opportunity to thank wholeheartedly

Dr. M. Ezhilarasan, Professor and Head, Department of Information Technology,

iv

Pondicherry Engineering College, Puducherry for the incredible leadership, timely

and proper advice throughout the research.

 I would like to thank all of my Fellow Researchers who have extended

their continuous encouragement and support so as to improve the quality of the

thesis. My special thanks goes to all the faculty members and non-teaching members

of Department of Computer Science and Engineering and Department of

Information Technology, Pondicherry Engineering College, Puducherry for their

support.

 Finally, I thank all of my family members for their understanding, help and

patience throughout the research.

v

ABSTRACT

 During the last decade, Complex Event Processing (CEP) has been one of

the most rapidly emerging fields to identify the composite (high-level) events from

the primitive (low-level) events that occur online. Due to the availability of massive

amount of business transactions and numerous new technologies for information

processing, it has now become a real challenge to provide real-time event driven

systems that can process data under high input data rate in an automated and

systematic approach. In recent days, many researchers have focused their attention

on the challenges of efficient event monitoring of real-time applications like

monitoring RSS streams, stock tickers, RFID data streams and click streams that

generate a number of events with high uncertainty. The main objective of the

research is to develop a probabilistic framework named as Probabilistic Complex

Event Processing (PCEP) system in the context of real-world stock ticker streams

that execute complex event pattern queries on the continuously streaming data with

uncertainty. The PCEP system consists of two phases named as Efficient Generic

Event Filtering (EGEF) and Probabilistic Event Sequence Prediction (PESP).

 In the EGEF phase, a Non-deterministic Finite Automaton-heap (NFAh)

based event matching allows to filter the relevant events by identifying the

occurrences of user defined event patterns in a large volume of continuously arriving

data streams. In order to express the complex event patterns in a more efficient form,

a CEP language named as Complex Event Pattern Subscription Language (CEPSL)

is used. CEPSL is extended from the existing high level event query languages.

A Predicate based Subscription Grouping algorithm (PSG) is proposed to group user

subscriptions based on access predicates to improve the scalability. Furthermore, the

PCEP establishes a query aware partitioning scheme that deploys two efficient

techniques such as row/column scaling and pipelining that dispatch the grouped user

vi

subscriptions into separate machines. It proposes an efficient distributed event

processing approach that distributes the process based on access predicate of

subscription clusters across a multiple number of NFAh machines. It performs a

NFAh pattern matching mechanism to extract the relevant events from the large

number of incoming events based on the user subscriptions.

 The second phase of PCEP derives a stateful composite event sequences

from the filtered relevant events based on the probabilistic framework. It constructs

an event hierarchy in the form of a Dynamic Fuzzy Probabilistic Relational Model

(DFPRM) that is used to represent the probability space in terms of the concept of

individuals, their properties and relations among them. DFPRM computes the joint

probability distribution using the conditional probabilistic dependencies among the

event sequences in accordance with the rules. In order to formulate the combination

of event sequences with the reduced overhead, Probabilistic Fuzzy Logic (PFL) is

used to infer the semantic correlation among the event sequences to estimate the

fuzzy linguistic variables from computed Conditional Probability Distributions

(CPD) in the large probability space. PFL enhances the robustness of the complex

event detection process under uncertainty.

 To evaluate the effectiveness of the PCEP system empirically, the system

is implemented in the Publisher/Subscriber model using Java Message Service

(JMS) subscription API in Java based prototype. The experimental results are

presented in terms of scalability and efficiency using the prototype. Results reveal

that PCEP system offers high scalability due to an efficient event filtering approach

and achieves high efficiency in probabilistic complex event detection through

handling of uncertainty using DFPRM model and PFL approximation mechanisms.

It is inferred that the PCEP system is more efficient and scalable than the other

existing CEP approaches.

vii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ACKNOWLEDGEMENT iii

 ABSTRACT v

 LIST OF FIGURES xiii

 LIST OF TABLES xvi

 LIST OF ABBREVIATIONS xviii

1 INTRODUCTION 1

 1.1 OVERVIEW 1

 1.2 PREAMBLE 3

 1.2.1 Evolution of Information Flow Processing 3

 1.2.2 Data Stream Management Systems 4

 1.2.3 Complex Event Processing (CEP) 5

 1.2.3.1 Architecture of CEP 6

 1.2.3.2 Internal Processing of CEP 7

 1.2.3.3 Importance of CEP 8

 1.2.3.4 Characteristics of CEP Systems 10

 1.2.3.5 CEP General Use Cases 10

 1.2.3.6 Applications of CEP 11

 1.2.4 Integration of Business Intelligence in CEP 13

 1.2.4.1 Business Intelligence 13

 1.2.4.2 Event-driven Business Process

 Management 14

 1.2.4.3 Business Process Management 14

 1.2.4.4 Business Activity Monitoring 15

 1.2.4.5 Key Performance Indicators 15

 1.2.5 CEP Terminologies 16

 1.2.5.1 Event 16

viii

CHAPTER NO. TITLE PAGE NO.

 1.2.5.2 Representation of Events 16

 1.2.5.3 Types of Events 17

 1.2.5.4 Event Attributes 18

 1.2.5.5 Event Stream 18

 1.2.5.6 Event History 18

 1.2.5.7 Event Instance Sequence 19

 1.2.5.8 Event Type 19

 1.2.5.9 Event Instance 19

 1.2.6 Event Processing Languages 19

 1.2.6.1 Stream-oriented Languages 20

 1.2.6.2 Rule-oriented Languages 20

 1.2.7 Event Filtering 21

 1.2.8 Uncertainty 22

 1.2.8.1 Epistemic Uncertainty 22

 1.2.8.2 Linguistic Uncertainty 23

 1.2.8.3 Ambiguity Uncertainty 23

 1.2.8.4 Variability Uncertainty 23

 1.2.9 Uncertainty Analysis Techniques 23

 1.2.9.1 Probabilistic Analysis 24

 1.2.9.2 Fuzzy Analysis 24

 1.2.9.3 Bayesian Analysis 25

 1.3 SCOPE OF THE RESEARCH 25

 1.4 CONTRIBUTIONS OF THE RESEARCH 26

 1.5 THESIS ORGANIZATION 27

 2 CRITICAL SURVEY OF LITERATURE 29

 2.1 REVIEW ON EVENT FILTERING SCHEMES 29

 2.1.1 Binary Decision Diagram 29

 2.1.2 Bitmap Indexing 30

 2.1.3 High Performance Event Filtering 30

ix

CHAPTER NO. TITLE PAGE NO.

 2.2 REVIEW ON CEP ENGINES 31

 2.2.1 Simple Scalable Streaming System 31

 2.2.2 Aurora 32

 2.2.3 TelegraphCQ 33

 2.2.4 STREAM 33

 2.2.5 Esper 34

 2.2.6 Stream-based and Shared Event

 Processing (SASE) 35

 2.2.7 Cayuga 35

 2.2.8 Coral8 Engine 36

 2.3 SURVEY OF QUERY LANGUAGES 37

 2.3.1 Continuous Query Language in STREAM 37

 2.3.2 Continuous Computation Language (CCL)

 in Coral8 38

 2.3.3 SASE Language 39

 2.3.4 Event Processing Language in Esper 39

 2.3.5 Cayuga Event Language in Cayuga 40

 2.3.6 AMiT in IBM Websphere 41

 2.3.7 ruleCore Markup Language 42

 2.3.8 Drools Rule Language 42

 2.3.9 Comparative Analysis of Event Query

 Languages 43

 2.4 PROBABILISTIC DATABASE SYSTEMS 44

2.4.1 Hidden Markov Model 44

2.4.2 Top-k Query Processing 45

2.4.3 Top-k Query Processing in X-Relation Model 45

2.4.4 Efficient Top-k Query Evaluation 46

2.4.5 Probabilistic Complex Event Triggering 47

2.4.6 Probabilistic Inference over RFID Streams 47

2.4.7 Probabilistic Complex Event Processing 48

x

CHAPTER NO. TITLE PAGE NO.

2.4.8 Probabilistic Query Evaluation 48

2.4.9 Probabilistic Event Extraction System 49

2.4.10 Probabilistic Event Stream Processing

 with Lineage 50

 2.5 LIMITATIONS OF THE EXISTING SYSTEMS 50

 2.6 SUMMARY 52

 3 PROBLEM STATEMENT AND
 RESEARCH OBJECTIVES 53

 3.1 PROBLEM STATEMENT 53

 3.2 OBJECTIVES OF THE RESEARCH 55

 3.3 ARCHITECTURE OF PCEP 55

 3.4 INFORMATION FLOW IN PCEP 57

 3.5 SUMMARY 59

 4 GENERIC AND SCALABLE EVENT
 FILTERING BASED ON NFAH 60

 4.1 EFFICIENT AND GENERIC EVENT FILTERING 60

 4.2 SEQUENCE FORMATION MODULE 61

 4.3 QUERY PLAN BASED APPROACH 62

4.3.1 Predicate based Subscription Grouping 62

4.3.2 Query Aware Partitioning 64

4.3.3 Query Compilation 67

 4.4 NFAh BASED EVENT MATCHING ENGINE 68

4.4.1 NFAh Automaton 69

4.4.2 Pipelining 70

4.5 PERFORMANCE EVALUATION 72

4.5.1 Experimental Setup 72

4.5.2 Datasets 72

4.6 EFFICIENCY AND SCALABILITY

 OF THE EGEF APPROACH 73

xi

CHAPTER NO. TITLE PAGE NO.

 4.6.1 Throughput 73

 4.6 2 Average Processing Time 75

4.7 SUMMARY 77

 5 A PROBABILISTIC FUZZY MODEL FOR

 REASONING OVER UNCERTAINTY 78

 5.1 PROBABILISTIC EVENT SEQUENCE PREDICTION 78

5.1.1 Dynamic Fuzzy Probabilistic Relational Model 79

5.1.2 Probability Computation for Event Sequence 80

5.1.3 Probabilistic Fuzzy Logic based Inference Engine 80

5.2 PERFORMANCE EVALUATION 83

5.2.1 Experimental Setup 83

5.2.2 Benchmark Application: Stock Market 84

5.2.3 Experimental Results 84

5.2.3.1 Throughput of PCEP 85

5.2.3.2 Average Processing Time of PCEP 91

 5.2.3.3 Scalability of PCEP 94

5.3 SUMMARY 97

 6 PCEP IN SMART REAL-TIME USE CASES 98

 6.1 RFID PCEP IN A REAL-TIME PRODUCT

 MANUFACTURING 98

 6.1.1 Production Path 99

6.1.2 Complex Event Processing Language (CEPL) 100

6.1.3 Probabilistic Complex Event Processing 101

6.1.3.1 Event Filtering 101

6.1.3.2 Probabilistic Complex Event Processing 102

6.1.3.3 Event Detection Phase 102

6.1.4 Experimental Setup 104

xii

CHAPTER NO. TITLE PAGE NO.

6.2 UNCERTAIN STOCK PRICE

 PREDICTION USING PFL 108

6.2.1 Stock Exchange Scenario 109

6.2.2 Stock Prediction using DFPRM 111

6.2.3 Conditional Probability Computation

 of Stock Events 112

6.2.4 Probabilistic Fuzzy Logic based Inference Engine 112

6.2.5 Experimental Setup 114

6.3 KPI BASED CEP AND CBAM 116

6.3.1 Event Collection layer 117

6.3.2 Selection of KPIs 117

6.3.3 Event Filtering Layer 118

6.3.4 Complex Event Processing Layer 118

6.3.5 Event Delivery and Display Layer 119

6.3.6 Experimental Setup 119

6.4 PERFORMANCE EVALUATION OF SMART

 REAL-TIME USE CASES 124

6.4.1 Throughput Comparison 124

6.4.2 Average Processing Time Comparison 124

6.5 SUMMARY 125

 7 CONCLUSION AND FUTURE WORK 127

 7.1 CONCLUSION 127

 7.2 FUTURE WORK 129

 REFERENCES 130

 LIST OF PUBLICATIONS 139

 VITAE 141

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

1.1 Architecture of CEP 6

1.2 Internal Processing of CEP 7

1.3 Event Tuple 17

1.4 Event Filtering 21

2.1 Continuous Query Language 37

2.2 Continuous Computation Language 38

2.3 SASE Language 39

2.4 Event Processing Language 40

2.5 Cayuga Event Language 40

2.6 AMiT Language 41

2.7 rCML Language 42

2.8 Drools Language 43

3.1 PCEP in the Publisher/Subscriber Middleware System 56

3.2 Information Flow in PCEP 58

4.1 Efficient and Generic Event Filtering 61

4.2 Predicate based Subscription Grouping 63

4.3 Predicate based Subscription Grouping Algorithm 64

4.4 Event Dispatching 65

4.5 Query Aware Partitioning 66

4.6 Query Aware Partitioning Algorithm 66

4.7 Query Compilation Algorithm 67

4.8 NFAh based Event Pattern Matching 68

4.9 NFAh Pattern Matching Algorithm 69

4.10 NFAh Automaton for CEPSL Query 70

4.11 NFAh based Event Matching with Pipelining 71

4.12 Throughput versus Number of Machines 74

xiv

FIGURE NO. TITLE PAGE NO.

4.13 Average Processing Time versus Number of Events 76

5.1 Efficient Event Sequence Prediction Paradigm 78

5.2 Dynamic Fuzzy Probabilistic Relational Model 79

5.3 Fuzzy Partitioning of Large Probability Space 81

5.4 Probabilistic Fuzzy Logic based Inference Engine 82

5.5 Procedure for Probabilistic Complex Event Processing 83

5.6 Throughput as a Function of varying Number of State

Machines 86

5.7 Throughput as a Function of NFA length 88

5.8 Throughput as a Function of Probability Space 91

5.9 Average Processing Time for varying NFA Sequence

Length 92

5.10 Scalability of PCEP with and without Filtering 95

6.1 CEP based RFID Model in Product Manufacturing

System 99

6.2 RFID Event Stream 100

6.3 Complex Event Processing Language 100

6.4 Throughput of RFID-PCEP System 105

6.5 Average Processing Time of RFID-PCEP System 107

6.6 Stock Exchange Publisher/Subscriber Middleware

System 109

6.7 Stock Exchange Event Stream 110

6.8 Stock Request 110

6.9 Dynamic Fuzzy Probabilistic Relational Model 111

6.10 Probabilistic Fuzzy Logic for Stock Prediction 113

6.11 Accuracy of Stock Prediction 115

6.12 Mean Average Error Percentage in Stock Prediction 115

6.13 CAMEP in Real-Time Enterprise of Multiple

Domains 116

6.14 Throughput of CAMEP system 120

xv

FIGURE NO. TITLE PAGE NO.

6.15 Average Processing Time of CAMEP System 122

6.16 Throughput Comparison for Smart Real-Time Use

Cases 124

6.17 Average Processing Time Comparison for Smart

Real-Time Use Cases 125

xvi

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

4.1 T-test for Distributed Cayuga and PCEP Filtering

based on Throughput
74

4.2 Descriptive Statistics of Throughput Measures 75

4.3 T-test for Distributed Cayuga and PCEP Filtering

based on Average Processing Time
76

4.4 Descriptive Statistics of Average Processing Time

Measures
77

5.1 ANOVA for Throughput as a Function of State

Machines
86

5.2 Descriptive Statistics of Throughput Measures 87

5.3 ANOVA for Throughput as Function of NFA Length 89

5.4 Descriptive Statistics of Throughput Measures 90

5.5 Average Processing Time versus State Machines 93

5.6 ANOVA for Average Processing Time as Function of

NFA Length
93

5.7 Descriptive Statistics of Average Processing Time as a

Function of NFA Length
94

5.8 T- test for Scalability 96

5.9 Descriptive Statistics of Scalability Measures 96

6.1 T-test for Throughput of RFID-PCEP System 105

6.2 Descriptive Statistics of Throughput Measures of

RFID-PCEP System
106

6.3 T-test for Average Processing Time of RFID-PCEP

System
107

6.4 Descriptive Statistics of Average Processing

Time of RFID-PCEP System
108

xvii

TABLE NO. TITLE PAGE NO.

6.5 T-test for Throughput of CAMEP 25 KPI System 121

6.6 Descriptive Statistics of Throughput Measures of

CAMEP 25 KPI System
121

6.7 ANOVA Results of Average Processing Time of

CAMEP System
123

6.8 Descriptive Statistics of Average Processing Time of

CAMEP System
123

xviii

LIST OF ABBREVIATIONS

 AIG - Active Instance Graph

AIH - Active Instance Heap

AIR - Automaton Intermediate Representation

AMiT - Active Middleware Technology

API - Application Programming Interface

BAM - Business Activity Monitoring

BDD - Binary Decision Diagram

BI - Business Intelligence

BMS - Business Metric Service

BMI - Body Mass Index

BN - Bayesian Network

BP - Blood Pressure

BPM - Business Process Management

BPMN - Business Process Management Notation

BPEL - Business Process Execution Language

BRMSs - Business Rule Management Systems

CA - Condition Action

CAMEP - Complex business Activity Monitoring with Event Processing

CCL - Continuous Computation Language

CEL - Cayuga Event Language

CEP - Complex Event Processing

CEPL - Complex Event Processing Language

CEPSL - Complex Event Pattern Subscription Language

CLUES - Cleansing Language for Unreliable RFID Event Streams

CPD - Conditional Probability Distributions

CPT - Conditional Probability Table

CQL - Continuous Query Language

D/A - Debt-to-Asset Ratio

xix

DAG - Directed Acyclic Graph

DAHP - Database Active Human Passive

DBMS - Database Management Systems

DDMP - Distributed Dynamic Multi-Point

DFA - Deterministic Finite State Automata

DFPRM - Dynamic Fuzzy Probabilistic Relational Model

DRL - Drools Rule Language

DeSL - Default Subscription Language

DSMS - Data Stream Management Systems

ECA - Event-Condition-Action

EG - Earnings Growth

EGEF - Efficient Generic Event Filtering

EI - Event Instance

EID - Event Instance Data

EIS - Event Instance Sequence

EPL - Event Processing Languages

ET - Event Type

FL - Fuzzy Logic

GB - Gigabytes

GDP - Gross Domestic Product

Hb - Hemoglobin Content

HMM - Hidden Markov Model

IFP - Information Flow Processing

IDE - Integrated Development Environment

I/O - Input/Output

IBM - International Business Machine

IR - Interest Rate

IT - Information Technology

JMS - Java Message Service

KPIs - Key Performance Indicators

MAV - Moving Average Value

MB - Megabytes

xx

MI - Manufacturing Index

MQO - Multi-Query Optimization

NASDAQ - National Association of Securities Dealers Automated Quotation

NFA - Non-deterministic Finite Automaton

NFAh - Non-deterministic Finite Automaton-heap

OMG - Object Management Group

P/E - Price-to-Earnings Ratio

PC - Personal Computer

PCEP - Probabilistic Complex Event Processing

PCEPr - Probabilistic Complex Event Processor

PCET - Probabilistic Complex Event Triggering

PEs - Processing Elements

PEEX - Probabilistic Event Extraction System

PESP - Probabilistic Event Sequence Prediction

PFL - Probabilistic Fuzzy Logic

PGM - Probabilistic Graphical Modeling

POJO - Plain Old Java Object

PSG - Predicate based Subscription Grouping

PSR - Price-to-Sales Ratio

PSS - Probability Sample Space

QoS - Quality-of-Service

rCML - RuleCore Markup Language

RAM - Random Access Memory

RDBMS - Relational Database Management System

RFID - Radio Frequency Identification Devices

ROE - Return On Equity

RSI - Relative Strength Index

S4 - Simple Scalable Streaming System

SASE - Stream-based And Shared Event Processing

SF - Sequence Formation

SLA - Service Level Agreements

SPC - Stream Processing Core

xxi

SQuAl - Aurora's Stream Query Algebra

SQL - Structured Query Language

SiSL - Simple Subscription Language

StSL - Strict Subscription Language

ST - Sequence Traversing

STREAM - Standard sTREam datA Manager

TCS - Tata Consultancy Services

U-Topk - Uncertain Top-k query

U-k Rank - Uncertain k-Ranks query

XML - Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

 In today’s Internet world, the availability of real-time data has increased

enormously in size every year due to the increase in number of distributed software

applications. These applications generate high volume of data stream continuously

from geographically distributed multiple sources at an unpredictable rate. There is a

need to derive events from the continuously flowing data in a timely manner [1].

Business processing systems are only interested in acquiring high level of

intelligence from the available data with effective reasoning. Complex Event

Processing (CEP) is the essential technology in the field of event processing that is

useful for business activity management applications [2]. In the emerging market, an

active database system with the integration of CEP provides the essential

functionality in the business process management to monitor and to optimize the

process of business enterprise. In order to react automatically to all events of

interest, the business process system must perform effective reasoning in an event

composition system to acquire a high level of intelligence from the available data.

Therefore, the intelligent system integrates CEP technology that can process the

large amount of data flow from multiple sources [3]. The core of the CEP is the CEP

engine (processor) that detects event patterns from the large number of incoming

events. An event pattern expresses the rules in a declarative language to describe the

complex relationship among the incoming events in order to obtain the relevant

information to trigger the output events [4].

 The accuracy and performance of event derivation largely depend on the

reliability of data sources. A data source has inherently unreliable data collection

process, or generates incorrect data leading to uncertainty [5]. Further, CEP in the

presence of uncertain events is a challenging task and this problem hampers the

2

accuracy of derived events. Many advanced technologies have been evolved to store

and to process the large number of continuously arriving incoming data with

uncertainty. There is a possibility for the occurrences of errors and incomplete

information in the incoming data due to the unpredictable event sources. In event

based systems, uncertainty arises due to the gap among the real occurrences of

events, to which the system must react and the capability of event-driven systems to

produce exact events. A lot of uncertain data algorithms [6] are developed to process

the uncertain data that represent events in terms of probabilistic distributions rather

than deterministic values. Thus, a probabilistic interpretation of data has recently

attracted the interest of the Active Database community to process the uncertain

data. The gap between actual events and event notifications is to be explicitly

managed to handle the uncertainty using probabilistic framework. In order to derive

the composite events under uncertainty, the uncertainty data can be modeled in the

form of probabilistic graphical model to derive the events externally under

uncertainty [7]. The main challenge of explicit probabilistic event processing is that

the rule-based systems need to process the large number of continuously arriving

events.

 This research presents a generic system for the modeling, the management

of events and the implementation of CEP and rules with uncertainty. This proposal

highlights the architecture in the form of Publisher/Subscriber middleware model

that conditionally detects the required high-level information from the continuously

arriving massive stream of data according to the user defined rules. The event

processing is performed in two phases such as Efficient and Generic Event Filtering

(EGEF) and Probabilistic Event Sequence Prediction (PESP). In the first phase, the

distributed non-deterministic Finite Automata-heap (NFAh) based pattern matching

filters the relevant event sequences from the large number of incoming events based

on the domain experts specified rules. In the second phase, the filtered events enter

into the PESP phase that derives stateful composite event sequences from the

filtered relevant event sequence based on the probabilistic framework. The event

hierarchy is constructed in the form of a graphical model called as Dynamic Fuzzy

Probabilistic Relational Model that captures the semantics. The probabilities of

3

possible worlds are represented in terms of the concept of individuals, their

properties and relations among them using an abstraction based on a Bayesian

Network. To improve the materialization efficiency, this system employs a

Probabilistic Fuzzy Logic over a set of rules that approximate the probabilities

defined by the possible worlds of probability space. The semantic correlation among

the event sequences is inferred using linguistic variables with reduced sample space.

PCEP performs efficient complex event detection in a highly dynamic environment

that achieves high throughput and efficiency while retaining less detection latency.

Further, PCEP enhances the robustness of the complex event detection process

under uncertainty by providing high flexibility and scalability.

1.2 PREAMBLE

 This section presents the progression from traditional Data Base

Management Systems to the present Complex Event Processing systems. The

explosion of data events due to the proliferation of internet and the necessity to

process this data in near real-time propelled the arrival of Complex Event Processing

systems. The integration of CEP with Business Intelligence, uncertainty inherent in

event data and a broad classification of uncertainty are discussed.

1.2.1 Evolution of Information Flow Processing

 Database Management Systems (DBMS) process the data which are stored

on a disk. DBMS defines the structure of the data in the form of the relational

model. DBMS can analyze, arrange, collect and manipulate the data according to

the user dynamic queries [8]. More commonly, Structured Query Language (SQL) is

used to support the query specification in the database systems. The key feature in

DBMS is that the data is stored permanently, whereas queries are entered

dynamically to process the stored data. In a real-time scenario, the DBMS cannot

store and process the continuously arriving data. Furthermore, it does not fulfill the

concept of timeliness of flow processing that is mostly desirable in real-time

applications that require instantaneous response. However, it is practically infeasible

to store a large amount of data in its whole entirety.

4

 The static nature of DBMS led to the development of Information Flow

Processing (IFP) [9]. IFP can timely process the large amount of information flows

from multiple sources in order to extract new knowledge based on a set of

processing rules. IFP is different from DBMS in various aspects such as

implementation architecture, processing rule languages, the definition of a data

model and the way of processing. IFP is broadly classified into two types such as

Data Stream Management Systems (DSMS) [10] and the Complex Event Processing

(CEP) systems [11]. Unlike DBMS, DSMS is designed to process the transient data

that flow continuously from multiple sources. DSMS provides updated output

according to the current state of newly arriving data.

1.2.2 Data Stream Management Systems

 Continuous query community has developed Data Stream Management

System (DSMS) to improve the scalability of centralized continuous query systems.

DSMS is a specialization of DBMS that processes the continuously arriving event

streams against standing or continuous queries in a highly dynamic rate [10]. It is

not only capable of detecting patterns in event streams but also acquires updated

output according to the arrival of incoming event streams. A new interactive model

is introduced to execute the queries periodically or continuously according to the

arrival of incoming new event streams. DSMS incorporates temporal operators along

with the relational algebra operators such as selections, aggregate and joins in the

DBMS system. In order to process the incoming transient data in a timely manner,

the queries are continuous in nature and stay active for a long time. DSMS provides

the declarative subscriptions using more powerful query language. However, DSMS

achieves only limited scalability due to the limited number of subscription

processing and also the limited Multi-Query Optimization (MQO). DSMS differs

from conventional DBMS in several ways:

 Event stream is unbounded and irrespective of the arrival order of the

event streams.

5

 It is difficult to store and process the large number of continuously

arriving event streams due to the limited resource and timing

constraints.

 Effective active notifications are provided according to the updated

information rather than user explicit queries.

1.2.3 Complex Event Processing

 Complex Event Processing (CEP) is an emerging technology that extracts

the high level information from the distributed message based systems. The term

‘CEP’ was coined by David Luckham in 1990. CEP is a highly crucial technology

that encompasses algorithmic methods, techniques and tools to process the events

while they occur in a continuous and timely fashion. This technology derives the

valuable high level knowledge (complex events) by making sense of low level

primitive events. Here, knowledge takes the form of composite events, which are the

combinations of several primitive events. CEP is the most favorable platform to

build and to run the various number of real-time applications. CEP performs

processing of the large number of real-time events to trigger a suitable action [9].

CEP enables an organization to identify the occurrences of patterns of low level

events by filtering, correlating, aggregating and computing multiple streams of

high-volume, high speed business events. CEP differs from DSMS in three reasons

as follows:

 DSMS provides general capabilities to process streams, but CEP can

be able to detect event patterns.

 In CEP systems, the event languages express the correlation between

the events and ordered constraints, but, in DSMS the long queries are

only able to express the relation between the events.

 CEP systems can handle a large number of concurrent queries with

high scalability, which outperforms the DSMS [12] [13].

6

 Gartner defined CEP as follows “CEP is an approach that identifies data

and application traffic as events of importance, correlates these events to reveal

predefined patterns and reacts to them by generating actions to systems, people and

devices” [14]. The CEP engine is responsible for processing the large number of

continuously arriving events from distributed message systems and discovering the

complex event patterns of interest among the events. Finally, CEP provides

notifications to consumers about the detected high level semantic rich events. These

applications come up in a various number of domains: trading in the financial

markets, potential risk management, RFID-enabled monitoring in logistics

management, supply chain management, click-stream analysis, network intrusion

detection, business process monitoring, military power grid monitoring and

infrastructure monitoring [2]. CEP engine processes tens of thousands of events

while concurrently analyzing thousands of event processing strategies. The CEP

system supports high performance, scalability, manageability and fault tolerance for

mission-critical event-driven systems.

1.2.3.1 Architecture of CEP

 CEP is a middleware designed to timely process the large amount of event

notifications as they flow from the peripheral to the center of the system in order to

identify the composite events relevant for the event based applications. There are

event sources and event consumers at the periphery of the system. The general

architecture of CEP based applications is shown in Figure 1.1.

Figure 1.1: Architecture of CEP

 The CEP engine is the fundamental component of a CEP middleware that

takes the flow of information (the low level of events) arriving from different event

CEP Engine

Event Sources Event Patterns

Event Consumers

Predicted Complex Events

7

sources or Event Producers as its input, processes them and produces other flows of

information (high flow of information) directed toward a set of event consumers or

subscribers. The event patterns provide the set of event definition rules as a complex

query language that describes how to filter, combine and aggregate incoming

information to produce outgoing information. Complex Query language specifies the

user-defined patterns that describe how composite events are defined from primitive

ones. The event pattern has the ability to derive the complex relationships between

the incoming events which are flowing into the CEP engine. After processing the

large number of incoming event streams against the user defined query patterns,

CEP detects the occurrences of unique patterns of (low-level) events on the higher-

level events. Further, the system notifies about the event occurrence of the event

consumer or as an input to the other CEP engine in the system [9].

1.2.3.2 Internal Processing of CEP

 Figure 1.2 depicts the main functional components involved in the internal

event processing of CEP and highlights the precise description of the functionalities

offered by the CEP engine. CEP performs the task of identifying composite events

from the large number of continuously arriving primitive events. This general

behavior of CEP can be decomposed into a set of fundamental operations carried out

by the different components as shown in Figure 1.2.

Figure 1.2: Internal Processing of CEP

Event
Collector

Event
Predictor

Event
Generator

Rules

Event
Forwarder

Event
Source1

Event
Source2

Event
Sourcen

8

 A large number of incoming events enter into the CEP engine through the

Event Collector module that gathers the continuously arriving events from multiple

sources. It manages the channels connecting to the source with the CEP engine. The

Event Collector module acts as a multiplexer to receive the large number of

incoming events. Further, it structures a single stream of events from the multiple

streams into the CEP engine. A periodic clock is associated to support timely

processing. The CEP engine processes the events according to the rules in two phases

such as the Prediction Phase and the Generation Phase. The user defined queries are

represented as Condition Action Processing rules. Event Predictor module checks the

occurrence of event patterns specified in the condition clause in the large number of

incoming events. If the Event Predictor module detects the event pattern of incoming

events, the action specified in the action clause is sent to the Event Generator module.

Here, the Event Generator module triggers the action to produce results in the form of

alarms, emails or messages [9]. The output result is sent to the event consumers through

the Event Forwarder module. It can also be sent internally to the input of Event

Collector phase to perform the event processing again.

 In the CEP systems, all the inbound events cannot be stored for further

processing. Any real-time event will have an uncertainty associated with it and the

knowledge to be inferred from the events should be just in time. These unique

requirements of the CEP systems advocate for the need of efficient filtering

techniques that filter the irrelevant events and store only the relevant events for

further processing. Thus, there is a need for efficient event processing in the

presence of uncertainty.

1.2.3.3 Importance of CEP

 The CEP system is relevant in diverse domains due to the following

unique aspects:

i) Ability to Give Instantaneous Repose

 CEP is suitable for real-time applications due to its inherent nature of

instantaneous response. It has processing capability of incoming streams greater than

9

the event arrival rate. It is especially useful in alarm detection scenarios, stock

trading and volcanic monitoring where response time is of the order of milliseconds

rather than seconds.

ii) Distributed Processing

 CEP provides distributed processing of queries that are particularly useful

in the case of sensor network applications with limited resources. It reduces the

energy consumption and communication overhead even under high computation

capabilities. However, it is harder to implement in the financial applications due to

privacy issues and high demand for consistency.

iii) Logging and Analysis of Data Streams

 This feature of CEP provides the basis for acquiring improvements in

business logic. It is especially beneficial to achieve event detection for financial

applications that require logging of data for future analysis (e.g. stock trading).

iv) Heterogeneity of Data Sources

 CEP can process the incoming event streams when high heterogeneity

exists between the external multiple sources.

v) Learning Methods

 CEP can directly integrate the learning methods to process and analyze the

incoming data streams with high efficiency.

vi) Handling of High Volume of Data

 CEP can handle and process the high volume of incoming data with low

latency and high processing speed.

10

1.2.3.4 Characteristics of CEP Systems

 The characteristics of the CEP system are summarized as follows:

 It takes continuous and infinite stream of events as an input from the

external sources and not from a central database

 It provides real-time processing and event detection with low latency

 It processes the volatile event streams

 It can cope with the large number of submitted queries as well as a

large number of events in real-time.

 It is mainly concerned with the strong temporal relationship that

exists between the incoming events and their patterns rather than the

individual events.

 It can filter, correlate and aggregate data from multiple external

sources to infer the high level information among the events.

 It influences the continuously arriving real-time data directly rather

than the historical data stored in the database.

 It follows a DAHP (Database Active, Human Passive) model where

the system does continuous processing of incoming event streams

and notifies the user based on semantic information [14].

1.2.3.5 CEP General Use Cases

 The general belief is that the stock trading is the main use of CEP systems

in event monitoring applications [14]. However, in the present days, CEP plays a

vital role in many other intriguing applications such as IT, Financial Markets and

Manufacturing Organizations. These applications include:

11

i) Cleansing and Validation of Data

 CEP performs event filtering and data validation applications to filter the

irrelevant events from the continuously arriving event streams. It processes the

incoming events based on the event patterns to determine the irrelevant events which

fall outside the pre-defined patterns.

ii) Alerts and Notifications

 CEP systems generate event notifications such as alarms, messages and

emails in a real-time business system, when problems occur.

iii) Decision Making Systems

 CEP systems are used in automated business decision making to take the

best decisions using current and past information maintained in knowledge base.

iv) Feed Handling

 Most CEP platforms have in-built feed handlers that facilitate to process

the common data formats.

v) Data Standardization

 CEP engine is capable of standardizing the data of the same entity from

different sources within a common reference schema.

1.2.3.6 Applications of CEP

 Some applications based on CEP are listed as follows:

i) Stock Market Trading

 Financial application needs the continuous analysis of stock data to

identity the trends in the stock market. CEP identifies the suitable opportunities for

buying or selling securities based on the patterns of price movements in real-time.

12

ii) Real-time Supply Chain

 In retail and logistics industries, CEP performs continuous analysis of
RFID readings to automate the object tracking and the supply chain management. It
improves the operational performance of the industry in terms of sales and stock
control, industrial process automation and human resource management.

iii) Fraud Detection

 In the fraud detection application, CEP detects the fraudulent use of credit
card by inspecting the continuous streams of credit card transactions. It correlates
the fraud-indicator events at all stages of the claim value chain in real-time.

iv) Production Management and Quality Assurance

 In manufacturing control systems, certain anomalies are detected and the
e-mails or event notifications are generated to provide alerts for the attention of the
supervisor.

v) Sensor Network

 In environmental monitoring, CEP correlates the large number of sensor
data coming from the various sensors. Furthermore, it acquires information about the
observed world for predicting disasters as soon as possible.

vi) Intrusion Detection

 In intrusion detection systems, CEP processes the information from
multiple security devices to detect promptly and to analyze the network traffic in a
real-time. It can anticipate attacks in a corporate network to generate alerts when
unexpected event happens.

vii) Telecommunication

 In Telecommunications systems, CEP captures and analyzes the
information emitted by the network elements to signify the proper allocation of
service for delivery infrastructure in real-time [2] [14].

13

1.2.4 Integration of Business Intelligence in CEP

 The explosive growth in IT technology leads to the successful

implementation of Business Intelligence (BI) techniques in highly sophisticated

Business Process Management. BI paves the way for the business enterprise to

monitor and to analyze the business process in real-time to trigger necessary

actions. It provides the right direction for the growth of an organization in a highly

competitive world. BI is extremely helpful to support and improve the overall

performance of the enterprise business processes. The business process integrates

CEP to monitor, analyze and act on changing business conditions in real-time when

the event occurs [15]. CEP [2] [11] is a highly crucial component of any enterprise

business solutions that can empower more dynamic, real-time, profitable automated

business applications. It gathers data from multiple external sources using different

methods over different frequency. Thus, there is a need to derive events from the

continuous flow of data in a timely manner. In order to derive the event, business

processing systems acquire the high level of intelligence from the available data

with effective reasoning. Therefore, an effective business intelligent system must

require CEP technology to provide event notification through the filtering,

aggregation and correlation of the data [16].

1.2.4.1 Business Intelligence

 Business Intelligence transforms raw data into useful information for

successful business management. To transform raw data, BI encompasses a set of

methodologies, process architectures and the latest technologies to extract

meaningful information. It facilitates the businesses to make informed decisions

based on real-time data that supports an enterprise ahead of its competitors [17].

Traditionally, BI technology focuses on the core features such as reporting and

analytics, but later, a new set of features emerges to make it suitable for various

real-time applications in a commercial world. Forrester's BI research explains that

the new technology is evolving on the cutting edge of new trends to facilitate the

enterprise in order to gain competitive advantage in their industries. BI consists of

five principal components that perform multi-dimensional analysis on the business

14

process. The data warehouse of an enterprise is built in order to assemble the useful

information about the organization. The five principal components of Business

Intelligence are multidimensional analysis, reporting, data mining, financial

consolidation and budgeting and Key Performance Indicators (KPIs).

1.2.4.2 Event-driven Business Process Management

 Event-driven Business Process Management is a combination of two key

technologies such as Business Process Management (BPM) and CEP. BPM is a

software platform that models and optimizes the business process in order to achieve

significant gain in a competitive market. On the contrary, CEP is a parallel running

platform used to process the business information in the form of events to make a

better decision for business improvement [18]. In business processing, a large

number of events from multiple event sources are used to trigger the business

process that results in another business level event to improve the business. Thus,

CEP plays a main role in the processing of a large number of business events to

trigger a new complex event in the process of business improvement [11] [15].The

event driven BPM acts as an event producer to generate a large number of events.

Moreover, the event processing system is used to process the events that result in

derived events, which are either returned to the BPM system or provided as an input

to any other application. Now, the BPM system can act as an event consumer that

receives a resultant event from the event processing system and triggers a specific

business event according to the situations detected in the business system.

1.2.4.3 Business Process Management

 Business Process Management (BPM) is a unified approach that deals with

modeling, managing, orchestrating and executing of an enterprise's business

processes. A business process is defined as the structured set of activities to achieve

the goal of a business organization. Now-a-days, the systematic BPM software

evolves in the platform of service-oriented architecture to model the business

process in a workflow system. It promotes the business process in a more effective

and efficient manner that also strives for innovation, flexibility and integration. In

15

order to model the large amount of data, Business Process Management Notation

(BPMN) and Business Process Execution Language (BPEL) are the major software

standards of BPM. Further, BPEL is a standard language that addresses the

execution process of BPM.

1.2.4.4 Business Activity Monitoring

 Gartner coined a term called Business Activity Monitoring (BAM) that

aims at “providing real-time access to critical business performance indicators to

improve the speed and effectiveness of business operations” [19]. A large number of

external sources in multiple domains generate a massive amount of events in real-

time. Furthermore, the critical business Key Performance Indicators are identified in

order to get a better insight into the business activities and thereby to improve the

effectiveness of business operations. Most commercial BPM software products such

as Oracle BAM, TIBCO Nimbus and IBM Tivoli deploy BAM dash-boards to

monitor and to report violations of service level agreements. BAM dash-boards

display the performance of the system in the form of graphical meters. However, the

main limitation in such products is that the business monitoring is performed within

the intra-organizational setting. Nowadays, many companies outsource their

business process to other external companies to meet their joint customer needs.

This process leads to a cross-organizational process where the organizations

delegate their process execution to other companies for supporting an inter-company

cooperation [20]. However, it is difficult to monitor the business process across the

inter-company cooperation to improve the performance.

1.2.4.5 Key Performance Indicators

 Key Performance Indicator (KPI) is the most crucial factor for the success

of the business enterprise to detect problems and to trigger business decisions [21].

KPI encompasses a set of attributes that have strong concurrence with the data in the

invoking business application or executing code. The domain experts utilize

Business Metric Service (BMS) to select the suitable KPIs and to calculate the

numerical values for the set of attributes in the KPIs to maintain the business

16

process. BMS is a specialized business service that provides the relevant information

by rapidly accessing the wide range of data, not being intertwined with the technical

information of the underlying business process. Furthermore, the persistent database

stores the derived KPIs, so that the multiple users can access the KPIs without

incurring the expense of recalculation. The measurement of the performance of the

business is noteworthy to identify the gaps between the current and the desired level

of performance [22]. KPIs are to be carefully selected so that the KPI provides

information to take action for improving the performance of the business process in

the system.

1.2.5 CEP Terminologies

 CEP technology consists of a set of basic terms that play a vital role in the

event processing functionality. This section highlights a generic idea of the standard

terms and definitions involved in the CEP terminology [23].

1.2.5.1 Event

 An event is an actual occurrence or a significant happening that falls

within a domain of discourse. It is a piece of data representing the fact that

something happened in the real world [24][25]. For example,

 Financial market events: Buy 1,000 shares of Microsoft at $25. 45

 Supply chain events: RFID tag 11010 is scanned at 2.45 a.m. at the

dock door 5

 Security events: TCP/IP addresses 134. 21. 48. 198 accessed server 7

1.2.5.2 Representation of Events

 In the CEP, languages such as XML, Plain Old Java Object (POJO) and

Tuples are used to represent the events. Among them, the tuple data structure

provides the efficient representation of events that facilitate easier methodology to

process the large number of incoming events faster with less computation cost and

17

overhead [23]. For example, the tuple is a simple data structure consisting of a set of

attributes and their corresponding values.

i) Certain Event Representation

 The events with certain attributes can be represented by a single tuple

with a set of attributes and their corresponding values {Attribute1 = “val1”,

Attribute2 = “val2”, Attribute3 = “val3”, ….Attributen = “valn”}.

ii) Uncertain Event Representation

 The event represents uncertain attributes as more than one tuple where

each tuple is associated with the probability. The associated probability of every

event depends on the occurrence of the events with their corresponding set of

attributes and their value. For example, the uncertain events in the stock market are

represented as a set of tuples where each tuple has a set of attributes, each attribute

has a certain value and each value has a corresponding probability.

Figure 1.3: Event Tuple

1.2.5.3 Types of Events

 An event is defined to be an occurrence of interest in time. The event is

classified into two types such as primitive or simple events and complex or

composite events. For example, in the stock exchange scenario, a simple event refers

to the buying and selling of stock. The simple event object consists of the stock

symbol, the name of the company, the volume of stocks, the price and the identifier

of the selling trader. However, the complex event is the aggregation of the number

of simple events that are derived from the record of all the buying and the selling of

the stocks of a company.

Stream Id Att1 = val1 Att2 =val2

Att3 =val3

18

i) Primitive Events

 The Primitive events are defined as the occurrence of a single event at a

point in time. They are explicitly generated from external event sources.

ii) Composite Events

 Composite events are an aggregation of a set of primitive events with the

help of various operators of the underlying event algebra. They are mostly derived

from the other events. They cannot be directly measured, but their occurrence can be

inferred from the logical or temporal relationship between the simple events [23].

1.2.5.4 Event Attributes

 Each event associates with itself a set of attributes called as event

attributes. These attributes define the information about the action that influences the

occurrence of the event [23]. The attributes record the timestamp of the event and

also maintain the state of the database.

1.2.5.5 Event Stream

 The event processing engine receives a set of events from the multiple

sources that are grouped together and are called event streams. Event stream is a

linearly ordered sequence of events that is ordered according to the arrival time of

the event into the system. The usage of event streams varies according to the

requirement of the implementation environment. Most of the applications restrict the

implementation for pre-defined event types, but some of the implementations can

also support event streams that consist of the user-defined or different types of

events.

1.2.5.6 Event History

 An event history maintains a history of event occurrences within a given

point of time. It stores all the event instances of event ‘E’ as well as their associated

19

data within a specified time. The event history E (t2, t1) is the set of event instances

of E within occurrence time between t1 and t2 [23] [24].

1.2.5.7 Event Instance Sequence

 An Event Instance Sequence (EIS) is a partially ordered set of event instances.

EIS reflects the order set of the occurrence times of its event instances [25].

1.2.5.8 Event Type

 Event Type (ET) describes the essential features of the events in terms of

the parameters in a more abstract way. ET identifies the unambiguous nature of the

category of the event.

1.2.5.9 Event Instance

 Event Instance (EI) stores and maintains the set of parameters that defines

the relevant information about the events. EI is used to represent the concrete

occurrences of the event within the system. It helps to identify the impact of the

occurrence of the event on the other types of events [25].

1.2.6 Event Processing Languages

 CEP aims at deriving a more concise and high meaningful information

from the large volume of lower level events based on the correlation acquired, from

pre-defined event patterns. In general, the event patterns express the event queries

which consist of the events connected by event operators and also specify the

constraints on event attributes in the form of predicate expressions [26]. However,

these expressions do not correlate the temporal relationship between the events in

the dynamic nature. Thus, querying events in CEP is totally different from the

traditional querying in the database, since the event patterns are pre-registered

queries, which execute against the large number of continuously arriving event

streams. In CEP, the event queries are expressed using a high level programming

language called Event Processing Languages (EPL). EPL expresses the event

patterns in an expressive and declarative way. EPL is classified into two categories

20

such as stream-oriented or transforming languages and rule-oriented or detecting

languages. The stream-oriented languages are preferable in Data Stream

Management Systems while rule-oriented languages are used in CEP systems [27].

1.2.6.1 Stream-oriented Languages

 Stream-oriented languages are developed based on the context of the

DSMS. They express the complex event queries over the DSMS in real-time

applications, where continuously a large number of incoming event streams enter

into the system [11]. The stream-oriented languages are an optimized language

suitable for data streams. These types of languages are mainly extended from the

database query language SQL. Furthermore, it consists of three types of operators

such as relation-to-relation, stream-to-relation and relation to stream operators. First,

the relation-to-relation operator executes complex data queries over relational tables

that consist of standard database operators such as select, union, aggregate,

intersect, except, duplicate-eliminate and different types of joins. Second, the

stream-to-relation operators specify the different sliding window operators that

transform the input streams into temporary relational tables. The last, relation-to-

stream operators convert the data from a relational table into output streams. On the

contrary, the stream-oriented language pays less attention to the queries such as

filtering, joins and aggregation to derive the timing and the temporal relation among

the events. However, the derivation of temporal relation is extremely useful in the

CEP because it helps to achieve the timely processing of incoming events Some

examples of these types of languages are Continuous Query Language (CQL) in

STREAM systems [28] and Continuous Computation Language (CCL) in coral8

[29]. These query languages are suitable for financial applications, where the

aggregation of market data is efficiently correlated to predict the future stock price

in market trading.

1.2.6.2 Rule-oriented Languages

 The rule-oriented language specifies the rules for processing streams of

event processing systems in the area of Active DBMSs. It defines the query

21

languages in the form of Event-Condition-Action rules [30] that act as a formalism

to define the execution of events, when the incoming event satisfies the conditions

mentioned in the rule specifications. The rule-oriented language executes the action

well integrated with the existing query languages to implement the event queries

such as rule languages [31]. In order to achieve high flexibility, Business Rule

Management Systems (BRM) provides the standard specifications that implement

the event queries as a rule language. BRM hides the complex syntax of production

rule languages and also supports the various temporal aspects for modeling the event

types and data. Some of these languages include Drools Rule Language and JRules

[32]. These languages are used for integrity constraint enforcement, authorization

checking and versioning in production systems. Furthermore, these languages

provide a more advanced platform for CEP in the large scale and efficient

knowledge based expert systems.

1.2.7 Event Filtering

 Event filtering is the pre-processing scheme. It is performed ahead of the

event prediction to filter out the irrelevant events from the incoming event streams.

It is implemented based on the Publisher/Subscriber model to perform the matching

between the large numbers of incoming events (publications) and the domain expert

specified rules (subscriptions) [33].

Figure 1.4: Event Filtering

 CEP Engine

 Filtering
Incoming

Event Stream

Filtered
Events

Queries

22

 Figure 1.4 shows the exploration of CEP design patterns with the basic

filtering. The filtering is easy to implement in the number of non-CEP products or

custom-built applications. The CEP engine performs the event filtering on the

incoming event streams based on the queries mentioned by the subscribers or users

in the form of subscriptions. It evaluates a specified logical condition based on event

attributes and if the condition is true, then it publishes the relevant event to the

destination stream. For example, the event monitoring in purchasing applications

monitors the stream of purchase orders to filter the events that meet out the

condition Priority!= ‘High’ and Amount > 5000. It is a simple filter query that

performs the matching sequentially over the number of incoming events and then

filters the relevant event, which satisfies the condition of a simple query [34]. In

order to compare the incoming events with the other events in the same stream or

other stream events, the complex filter is constructed where the event filtering is

performed based on the computed metric. It achieves high efficiency and scalability

due to the pre-processing of a large number of events based on the minimum

specifications in the event query.

1.2.8 Uncertainty

 Uncertainty is defined as the lack of certainty and incomplete knowledge

of the information which leads to a difficult situation to describe the possible

outcome. It generates insufficient, imprecise and vague information that leads to

various challenges in the decision making of complex systems [35]. Due to the data

conflict, the inaccurate results lead to high uncertainty. In various real-time

applications such as object tracking in RFID applications and weather monitoring, it

is more difficult to capture the uncertainty in the high volume of raw data streams

[36]. In order to analyze the uncertainty issues, various approximation techniques

are evolved. Uncertainty is broadly classified into four classes as follows.

1.2.8.1 Epistemic Uncertainty

 Epistemic uncertainty arises due to the lack of knowledge. It is caused due

to the systematic error, incompleteness, subjective uncertainty and measurement

23

uncertainty. This uncertainty is handled by various mathematical frameworks such

as probabilistic and fuzzy approaches. However, it is a significant challenge to select

a suitable mathematical framework for representing the uncertainty.

1.2.8.2 Linguistic Uncertainty

 Linguistic uncertainty is the uncertainty produced by the statements in

natural language. It is caused due to the vagueness, context dependence, ambiguity,

specificity and indeterminacy of the theoretical terms. This uncertainty is caused

accidentally and therefore, create problems in risk assessment.

1.2.8.3 Ambiguity Uncertainty

 Ambiguity uncertainty arises in the case of ambiguous events where a

single event may have more than one relevant meaning. This uncertainty leads to

high confusion and vagueness due to the lack of information. The probabilistic

approaches handle this type of uncertainty by computing the probabilities of the

output events in order to determine the relevant events.

1.2.8.4 Variability Uncertainty

 Variability uncertainty is caused due to the variations or differences in a

process or quantity by nature. This uncertainty is caused by various environment

parameters and is difficult to assign an exact value to the events. It leads to high

irregularity because of inherent randomness in repeated processes. This uncertainty

can be reduced but cannot be eliminated entirely [35].

1.2.9 Uncertainty Analysis Techniques

 In order to reduce the potential risk in estimation, the uncertainty analysis

is a statistical or mathematical process used to measure, recognize and identify the

uncertainty associated with available raw data streams. In order to estimate the risk,

various tasks such as derivation of an uncertainty factor, complex model

specification, decision making and monitoring methods are performed [37]. It is a

24

quantitative approach to reduce the risk and estimation of uncertainty, which

depends on the complexity of the variation of uncertainty according to the time.

1.2.9.1 Probabilistic Analysis

 Probabilistic analysis analyzes the various kinds of uncertainty associated

with the noisy and sensor data from unreliable sources such as sensor networks and

RFID applications. In order to model the uncertain data, the machine learning

technique constructs a rich and complex Probabilistic Graphical Modeling (PGM)

[38] to capture the uncertainty from the true state of the physical world. In addition,

a novel inference algorithm called as probabilistic inference is used in the

constructed probabilistic database model to speed up query processing significantly.

To support probabilistic query processing in the presence of uncertainty, confidence

score is assigned to the correlated tuples in the probabilistic databases [39].

Furthermore, the probability computation scheme computes the probability of events

based on the assigned confidence score. Thus, the computation of data in the query

results is directly decoupled with computed probability (confidence) values.

Moreover, probabilistic ranking [40] performs ranking on the set of uncertain data

based on the computed probability. Thus, the tuple with a high probability is

identified as a relevant event in the presence of uncertainty.

1.2.9.2 Fuzzy Analysis

 The systematic behavior of vagueness and imprecision is handled by a

mathematical framework called as Fuzzy Logic (FL) or Fuzzy set theory, formulated

by Lotfi Zadeh in 1965. FL is a more robust analytic tool that performs better

reasoning to elicit and to encode the uncertain knowledge in a domain [41]. A fuzzy

set provides knowledge representation in terms of uncertainty in a flexible way. It is

a most effective technique that relies on the human knowledge base to deal with the

complex concepts associated with the uncertain data. In order to estimate the

potential risk, the fuzzy rules express the human knowledge with a set of fuzzy

values in terms of linguistic terms such as high, low, very low and very high [42]. It

performs effective reasoning over the inaccurate data using knowledge models to

25

take rational decision in the presence of uncertainty. In risk estimation, the fuzzy

logic is an effective multi-criteria analysis system to resolve uncertainty that consists

of analytical tools to perform decision making. The characteristics of the fuzzy logic

system are:

 It deals with the uncertainty and imprecision of reasoning processes.

 It models the heuristic knowledge in terms of mathematical equations.

 It allows the computation of linguistic information.

1.2.9.3 Bayesian Analysis

 Bayesian Network (BN) is one of the most important, efficient and elegant

models for representing and reasoning with probabilistic models. In order to

represent the knowledge about the uncertain domains, a novel statistical and

scientific model is constructed to model the complex systems under high uncertainty

[43]. It is an augmented, directed acyclic graph G = (V; E) consisting of a set of

nodes where each node in the graphical model represents a set of random

variables{X1, X2……X|V|} and each edge represents the conditional dependence

relationships between the random variables. BN encompasses two components such

as (i) a qualitative model and (ii) a quantitative model. The qualitative model

encodes the local correlation among the random variables using a direct acyclic

graph. The quantitative model represents the joint probability distribution P(x1. . .

xn) over a finite set {x1, . . . , xn} of random variables that possess a set of mutually

exclusive states. BN can mathematically express one belief as a conceptual model in

a more logical way. Furthermore, the Conditional Probability Table (CPT) models

the probability distribution of a set of random variables that specifies how a random

variable depends probabilistically on the values of its parent nodes Pa (Xi) [44].

1.3 SCOPE OF THE RESEARCH

 In recent years, the explosive growth of IT technology and Business

Intelligence (BI) techniques pave way for the business enterprise to monitor and to

analyze the business process in real-time in order to trigger necessary actions for

26

providing the right direction for the organization growth in a highly competitive

world. In order to react automatically to all events of interest, the business process

system must perform effective reasoning in the event composition system to acquire

a high level of intelligence from the available data. Therefore, the intelligent system

is to integrate CEP technology that timely processes the large amount of information

by filtering, aggregating and correlating the data flows from multiple sources. In

event based systems, uncertainty is mainly created due to the gap between the real

occurrences of events, to which the system must react and the capability of event-

driven systems to produce exact events. The main challenge of explicit probabilistic

event processing is that the CEP has to process a large number of rules with multiple

event sources. Thus, the probability computation under various types of uncertainty

is not trivial. In order to perform effective decision making, the probability of

derived events is to be correctly quantified using an appropriate mechanism for

probability computation. The CEP engines deployed in real-time mission-critical

applications must satisfy the demanding performance requirements. Thus, CEP has

to support operational requirements in terms of throughput, response time, event

patterns and scalability. An efficient, scalable CEP engine is necessary to fulfill the

requirements and to meet the challenges of the real-time mission-critical

applications.

1.4 CONTRIBUTIONS OF THE RESEARCH

 The literature survey reveals that there is not enough scope for Complex

Event Processing to achieve high scalability. The PCEP system takes one step

forward in this research through implementing event filtering approach in

Publisher/Subscriber system to achieve efficient CEP with high scalability and

efficiency. This research presents a generic system for representing events and rules

over uncertain data. It designs such a system to manage the uncertainty of the events

explicitly under multiple rules with multiple event sources. The main contributions

are:

 Event Pattern Matching: An efficient NFAh based event matching

algorithm is developed to filter the relevant events which match the

27

event pattern queries over the large number of incoming events,

where Query Aware Partitioning with Predicate based Subscription

Grouping algorithm is used to scale up for a large number of queries.

 Complex Event Detection: The Probabilistic Event Sequence

Prediction phase supports probabilistic inference on complex

uncertain events. Probabilistic event hierarchies are constructed in the

form of graphical model called as Dynamic Fuzzy Probabilistic

Relational models that infer the correlations among the sequences of

incoming events.

 Computation of Probability: DFPRM model computes the joint

probability distribution based on the observation of the correlation

between event sequences to enhance the robustness of the event

detection process under uncertainty.

 Probabilistic Fuzzy Logic: Probabilistic Fuzzy Logic is used to

estimate the fuzzy linguistic variables from computed conditional

probability distributions in the large probability space. It formulates

the combination of the relevant event sequences according to the

computed probability of events with the reduced overhead.

 Heterogeneous domains: The PCEP system is validated with three

diverse domains to ensure that its performance is consistent.

1.5 THESIS ORGANIZATION

 The objectives of this research are to study the existing CEP engines and

to improve the performance CEP engines with respect to efficiency and scalability.

The background information regarding Complex Event Processing is presented in

the first chapter. The rest of this thesis is organized as follows:

 Chapter 2 presents a critical survey of literature. A detailed description of

event filtering schemes and the main features of popular CEP engines, including its

time model, syntax, processing model and query languages are also highlighted. It

28

also explains the complex event languages, complex event detection, continuous

queries and production systems. It also presents the probabilistic approaches to

process the complex events in active database systems under uncertainty. The

limitations of the existing systems are inferred from the literature.

 Chapter 3 presents the formal problem statement of research problem with

the objectives. The high level conceptual architecture of the PCEP system is

presented. The information flow from the primitive events to the complex event

through the various modules in the PCEP system is explained.

 Chapter 4 proposes an NFA event filtering based on the design of efficient

Publisher/Subscriber middleware CEP system. The performance of this filtering

approach is evaluated in terms of average processing time and throughput.

 Chapter 5 proposes Probability Fuzzy model to derive the most probable

events using Dynamic Probabilistic Fuzzy Relational model. The performance

evaluation of the PCEP system is highlighted in terms of processing time, scalability

and efficiency.

 Chapter 6 highlights the implementation of PCEP in three motivating

application scenarios such as RFID Monitoring, trading in stock exchange and KPI

based business activity monitoring in inter-organizational multiple domains.

 Chapter 7 concludes the findings of this research and explores the possible

directions for future work to optimize the Probabilistic Complex Event Processing

under uncertainty.

29

CHAPTER 2

CRITICAL SURVEY OF LITERATURE

 This chapter describes a detailed survey of the existing research approaches as

well as ongoing research in the field of CEP. It discusses about the existing

approaches of the event filtering, CEP engines, query languages and probabilistic

database systems in detail. It paves the way to fulfill the research gap in uncertain

CEP to achieve scalability and efficiency. Finally the limitations in the existing

research approaches are obtained.

2.1 REVIEW ON EVENT FILTERING SCHEMES

 This section discusses about the existing event filtering approaches to filter

the relevant events from the large number of incoming event streams based on the

event queries subscribed by users.

2.1.1 Binary Decision Diagram

 In this approach, Binary Decision Diagram (BDD) performs an event

filtering that is implemented on a large scale content based Publisher/Subscriber

middleware architecture. BDD is a data structure that represents the Boolean

function for model verification. In order to process the large number of incoming

events, an efficient and scalable event filtering engine is performed based on user

subscriptions. Here, the subscription query languages such as Simple Subscription

Language (SiSL), Strict Subscription Language (StSL) and Default Subscription

Language (DeSL) express the user subscriptions more effectively [45]. In order to

enhance the performance of BDD in event filtering, this approach carries out three

optimizations such as BDD restriction, BDD variable ordering and the BDD

evaluation algorithm. It supports a high level of semantics to perform an event

matching a query or subscription to handle a half million subscriptions efficiently.

The main drawback of this approach is that the filtering operation is not distributed;

30

thus it leads to high operation overhead. Therefore, the filtering engine is not able to

process at the arrival rate of incoming messages that results in high processing time.

2.1.2 Bitmap Indexing

 This approach deploys a novel event processing scheme to process the

large scale complex events efficiently based on Bitmap Indexing technique. It

proposes a new effective technique to detect the complex events that satisfy the

minimum conditions in query specifications. In order to reduce the unnecessary

resource utilization perfectly for storage and operation overhead, this approach

eliminates unnecessary operations over incoming events. Thus, this approach

identifies the sequence of relevant complex events with minimal resource

consumption. This approach performs an effective pattern matching in two phases

such as threshold phase and detection phase using query index and bitmap [46].

Furthermore, a tree structure is exploited to organize query index and manages the

primitive events. Thus, the constructed tree structure is used to check whether an

incoming event satisfies the minimum conditions required for the complex events in

the first phase. If the incoming event satisfies the minimum conditions in the

threshold phase, then the second phase will be invoked. In the detection phase, the

bitmap structure with query index performs the complex event detection.

2.1.3 High Performance Event Filtering

 This approach motivates to develop a scalable and a high performance

event filtering mechanism for enterprise-wide Distributed Dynamic Multi-Point

(DDMP) applications. It is a data reduction mechanism that minimizes the

unnecessary operation overhead and network traffic in order to monitor, detect and

deliver the events to interested consumers. In expressive event language models, the

events and the user subscriptions are internally represented in the form of

Deterministic Finite state Automata (DFA) [47]. Here, the event filtering is

performed in an object oriented framework using filter programming interface.

Furthermore, an effective monitoring and feedback mechanism are used to span

multiple filtering servers between the producers and consumers in the local area or

31

wide area networks. Two filtering servers such as front-end filtering servers and

composite filtering servers are deployed in this approach to perform effective

filtering. Here, the front end filtering server is used to classify the primitive events

whereas the composite filtering servers detect the composite events. Some novel

ideas are integrated with this approach to develop a scalable, configurable and high

performance event filtering mechanism in DDMP domain. The main problem is that

this approach is a domain dependent application that focuses on the event filtering in

DDMP domain. This approach is not suitable for all the other domains in a business

enterprise system.

2.2 REVIEW ON CEP ENGINES

 This section highlights in detail the discussions about some of the CEP

engines that made significant efforts to perform efficient, scalable and fault tolerant

event processing. The CEP engines available in the market are analyzed with their

characteristics, advantages and disadvantages It describes the significant differences

among the CEP engine in terms of rule language, processing model, data structure

and their overall system architecture.

2.2.1 Simple Scalable Streaming System

 Simple Scalable Streaming System (S4) is a general-purpose, scalable,

fault tolerant, free stream processing platform created and released by Yahoo! This

is a framework for “processing continuous, unbounded streams of data” [48]. It can

perform distributed computation over constantly changing data. It shares many

characteristics with IBM’s Stream Processing Core (SPC) middleware, but S4

differs from SPC only in architectural design. The SPC design derives from a

subscription model whereas the S4 design derives from the combination of both

MapReduce and the Actor model [49]. Stream processing is carried out as in an

Actor model where graphs connect the large number of nodes consisting of

Processing Elements (PEs). In this mode of interaction, each and every PE has the

capability to consume and to emit data events with the other PEs through I/O

queues. Thus, the messages are transmitted among between PEs in the form of data

32

events, which consist of named streams with their corresponding keys and attributes.

The PE can process the data events from the streams with the only one specified

key. This framework can effectively route the events to the appropriate PEs. This

process leads to high level of semantic encapsulation and location transparency.

Thus, the application developers can process data streams through a simple

programming interface which offers an impressive level of simplicity for developing

massively concurrent applications due to its symmetric nature where all nodes in the

cluster are identical under decentralized control. It minimizes the access latency and

eliminates I/O bottlenecks due to the accumulation of local memory in the PEs.

Easily deployable and pluggable architecture provides a generic and customizable

design. It provides high flexibility in the design maintenance because of

decentralized and symmetric architecture. During handoff, the lossy failover occurs

that automatically moves a process into standby mode and leaks a large amount of

data events. It has inability to express the queries that span multiple input events

thus making it as unsuitable for CEP.

2.2.2 Aurora

 The Aurora is a general purpose, Data Stream Management System

(DSMS) to provide real-time monitoring applications, developed by the Brandeis

University, the Brown University and the Massachusetts Institute of Technology. It

provides a new imperative language called as Aurora's Stream Query Algebra

(SQuAL) that defines the transforming rules in a graphical representation by

adopting a boxes-and-arrows paradigm [50]. This paradigm connects the different

operators explicitly and shares the computation of different standing queries. It

constructs the network with a set of operators that consist of connection points. The

connection points are intermediate tables in the network upon which ad hoc queries

can be executed. In the work flow process, the data events are forwarded in the form

of tuples along the pathways (arrows). In order to monitor the performance of the

system, the Aurora defines the Quality-of-Service (QoS) specifications for

individual queries to perform several optimizations to enhance the performance or

quality of the results. Among that, the load shedding is the most critical optimization

where the QoS specification determines how and when to shed load. In a highly

33

overloaded state, the optimization enables to drop the number of tuples relating to

systems that are more tolerant of missing data. The scheduler allocates resources

based on the load of the operator and the optimized user defined plan, which is

specified in QoS constraints [51]. It maximizes the overall QoS from the

applications. It provides an intermediate storage inside the query plan to recover the

operator’s failure. Due to the lack of semantics, it is difficult to prove the correctness

of the query formulations.

2.2.3 TelegraphCQ

 In order to support the highly streaming adaptive flow of data over event

streams, the University of California at Berkeley has developed a Telegraph Project

(TelegraphCQ). It provides event processing capabilities in the relational database

management by implementing the PostgreSQL27 [52]. In this approach, an open

source database PostgreSQL27 modifies its existing architecture to process the

continuous queries over the streaming data. It is a distributed, continuously adaptive

parallel cluster-based processing that can process the continuous queries over the

large number of incoming event streams. TelegraphCQ allows the access of the

previously-arrived data with high intermittent connectivity [53]. It integrates

efficient data management components to manage adaptively the dynamic nature of

data availability. This approach supports an efficient event processing rather than the

other conventional event processing due to its efficient adaptivity. It provides an

efficient resource scheduling for groups of queries and also supports dynamic QoS.

The main drawback is the complexity of computation.

2.2.4 STREAM

 Standard sTREam datA Manager (STREAM) is the distributed Data

Stream Management System built at Stanford University. STREAM can adaptively

process the large class of declarative continuous queries over the continuously

arriving data streams in real-time [28]. It declaratively expresses user subscriptions

in the form of Continuous Query Language (CQL) [54] that is extended from the

SQL language. CQL handles continuous queries with sliding window facilities. CQL

34

consists of two layers such as an abstract semantics layer and an implementation

layer. The query language translates the flexible query plans that support effective

optimization and fine grained scheduling decisions. It supports effective load

shedding to manage the dynamically varying load over time and also manipulates

query plans during execution. The main focus of this approach is effectively running

the various types of queries by considering the cost of self-maintenance of different

materialized views in a bounded amount of memory [55]. Effective memory

management and query plan based execution are integrated to achieve stream

processing. In order to reduce resource consumption, the operations such as

ordering, clustering and referential integrity are implemented on the event streams.

Thus, the approximate query answering is deployed to manage the resource

consumption in the context of limited resources. Thus, it leads to less performance

with inaccurate results due to approximation.

2.2.5 Esper

 Esper is an open source and sophisticated CEP suite developed by the

Espertech that integrates both Event Streaming and Event Analysis into a single

framework. Esper uses an integrated part of software or as a standalone server. It

defines a rich declarative language for rule specification called as Event Processing

Language that includes all operators in SQL. Further, ad-hoc constructs for sliding

window definition and interaction are provided [56]. Thus, Esper provides a

powerful mechanism to integrate temporal relations of events using sliding event

windows. It allows expressing the complex matching conditions to combine

different event streams, filtering and sorting them. It expresses event patterns using

nested constructs that include conjunctions, disjunctions, negations, sequences and

iterations. Esper supports both centralized and clustered deployments for query

processing. Further, it detects sequences and patterns of unrelated events. In order to

achieve load balancing, Qos policies are maintained effectively to integrate the

processing power of different and well-connected nodes that increase the system's

availability [57]. Esper fails to consider the uncertain data which occurs in practical

real-time streams.

35

2.2.6 Stream-based and Shared Event Processing (SASE)

 In order to design an efficient and robust RFID stream processing system,

UC Berkeley and the University of Massachusetts Amherst developed the SASE

research project. SASE is one of the most influential efficient CEP systems modeled

as a data flow paradigm that transforms real-time data streams into appropriate

actionable information. Furthermore, a new abstraction of the Complex Event

Processor is deployed to process the continuously arriving incoming event streams

in a timely manner [58]. In order to meet the challenges including the data-

information mismatch, incomplete and noisy data in RFID-enabled real-time

monitoring applications, SASE defines a new query language by extending the

existing event language. In order to model the event language using native sequence

operators, Non-deterministic Finite Automata (NFA) is constructed that allows

effective pipelining to predict the event sequences based on subsequent operators

such as selection, window and negation due to the efficient implementation. SASE is

a comprehensive system that performs effective filtering, pattern matching and an

aggregation mechanism in order to filter and process the real-time data streams in a

timely manner [59]. The query language supports high extensibility to develop a

new event language for RFID enabled applications. SASE also possesses high

flexibility in query execution that achieves several optimizations. It fails to consider

the uncertain data, which occurs in practical real-time streams and also does not

address the distributed system issues. It will lead to a poor performance with high

access latency because of logic complexity to manage a large volume of data.

2.2.7 Cayuga

 Cayuga is a most efficient and commonly used large scale CEP system that

supports on-line detection of complex patterns in event streams based on a large

number of concurrent subscriptions [60]. The core components of the Cayuga

include a query processing engine, an index component, a meta data manager and a

memory manager. In order to support stateful subscriptions, Cayuga leverages the

traditional Publication/Subscription techniques. The users express their interest as

more expressive and structured Cayuga Event Language (CEL). The Cayuga query

36

translates into Non-deterministic Finite Automata (NFA) and then loads into the

query processing engine which processes the incoming streams against queries. This

automaton reads a finite sequence of events over a finite relational schema for a

specific time interval. In order to process a large number of arbitrary queries, this

engine deploys two techniques such as row/column scaling and pipelining to

distribute the queries among the large number of machines. The Query Engine

manages the state transitions of NFA using predicates. Further, the custom heap

memory management is deployed to store the automaton instances that satisfy the

predicates and also indexes the operator predicates to improve the performance of

the system [61]. This approach deploys a novel Multi-Query Optimization (MQO)

technique to achieve high scalability and high-speed event processing. In order to

process the large number of concurrent subscriptions, this engine contains efficient

in-memory processing that facilitates to achieve high scalability and high speed

event processing. This approach does not support automated query rewriting and

distributed detection. This leads to difficulty in distributed query processing among

the multiple machines in the system.

2.2.8 Coral8 Engine

 The Coral8 processes multiple heterogeneous data streams and performs

various operations such as filtering, aggregation, correlation, pattern matching over

the incoming data streams in real-time. This engine supports effective pattern

matching and native XML processing. Therefore, Coral8 is implemented in more

powerful CEP applications to execute a real-time enterprise business function [62].

It encompasses the familiar lightweight streaming architecture to implement faster

and easier deployment that can process more than millions of events per second for

simple queries and thousands of events per second for complex queries with low

latency. The Coral8 consists of two main components such as Coral8 Server and the

Coral8 Studio [63]. The Coral8 Server is the core of the Coral8 engine that provides

clustering support. To monitor the performance and activity of the server, various

features such as publication of a status data stream is included with this coral8

engine. Furthermore, the Coral8 Studio provides an IDE-like interface that allows

administrators to add or remove queries according to the input and output data

37

streams. In order to express the event queries, this engine develops a subscription

language called Continuous Computational Language (CCL). In order to execute

continuous queries in parallel for high-speed data, enterprise-class clustering is

configured with this engine. Furthermore, parallel and asynchronous database

integration is performed to achieve high performance event storage.

2.3 SURVEY OF QUERY LANGUAGES

 This section describes the details of the capabilities and the features of

several representative complex event query languages to express the event queries in

the CEP systems. The main purpose of this discussion is to determine where

extension is required for incorporating the uncertainty in the existing query

languages. This survey discusses the event query languages in terms of types of

complex events detected, the structure and the semantics of the query languages and

their relative advantages and their disadvantages.

2.3.1 Continuous Query Language in STREAM

 STREAM introduces the Continuous Query Language (CQL). CQL

exploits the rich expressive power of SQL [28]. It consists of three public operators

such as stream-to-stream, relation-to-stream and relation-to-relation operators.

Among that, relation-to-relation operator is a subset of the SQL language and the

remaining two operators are newly extended to make suitable for a large number

event streams. It provides well-defined semantics that can be implemented based on

any language with the help of a composite operator and data type rules. Figure 3.1

represents the CQL as follows:

Figure 2.1: Continuous Query Language

38

 The CQL language consists of six clauses such as OUTPUT, SELECT,

FROM, WHERE, GROUPBY and HAVING. Among that, the OUTPUT clause

consists of an attribute name of the number of variables [var1, var2, var3……varn] in

the variable list. SELECT and FROM clauses are mandatory in CQL language and it

mainly relies on the input stream. Further, the WHERE clause selects the event from

the input stream that satisfies the selection predicates in it. The GROUP BY clause

contains one or more attributes used to group the events in the input stream. Finally,

the HAVING clause selects the events based on the group selection predicates in it

[55]. This language is like a research prototype. So, it is not applicable in the case of

a Complex Event System. While it has a manual, it cannot be used for real-world

examples because of the lack in documentation.

2.3.2 Continuous Computation Language (CCL) in Coral8

 CCL was the first commercial industry standard declarative language.

CCL provides a massive head start for creating the CEP applications in the real

world. It has the capability to process the continuously arriving dynamic data. Like

SQL, it achieves standard event selection using SELECT/ WHERE clauses that are

used to filter the events from the incoming event stream [63]. CCL provides

additional capabilities such as sliding windows, event matching and output timing

controls for manipulating data during real-time continuous processing. It is

represented as follows:

Figure 2.2: Continuous Computation Language

39

2.3.3 SASE Language

 SASE language is a declarative, composition-operator-based language

mainly suitable for high-performance querying of event streams. It has a high level

structure as SQL query, but the design of the language is focused on the event

pattern matching. The structure of the SASE language is represented as follows:

Figure 2.3: SASE Language

 In SASE, the FROM clause specifies the name of an input stream. The

event matching consists of three mandatory clauses such as EVENT, WHERE and

WITHIN to transform an input stream into a stream of composite events [58]. The

EVENT Clause specifies the pattern that is to be matched against the input event

stream. Further, the WHERE and the WITHIN clauses specify the value based

conditional expressions and the occurrence time constraints respectively. Finally, the

RETURN clause converts the stream of composite events as a final output.

2.3.4 Event Processing Language in Esper

 Esper presented a hybrid Event Processing Language (EPL), which

combines the features of continuous query in data stream languages and the pattern

matching constructs in a composite operator based language. This language

expresses the event patterns using composite operators like Rapide in composite

event language. Further, EPL processes the input streams against event patterns

using data stream constructs like CQL data stream language as given in Figure 2.4.

40

Figure 2.4: Event Processing Language

 In EPL, two new clauses such as ORDER BY and LIMIT are introduced to

provide more expressive query specifications [57]. The LIMIT clause limits the

lifetime of pattern instance if the incoming input stream consists of multiple events.

Furthermore, EPL supports the ORDER BY clause to determine the order of events

based on its timestamp. This language mainly concentrates on the partition of the

functionality of event detection, but does not provide much for the selection and the

collection of events from the incoming event streams.

2.3.5 Cayuga Event Language in Cayuga

 Cayuga is the most popular and highly expressive CEP engine running

with a large number of queries which are expressed in the form of Cayuga Event

Language (CEL) [60]. This language offers pattern queries over event streams based

on Cayuga Algebra in the form of regular expression. CEL is represented as follows

Figure 2.5: Cayuga Event Language

41

 In CEL, the SELECT clause is optional that specifies the name of the

attributes in the output schema. Furthermore, the FROM clause is the core of the

query which composes of one unary construct: FILTER and two binary constructs:

NEXT and FOLD to specify the stream expression. The PUBLISH clause is also

optional that provides the name of the output stream. If the PUBLISH clause is

omitted, then the output stream is unnamed.

2.3.6 AMiT in IBM Websphere

 IBM Active Middleware Technology (AMiT) proposes a XML language

that allows the specification and the detection of the complex events, which are

referred as situations [64]. Each situation has an associated lifespan that acts as a

context for the event detection. The <event> tags declare the attributes of the events

and then <lifespan> tags consist of two events such as an initiator and a terminator

event. This language provides various parameters to correlate the termination type

and the quantifier in order to provide more fine-grained control over lifespan

initiation and termination. The main disadvantage of AMiT is that it does not allow

the nested operators to be combined into number of single events to form a complex

event. AMiT is represented as follows

Figure 2.6: AMiT Language

42

2.3.7 ruleCore Markup Language

 In order to implement Event Condition Action (ECA) rules in active

databases, a high expressive XML based extendable language called as ruleCore

Markup Language (rCML) is evolved. The ruleCore focuses on the composite event

detection. It defines about the event patterns, situations, complex events or derived

events. The ruleCore Markup Language is represented as follows:

Figure 2.7: rCML Language

 In rCML, the ON clause specifies the definition of incoming event stream

primitive events, the CONDITION clause is a set of predicates to detect the event’s

patterns. Further, the ACTION clause specifies the action to be invoked after an

event pattern is detected [65]. The main advantage is its reusability because a single

block definition may be used to specify the multiple rules with slight modifications.

However, there is no sufficient documentation to generate the events depending

upon the triggered action.

2.3.8 Drools Rule Language

 Drools or JBoss rules provide the rule specification for a business rule

management system. This language is extended from the domain specific language.

The non-technical staff who are not having sound knowledge can also write the

queries. There is no standard syntax to write these types of queries. Generally, rule

language supports the different form of syntax according to the specific requirement

in the production. The production engine can process the Drools language. Therefore, it

extends the domain specific language and gives input for the production engine to

process the incoming events. The domain specific language is represented as

follows:

43

Figure 2.8: Drools Language

 In Figure 2.8, the WHEN clause consists of a list of fact patterns

represented in the form of conditions [66]. The THEN clause triggers the specific

action if only if the condition in the WHEN clause is satisfied.

2.3.9 Comparative Analysis of Event Query Languages

 Having described the strengths and weaknesses of the four categories of

the language styles, this section summarizes the comparison of event query

languages.

 Composition operators based language offers a compact and intuitive

way to specify the complex event pattern queries. Thus, it is

attractive in business scenarios to define the event pattern queries in a

real-time. These types of languages support event instance selection

and consumption which are not applicable in other type of languages.

More commonly, operator based languages concentrates on the

efficient creation of languages, but not on how to process the event

queries over the large number of incoming streams. Further, the

aggregation of the attributes from the event data is often neglected in

these types of languages.

 SQL-based data stream query languages are the most successful

approach and efficient and scalable for commercial industries.

Stream-oriented languages provide considerable support to aggregate

the event data which is particularly necessary for trading in the

financial market. On the contrary, deriving the negation and temporal

relationship between the events is mostly cumbersome in these types

44

of languages. Further, streams-to-relation conversation and vice versa

is supposed to be unnatural in the case of discrete time axis.

 Production rules are extremely flexible and easy to represent because

they are well integrated with the existing domain specific languages

of certain domain applications. Rule specifications are represented in

the form of Condition-Action (CA) rules where certain actions are to

be executed when specific conditions are satisfied by the incoming

events. They are particularly useful for business applications such as

logistics, RFID tracking and Business Activity Monitoring.

Production rule languages are considered to be less efficient than the

other data stream query languages and suitable for the low abstraction

level in a primary state because it is hard to express the aggregation

and the negation between the events.

2.4 PROBABILISTIC DATABASE SYSTEMS

 The aforementioned CEP systems perform the event processing based on

the assumption that the data is precise. In imprecise data environment, the modeling

of the uncertainty in the form of probabilistic events rather than deterministic is

essential, especially for RFID based mission-critical deployments and applications.

Probabilistic database systems construct probabilistic models to capture and to

process the incomplete or imprecise data appearing in real-time applications.

2.4.1 Hidden Markov Model

 Laher is an efficient uncertainty CEP system that processes the event

streams from the uncertain or probabilistic database. In order to deal with imprecise

data, this approach constructs a temporal graphical model called as Hidden Markov

Model (HMM) from the uncertain data [67]. Further, a set of optimized algorithms

are presented to process the regular, extended, safe and general queries over

probabilistic event streams. This approach processes the order of data more

efficiently than a naive approach based on sampling. The probabilistic inference is

performed on the constructed HMM to infer a hidden state based on a sequence of

45

observations on RFID data streams. Further, a query model is designed for the

complex queries using Cayuga Event Language with the detection operators. This

probability computation is accurate and distributed than the naive approach.

However, this approach does not support the process to perform pattern matching

between the query model and data model.

2.4.2 Top-k Query Processing

 A top-k query processing is proposed to process the imprecise data in

uncertain databases [68] that facilitates to achieve efficient information retrieval

over the imprecise data. This approach extends the traditional Top-k query semantic

to manage the uncertain database settings. Due to this query answering semantics

capability, this approach provides an efficient query processing in the context of

uncertain and probabilistic databases. It presents two algorithms such as Uncertain

top-k query (U-top-k) and Uncertain k-Ranks query (U-k Rank query) that extends

the semantics of top-k queries. In order to determine the number of tuples in a state,

the graphical model is constructed with the set of states according to the probability

associated with the set of tuples in the probabilistic database. However, this

construction is possible for a small database. Therefore, in the case of large

databases, it is difficult to construct the graph for all the tuples in the database. The

generated graph exponentially increases in accordance to both space and time. On

the other hand, top-k approach performs query searching through all possible states

using the arbitrary correlation in the complete model and also leading to a large

search scope with exponentially increasing storage space.

2.4.3 Top-k Query Processing in X-Relation Model

 The existing top-k query processing approach can process the independent

tuples in the set of probabilistic data against the top-k queries. However, this

approach only processes the dependent tuples related to X-relation model. In order

to overcome the problems of the existing approaches, a novel effective polynomial

algorithm is proposed for processing top-k queries in uncertain databases based on

the adopted X- relation model [69]. This approach adopts an x-relation model to

46

process the queries that limit the arbitrary correlation among the tuples in the

uncertain database. It consists of ‘n’ number of x-tuples and then each x-tuple

randomly instantiate more than one number of tuple. Therefore, a novel dynamic

programming algorithm can process the U-k Rank queries with less runtime and

storage overhead in two modes of operation such as a single-alternative case and

multi-alternative clause. This approach processes the U-top-k queries and U-k Rank

queries that are significantly faster and exploits the minimum memory space under

the X-relation model. It provides the solution for the uncertain database but not for

the uncertain data streams continuously arriving from unreliable event sources [69].

In this approach, a effective linear query processing is performed with less

polynomial time. The proposed U-top-k queries and U-k Rank queries achieve

significantly high processing speed and less memory consumption under the

x-relational model of tuples in uncertain databases.

2.4.4 Efficient Top-k Query Evaluation

 In order to process the queries effectively in a probabilistic or uncertain

database, an efficient query evaluation framework is proposed [70]. Due to the

imprecise data, top-k query processing generates a large number of query results

with low quality. The query result with high probability is considered as a most

suitable answer for the queries. However, this leads to imprecise results because of

the probability computation based on approximation techniques. Therefore, an

efficient query evaluation framework is proposed that provides the most optimal

algorithm to determine the most probable top-k answers. This work shifted the focus

from the probabilities to the confidence score of each tuple to perform ranking. In

order to determine the most suitable query answer, the ranking is performed to rank

the query results based on the confidence score of the resulting tuples in the

probabilistic database. Hence, the query results with a high confidence score is

returned as the most probable top-k answer of the corresponding query [71]. It

focuses on the confidence score based ranking, but does not compute the exact

probability score to determine the most suitable query results at high quality.

47

2.4.5 Probabilistic Complex Event Triggering

 This approach provides a Probabilistic Complex Event Triggering (PCET)

to perform effective probabilistic reasoning on the imprecise data in the sensor

environment. PCET provides an event architecture processing system that attempts

to resolve the problem of robust event detection. It is triggered under high noisy sensor

readings. In order to construct the probabilistic event hierarchies of higher-level events,

a complex event language is developed [72]. A Bayesian Network is constructed to

support an inference over the underlying sensor readings. This approach deploys a

probabilistic inference mechanism that performs a probabilistic reasoning over

uncertainty through representing the conditional dependencies between the uncertain

events modeled in the form of Bayesian Network. It infers and reasons about the

probabilities of triggered events for taking finer-grain decisions according to the

event occurrences. Thus, the efficiency of the complex event detection is improved

even for an inherent uncertain data stream.

2.4.6 Probabilistic Inference over RFID Streams

 Due to the inherent reader mobility, high noise and incomplete data in RFID

streams, it is difficult to perform stream processing and monitoring applications. This

approach is a cleaning process to translate the incomplete raw data streams from

mobile RFID readers into precise event streams with location information. Thus, an

effective data cleaning and transformation are performed to obtain the required data

for query processing [73]. Furthermore, a novel mechanism is proposed to perform

the probabilistic inference over RFID streams for acquiring information from the

imprecise data. In order to infer the information from the raw data streams, the

probabilistic approach is modeled to capture information from the imprecise

readings even under the high dynamic mobility of the RFID reader and the object. In

the probabilistic model, partial filtering based on the sampling technique which

Event Refinement module, CEP has the capability to infer the precise information

about the location of the object. Further, partial filtering mechanism enhances the

process of the high volume of streams of a large number of objects. In order to

perform enhancement, three advanced techniques such as particle factorization,

48

belief compression and spatial indexing are used for extension in a partial filtering

mechanism. It maintains a high inference accuracy and high scalable cleaning,

efficient and transformation of mobile RFID data streams with high precision.

2.4.7 Probabilistic Complex Event Processing

 This approach focuses on CEP in the context of the real-world event

sources that generate streaming data and fuzzy or probabilistic data. The PCEP [74]

is used to process the imprecise data from real world sources. It must reason about

the events in scenarios where low level RFID events cannot be monitored in a crisp

fashion. A new probabilistic model is constructed to model and to reason about the

uncertainty nature of event streams. In order to overcome the limitations in time-

based or tuple-based windows, this approach presents the concept of semantic

windows to process the simple events. It presents the notion of semantic windows,

which goes beyond time-based or tuple-based windows. This approach encompasses

four main modules: Event Refinement Module, CEP Engine Module, State

Maintenance Module and Application Programming Interface. Event Refinement

Module uses the machine learning technique to refine the primitive events based on

the past information. CEP Engine Module processes the multiple event streams to

filter, correlate and aggregate them into semantically high level composite events.

After that, the State Maintenance module maintains the state of the current event

which is necessary in the case of fuzzy or probabilistic data. An inference based

Application Programming Interface (API) is deployed on the top of the PCEP

framework to access the current probability state of events. It focuses on the context-

aware ubiquitous application for the smart home and does not consider the

instantiation in multiple real-time applications scenarios.

2.4.8 Probabilistic Query Evaluation

 This is a novel approach which provides a probabilistic query evaluation

over uncertain data. This approach broadly classifies the queries into a set of

categories over uncertain data based on a flexible model of uncertainty [75]. The

probabilistic queries are classified in the aspect of two dimensions such as

49

aggregate/non-aggregate queries and entity-based/value-based queries. Furthermore,

a new technique is also provided to evaluate the probabilistic queries and also to

carry out several optimizations out to enhance the performance of query evaluation

over uncertain data. After the classification of queries into a set of classes, the query

evaluation has developed new algorithms to determine the typical queries and their

corresponding probabilistic answers for each classified query class. This approach

quantifies the novel metrics for the query evaluation for computing the quality of the

answers. In the resource constraint environment, several data update policies or

heuristics are provided to improve the quality of probabilistic queries.

2.4.9 Probabilistic Event Extraction System

 In order to overcome the limitations of deterministic event detection, this

approach proposes a probabilistic model to enable complex event extraction in the

face of uncertainty. This approach implements a Probabilistic Event Extractor, a

middleware layer on top of a relational database management system to leverage its

feature suitable for RFID stream processing. Probabilistic Event Extraction System

(PEEX) approach can effectively derive the meaningful and probabilistic high level

events from the imprecise and erroneous low-level RFID data [76]. In order to

manage the imprecise data, PEEX deploys a probabilistic framework to process the

inherent ambiguity in the event extraction. Further, a new expressive and declarative

query language called as PEEXL is provided to define the composite high level

probabilistic events from the low level primitive events. In order to handle the

ambiguity and the reliability issues, the probability of low level RFID events is

extracted using confidence tables [77]. Furthermore, the probability of the composite

high level event is determined from the confidence score of the underlying lower

level RFID data. This type of probability based complex event detection acquires

high detection rates compared with the deterministic detection approaches. PEEX

approach focuses on the composite event extraction. However, it fails to handle the

query execution over the detected events.

50

2.4.10 Probabilistic Event Stream Processing with Lineage

 This approach provides an effective probabilistic framework for query

processing over probabilistic event streams. An Active Instance Graph, a data

structure that constructs a sequence event processor to detect the probabilistic event

streams [78] is proposed. This approach deploys an NFA to maintain a record for

the set of active states of an unbounded probabilistic event sequence. A more

expressive query language is designed to express Kleene closure patterns that

support probabilistic queries for composite event stream matching in the physical

world. Further, a new probabilistic data model is constructed to compute the

confidence score for each detected sequence pattern based on their lineage in order

to trigger the confidence computation using NFA. It is a decoupled framework that

performs the query processing in two steps by dividing the pattern matching and the

probability computation. The pattern matching performs matching over the

probabilistic event streams based on the specified sequence pattern. Thus, a matched

pattern sequence is derived as output probabilistic events. The probability of the

output probabilistic events is computed based on their lineage for matched patterns.

It performs effective complex event detection over the other existing naive

approaches.

2.5 LIMITATIONS OF THE EXISTING SYSTEMS

 In the case of uncertainty, CEP is an extremely challenging task that

transforms the real-time data in the physical environment into useful information

suitable for the end user applications. In recent times, many researchers have shifted

their interest in CEP framework and proposed various CEP approaches to perform

event processing under uncertainty. However, most of the existing approaches

provide poor performance with low scalability and less efficiency under uncertainty.

Therefore, it is a still ongoing effort to develop a suitable CEP framework to predict

the uncertainty associated with the large number of continuously arriving events.

The limitations in the existing approaches are:

51

i) Limited Speed

 The existing systems fail to deliver the expected speed to timely process

the continuously arriving incoming events to satisfy the mission-critical application.

However, timely processing is a crucial characteristic of CEP in real-time

applications. Therefore, the inability to process the incoming events in a timely

manner makes CEP unsuitable for a real-time business process.

ii) Limited Expressive Power

 The existing systems provide query specifications with limited expressive

power that only has the capability to process deterministic data from reliable

sources. However, real-time applications such as RFID monitoring, click stream

analysis may generate inherently unreliable, incomplete or incorrect data, which lead

to uncertainty. Uncertainty is caused due to the gap between the actual occurrences

of events and the data sources. The data errors and ambiguity are probabilistic rather

than deterministic in nature. Therefore, the existing deterministic query languages

cannot be able to process the uncertain events effectively from unreliable sources.

iii) Lack of Uncertainty Handling

 The existing CEP systems perform event processing only for a deterministic

database but not for the uncertain data. There is no graphical or inference modeling

approach to capture and to infer the correlation between incomplete and imprecise

data appearing in the physical world. It leads to less efficiency in complex event

detection with low throughput and high processing time. Thus, uncertainty handling

becomes essential.

iii) Low Scalability

 In order to improve scalability, the queries must be distributed among the

large number of state machines in the system. Some of the existing approaches are

capable of performing distributed complex event detection. However, these

applications are only in an operator level that can distribute the predicates among the

52

machines in the system. Nevertheless, the scalability issues are not addressed for the

applications that require throughput for the large number of incoming events. In

order to achieve high scalability and event detection throughput, it is essential to

design an effective CEP system that distributes and executes the large number of

event queries simultaneously on separate machines.

2.6 SUMMARY

 This chapter discusses the CEP engines that implement different data

models, more expressive query languages, complex event detection strategies and

several optimizations to perform effective CEP. This discussion considerably

facilitates to get a deeper understanding about the implementation of each CEP

engine. This is particularly useful to design the best architecture for the proposed

probabilistic CEP engine. From the literature survey, it is inferred that the Aurora

CEP engine describes a pipelining model that is identified as a suitable model for

event passing in order to obtain high event processing. Aurora [50] and stream [28]

describes query plan management to improve the efficiency of the system and also

to approximate the data in stream management. The most important key feature

obtained from the discussion is that the dedicated Cayuga system [60] achieves high

throughput, efficiency and scalability through distributed pipelining architecture.

However, it does not support uncertainty. In order to process the uncertainty in the

data, probabilistic approaches in [72] [74] [76] [78] propose modeling and inference

techniques to handle uncertainty. This section discusses the probabilistic approaches

in the literature and has obtained the guidelines to model the uncertain data in the

form of probabilistic graphical model. The main work of the PCEP system is the

extension of CEP engine by incorporating the probabilistic technique to process the

event streams under high uncertainty.

53

CHAPTER 3

PROBLEM STATEMENT AND RESEARCH OBJECTIVES

 This chapters presents a high level conceptual view of the PCEP system. A

formal problem statement and objectives of the research work is formulated. The

chapter explains about the high level architecture of the PCEP system. The

architecture of the system depicts the various modules in the proposed PCEP

system. The interaction among various modules in the system is given by the

information flow diagram.

3.1 PROBLEM STATEMENT

 In order to achieve scalability and efficiency, this research proposes a

Probabilistic CEP system that meets out the four main challenges in CEP under

uncertainty. The PCEP provides a more expressive, rich environment for the

progress of event processing applications that may derive stateful composite event

sequences by processing thousands of events per second. Accordingly, the focus of

this system is to transform the real-time data in the physical environment into useful

information suitable for the end user applications. The prominent features of the

PCEP system are listed below.

i) Timely Processing

 The number of distributed applications increases tremendously. There is a

need to process the continuously arriving events from widely distributed sources at

unpredictable rate. The prime requirement is to obtain timely responses from

complex queries. Hence, the PCEP is a distributed CEP approach that employs an

effective pipelining technique to process the large number of continuously arriving

events in real-time. This process is to produce the instantaneous response in a timely

manner because of effective pipelining in complex event detection to manage the

high input rate of complex events.

54

ii) Handling a High Volume of Events

 The existing event processing schemes fail to process the events from the

number of multiple heterogeneous sources in real-time applications. In PCEP, the

event matching performs event filtering according to the user subscriptions. The

PCEP system scales effectively to a large number of events due to an effective event

filtering performed on the distributed computing platform using effective query

portioning and pipelining technique.

iii) Automated Processing

 A large number of research works have been carried out in the field of

CEP, where there is no automation to specify the rules correctly as well as the

probabilities associated with the results. Therefore, the most promising and vital area

of this research is the use of filtering techniques for the automatic generation and the

processing of rules. The PCEP provides the solution to this problem through

deploying the query clustering to group user subscriptions based on similar

predicates in each subscription group. Thus, the PCEP automates the complex event

pattern detection according to the domain expert rules.

iv) Handling Uncertainty

 The accuracy and performance of event derivation depends on the

reliability of data sources. A data source has inherently unreliable data collection

method or generates incorrect data leading to uncertainty. CEP in the presence of

uncertain events is a challenging task and this problem hampers the accuracy of

derived events. The PCEP system efficiently handles the uncertainty associated with

the events by modeling the event hierarchy as a probabilistic graphical model.

Furthermore, the approximation logic estimates the fuzzy linguistic variables from

computed Conditional Probability Distributions in the large probability sample

space.

55

3.2 OBJECTIVES OF THE RESEARCH

 To overcome the limitations inferred from the literature survey, the

research problem is formulated with the following objectives:

1. To design an effective high performance CEP engine that evaluates

uncertain data in order to support effective Business Intelligence.

2. To develop a high speed event processing engine that can scale to

handle a large volume of user subscriptions in order to achieve

scalability and efficiency.

3. To reduce the complexity of event processing through deploying the

query plan based approach that manages and extends the

expressiveness of the high volume of user subscriptions.

4. To propose an NFA-heap event matching mechanism to filter the

irrelevant events from the large number of incoming events based on

the user subscriptions.

5. To construct an event sequence prediction that supports probabilistic

inference on complex uncertain events. Probabilistic event

hierarchies are constructed in the form of a Dynamic Fuzzy

Probabilistic Relational Model that infers the correlations between

the sequences of incoming events.

3.3 ARCHITECTURE OF PCEP

 In event based enterprise systems, the PCEP extracts higher level knowledge

from the large number of incoming complex events over messaging infrastructure

from the different external event sources. In order to provide the event notification

under uncertainty, the PCEP system is implemented in Publisher/Subscriber

middleware that manages a large number stream of incoming complex events

(publications) and a more number of queries (subscriptions) [79]. The following

Figure 5.1 illustrates the high-level architecture of PCEP in the Publisher/Subscriber

middleware system. Here, the publishers and the subscribers connect in a

56

distributive manner where the publisher advertises input events from the multiple

sources using the publish (e) operation, into the PCEP whereas the subscribers

express their interests on an event in the form of subscriptions using the subscribe

() operation.

Figure 3.1: PCEP in the Publisher/Subscriber Middleware System

 The PCEP architecture composes of three principal components such as i)

Input and Output Processors. ii) Query Compilation. iii) Probabilistic Complex

Event Processor (PCEPr). The Input processor takes the large number of incoming

events from the multiple sources and then converts them into the tuples which are

suitable for the internal processing of the core. The Query Compiler converts the

access predicate of an each subscription group into a runtime executable automaton

and deploys that in the CEP core. The core part of the approach is the Probabilistic

CEP that process the events based on the user subscriptions. The CEP processor

fetches the events from the incoming queue and processes the events based on the

user subscriptions. After deriving the output events by the processor, the derived output

events reach the event consumer through the output queues. It allows to manipulate the

queries on the fly, such that users can add or remove the subscriptions using the

operations such as subscribe () and unsubscribe () even when the complex event

processor is running. The following sub-section highlights the description of the

involved components and also explains the internal process and interaction between

these components to achieve CEP under uncertainty.

57

3.4 INFORMATION FLOW IN PCEP

 The interaction between various modules in the PCEP system is given in

Figure 3.2. The two main modules are Query plan based approach and Probabilistic

fuzzy prediction phase.

 The publishers execute the publish (e) operation to publish a piece of

information in the form of events to the Publisher/Subscriber system. An event ‘E’ is

represented as a tuple (s, t) where ‘s’ is a set of attribute-value pairs as in the

relational data model as defined by the schema ‘S’ and ‘t’ is a sequence of

timestamps t = [ts, t2, t3……. te] where the first timestamp ‘ts’ is the start time of an

event and the last timestamp ‘te’ is the end time. Each valid subscription and the

event are associated with a time interval. Therefore, it is considered as valid within

that specified time interval.

 In the Query plan based approach phase, the event consumers express their

interests on an event in the form of subscriptions, which is used to subscribe into a

particular category of events within the system. A subscription () is expressed in

the form of Complex Event Language and composed of set of predicates to filter the

relevant events from the large number of incoming events. The subscriptions are

grouped using Prediction based subscription grouping. The subscription clusters are

deployed using query aware portioning. The input sequence is compiled to a NFAh

automaton using query compilation [80]. A subscriber generates and removes a

subscription from the Publisher/Subscriber system through executing the

subscribe () and the unsubscribe () operations respectively [81]. After receiving

the large number of incoming events, CEP processor deserializes and processes the

events based on the subscriptions. It takes the responsibility to perform the event

matching between the large number of incoming event sequences and to detect event

patterns represented in the form of Non deterministic Finite Automata-Heap (NFAh).

 In the Probabilistic fuzzy prediction phase a probabilistic model is built. A

probabilistic fuzzy logic inference engine handles the uncertainty in the relevant

events and detects the complex events.

58

User Subscriptions

Figure 3.2: Information Flow in PCEP

Relevant Event Sequences

NFAh Based Matching Large Number of
Incoming Events

Predicate Based
Subscription Grouping

Query Compilation

Query Aware
Partitioning

Subscription Clusters

NFAh Automation

NFA Loaded State Machines

QUERY PLAN BASED APPROACH

Construction of
Probabilistic Model

Probability Computation

Probabilistic Fuzzy Logic
Inference Engine

DFPRM model

Events with probability values

PROBABILISTIC FUZZY PREDICTION PHASE

Fuzzy Linguistic Variables

59

3.5 SUMMARY

 In this chapter, the formal problem statement of the proposed PCEP

system is presented. The main research objectives of the PCEP system are

formalized. The high level architecture of the proposed system is designed. The

modules in the system are identified. Further, the interaction between various

modules in the system is established.

60

CHAPTER 4

GENERIC AND SCALABLE EVENT
FILTERING BASED ON NFAh

 This chapter proposes a generic and scalable event filtering in the CEP

framework which is designed in the form of Publisher/Subscriber model to achieve

scalability. In the Efficient and Generic Event Filtering (EGEF) approach, the

complex event processor carries out the event filtering where NFAh event matching

is performed between the stream data that continuously flow from the multiple

sources based on the user subscriptions. In order to manage the large number of

user subscriptions, Predicate based Subscription Grouping (PSG) algorithm is

proposed to group the number of user subscriptions into a set of clusters based on its

available predicates. Furthermore, Query Aware Partitioning scheme dispatches the

subscription clusters using two techniques - row/column scaling and pipelining to

perform fast and efficient event filtering. A NFAh based effective pattern matching

approach is proposed, that filters the required relevant events from the continuously

arriving large stream of data according to the user defined rules. It leads to achieve

efficient event processing in the presence of voluminous event streams.

4.1 EFFICIENT AND GENERIC EVENT FILTERING

 The Efficient and Generic Event Filtering (EGEF) is performed ahead of

the event processing to filter out the irrelevant events in order to achieve efficiency

and scalability. Event Filtering is implemented in the Publisher/Subscriber model

that performs matching among the number of incoming events (publications) and

the domain expert specified rules (subscriptions). It is performed in two steps as

follows: Cluster subscriptions are formed where the user subscriptions are grouped

into clusters and thus corresponding access predicates are mapped by setting the

predicate bit vector into one. The NFA matching is performed based on NFAh query

evaluation model between the number of incoming events and user subscriptions.

61

Figure 4.1: Efficient and Generic Event Filtering

 Figure 4.1 provides the framework for Efficient and Generic Event

Filtering approach. It executes NFAh based event matching to filter the events which

are relevant to the user subscriptions. This approach filters the complex events

which satisfy the minimum conditions that have common predicates among the

group of similar subscriptions [46]. This process leads to the situation of filtering out

the irrelevant events at the early stage due to the efficient grouping of user

subscriptions and the loading of common access predicates in each subscription

group.

4.2 SEQUENCE FORMATION MODULE

 In order to perform NFAh based event matching, the large number of

incoming events are pre-processed into a stream of sequences based on the filter

predicate in the Complex Event Pattern Subscription Language (CEPSL) query

specification. The sequences of events are constructed through two operators -

Multiple
Events

NFAh based
Event Pattern

Matching

Relevant Event
Sequences

Rules or
Subscriptions

1 2 3 4

CEPSL

 Query Plan based
Approach

Sequence
Formation

Module

62

sequence traversing or scanning operator and sequence construction operator. The

sequence traversing operator (ST) is used to traverse the sequence of events in

order to determine the number of sub-sequence. This is possible in the incoming

events and then simultaneously the sequence formation operator (SF) is used to

construct the detected sub-sequence with a set of sequence of events. Therefore, this

module takes the set of incoming events as input and constructs the possible set of

sub-sequences which are entered as an input to the NFAh based event pattern

matching [59].

4.3 QUERY PLAN BASED APPROACH

 The Query Plan based Approach is deployed to manage and to extend the

expressiveness of the volume of user subscriptions [59]. The user subscriptions are

expressed using CEPSL which defines a set of predicates and the user requirement

specification in terms of attributes and their corresponding values. The query

compilation is used to convert the event pattern queries into a NFAh model based on

native sequence operators [82]. It takes as input a query defined sequences from the

number of continuously arriving events. This process improves the flexibility of the

query execution.

4.3.1 Predicate based Subscription Grouping

 In order to achieve scalability, the subscriptions clusters are formed.

These clusters help to achieve efficient event processing even under the large

number of incoming event streams and user subscriptions. The proposed PSG

algorithm is performed using a cluster vector. A cluster vector consists of set of

predicates, bit vector and reference cluster list. The algorithm is used to group the

set of subscriptions based on the subscriptions. In this approach, the subscription

cluster consists of ‘n’ number of subscriptions that possess a set of predicates. The

subscription cluster is maintained as n-dimensional predicate array. The predicate in

the array refers to the position in the predicate bit vector where the predicate

associates its binary value by either 0 or 1 [83]. The subscription array is a single

dimensional array and consists of subscription identifiers.

63

Figure 4.2: Predicate based Subscription Grouping

 Here, a single predicate can be present in one or more subscriptions and

therefore, it is exceedingly simple to group the relevant subscriptions with same

predicates. The predicates present in all of the subscriptions in the cluster have to be

assigned as an access predicate for the corresponding cluster. Each subscription

cluster is associated with more than one access predicates [83]. If the access

predicates of the subscription clusters is satisfied by the incoming event, then

subsequently it indicates that the event matches the number of subscriptions in the

cluster.

 Let there be ‘m’ subscriptions where there are ‘n’ unique predicates then

the predicate bit vector B={B[1],B[2],…..,B[n]}. For a given event sequence ‘I’ the

predicate bit vector is set according to the presence of a predicate. The subscriptions

in the system are grouped according to the similarity in the predicates. A cluster

vector is an array which has one entry for each cluster. The entry in the cluster

vector contains an access predicate ‘P’ for all the subscriptions in the cluster. A

predicate can be an access predicate of a subscription ,if an event fails to satisfy the

64

access predicate then it does not satisfy the subscription. The algorithm is

highlighted as follows:

Figure 4.3: Predicate based Subscription Grouping Algorithm

4.3.2 Query Aware Partitioning

 After grouping the user’s subscriptions as clusters using the PSG

approach, each subscription cluster must be assigned to a separate machine in order

to reduce the heavy load on a single machine and also to scale up the processing

capacity even for a number of incoming events and subscriptions. Therefore, the

number of machines required to process the queries is determined from the number

of clusters formed by the PSG algorithm. Furthermore, the constructed NFAh

automaton from each of the subscription group is loaded directly into the state

machine.

Input:
Event Sequence E

Output:
Subset of Cluster SC

Variables:
A bit vector B={ B[1],B[2],….,B[n]}
where ‘n’ is the number of predicates
Set of Subscription Cluster C={C[1],C[2],….C[l]}
Where ‘l’ is the number of clusters
A set of subscriptions S

Procedure:
Begin
 B=0;
 SC={NULL};
 S={NULL};
 For each predicate ‘P’ in the event sequence ‘E’

with reference i
 Set B[i] = 1;
 If ‘P’ is the Access predicate for a cluster with reference j
 SC= SC U C[j];
 Return SC;
End

65

 N events

 P-Events

 Q- Number of Subscriptions

Figure 4.4: Event Dispatching

 In order to manage the number of user subscriptions, the number of rows

is replicated according to the increasing number of subscriptions [80]. This approach

performs the most efficient query partitioning scheme using two techniques -

row/column scaling and pipelining. In row/column scaling, the subscriptions are

organized in the form of matrix ‘p’ x ‘q’ where ‘p’ number of subscriptions is

equally arranged among the ‘q’ number of machines in the system. In addition, the

row is replicated ‘q’ times to form a matrix, where ‘p’ is the number of subscription

clusters and ‘q’ is the number of incoming events dispatched into the system.

Moreover, the event dispatcher is deployed in between the source and query

processor, where the dispatcher takes the responsibility to allow a group of ‘q’

number of events into the processing system. An incoming event is dispatched to a

row in a round robin manner. The query processing is performed between the

incoming event and the subscriptions that are organized in the corresponding row

[80]. It guarantees to achieve a fast and efficient processing of query with less

complexity and high scalability. In order to process the more number of incoming

events, the required number of rows can be added to the matrix that increases the

parallelization. The query partitioning scheme can process the large number of

incoming events with high scalability and equally improve the throughput rate for

the multiple queries by partitioning the queries across a cluster. The pipelining is

 Sub1 Sub2 Sub3 … Subq

Sub1 Sub2 Sub3 … Subq

Sub1 Sub2 Sub3 … Subq

Source

Source2

Source n

Event
Dispatcher

66

used to maintain the processing flow of execution of distributed queries among the

large number of separate machines into the system.

Figure 4.5: Query Aware Partitioning

 Each state machine processes the incoming events based on subscriptions

using the NFAh execution model [82] and the output from one state machine is

entered into the next subsequent machine using the pipeline [80]. The last machine

in the row is referred as an accepting state. Therefore, the event that satisfies the

subscription is considered as matched relevant event to the user subscriptions.

Figure 4.5 shows the Query Aware Partitioning scheme.

Figure 4.6: Query Aware Partitioning Algorithm

Input:
Subscription Clusters [SC1, SC2, SC3…..SCn]

Output:
NFA Loaded State Machine

Procedure:
Begin
 Dispatch (Subscription Clusters);
 Row Column Scaling [SC1, SC2, SC3…..SCn]pxq;
 Pipelining (Query Compilation & NFAh and Loading);
 Construct NFAh<- Query Compilation (Subscriptions Cluster);

 Load State Machine <- Constructed NFAh;
End

67

 In query partitioning, the incoming event is dispatched to the ‘q’ number

of state machines, but only one state machine can get executed at a time. Therefore,

the state machine are arranged in an optimal order with minimum conditions.

Pipelining is used to maintain the flow of execution of distributed queries among the

large number of separate machines in the system. The algorithm for the Query

Aware Partitioning is listed out in Figure 4.6.

4.3.3 Query Compilation

 The NFAh based event matching engine is able to process the large number

of incoming event sequences based on the user subscriptions, which may be

temporal or conditional queries. Here, the event pattern queries are converted into

the suitable query evaluation model called as NFA model. This model is selected for

the proposed pattern matching approach because it yields high quality results in

terms of efficiency and flexibility for pattern evaluation. The query compilation

technique called as Automaton Intermediate Representation (AIR) is used to convert

the defined event pattern of CEPSL queries into a new form of automaton called as

Non-deterministic Finite Automaton-Heap (NFAh) [82].The constructed automaton

is loaded directly into the state machine to perform the event matching.

Figure 4.7: Query Compilation Algorithm

Input: User Subscriptions
Output: NFAh
 Number of States {st1, st2, st3…};
 Number of Predicates {p1, p2, p3…};
Procedure:
Begin

 NFAh <- Automaton Intermediate Representation (Subscriptions)
 For each subscription
 For (i=1; i < number of Predicates; i++)
 For (j=1; j < number of States; j++)
 Create st[j] for NFAh;
 Assign Predicate p[i] to each state st[j];
 Assign Heap memory to NFA;

Return NFAh
End

68

 Figure 4.7 highlights the query compilation algorithm. The user

subscriptions are given as input to this algorithm and it outputs the NFAh with

number of states and predicates.

4.4 NFAh BASED EVENT MATCHING ENGINE

 In this approach, the NFA model is selected to perform the event matching

because it yields high quality results in terms of efficiency and flexibility for pattern

evaluation. It provides well-defined semantics for the inclusive set of event pattern

queries and also provides a query plan approach to execute the event queries over

the large number of incoming event streams.

 Figure 4.8 provides the module of NFAh based Event Pattern Matching

that takes two inputs - sub-sequences of events and the set of labeled access

predicates of the subscription clusters. The access predicate associated with each

subscription group is assigned to the edge of the unique automaton to perform the

matching. Therefore, the number of NFAh automaton required to perform matching

is equal to the number of subscription group formed. The access predicate of every

group is loaded into a separate state machine with NFAh Automaton. In NFAh based

Event Pattern Matching, each incoming event sequence traverses through the edge

only if it satisfies the assigned corresponding predicate. The events which traverse

throughout the edge and reach the final state are considered as relevant events,

whereas the events, which do not traverse throughout the edges of the automaton are

filtered out as irrelevant events.

Figure 4.8: NFAh based Event Pattern Matching

NFAh based
Pattern Matching

Sequences of
Events

Access Predicates
of Group

Relevant Event
Sequences

69

 In NFAh, each state maintains the Active Instance Heap (AIH) to store the

active instances of the event that trigger into the other transition state [60].

Therefore, AIH maintains the active instances of each state in a timely manner to

arrange the sequence of events in the temporal order. If the incoming event reaches

the accepting state of the NFAh, then it constructs the event sequence using the

Directed Acyclic Graph (DAG)[84]. This event sequence is considered as a unique

relevant event sequence. The event sequences that reach the final state of the

automaton are filtered as relevant sequence of events [85]. The NFAh pattern

matching algorithm is listed in Figure 4.9.

Figure 4.9: NFAh Pattern Matching Algorithm

4.4.1 NFAh Automaton

 The NFAh model consists of four edges such as Begin Edge, Forward

Edge, Filter Edge and Rebind Edge, where each edge deploys a heap memory to

store the active instance which is satisfied in its current state. In NFAh, the Forward

Edge is used to find the event using the filtering mechanism performed by the Filter

Edge which filters the event using the iteration operator [85]. The access predicate

is associated with each subscription group at the edge of the automaton to perform

matching. Therefore, the number of NFAh automaton required to perform matching

Inputs:
Incoming Events, NFAh

Output:
Relevant Events

Procedure:
Begin

For (i=1; i < number of states; i++)
 if (Incoming Event satisfy Conditional Predicates in State)

Event Transition to Next State;
 If (state = final state)
 Return as relevant event;
 Else if (not satisfy conditional predicates in state)
 Eliminate as Irrelevant event;
End

70

is equal to the number of subscription group formed. The access predicate of every

group is loaded directly into a separate state machine of NFAh Automaton.

Figure 4.10: NFAh Automaton for CEPSL Query

 The top loop of the automaton has a Filter Edge that takes a conditional

argument. A predicate called as name in the first fold construct of the CEPSL query

is shown in Figure 4.10.This edge allows automaton instance of the event schema

that consists of health deciding factors of the patients coming for the health checkup

in the medical domain [82]. The bottom loop of the automaton is called as a Rebind

Edge ‘Q’ that is used to express the FILTER construct of the CEPSL Query. This

edge allows the automaton instance of the patient that matches the predicates

mentioned in the ‘P’ and ‘Q’ edges of the constructed automaton. The Forward Edge

QR allows the automaton instance of matched event schema of the patient who has

normal Body Mass Index (BMI) and Haemoglobin content (Hb). The Filter Edge in

the ‘R’ state takes the conditional expression in the NEXT Construct that allows to

find the immediately next event in the event schemes for the other patients. The last

transition state from state ‘R’ to ‘S’ allows the automaton instance that matches the

associated predicates in the ‘R’ edge. Thus, the automaton instance reaching the

final state has the set of event schemes that matches the predicates associated in each

edge of the automaton. The automaton thus predicts the health deficiency of the

patient after the rebound.

4.4.2 Pipelining

 In existing systems, the event matching is carried out without pipelining

where the incoming events are processed sequentially from left to the right where

P Q R S

13.5 < Hb<17.5

18.5<BMI<22.7

>15min

Final >1.02* normal BP

71

each machine republishes the matching events to the next machine in the system.

However, in the case of a large number of incoming events, it leads to high resource

consumption and heavy workload on a single machine.

Figure 4.11: NFAh based Event Matching with Pipelining

 In order to scale up the processing capacity, the PCEP system utilizes the

event filtering using pipelining to process the large number of incoming events [80].

It breaks the query into a number of sub-queries and distributes them. The

sub-queries are loaded onto the large numbers of separate state machines in the

different stages of the pipeline in order to achieve scalability. Hence, the heavy load

on a single machine is reduced and the number of sub-queries is assigned to more

number of state machines. Therefore, the incoming events are processed using the

pipeline that helps to achieve faster execution and higher throughput. In the

Figure 4.11, the event matching for certain attributes (stateless) such as Haemoglobin

content and BMI in the complex query are replicated in order to scale up the system

for high throughput. In the last stage of the pipeline, an uncertain attribute (stateful)

called as increase in BP is not replicated because it changes over time. Hence, in

order to predict the event sequences that match the uncertain attributes, Probabilistic

Event Sequence Prediction (PESP) is needed to predict the relevant sequences which

are discussed in the next chapter.

User

13.5 < Hb<17.5

13.5 < Hb<17.5

13.5 < Hb<17.5

18.5<BMI<22.7

18.5<BMI<22.7

18.5<BMI<22.7

2% increase in

normal BP

Notifications

Machine1

Machine2

Machine3

Machine 4

Machine5

Machine6

Machine7

72

4.5 PERFORMANCE EVALUATION

 In order to evaluate the NFAh based event filtering, the PCEP system is

implemented in the Publisher/Subscriber model using Java Messaging Service

(JMS) based subscription API. The main purpose of this prototype is to validate

and to assess the impact of the filtering approach. The performance evaluation is

performed in terms of scalability and efficiency.

4.5.1 Experimental Setup

 In the experimental setup, the structure of generic application methodology

used is a message oriented middleware with the set of software components to

perform efficient event processing. These software components communicate

through Java Message Service which takes input as event instances from continuously

arriving incoming events. The experiment is executed on Windows XP PC with

3.2 GHz processor, 2 GB of RAM and 512 MB cache with the maximum java heap

size of 800 Mbytes. It is implemented in open source Java Enterprise Edition/Netbean/

Glassfish /JMS environment.

4.5.2 Datasets

 The PCEP system is executed using the dataset of health checkup in a

medical domain for event triggering. The performance of the PCEP system is

evaluated based on 10000 incoming events. The dataset consists of 15 attributes.

The first six attributes are certain attributes such as the name of the patient, age,

address, contact number, occupation and blood group. The remaining nine attributes

are uncertain attributes such as Haemoglobin content, Body Mass Index, blood

pressure, cognitive patterns, communication and hearing patterns, dental status,

nutrition status, disease health condition and treatment procedure. This approach

provides 500 rules (health condition) in order to trigger relevant events (appropriate

treatment) according to the corresponding information in the dataset. The event rate

per second is measured from the system.

73

4.6 EFFICIENCY AND SCALABILITY OF THE EGEF APPROACH

 The experiment is carried out to compare the performance of the PCEP

system with and without filtering. The PCEP system achieves high efficiency and

scalability compared to the CEP without filtering. The PCEP system filters out the

irrelevant events before the event detection starts according to the domain expert

specified rules. The performance of the PCEP system is evaluated based on the

throughput (the number of events executed per second) and the average processing

time (time taken to process the number of events per second).

4.6.1 Throughput

 In the PCEP system, the user subscriptions are efficiently grouped based

on the access predicate into subscription clusters. Nearly, one to ten number of

subscription groups is formed and the corresponding access predicates are allotted to

separate state machines. Therefore, the throughput is improved. This implies the

increased number of events processed per second according to the varying number

of the state machine. On the other hand, in the existing approach, the subscriptions

are grouped randomly.

Hypothesis with respect to the result of the parameter T: (Throughput)

Null hypothesis H0: T1 = T2 where T1= Throughput obtained in

Distributed Cayuga, T2 = Throughput obtained in

PCEP Filtering

 (There is no significant difference between the two

systems that is Distributed Cayuga and PCEP filtering

in terms of throughput obtained)

Alternate hypothesis H1: Throughput mean values are not equal for at least one

pair of the result mean values of the parameter T.

 (There is a significant difference between the two

systems in terms of throughput obtained)

74

Figure 4.12: Throughput versus Number of Machines

 Figure 4.12 shows the average processing time according to the varying

number of machines. If the number of machines used to process the events increases,

the number of events per second also increase correspondingly. Therefore, the PCEP

system achieves scalability in terms of execution time.

Hypothesis Evaluation with Respect to T: (Throughput)

Table 4.1: T-test for Distributed Cayuga and PCEP Filtering based on
Throughput

Events x 104
Technique Throughput

I II Hypothesis p value

1-10 Distributed
Cayuga

PCEP
Filtering H1 0.039

 From Table 4.1, it is concluded that the calculated significance level of the

parameter throughput of comparing two systems Distributed Cayuga and PCEP

filtering satisfies the condition (p value<0.05) for number of machines. There is a

significant difference between the results for different throughput values of

Distributed Cayuga and PCEP with filtering. Hence, the null hypothesis for H1 is

rejected.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 *

 1
03

(E
ve

nt
s/

Se
c)

Number of Machines

PCEP- Filtering

Distributed Cayuga

75

Table 4.2: Descriptive Statistics of Throughput Measures

Technique Distributed
Cayuga

PCEP with
Filtering

Max
Min

8750
1000

10000
2750

Mean
Median

4575
3875

6875
7375

Standard
Deviation 2517 2596

 Further, it is also required to determine the system which has the

maximum throughput. This is analyzed using descriptive statistics given in

Table 4.2. Table 4.2 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter throughput. There is an increase in Average Throughput of PCEP-

Filtering by 33% with respect to Distributed Cayuga.

4.6.2 Average Processing Time

 In PCEP system, the Average Processing Time is not increased

significantly even when the events per second is increased. Moreover, there is only

a gradual increase in the average processing time of the PCEP system with EGEF

filtering approach. This is due to the filtering of many irrelevant events using NFAh

based effective pattern matching with minimum requirements. However, the existing

CEP approaches acquire a significant increase in Average Processing Time.

Hypothesis with respect to the result of the parameter A: (Average Processing

Time)

Null hypothesis H0: A1 = A2, where A1= Average Processing Time in

Distributed Cayuga, A2 = Average Processing Time in

PCEP filtering

 (There is no significant difference between the two

systems in terms of Average Processing Time obtained)

76

Alternate hypothesis H2: Average Processing Time mean values are not equal for

at least one pair of the result mean values of the

parameter A.

 (There is a significant difference between the two

systems in terms of Average Processing Time obtained)

Figure 4.13: Average Processing Time versus Number of Events

 Figure 4.13 shows the Average Processing Time taken to process the

complex events according to the number of events per second.

Table 4.3: T-test for Distributed Cayuga and PCEP Filtering based on
Average Processing Time

No. of
events x 103

Technique Average Processing Time

I II Hypothesis p value

2-10 Distributed
Cayuga

PCEP with
filtering H2 0.041

 From Table 4.3, it is concluded that the calculated significance level of the

parameter Average Processing Time of comparing the two systems Distributed

Cayuga and PCEP with filtering satisfies the condition (p value<0.05) for input

0

100

200

300

400

500

600

2 4 6 8 10

Av
er

ag
e

Pr
oc

es
sin

g
Ti

m
e

(m
s)

No. of Incoming Events *104

Distributed Cayuga

PCEP- Filtering

77

events from 2000 to 10000. There is a significant difference between the results for

Average Processing Time values Distributed Cayuga and PCEP with Filtering.

Hence, the null hypothesis for H2 is rejected.

 Further, it is also required to determine the systems which have the

minimum Average Processing Time. Table 4.4 shows the descriptive statistics

(the maximum, minimum, median, mean values and standard deviation) of each of

the technique for the parameter Average Processing Time.

Table 4.4: Descriptive Statistics of Average Processing Time Measures

Technique Distributed
Cayuga PCEP 5

Max
Min

135
550

135
425

Mean
Median

402
450

297
300

Standard
Deviation 159 107

 There is a decrease in Average Processing Time of PCEP-Filtering by 26%

with respect to Distributed Cayuga.

4.7 SUMMARY

 In this chapter, the PCEP system is implemented based on
Publisher/Subscriber model to achieve high scalability and efficiency. The event
filtering approach is a pre-processing system, which is performed ahead of event
processing in order to manage the arrival of a large number of incoming events. The
proposed NFAh query filtering approach performs event matching between the large

number of incoming events (publications) and rules (subscriptions). An expressive
language called as Complex Event Pattern Subscription Language is used that
provides high expressibility for efficient pattern queries and also supports high
extensibility for the formal event language. A Predicate based Subscription
Grouping algorithm is proposed to group user subscriptions based access predicate
to improve the scalability.

78

CHAPTER 5

A PROBABILISTIC FUZZY MODEL FOR
REASONING OVER UNCERTAINTY

 This chapter proposes a Probabilistic Complex Event Processing (PCEP)

system that consists of two phases of Efficient and Generic Event Filtering (EGEF)

and Probabilistic Event Sequence Prediction (PESP) phase. In the first phase, the

relevant events are filtered and the filtered events enter into the prediction phase.

The second phase consists of an Efficient Event Sequence Prediction paradigm that

triggers complex events usable by the end user application. To determine the

effectiveness of the PCEP system, a detailed performance analysis is performed

using the prototype implementation. As a result, it is demonstrated that the PCEP

system outperforms the existing CEP approach.

5.1 PROBABILISTIC EVENT SEQUENCE PREDICTION

 After filtering out the relevant event sequences from the large number of

incoming events, Probabilistic Event Sequence Prediction in Figure 5.1 derives a

stateful composite event sequences from the filtered relevant events sequences based

on the probabilistic framework.

Figure 5.1: Efficient Event Sequence Prediction Paradigm

 Event hierarchy is constructed in the form of graphical model called as

Dynamic Fuzzy Probabilistic Relational Model (DFPRM) [86] [87] that computes

Relevant Event
Sequences

Probability
Computation

Probabilistic Fuzzy
Based Inference

Derived
Composite

Event Sequences
DFPRM

79

joint probability distribution using the conditional probabilistic dependencies

between the event sequences in accordance to the rules. In order to reduce the large

sample space, the Fuzzy Logic is used to infer the correlation between the event

sequences using the linguistic variables. It enhances the robustness of the complex

event detection process under uncertainty.

5.1.1 Dynamic Fuzzy Probabilistic Relational Model (DFPRM)

 Dynamic fuzzy probabilistic relational model is constructed from a set of

the relevant event sequences. The rules to represent the probability space are

presented in terms of concept of individuals, their properties and relations between

them [88]. DFPRM represents the qualitative knowledge between the set of events

and their variable interrelationships, whereas the Conditional Probability

Distribution [78] [88] represents the quantitative knowledge of probabilities in a

large probability space.

 Figure 5.2 shows the DFPRM for the event sequences ‘E’ with a set of events

E = {e1, e2…..en} and each event ei is associated with a set of descriptive attributes and

the reference slots. There is a direct mapping between the event classes and their set of

attributes for all the events in the event sequence. This model consists of set of event

classes with their associated attributes and the joint probability distribution computed

from the arbitrary correlation between the event sequences.

Figure 5.2: Dynamic Fuzzy Probabilistic Relational Model

 e1

A1

A2
A3

 e2

A4

A5
A6

 e3

A7

A9

A8

 e4

 A11

A10

80

5.1.2 Probability Computation for Event Sequence

 The novelty of this work is the computation of joint probability

distribution based on the conditional probabilistic dependencies among the event

sequences in the constructed probabilistic model. It also represents the constructed

probability space that possesses the formal semantics in terms of probability

distributions over a set of relational logic interpretations. It represents the probability

space as triples {WT, T, T} where WT is a set of possible worlds, T is an event

history associated with each possible world and T is a probability measure of the

possible world. The sample space of event sequence ‘E’ consists of the conjunction

of set of possible events with their associated probability measure from the event

history. The probability of the constructed event sequence is computed from the

conditional probability dependence among the set of attributes associated with the

events . The overall probability associated with the event sequence is factorized by

aggregating the product of local conditional probabilities of the events in the event

sequences, according to the conditional dependence of the event given their parent

nodes. The computation of Conditional Probability Distribution (CPD) of event

sequence is as follows:

 P (ei /ei+1) = P (ei / e i, i)

 Here, i is the set of parental nodes of ei and then i is the parameter

vector associated with ei. The CPD of event sequence ‘E’ computed from the

probability distribution over the values of events ‘ei’ is given as the combination of

values for each of the parents P(ei) [72] [89]. More precisely the joint distribution of

the incoming event can be factorized into a product of the CPDs of all the uncertain

attributes occurred in the event.

5.1.3 Probabilistic Fuzzy Logic based Inference Engine

 In order to formulate the combination of event sequences according to the

computed probability of events with reduced overhead, Probabilistic Fuzzy Logic

(PFL) [41][90] is used to estimate the fuzzy linguistic variables from the computed

conditional probability distributions in the large probability space. PFL is a

81

reasoning process to model the heuristic knowledge for estimating the linguistic

information from the degree of truth in the imprecise data using membership

function. In order to approximate the large sample space, fuzzy partitioning scheme

partitions the sample space with a set of possible worlds into a certain number of

predetermined membership values as shown in Figure 5.3.

Figure 5.3: Fuzzy Partitioning of Large Probability Space

 Each sample space is composed of ‘n’ number of membership functions

that span the entire sample space of a fuzzy inference system. It is ensured that the

probability of each event sequence must be 1 which is the sum up of the associated

probability with all set of events in it. A fuzzy set consists of a set of linguistic

variables, which are defined by the domain experts in the form of the characteristic

function called as Membership Function. It is represented as µF:P(E) [0, 1]. The

Membership Function is used to define the certainty that element P(E) belong to that

fuzzy set F [90]. It is used to associate a degree of membership of each of the

possible world in the sample space to the corresponding fuzzy set. In Fuzzy

Quantification, the fuzzy set consists of five linguistic variables -very low, low,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability P(E)

M
em

be
rs

hi
p

V
al

ue
s

Fuzzy Partitioning of probability space

Medium

Low

High

Very
High

Very
low

82

medium, high and very high [91] [92]. The linguistic variables represent the words

or sentences used to deal with semantic concepts of imprecise nature directly by

means of approximate characterization using mathematical formulation. It is

assigned to the set of events in the certain probability space based on the

membership values. Figure 5.4 shows the Probabilistic Fuzzy Logic based Inference

Engine. It takes the probability of combination of events as an input and then

generates the output of event sequences in an order with a fuzzy value. It consists of

three main components Fuzzifier, Rule base and Inference Engine.

Figure 5.4: Probabilistic Fuzzy Logic based Inference Engine

 The Fuzzifier is used to convert the input probability of the possible

worlds (non- fuzzy) of a sample space into a membership degree (fuzzy) with the

help of membership function associated with each fuzzy set in the rule input space

using normalization of maximum likelihood [93]. The membership degree for output

set is computed from the degrees of membership according to the relationships

among the input fuzzy values. Moreover, the Rule base defines the fuzzy rules

provided by the domain experts of the system. The Inference Engine executes the

fuzzy logic inference to map the linguistic variable from the fuzzy sets based on the

membership function in the rule base. The fuzzy value is assigned according to how

well it matches with the membership degree of certainty of the fuzzy set. It is a

useful and initiative approach to reduce the sample space to derive the most probable

event sequence approximately. Therefore, the events with most priority fuzzy values

are derived as a composite of event sequence. The procedure for probabilistic

complex event processing is given in Figure 5.5.

Fuzzifier

Rule base

Inference
Engine P(e1,e2,e3,..en)

Linguistic
Variables

Space
Reducer

83

Figure 5.5: Procedure for Probabilistic Complex Event Processing

5.2 PERFORMANCE EVALUATION

 In this section, the PCEP system is implemented in the Publisher/ Subscriber

model using JMS based subscription API and the experiments are carried out based

on the streams of stock quote of l0,000. The PCEP approach is implemented in stock

marketing scenario. It detects the relevant events from the large number of incoming

events under uncertainty. The PCEP system is tested with the IT stocks of TCS,

Google, CTS and Microsoft. The data used for evaluating this approach was

obtained from the website www.moneycontrol.com that provided the stock prices

prevailing at NASDAQ. The system takes incoming events as input of various

company stocks. Further, it generates suitable output that ensures that the decision

will be suitable for the investor to make a profit in a highly dynamic stock

environment. The data are collected for a specific period. From the collected data, it

is easier to predict the opening, highest, lowest and closing values of the stock price

for each day.

5.2.1 Experimental Setup

 The generic application methodology is designed as a message oriented

middleware with the set of software components to perform efficient event

processing. These software components communicate through Java Message

Input: Relevant Event Sequences
Output: Derived Composite Events Sequences
Procedure :
Begin

Step 1: DPFRM Model -> Construct Event Hierarchy (Relevant Event Sequences)
Step 2: Compute Joint Probability Distribution -> Conditional Probability between

event sequences
Step 3: Probabilistic Fuzzy Logic (Computed Probability)
Step 4: Fuzzy Partitioning (Large Sample Space)
Step 5: Divide into set of possible worlds using membership function
Step 6: Inference engine estimate Linguistic variables using Rule Base
Step 7: Derive Composite Event Sequences

End

84

Service, which takes input as event instances from continuously arriving incoming

events. The experiment is executed on Windows XP PC with 3.2 GHz processor,

2 GB of RAM and 512 MB cache with the maximum Java heap size of 800 Mbytes.

It is implemented in open source Java Enterprise Edition/Netbean/Glassfish/JMS

environment. The PCEP system triggers the new composite events in a real-time

application of stock market for a financial domain. The performance of the PCEP

system is tested using the event stream to the order of 10,000 incoming events that

consist of 11 attributes of which six attributes are certain attributes such as the name

of the company, product, category, volume, number of shares, timestamp. The

remaining five attributes are uncertain attributes such as stock price, Price-to-

Earnings ratio (P/E), Price-to-Sales Ratio (PSR), Return On Equity (ROE), Earnings

Growth (EG)and Debt-to-Asset ratio (D/A). In order to trigger relevant events as per

user subscriptions, it takes 500 user subscriptions which are subscribed by users

(stock trader, stock investor). The time taken to perform matching between the

incoming events with all user subscriptions in the system measured as Average

Processing Time.

5.2.2 Benchmark Application: Stock Market

 In a real-time application scenario, a typical CEP under uncertainty can be

found in technical analysis of the stock market. In order to attain a profit margin by

investing money of the software market, the stock trader should observe the trading

history (Event Instance Data) of the reputed software companies in the stock market.

Furthermore, an appropriate decision must be taken by comparing the movement of

stock share based on the index and thus indicate the appropriate time to invest the

share on the company. The core of the system implements the CEP logic that

notifies the change in stock price of incoming event streams of the market stock data

according to user subscriptions.

5.2.3 Experimental Results

 A preliminary experimental evaluation is conducted to validate the

scalability of the PCEP system based on two metrics - Throughput (events/sec) and

Average Processing Time (ms).

85

5.2.3.1 Throughput of PCEP

 The throughput of the CEP scheme is defined as the number of events

processed in a second by the processor. It relies on the power of the processing

engine to process the incoming events based on the user subscriptions. In existing

systems, heavy workload occurs because the filtering is not distributed among the

multiple machines. Therefore, it cannot process the more number of events, which

decreases the throughput. In the PCEP system, a number of state machines are

deployed to process the incoming events. Therefore, it can manage a large number

of incoming events with the help of the appropriate number of state machines that

improves the throughput of the PCEP system.

i) Effect of Varying Number of State Machines in Throughput

Hypothesis with respect to the result of the parameter T: (Throughput) as a

function of State Machines

Null hypothesis H0: T1 = T2 = T3, where T1= Throughput obtained in

Distributed Cayuga, T2 = Throughput obtained in PCEP

7 and T3 = Throughput obtained in PCEP 10.

 (There is no significant difference among the three

systems in terms of Throughput obtained)

Alternate hypothesis H3: Throughput mean values are not equal for at least one

pair of the result mean values of the parameter T.

 (There is a significant difference among the three

systems in terms of Throughput obtained)

 In Distributed Cayuga approach, the throughput is reduced at the starting

stage of processing of queries because the distributed filtering is not performed in

the case of a large number of incoming events. Figure 5.6 depicts that the PCEP with

10 state machines achieves high throughput. For example, when the number of

incoming events is 70000, the throughput is 4800, 5900 and 7100 for Distributed

Cayuga, PCEP with 7 machines and PCEP with 10 machines respectively

86

Figure 5.6: Throughput as a Function of Varying Number of State Machines

 Figure 5.6 examines how both distributed Cayuga and PCEP systems can

handle high event input rates, in the order of tens of thousands of events per second.

PCEP outperforms existing distributed in all scenarios. More particularly, PCEP can

process the large number of incoming events with high throughput and then it starts

declines but less than existing distributed Cayuga scheme. It also shows that the

throughput of PCEP is appreciable even for the large number of incoming events.

Hypothesis Evaluation with respect to Throughput as a function of State Machines

Table 5.1: ANOVA for Throughput as a Function of State Machines

Events x 104
Technique Throughput

I II III Hypothesis p value

1-10 Distributed
Cayuga PCEP 7 PCEP 10 H3 0.000

 From Table 5.1, it is concluded that the calculated significance level of the
parameter throughput of comparing three systems Distributed Cayuga, PCEP 7 and
PCEP10 always satisfy the condition (p value<0.05) for input events ranging from
10,000 to 1,00,000. There is significant difference between the results for different
throughput values of Distributed Cayuga, PCEP 7 and PCEP10. Hence, the null
hypothesis for H3 may be rejected.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 *

10
3

(E
ve

nt
s/

Se
c)

No. of Incoming Events *104

Distributed Cayuga

PCEP 7

PCEP 10

87

 Further, it is also required to determine the system which has the

maximum Throughput. This is analyzed using descriptive statistics given in

Table 5.2. Table 5.2 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Throughput.

Table 5.2: Descriptive Statistics of Throughput Measures

Technique Distributed
Cayuga PCEP 7 PCEP 10

Max
Min

6.800
3.000

8.200
5.100

9.300
6.000

Mean
Median

5.060
5.000

6.660
6.850

7.700
7.700

Standard
Deviation 1.237 1.063 1.132

 From Table 5.2, it is evident that there is an increase in mean Throughput

values in PCEP 7 and PCEP 10 compared to Distributed Cayuga. It can be

concluded that an increase in number of state machines increases the mean

Throughput. The increase in the average Throughput of PCEP 7 and PCEP 10 with

respect to Distributed Cayuga is 31.62% and 52.17% respectively.

ii) Effect of varying Size of NFA Length in Throughput

Hypothesis with respect to the result of the parameter T: (Throughput) as

function of NFA length

Null hypothesis H0 : T1 = T2 = T3, where T1= Throughput obtained in

Distributed Cayuga, T2 = Throughput obtained in PCEP

5 and T3 = Throughput obtained in PCEP 10.

 (There is no significant difference between the three

systems in terms of Throughput obtained)

88

Alternate hypothesis H4: Throughput mean values are not equal for at least one

pair of the result mean values of the parameter T.

 (There is a significant difference between the three

systems in terms of Throughput obtained)

 In NFA based event matching, the size of the NFA automaton gradually

grows according to the increasing number of queries that may reflect on the number

of state transitions required. The Throughput of the system is affected by

parameters such as the number of state transitions required to process each event,

number of predicates on the state of the automaton needed to evaluate the queries

and the memory requirements to store the NFA automaton.

Figure 5.7: Throughput as a Function of NFA Length

 In existing systems, the performance of the system will affected by

running duplicate or redundant queries at a time. Therefore, the PCEP system

deploys a Query Aware Partitioning with the help of a predicate based subscription

grouping that manages similar sub-queries among the different queries in the

subscription cluster. It eliminates the duplicate and redundant states even under the

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 *

 1
03

 (E
ve

nt
s/

Se
c)

No. of Incoming Events *104

Distributed Cayuga

PCEP 5

PCEP 10

89

large number of queries and also achieves faster execution with high throughput

[94]. Figure 5.7 shows how throughput of the PCEP improves as the number of

states of the automaton decreases. For 9000 queries, the Distributed Cayuga

processes 18000 events per second, whereas PCEP with 10 states processes 37000

events per second and PCEP with 5 NFA length processes 61000 events per second.

Hypothesis Evaluation with respect to parameter T: (Throughput) as function

of NFA length

Table 5.3: ANOVA for Throughput as Function of NFA Length

Events x
103/sec

Technique Throughput

I II III Hypothesis p value

1-10
Distributed

Cayuga
PCEP 5

PCEP
10

H4 0.000

 From Table 5.3, it is concluded that the calculated significance level of the

parameter throughput of comparing the three systems: Distributed Cayuga, PCEP 5

and PCEP 10 always satisfy the condition (p value<0.05) for input events ranging

from 1000 to 10,000. There is significant difference between the results for different

throughput values of Distributed Cayuga, PCEP 7 and PCEP 10. Hence, the null

hypothesis for H4 may be rejected.

 Further, it is also required to determine the system which has the

maximum Throughput. This is analyzed using descriptive statistics given in

Table 5.4. Table 5.4 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Throughput.

90

Table 5.4: Descriptive Statistics of Throughput Measures

Technique
Distributed

Cayuga
PCEP 7 PCEP 10

Max

Min

4.100

1.500

9.000

5.900

6.800

3.200

Mean

Median

2.750

2.650

7.390

7.300

4.780

4.650

Standard
Deviation

0.950 1.095 1.134

 From Table 5.4, it is evident that there is an increase in mean Throughput

values in PCEP 5 and PCEP 10 compared to Distributed Cayuga. It can be

concluded that there is an increase in the average Throughput as a function of NFA

length with respect to Distributed Cayuga by 42.46%.

iii) Effect of Varying Possible World Space in Throughput

 In the PCEP system, the Probabilistic Fuzzy Logic based inference is used

to derive the most probable event sequence approximately with reduced sample

space. Whereas in existing probabilistic based inference, the probability sample

space composes of a large number of possible worlds of event sequences is defined

by the EID at a time t1. Therefore, the different set of possible world will be

available at different time points: t2 and t3. Hence, the probability sample space may

vary according to the time. All the same, it is difficult to perform the probabilistic

inference on the large number of possible worlds of the sample space.

 Figure 5.8 shows how throughput of the PCEP system that deploys a

Probabilistic Fuzzy Logic inference achieves high throughput (events/sec) even

under the large number of incoming events because of reduced sample space. On the

contrary, in the existing probabilistic inference based approach, the throughput

declines as the number of possible worlds increases. It reduces the throughput of the

system according to the increasing number of events because it yields a large

probability space with the number of possible worlds.

91

 Figure 5.8: Throughput as a Function of Probability Space

5.2.3.2 Average Processing Time of PCEP

Hypothesis with respect to the result of the parameter A: (Average Processing

Time)

Null hypothesis H0: A1 = A2 = A3, where A1= Average Processing Time in

Distributed Cayuga, A2 = Average Processing Time in

PCEP 5 and A3 = Average Processing Time in PCEP 10.

 (There is no significant difference among the three

systems in terms of Average Processing Time obtained).

Alternate hypothesis H5: Average Processing Time mean values are not equal for

at least one pair of the result mean values of the

parameter A.

 (There is a significant difference between the three

systems in terms of Average Processing Time obtained)

0

2

4

6

8

10

12

2 4 6 8 10

Th
ro

ug
hp

ut
 *

 1
03

(E
ve

nt
s/

Se
c)

No. of Incoming Events *104

PFL

2 16 PW’s

2 28 PW’s

2 36 PW’s

92

Figure 5.9: Average Processing Time for varying NFA Sequence Length

 In the result, the PCEP system significantly decreases the Average

Processing Time over the other existing CEP schemes such as distributed Cayuga.

Furthermore, the number of state machines available in the system decides the

elapsed time to process the incoming events. In case of more number of state

machines, it can manage a large number of incoming events with reduced

complexity that may reduce the Average Processing Time required to process the

incoming events. Figure 5.9 depicts the Average Processing Time of the CEP. The

PCEP system achieved less processing time if more state machines are deployed to

process the incoming events. The figure also illustrates that the Average Processing

Time of the distributed Cayuga scheme starts getting higher after 60,000 incoming

events, indicating the bottleneck in performance due to the large number of

incoming events. It can be eliminated by deploying an appropriate number of state

machines according to the number of incoming events.

200

300

400

500

600

700

800

900

2 4 6 8 10

Av
er

ag
e

Pr
oc

es
si

ng
 T

im
e

(m
s)

No. of Complex Events* 10 3

Distributed Cayuga

PCEP 5

PCEP 10

93

Table 5.5: Average Processing Time versus State Machines

Scheme
Distributed

Cayuga
PCEP

5 Machines
PCEP

10 Machines
Processing

Time (ms)
240- 798 200-640 200-490

Hypothesis Evaluation with respect to parameter A: (Average Processing Time)

as function of NFA length

Table 5.6: ANOVA for Average Processing Time as Function of NFA Length

Events x 103/sec
Technique Average Processing Time

I II III Hypothesis p value

1-10
Distributed

Cayuga
PCEP 5

PCEP

10
H5 0.016

 From Table 5.6, it is concluded that the calculated significance level of the

parameter Average Processing Time of comparing three systems of Distributed

Cayuga, PCEP 5 and PCEP10 does satisfies the condition (p value<0.05) for input

queries. There is a significant difference between the results for different Average

Processing Time values of Distributed Cayuga, PCEP5 and PCEP10. Hence, the null

hypothesis for H5 may be rejected.

 Further, it is also required to determine the system which has the minimum

Average Processing Time. This is analyzed using descriptive statistics given in

Table 5.7. Table 5.7 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Average Processing Time.

94

Table 5.7: Descriptive Statistics of Average Processing Time as Function of
NFA Length

Technique
Distributed

Cayuga
PCEP 5 PCEP 10

Max

Min

780

200

640.0

200

490.0

200

Mean

Median

584

680

472.0

550.0

348.0

310.0

Standard
Deviation

226 180.7 123.2

 From Table 5.7, it is evident that there is an decrease in mean Average

Processing Time values in PCEP 5 and PCEP 10 compared to Distributed Cayuga. It

can be concluded that an increase in NFA length affects the mean processing time.

There is a decrease in Average Processing Time for PCEP 5 and PCEP 10 with

respect to Distributed Cayuga by 19.17% and 40.41% respectively.

5.2.3.3 Scalability of PCEP

Hypothesis Evaluation with respect to the result of the parameter S: (Scalability)

Null hypothesis H0: S1 = S2, where S1= Scalability obtained in Distributed

Cayuga, S2 = Scalability obtained in PCEP with Filtering

 (There is no significant difference between the two

systems in terms of Scalability obtained)

Alternate hypothesis H6: Scalability mean values are not equal for at least one

pair of the result mean values of the parameter S.

 (There is a significant difference between the two

systems in terms of Scalability obtained)

95

 Scalability is the unified performance metric. It depends on average

processing time, throughput and workload. The existing probabilistic systems

materialize and sort each event sequences in the possible world’s space individually.

Therefore, they are suitable only for a small dataset of size less than 25 tuples with

limited event pattern queries.

Figure 5.10: Scalability of PCEP with and without Filtering

 The PCEP system deploys an efficient event filtering approach to filter and

to correlate events by performing the matching between the large number of

incoming events (publications) and rules. Therefore, the event sequence prediction

scheme derives the stateful event sequence based on the probabilistic ranking. It

achieves high scalability due to the filtering of irrelevant results. It also reduces the

complexity in predicting the event sequence for the large number of incoming event

streams. Figure 5.10 depicts that the scalability of the PCEP with filtering is 1.62

times greater than the Distributed Cayuga scheme. The scalability of the distributed

Cayuga scheme is maintained around 60-70 % because it incurs less throughput and

high average processing time for the large number of incoming events.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Sc
al

ab
ili

ty
 (%

)

No. of Incoming Events * 104

Distributed Cayuga

PCEP with filtering

96

Hypothesis Evaluation with respect to parameter S: (Scalability)

Table 5.8: T-test for Scalability

Events x 104
Technique Throughput

I II Hypothesis p value

1-10
Distributed

Cayuga
PCEP H6 0.000

 From Table 5.8, it is concluded that the calculated significance level of the

parameter Scalability of comparing two systems, Distributed Cayuga and PCEP with

filtering always satisfy the condition (p value<0.05) for input events ranging from

10,000 to 1,00,000. There is a significant difference between the results for different

Scalability values of Distributed Cayuga and PCEP with filtering. Hence, the null

hypothesis for H6 may be rejected.

 Further, it is also required to determine the system which has the

maximum Scalability. Table 5.9 shows the descriptive statistics (the maximum,

minimum, median, mean values and standard deviation) of each of the technique for

the parameter scalability. It shows a increased Scalability in PCEP with filtering.

Table 5.9: Descriptive Statistics of Scalability Measures

Technique Distributed Cayuga PCEP with Filtering

Max

Min

66.00

25.00

90.00

55.00

Mean

Median

46.30

46.00

75.10

75.50

Standard
Deviation

12.94 10.96

 From Table 5.9, it is evident that there is an increase in mean Scalability

values in PCEP with filtering compared to Distributed Cayuga by 62.20%.

97

5.3 SUMMARY

 This chapter has proposed a probabilistic framework named as PCEP that

performs complex event detection even in the presence of uncertain data. In the

PCEP, the filtered events enter into a probabilistic event sequence prediction engine

to derive the correlation between the relevant events. Then, the system transforms

the relevant events into new composite events as output. Here, the probability space

is constructed as DFPRM model in the form of event hierarchy. To reduce the large

sample space, a novel probability Fuzzy Logic is used to derive the most probable

events using approximation consistent mathematical formulation. The performance

evaluation shows that the PCEP system is the most effective and efficient that

achieves high scalability even under the large number of incoming events. The

performance of PCEP against the existing Distributed Cayuga is statistically

analyzed using ANOVA and T-Tests.

98

CHAPTER 6

PCEP IN SMART REAL-TIME USE CASES

 The developed PCEP system is verified for consistency in performance.

The system is tested in processing events from RFID management systems, stock

market trading and business activity monitoring. The probabilistic framework deals

with uncertainty and results in efficient CEP. Further, event filtering is performed to

filter the relevant events for achieving high scalability.

6.1 RFID PCEP IN A REAL-TIME PRODUCT MANUFACTURING

 The PCEP system performs complex event detection in RFID monitoring

for product manufacturing. It integrates CEP to detect the in-sequence error,

incorrect assembly and delay identification in the large number of incoming parts

(events) from the various sections. It is used to detect the misplaced or duplicate

events effectively through real-time analysis and also notifies about the exceptional

events to the responsible technical supervisors to trigger a needy action in a timely

manner. Figure 6.1 illustrates the CEP based RFID model in production manufacturing

system.

 The products used to manufacture the car are entered into the PCEP

system through production path phase. This phase consists of two main components

i) RFID readers ii) RFID processor that will be used for the RFID based product

manufacturing [95]. The parts from the production phase to be assembled enter into

the assembly point through the CEP core module for the car manufacturing. This

module filters the relevant parts [96] for the car manufacturing and discards the

duplicate parts based on the Complex Event Processing Language (CEPL) queries

devised by the technical experts in the factory.

99

 Further, PCEP is carried out to predict the uncertainty in the complex

events. Finally, it will automatically notify about the inferred events as alerts to the

technical supervisors to initiate corrective measures in order to improve the overall

performance.

Figure 6.1: CEP based RFID Model in Product Manufacturing System

6.1.1 Production Path

 In a real-time smart factory, the products moving through production lines

meet at certain assembly points where assembling is carried out. The production

path is the starting point for the architecture. The architecture consists of two main

components such as RFID readers and RFID processor. The RFID readers read the

product information from RFID tags pasted in the product. The PCEP system does

not directly take the raw incoming data streams as input. The data streams are not

adaptable for the internal processing. The RFID Input Processor collects the large

number of incoming events read by RFID readers. The RFID Input Processor

converts the events into the form of event tuples as shown in Figure 6.2, which are

suitable for the CEP [97]. For instance, the RFID reader reads raw data streams in

the form of <r, i, t>, where ‘r’ represents the RFID reader that collects information

‘i’ from the RFID tag at a time ‘t’ [98]. The RFID Processor converts the raw data

streams into meaningful and actionable RFID event formats which are represented

as follows:

CEP Core

CEPL

Technical Experts

Filtering

PCEP

 Production Path

Parts with
RFID tags

Input Events

 RFID Readers RFID Processor

Assembly Point

Detection Phase

Supervisors

Notify

Notify

100

Figure 6.2: RFID Event Stream

6.1.2 Complex Event Processing Language (CEPL)

 In order to process the incoming event streams in the production path ,the

technical experts express their required event patterns. They are represented using

the CEPL query language. CEPL language is a query language used to represent the

event patterns under uncertainty as illustrated in Figure 6.3. CEPL provides

declarative, expressive and sequence-based language that can express the attributes

and values of the event in the form of algebraic expressions. In addition, CEPL

provides a powerful support for RFID data processing that includes data filtering,

data transformation, aggregation and real-time monitoring. It consists of three

clauses named as SELECT, FROM and WITHIN [99]. Among the three clauses, the

SELECT clause specifies the attributes required to select from the incoming event

stream which may be either uncertain or certain . The CEPL to detect the part engine

with relevant specifications suitable to manufacture the car Ford-Figo is as follows:

SELECT Part Type, CC, Mileage, Part Model, Fuel Type

FROM FILTER ({Type = “Engine”} (RFID Event Stream))

PATTERN ($ Model = “4A-GEC14”, CC = “1196 kmph”, Fuel = “Petrol”)

IF true

 DO allow Assembly point

ELSE

 Set notify Technical supervisor

WITHIN 15Min;

Figure 6.3: Complex Event Processing Language

{Type= “Tyre-TT” , Name= “Transtone” , Model = “12R22.5” , Design= “RADIAL” };

{Type= “Brake” , Name= “Detroit”, Model= “SER 12.7” , Spacers ID= “#790”};

{Type= “Engine” , CC= “1196” , Model= “4A-GEC14” , Fuel= “Petrol” , Milage= “116kmph”};

101

 Figure 6.3 shows the CEPL with event specification to trigger the action

with IF and ELSE condition [98]. When the condition specified in IF condition is

satisfied then, the system allows the part into assembly point. Otherwise, the action

specified in ELSE condition is triggered for notification. Depending upon the

specified attributes of the SELECT clause, two different variants of the FROM

clause are declared. The FROM clause is the core part of the query that defines the

stream expression to process a large number of incoming event streams. A stream

expression is formulated in the form of predicates using the unary constructs

-FILTER and PATTERN [100] [101]. The FILTER is represented as {FILTER ()}

which takes input as events from the incoming event streams and then only selects

the events which satisfy the predicate , whereas PATTERN is represented as

{PATTREN (1, 2…… n} which is same as FILTER construct, but takes more

than one inputs.

6.1.3 Probabilistic Complex Event Processing

 The core of the approach is the complex event processor that performs

event processing to detect the complex events with the help of two phases - Event

Filtering and Probabilistic CEP.

6.1.3.1 Event Filtering

 The Event Filtering filters the events which satisfy the FILTER construct

of the CEPL query and then discards the remaining events as duplicate, redundant

and abnormal RFID events from the incoming events. Event Filtering is done based

on the query formulated by the technical experts. In the production path, many

product parts move towards the assembly point. From these parts, the irrelevant

parts are filtered based on the query formulated. The relevant product parts are

forwarded to the assembly point. Due to the filtering of irrelevant parts, the system

can manage the large number of incoming events. This process improves scalability

[102]. The Probabilistic Event Sequence Prediction (PESP) thus predicts the

relevant parts.

102

6.1.3.2 Probabilistic Complex Event Processing

 Due to the uncertainty caused by data errors, the events are probabilistic

rather than deterministic in nature. Therefore, a probabilistic model is proposed to

enable complex event detection in the presence of uncertainty. The PCEP system

detects the duplicate or exceptional events on the production path and then notifies

the technical experts about the most important issues. The probability of the events

is computed based on the correlation among the different attributes of the different

events from the event history. The event history consist of ‘n’ number of events

{E1, E2…… En}. Then, the overall joint probability distribution is computed based on

aggregating the product of local conditional probabilities of the events using the

conditional probabilistic dependencies. The overall joint probability distribution

represented as follows:

1

(/) () / ()
n

n n nP E E P E E P E

 After computing the conditional probability of the events, the probabilistic

ranking is performed to rank the event based on the conditional probability .

Furthermore, an event with a high state probability is triggered and detected as a

suitable event. This phase generates events according to the detected complex event

based on probabilistic phase. If the detected event matches the pattern construct in

the CEPL, then the system allows the detected event into the assembly point for

further processing. Otherwise, the system generates a notification as an alarm, SMS

or email to the technical supervisor. The technical supervisor takes the corrective

measure to achieve fault recovery and to prevent this error in the future to improve

the overall performance.

6.1.3.3 Event Detection Phase

 There is a possibility for unfortunate situations to occur, even after

entering the relevant parts to assemble the car in the assembly point. The unfortunate

situations are i) there may not be synchronization among the detected parts while

entering into the assembly point ii) The product parts moving on the assembly line

103

may arrive late at the assembly point and may result in an incorrect assembly of

products or an overall delay for the entire production. In order to overcome these

difficulties, three types of complex event detections such as i) synchronization error

detection, ii) delay detection and iii) incorrect assembly detection will be performed

in the assembly point section[103].

i) Synchronization Error Detection

 In order to assemble the car effectively, the detected different product parts

should arrive at the assembly points within the defined time. The parts of a product

should reach the point of the assembly in synchronization with each other. A delay

or break up of this clockwork precision may lead to incorrect assembly of the

product. The RFID reader sends read event to the virtual reader (Ri) responsible for

monitoring the corresponding product part. If Ri is not able to detect the

corresponding part within a defined time span, it generates a synchronization error

and sends the notification information to the supervisor [95].

ii) Delay Detection

 Delays can be caused by mechanical or human failures. In this framework,

a delay is detected using a timer triggered an event that is fired once in ‘t’ seconds.

The production is performed according to the plan of technical experts where each

timer detects the new different product parts for assembling the car in the assembly

line. If a new part is not detected on the assembly line, a new timer event is fired and

a delay event is generated. It generates the notifications.

iii) Incorrect Assembly Detection

 When two parts that do not belong to the same product are assembled

together, an incorrect assembly occurs. When a product part is assembled with

another part, both of them will be detected at the same time at the next physical

reader. If a physical reader detects two parts, its corresponding virtual reader

compares these two parts with the product to which they belong. If both of these

104

parts belong to the same product, then it triggers an event of correct assembly

detection. However, if both the parts do not belong to the same product, the virtual

reader generates an incorrect assembly error event and notifies the supervisor. An

incorrect assembly error may be arising due to the delays on assembly lines or

synchronization errors [95].

6.1.4 Experimental Setup

 The system is implemented in Siddhi CEP engine with the help of WSO2

Complex Event Processor. The experiment is run on Windows XP PC with 3.2 GHz

processor, 2 GB of RAM with the minimum JAVA heap size of 250 Mbytes. It can

be run in Windows XP and requires a Java Virtual Machine version 5.0 runtime or

above. It can process in the order of 10,000 (events/sec) on a dual CPU 2GHz Intel

based hardware with minimum latency.

 The performance of the PCEP system is evaluated using two common

evaluation metrics such as processing time and throughput. The experiment was

carried out to compare the performance of the proposed RFID-PCEP with existing

RFID-CEP approach.

i) Throughput

 The Throughput of the CEP scheme is defined as the number of events

processed per second by the processor. It is demonstrated in Figure 6.4. The

incoming events are processed based on the rules specified by the technical experts.

In RFID-CEP, filtering is not performed. As the number of events increases, it

cannot process the increased number of events, which decreases the Throughput.

RFID-PCEP provides filtering approach which filters out the irrelevant events and

processes only the most relevant events. As the number of events increases, the

Throughput also increases.

105

Hypothesis Evaluation with respect to the result of the parameter T:(Throughput)

Null hypothesis H0: T1 = T2, where T1= Throughput obtained in RFID-

CEP, T2 = Throughput obtained in RFID-PCEP

 (There is no significant difference between the two

systems in terms of Throughput obtained)

Alternate hypothesis H7: Throughput mean values are not equal for at least one

pair of the result mean values of the parameter T.

 (There is a significant difference between the two

systems in terms of Throughput obtained)

Figure 6.4: Throughput of RFID-PCEP System

Table 6.1: T-test for Throughput of RFID-PCEP System

Events x
104/sec

Technique Throughput

I II Hypothesis p value

1-10 RFID-CEP RFID-PCEP H7 0.007

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 *

 1
03

(E
ve

nt
s/

Se
c)

No. of Incoming Events *104

RFID -CEP

RFID-PCEP

106

 From Table 6.1, it is concluded that the calculated significance level of the

parameter throughput of comparing two systems RFID-CEP and RFID-PCEP

always satisfy the condition (p value<0.05) for input events ranging from 10000 to

100,000. There is significant difference between the results for different throughput

values of RFID-CEP and RFID-PCEP. Hence, the null hypothesis for H7 may be

rejected.

Table 6.2: Descriptive Statistics of Throughput Measures of RFID-PCEP System

Technique
RFID-CEP
(Existing
System)

RFID-PCEP
(Proposed
System)

Max

Min

8.500

3.000

9.500

6.900

Mean

Median

6.500

6.950

8.340

8.450

Standard
Deviation

1.704 0.907

 Further, it is also required to determine the system which has the

maximum Throughput. This is analyzed using descriptive statistics given in

Table 6.2. Table 6.2 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Throughput. It is evident that there is an increase in the mean Throughput

of RFID-PCEP with respect to RFID-CEP by 28%.

ii) Average Processing Time

 The Average Processing Time of the proposed PCEP approach is

calculated based on the time taken to process the complex events. Figure 6.5

demonstrates that the proposed approach achieves better Average Processing Time

than the existing RFID-CEP without filtering.

107

Hypothesis Evaluation with respect to the result of the parameter A: (Average

Processing Time)

Null hypothesis H0: A1 = A2, where A1= Average Processing Time in RFID-

CEP, A2 = Average Processing Time in RFID-PCEP

 (There is no significant difference between the two

systems in terms of Average Processing Time obtained)

Alternate hypothesis H8: Average Processing Time mean values are not equal for

at least one pair of the result mean values of the

parameter A.

 (There is a significant difference between the two

systems in terms of Average Processing Time obtained)

Figure 6.5: Average Processing Time of RFID-PCEP System

Table 6.3: T-test for Average Processing Time of RFID-PCEP System

Events x
104/sec

Technique Average Processing Time

I II Hypothesis p value

1-10 RFID-CEP RFID-PCEP H8 0.109

0
100
200
300
400
500
600
700
800
900

1000

2 4 6 8 10

Av
er

ag
e

Pr
oc

es
sin

g
Ti

m
e

(m
s)

No. of Complex Events *103

RFID -CEP

RFID-PCEP

108

 From Table 6.3, it is concluded that the calculated significance level of the

parameter average processing time of comparing two systems RFID-CEP and

RFID-PCEP does not satisfy the condition (p value<0.05) for input events. There is

no significant difference between the results for different average processing time

values of RFID-CEP and RFID-PCEP. Hence, the null hypothesis for H8 may be

accepted.

Table 6.4: Descriptive Statistics of Average Processing Time of RFID-PCEP
System

Technique
RFID-CEP

(Existing System)
RFID-PCEP

(Proposed System)

Max

Min

900

175

450

150

Mean

Median

560

600

300

275

Standard
Deviation

298 123.7

 Further, it is also required to determine the system which has the minimum

Average Processing Time. This is analyzed using descriptive statistics given in

Table 6.4. Table 6.4 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Average Processing Time. It is evident that there is a decrease in the

Average Processing Time of RFID-PCEP with respect to RFID-CEP by 46%.

6.2 UNCERTAIN STOCK PRICE PREDICTION USING PFL

 The stock prediction system is modeled as a Publisher/Subscriber

middleware [82]. It is represented in the Figure 6.6. It can predict the stock value for

stocks of companies across various sectors of the economy like Automobiles, IT and

Oil & Gas.

109

Figure 6.6: Stock Exchange Publisher/Subscriber Middleware System

 In Figure 6.6, the publisher (stock exchange) publishes stock quotes to a

large number of subscribers (stock broker, traders and investors). The stock quotes

consist of events related to the various sectors. They have five attributes - a global

identifier, the name of the company, the volume of stocks, the price and the

identifier of the selling trader. The subscribers those who are interested in stock

trading can express their interest on the incoming events as a stock request to buy or

sell a share in accordance to the event patterns available in the stock market. The

Probabilistic Fuzzy Logic methodology predicts the future price of stock value by

extracting the higher level knowledge from the large number of incoming complex

events from the stock quotes.

6.2.1 Stock Exchange Scenario

 In the stock market, all companies in the different domains have some

business dependencies to each other. For example, a manufacturing company is

strongly inter-correlated with a company for production of raw material and a

finance company. This causes business dependencies among multiple companies.

When the stock broker needs to invest he should comprehend this dependency

chain. So he should monitor for events occurring along multiple dependency chains.

110

 The stock trading consists of two types of stock events - stock quote and

stock request. The stock exchange disseminates the number of continuously arriving

stock data as a stock quote as depicted in Figure 6.7. The stock brokers use stock

request to express their interest in buying/selling stock [104]. The publishers publish

the continuously arriving stock exchange stream as follows:

 {………….
{(Name, “TATAMOTORS”) (price, 174.88) (volume, 2,735)},
{(Name, “FORD”) (price, 69.31) (volume, 8,991)},
{(Name, “FIAT INDIA LTD”) (price, 189.31) (volume, 1,481)},
{(Name, “HONDA MOTORS”) (price, 87.84) (volume, 6,165)},
{(Name, “TOYOTA MOTORS”) (price, 91.36) (volume, 5,742)},
{(Name, “MARUTI SUZUKI”) (price, 150.36) (volume, 3,354)},
{…………..

Figure 6.7: Stock Exchange Event Stream

 The stock broker or trader will like to start a query on the event stream as a

stock request similar to the query as represented in Figure 6.8. The stock brokers

express their interest as event queries, represented in the form of CEPSL [60]. The

broker wants to invest share on car company for the product of monotonic decrease

of stock price less than 90 with volume of 5,000. Due to the decrease in stock price,

the stock abruptly rebounds through increasing of up to at least 5% in value in last

15 minutes.

Figure 6.8: Stock Request

111

6.2.2 Stock Prediction using DFPRM

 From the web, the historical stock (open, close, low, high) prices of

different companies hare collected. The event hierarchy called as Dynamic Fuzzy

Probabilistic Relational Model (DFPRM) is constructed [86] as portrayed in the

Figure 6.7. The DFPRM consists of set of event classes with their associated

attributes. The joint probability distribution is computed using the conditional

probabilistic dependencies among the event sequences in accordance to the stock

request. The constructed graphical DFPRM model is used to learn the non-linear and

dynamic functional relationships among the incoming events. DFPRM predicts the

future trends of the stock market.

Figure 6.9: Dynamic Fuzzy Probabilistic Relational Model

 This model has capability to perform the technical analysis on the

incoming stock quotes based on different parameters to predict the future. This

model is used by the investor for evaluating the opening price, closing price, highest

112

price and lowest price of a company stock based on the technical indices- Relative

Strength Index (RSI), Gross Domestic Product (GDP), Manufacturing Index (MI)

and Interest Rate (IR) and the fundamental indices namely Price-to-Earnings Ratio

(P/E), Price-to-Sales Ratio (PSR), Return On Equity (ROE), Earnings Growth

(EG)and Debt-to-Asset ratio (D/A). Figure 6.9 shows the DFPRM for the event

sequences ‘E’ with a set of events ‘E’ = {e1, e2…..en} and each event ‘ei’ is

associated with a set of descriptive attributes and reference slots. The sample space

of event sequence ‘E’ is represented as the conjunction of set of possible stock

events with its associated probability measure from the stock event history.

6.2.3 Conditional Probability Computation of Stock Events

 The novelty of work is that the constructed probabilistic model (DFPRM)

is used to compute the probability of future stock price based on the conditional

probabilistic independencies among the events in stock history. The probability

space is represented as triple {WT, T, T} where WT is a set of possible stock values,

T is a history associated with each possible stock and T is a probability measure of

the stock value. The conditional probability distribution of event ei is determined

using the probability distribution over the values of events given each combination

of stock values in its stock history P(ei). The conditional probability distribution is

computed as follows:

 P (ei/ei+1) = P (ei / e i, i)

 Here, i is the set of stock values in stock history of ei and i is the

parameter vector associated with ei. The overall probability associated with the stock

events is factorized by aggregating the product of local conditional dependence of

the event given their stock history events [72].

6.2.4 Probabilistic Fuzzy Logic based Inference Engine

 In order to make a better decision whether to buy or sell the share for

making a profit in the stock market, Probabilistic Fuzzy Logic [90] estimates the

fuzzy linguistic variables from the computed conditional probability distributions in

113

the large probability space. The fuzzy partitioning scheme reduces the large sample

space by partitioning the more number of possible worlds into pre-determined

classes using membership function. A fuzzy system consists of set of rules defined

by the characteristic function called as membership function, which is represented as

F: P (E) [0, 1] [91] [92]. It is used to define the certainty that element P (E)

belong in that fuzzy set ‘F’. The performance of fuzzy logic is influenced by the

selection of membership functions and the fuzzy logic rules.

Figure 6.10: Probabilistic Fuzzy Logic for Stock Prediction

 Figure 6.10 shows the Probabilistic Fuzzy Logic used in DFPRM model in

which the Fuzzifier converts the input probability of the possible worlds (non fuzzy)

of a sample space into fuzzy values [93] to train the DFPRM model. Further, the

knowledge base consists of fuzzy if-then rules. The set of statements listed below

give an idea about the rules that are implemented:

 If (MAV is negative) and (%price change is Positive) and (Low RSI)

THEN “BUY” (Tomorrow close price value > than today’s price)

 If (MAV is negative) and (%price change is Positive) and (High RSI)

THEN “SELL” (tomorrow close price < than today’s price)

 If (MAV is null) and (%price change is null) and (Stable RSI) THEN

“NO ACTION” (tomorrow close price value remains same as today’s price).

 The inference engine executes the fuzzy logic to map any one of the

linguistic variable from the fuzzy sets. The fuzzy sets consist of three linguistic

variables {“Buy”, “Sell”, “No Action”} according to the rule base. Finally, the

Fuzzifier

Knowledge base
 (IF… THEN)

Inference
Engine

MAV = low/high
RSI = low/high

Pchange =low/high

“Buy”
“Sell”
“Noact” P(e1,e2,e3,..en)

114

satisfied condition throws the corresponding linguistic variable as the output

whether to buy or sell the share to gain profit. In addition to daily stock prediction,

the system is also capable of predicting the open, high, low and close prices of

desired stock on a weekly and monthly basis. It is proposed for predicting the future

direction of stock prices using past historical datasets. The PFL approach enhances

the decision making for investors in the stock market by offering more accurate

stock prediction compared to existing approaches. The experimental evaluation is

carried out to test the methodology under real-time financial data.

6.2.5 Experimental Setup

 The PCEP system for stock price prediction was tested with the

automobile stocks of TATA motors, Honda motors, Toyota motors, Fiat India Ltd

and Ford. The data used for evaluating this approach was obtained from the website

www.moneycontrol.com that provided the stock prices prevailing at NASDAQ stock

quotes. The data was collected for the period from July 2012 to April 2013. From

the collected data, the opening, highest, lowest and closing values of the stock price

for each day within this period was collected. A publisher/subscriber system using

Java Message Service based subscription API in the environment of Java Enterprise

Edition/NetBeans/Apache/JMS was implemented. It takes incoming events as inputs

of various company stocks. The system generates suitable output to indicate the type

of decision suitable for the investor.

 The performance of the system is evaluated using two common evaluation

metrics accuracy in predicted stock price versus actual price and Mean Absolute

Percentage Error (MAPE).

i) Accuracy of Stock Prediction

 The stock price prediction system performs effective prediction in the

stock price. The Figure 6.11 shows that the accuracy of stock prediction over a

period from July 2012 to April 2013. The performance of PCEP system in stock for

Throughput and Average Processing Time is already discussed in chapter 5.

115

Figure 6.11: Accuracy of Stock Prediction

ii) Mean Average Error Percentage in Stock Prediction

 The error rate of PFL approach of NASDAQ stock is calculated in terms

of mean square error which is represented in Figure 6.12.

Figure 6.12: Mean Average Error Percentage in Stock Prediction

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Pr
ic

e

Sample Period in Months

Actual

Predicted

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

M
AP

E

Sample Period in Months

PFL

Desired

116

6.3 KPI BASED CEP AND CBAM

 The PCEP system is Complex business Activity Monitoring with Event

Processing (CAMEP). CAMEP combines two main platforms such as CEP and

BAM into a single framework. It is an integrated end-to-end developer environment

that performs real-time analysis on the input events under uncertainty. Figure 6.13

shows the four-tier architecture of CAMEP which consists of four layers: Event

Collection layer, Event Filtering Layer, Complex Event Processing Layer and Event

Display or Delivery Layer.

Figure 6.13: CAMEP in Real -Time Enterprise of Multiple Domains

 In this CAMEP architecture, the first layer is the Event Collection Layer

that collects a large number of heterogeneous events from multiple domains such as

banking, stock market and IT sector. It relies on object oriented middleware layer to

collect the messages from heterogeneous transactional systems. The second layer is

the Event Filtering Layer employs a bit map indexing scheme to filter the incoming

Event Collection

Layer

Event Filtering Layer

(Bit map))Indexing)

KPI
Banking

KPI- IT
Sector

KPI – Stock
Market

POE1 POE2 POE3

Complex Event Processing Layer

Visualizer1 Visualizer2 Visualizer3

Event Delivery and Display Layer

Events
Multiple
Domains

117

events based on the Key Performance Indicators. This layer filters the relevant

events which are related KPIs mentioned for the specified domain and then discards

the exceptional events which are unrelated to the domain. The next layer is the

Complex Event Processing Layer; where the relevant events are entered into this

processing layer that deploys a Persistent Object Engine (POE) to perform CEP

under uncertainty. It identifies the divergence in the business performance

according to the concurrent values in KPIs. The Event Delivery and Display layer is

the final layer which activates automated action to help Business Process

Management(BMP) tools. Further, it generates and communicates alerts via various

communication systems to ensure the reaction to performing changes to improve the

business performance.

6.3.1 Event Collection Layer

 In this CAMEP model, the first layer is the Event Collection Layer.

Owing to the heterogeneity of the incoming events coming from multiple domains,

the CAMEP approach does not directly take the raw incoming data streams as an

input. It collects messages from heterogeneous transactional systems. The incoming

messages in the middleware are aggregated into events. Therefore, an object

oriented middleware layer is deployed to manage all the messages that enter into the

system and to convert the events as objects suitable for continuous real-time

analysis. The incoming event messages are pre-processed into event instances,

which are suitable to process the events in upcoming layers.

6.3.2 Selection of KPIs

 The event-driven CAMEP approach supports a universal system

architecture that provides the high abstraction and projection capabilities for the

selection of KPIs, which is used to monitor the business process continuously at run

time. Domain experts utilize Business Metric Service (BMS) to select suitable KPIs

and to calculate the numerical values for the set of attributes in the KPIs to maintain

the business process. BMS is a specialized business service that provides relevant

information based on rapidly accessing the wide range of data not being intertwined

118

with the technical information of the underlying business process. Furthermore, the

derived KPIs are stored in a persistent database so that multiple users can access the

KPIs without incurring the expense of recalculation.

6.3.3 Event Filtering Layer

 Events collected and pre-processed by the Event Collection Layer are

entered into the Event Filtering Layer. It filters the incoming events/messages which

are related to the KPIs specified by domain experts. The PCEP system deploys an

inbuilt analytical model called as a transactional bitmap indexing. It performs

extremely fast filtering of the large number of continuously arriving events based on

the KPIs [21] [22]. Here, the formulated KPIs are organized in the form of matrix

‘u’ x ‘v’ where ‘u’ is the set of identifiers (object) and then ‘v’ is the corresponding

values (property) that are maintained as an object. When a bit of the corresponding

row is set to 1, it means that the row/object has that value for the column/property.

The Bitmap Indexing performs Boolean operations (AND, OR) on the indexes to

determine exactly which event instances match the attribute in the KPIs without

searching throughout the entire database.

6.3.4 Complex Event Processing Layer

 The Complex Event Processing Layer accepts the filtered events from the

filtering layer. This layer considers the uncertainty associated with the set of

attributes of the incoming filtered events. This layer consists of a Persistent Object

Engine (POE) which has two highly integrated components – a virtual machine and

an object store. The object store maintains all the incoming messages entering the

system persistently which also increases system reliability [105] The virtual

machine deploys event-driven logic so that processes can react rapidly to the number

of incoming events from the multiple heterogeneous domains. The monitoring of

the business process is carried out based on the KPIs to detect exceptional events. If

the numerical values of the KPIs in the incoming events exceed the specified range,

then corrective reasonable action must be a triggered to take over the enterprise to a

good position.

119

6.3.5 Event Delivery and Display Layer

 After analyzing and processing the business events based on KPIs, this

layer is responsible for notifying the impact and severity of the events in the

business performance of the recipients. Here, the notification may be in the form of

graphical display or alerts to the user about the deviation of the concurrent values in

the KPIs of the incoming events. The KPIs values can be displayed on dashboards

via one or more meters and then corresponding actions are triggered to improve

business operations and processes. Further, it provides the notification as feedback

to the relevant business process to react dynamically according to changes in the

incoming events [105].

6.3.6 Experimental Setup

 The CAMEP approach is implemented in open source Siddhi CEP engine

that runs on a WSO2 Complex Event Processor. The hardware configuration consists

of the Intel Core 2 Duo of 2.10 GHz with Memory 1.9 GB with the maximum JAVA

heap size of 800 Mbytes. It is implemented in open source Java Enterprise

Edition/Eclipse/WSO2. The system requires Java Virtual Machine version 5.0 or

above. The CAMEP approach is implemented to monitor the large number of

incoming events from the multiple domains. It can process more than 500 events/sec

on a dual CPU 2GHz Intel based hardware. The performance of the proposed

approach is evaluated using a stock brokerage system.

 The heterogeneous sources of events in this case study are Customer,

Bank, Stock Brokerage and Stock Market. One sample KPI to be calculated for this

case study is Customer Order Fulfillment Time (COFT). The COFT is computed

from three metrics. They are Customer Order Placement Time, Money Transfer

Time and Stock Transfer Time. Of this, Customer Order Placement Time metric is

sourced from Customer domain, Money Transfer Time metric is sourced from Bank

domain and Stock Transfer Time from Stock Market domain. All the metrics have to

be processed using Complex Event Processing to calculate the COFT. The event

streams is in the order of 10,000 incoming events .The overall performance of the

120

business process is evaluated by monitoring the incoming streams in terms of KPI,

which is derived by the technical experts in the corresponding domain.

i) Throughput

Hypothesis Evaluation with respect to the result of the parameter T:(Throughput)

Null hypothesis H0: T1 = T2, where T1= Throughput obtained in BAM,

T2 = Throughput obtained in CAMEP 25 KPI

 (There is no significant difference between the two

systems in terms of throughput obtained)

Alternate hypothesis H9: Throughput mean values are not equal for at least one

pair of the result mean values of the parameter T.

 (There is a significant difference between the two

systems in terms of throughput obtained)

 The throughput of CAMEP 25 KPI is compared with that of BAM is

illustrated in Figure 6.14.

Figure 6.14: Throughput of CAMEP System

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 *

 1
03

(E
ve

nt
s/

Se
c)

No. of Incoming Events *104

BAM

CAMEP

121

Table 6.5: T-test for Throughput of CAMEP 25 KPI System

Events x
104/sec

Technique Throughput
I II Hypothesis p value

1-10 BAM CAMEP 25 KPI H9 0.009

 From Table 6.5, it is concluded that the calculated significance level of the

parameter Throughput of comparing two systems ,BAM and CAMEP 25 KPI

always satisfy the condition (p value<0.05) for input events ranging from 10000 to

100,000. There is significant difference between the results for different Throughput

values of BAM and CAMEP 25 KPI. Hence, the null hypothesis for H9 may be

rejected.

Table 6.6: Descriptive Statistics of Throughput Measures of CAMEP 25 KPI
System

Technique BAM CAMEP 25 KPI
Max
Min

8.200
5.600

9.500
6.800

Mean
Median

7.160
7.300

8.330
8.450

Standard
Deviation 0.846 0.925

 Further, it is also required to determine the system which has the

maximum Throughput. This is analyzed using descriptive statistics given in

Table 6.6. Table 6.6 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Throughput. It is evident that there is an increase in the average

Throughput of CAMEP 25 KPI with respect to BAM by 16.34%.

ii) Average Processing Time

 The Average Processing Time taken to monitor the incoming large number

of heterogeneous events from the multiple domains is evaluated. Figure 6.15

illustrates that the proposed CAMEP approach outperforms the existing BAM

122

approaches due to the integration of CEP in the BAM. In addition, event filtering is

performed to filter out the irrelevant events based on the KPIs. Furthermore, the

number of KPIs available for monitoring decides the elapsed time to monitor the

incoming events. In case of the more number of KPIs, the average processing time

required to process the incoming events gets gradually increased.

Hypothesis Evaluation with respect to the treatment of the factor A: (Average

Processing Time)

Null hypothesis H0: A1=A2=A3, where A1= BAM, A2=CAMEP 50 KPI and

A3=CAMEP 25 KPI

 (There is no significant difference among the three

systems in terms of Average Processing Time obtained.)

Alternate hypothesis H10: Treatment means are not equal for at least one pair of the

treatment means of the factor A

 (There is a significant difference among the three

systems in terms of Average Processing Time)

Figure 6.15: Average Processing Time of CAMEP System

0

200

400

600

800

1000

1200

1 2 3 4 5

Av
er

ag
e

Pr
oc

es
sin

g
Ti

m
e

(m
s)

No. of Complex Events *103

BAM

CAMEP 50 KPI

CAMEP 25 KPI

123

Table 6.7: ANOVA Results of Average Processing Time of CAMEP System

Technique Preprocessing time

I II III Hypothesis p value

BAM CAMEP
50 KPI

CAMEP
25 KPI H10 0.001

 From Table 6.7, it is concluded that the calculated significance level of the

parameter detection time of comparing three systems BAM, CAMEP 50 KPI and

CAMEP 25 KPI always satisfy the condition (p value<0.05). There is significant

difference between the results for different Average Processing Times of BAM,

CAMEP 50 KPI and CAMEP 25 KPI. Hence, the null hypothesis for H10 can be

rejected.

 Further, it is also required to determine the system which has the

maximum Throughput. This is analyzed using descriptive statistics given in

Table 6.8. Table 6.8 shows the descriptive statistics (the maximum, minimum,

median, mean values and standard deviation) of each of the technique for the

parameter Throughput.

Table 6.8: Descriptive Statistics of Average Processing Time of CAMEP System

Technique BAM CAMEP 50 KPI CAMEP 25 KPI

Max

Min

1000.0

300.0

800.0

150.0

500.0

100.0

Mean

Median

715.0

762.5

497.5

512.5

335.0

362.5

Standard
Deviation

223.7 225.0 140.5

 From Table 6.8, it is evident that there is decrease in Average Processing

Time values in CAMEP 25 KPI and CAMEP 50 KPI compared BAM by 53.14%

and 30.4%respectively.

124

6.4 PERFORMANCE EVALUATION OF SMART REAL-TIME USE

CASES

 The performance of PCEP system with respect to Throughput and

Processing time is tested in multiple domains such as stock, RFID and KPI to verify

the consistency and generalness of PCEP system.

6.4.1 Throughput Comparison

 The Figure 6.16 illustrates the performance of Distributed Cayuga with

PCEP implemented in Stock domain, RFID domain and KPI domain. From the

chart, it is evident that the Throughput of PCEP is consistently increasing with

respect to the throughput of Distributed Cayuga. Thus, it can be concluded that the

performance of PCEP in Throughput does not depend on the application domain.

Figure 6.16: Throughput Comparison for Smart Real-Time Use Cases

6.4.2 Average Processing Time Comparison

 The Figure 6.17 illustrates the performance of Distributed Cayuga in

comparison with PCEP implemented in Stock domain, RFID domain and KPI

domain. From the chart, it is evident that the Average Processing Time of PCEP is

consistently decreasing with respect to the Average Processing Time of Distributed

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 *

 1
03

(E
ve

nt
s/

Se
c)

No. of Incoming Events *104

Distributed Cayuga

Stock

RFID

CAMEP

125

Cayuga. Thus, it can be concluded that the performance of PCEP in Average

Processing Time does not depend on the application domain.

Figure 6.17: Average Processing Time Comparison for Smart Real-Time Use
Cases

6.5 SUMMARY

 This chapter provided the three use case applications of PCEP system in

the Business Process Management to improve the business process using Business

Intelligence. First, the PCEP system is implemented in the RFID based CEP

Framework that is capable of detecting complex manufacturing events. The Event

Filtering reduces the overhead of the processing engine by filtering out the irrelevant

events from the large number of incoming events. And then, the probabilistic CEP

model is presented, which computes the probability of event sequence patterns and

derives the most probable events with high probability based on the rules designed

using CEPL. Second, the PCEP is integrated with the Probabilistic Fuzzy Logic

approach for implementing decision making tasks in the stock market prediction. It

is proposed for predicting the future direction of stock prices using empirical

datasets. Therefore, the PFL approach enhances the effective decision making for

investors in the stock market by offering more accurate stock prediction when

compared to existing approaches. Third, the PCEP is integrated with BAM to

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10

Av
er

ag
e

Pr
oc

es
sin

g
Ti

m
e

(m
s)

No. of Complex Events *103

Distributed Cayuga

Stock

RFID

CAMEP

126

perform an efficient monitoring of events coming from the multiple domains based

on Key Performance Indicators. It triggers the necessary action for maintaining the

overall business performance that displays the performance of the business process

in terms of KPIs . The performance of PCEP against the existing Distributed Cayuga

is statistically analyzed using ANOVA and T-Tests.

127

CHAPTER 7

CONCLUSION AND FUTURE WORK

 The last chapter of the Thesis provides a brief summary of the various

research contributions and highlights the advantages of the PCEP system. Further it

list a few problems for future research.

7.1 CONCLUSION

 The main focus of the research is to develop a scalable and efficient

Probabilistic Complex Event Processing (PCEP) system that can handle uncertain

event stream. The research objectives has been formulated from the literature

survey. In order to achieve the research objectives, experimental setup has been

designed. The PCEP system is evaluated using the designed experimental setup. It is

inferred that all the objectives have been achieved effectively. The performance of

the system was compared with the existing Distributed Cayuga System. The

statistical analysis of the results obtained has been performed using T-test and

ANOVA.

 The PCEP system is an integrated approach that comprises of Efficient

Generic Event Filtering (EGEF) and Probabilistic Event Sequence Prediction

(PSEP). The EGEF module incorporates Predicate based Subscription Grouping

Algorithm, NFAh based filtering, row/column scaling and pipelining techniques. The

PSEP module incorporates the Dynamic Fuzzy Probabilistic Relational Model

(DFPRM) and Probabilistic Fuzzy Logic.

 The EGEP module was validated for the events from the health domain

against the parameters, Throughput and Average Processing Time. The results

indicate that the EGEF module has an increased Throughput of 33% and decreased

Average Processing Time of 26%, compared to the existing Distributed Cayuga

system.

128

 The PCEP system was also validated for the events from the stock market

domain with the parameters, Throughput and Average Processing Time. The

Throughput is considered along the following two dimensions: Throughput as a

function of State Machines and Throughput as a function of NFA Length. The

results point out that PCEP system has an increase of 31.62% with respect to

Throughput as a function of State Machines compared to Distributed Cayuga. It is

inferred from the results that PCEP system has an increase of 42.46% with respect to

Throughput as a function of NFA Length compared to Distributed Cayuga. The

performance of the PCEP system with respect to Average Processing Time

decreases by 19.17% compared to Distributed Cayuga. The scalability inferred from

the observed Throughput and Average Processing Time signifies that the PCEP

system is better than Distributed Cayuga by 62%.

 To validate the performance of the PCEP across multiple heterogeneous

domains in addition to the stock market domain, the PCEP system was tested with

events from RFID event data of product manufacturing domain and Key

Performance Indicators. The results show that the PCEP system processes the RFID

events with increased Throughput of 28% and decreased Average Processing Time

of 46%, compared to the existing Distributed Cayuga system. It is inferred that the

PCEP system processes the KPI as events with increased Throughput of 16.34% and

decreased Average Processing Time of 30.4%, compared to the existing Distributed

Cayuga system.

 The PCEP system has an efficient pre-event filtering module, which filters

and allows the relevant events to the next prediction phase. The unnecessary

computation for the irrelevant events is reduced and this improves the throughput of

the event detection. The significant contribution of the PCEP system is the

fabrication of the probabilistic framework for the CEP.

 This research has made a noteworthy contribution in the field of Complex

Event Processing in two aspects: Improving the efficiency of the filtering and

handling the uncertain data using Probabilistic Relational Model. As a successful

attempt in the field of Probabilistic Event Processing, various interesting and

challenging directions are introduced for future exploration.

129

7.2 FUTURE WORK

 The PCEP system is limited to perform effective business monitoring

within the intra-organizational setting and explicit dependency is

available between the interacting parties to achieve high scalability.

However, in the case of an inter-company cooperation, CEP is a

challenging task to perform a robust pattern matching over uncertain

events due to the lack of cooperation and heterogeneity available

between the interacting parties in multiple domains. Thus, there is a

need to perform semantic decoupling between the publishers and

subscribers in terms of three temporal parameters such as time, space

and synchronization. The system needs to acquire an explicit

independency between the interacting participants to perform

semantic matching and to achieve high scalability even under

heterogeneous environments.

 The other possible direction is the extension of query languages to

support the various monitoring applications. This will achieve

effective query processing to execute multiple event queries

simultaneously over inferred data to detect business opportunities and

risks.

 The efficiency of DFPRM model can be further improved by self-

optimizing its scaling inference for handling continuous variables that

provide timely processing of a large number of uncertain events with

high scalability.

 The notion of Concept Drift can also be included when generating

complex events.

130

REFERENCES

[1] Ellie Fields and Brett Sheppard, “A New Approach to Business Intelligence:
Rapid-fire BI,” White Paper, Tableau Software, http://www.tableausoftware.com,
2013.

[2] Michael Eckert and Francois Bry, “Complex Event Processing,” Proceedings
of the Conference on Informatik-Spektrum vol. 32, no. 2, pp. 163-167, 2009.

[3] Analyze and act on Fast Moving Data: An overview of Complex Event
Processing http://www.sybase.in/detail?id=1069696, 2013.

[4] Segev Wasserkrug et al., “A Model for Reasoning with Uncertain Rules in
Event Composition Systems,” Proceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence, pp. 599-608, 2005.

[5] Anish Das Sarma et al., “Working Models for Uncertain Data,” Proceedings
of the 22nd International Conference on Data Engineering, IEEE Computer
Society Washington, pp. 7-10, 2006.

[6] C.C.Agarwal and P.S.Yu, “A Survey of Uncertain Data Algorithms and
Applications,” IEEE Transactions on Knowledge and Data Engineering, vol.
21, no. 2, pp. 609-623, 2009.

[7] Wenjie Zhang et al., “Managing Uncertain Data: Probabilistic Approaches,”
Proceedings of the Ninth International Conference on Web-Age Information
Management, pp. 405 – 412, Zhangjiajie Hunan, 2008.

[8] R G Healy, “Database Management Systems,” http://anetlibrary.com/wp-
content/uploads/2012/07/BB1v1_ch18.pdf, 2013.

[9] Gianpaolo Cugola and Alessandro Margara, “Processing Flows of
Information: From Data Stream to Complex Event Processing,” Proceedings
of the 5th ACM International Conference on Distributed Event-based
System, pp. 359-360, USA, 2011.

[10] Georges Hebrail, “Data Stream Management and Mining,” Mining Massive
Data use for Security, IOS Press, pp. 89-102, 2008.

[11] Alajendro Buchmann and Boris Koldehofe, “Complex Event Processing,”
International Journal on Information Technology, vol. 51, no. 5, pp. 241-242,
2009.

131

[12] Lukasz Golab and M. Tamer Ozsu, “Issues in Data Stream Management,”
ACM SIGMOD Record, vol. 32, no. 2, pp. 5-14, 2003.

[13] Brian Babcock et al., “Models and Issues in Data Stream Systems,”
Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp.1-16, New York, USA,
2002 .

[14] Opher Etzion and Peter Niblett, “Event Processing in Action,” Manning
Publications Co. Greenwich, USA, 2010.

[15] Michael Daum et al., “Integrating CEP and BPM - How CEP Realizes
Functional Requirements of BPM Applications,” Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems, pp. 157-166,
USA, 2012.

[16] Christian Janiesch et al., “Beyond Process Monitoring: a Proof-of-Concept
of Event-Driven Business Activity Management,” Business Process
Management Journal, vol. 18, no. 4, pp. 625-643, 2012.

 [17] Solomon Negash, “Business Intelligence,” Communications of the
Association for Information Systems, vol. 13, pp. 177-195, 2004.

[18] Rainer Ammon et al., “Event-Driven Business Process Management,”
Proceedings of the Second International Conference of Distributed Event
based Systems, 2008.

[19] Joseph M. DeFee and Paul Harmon, “Business Activity Monitoring and
Simulation,” Business Process Trends Whitepaper, http:// www.
bptrends.com , 2004.

[20] David W. McCoy, “Business Activity Monitoring: Calm Before the Storm,”
http://www.gartner.com/id=354283, 2013.

[21] Ron Thomas, “Key Performance Indicators Measuring and Managing the
Maintenance Function,” http://www.plant-maintenance.com/ articles/
KPIs.pdf, 2005.

[22] Branimir Wetzstein et al., “Preventing KPI Violations in Business Processes
based on Decision Tree Learning and Proactive Runtime Adaptation,”
Journal of Systems Integration, vol. 3, no. 1, pp. 3-18, 2012.

[23] N. H. Gehani et al., “Composite Event Specification in Active Databases:
Model & Implementation,” Proceedings of the 18th International Conference
on Very Large Data Bases, pp. 327-338, USA, 1992.

132

[24] S. Chakravarthy et al., “Composite Events for Active Databases: Semantics,
Contexts and Detection,” Proceedings of the 20th International Conference
on Very Large Data Bases, pp. 606-617, USA, 1994.

[25] David Luckham and Roy Schulte, “Event Processing Glossary - Version
1.1,” http://www.complexevents.com/2008/08/31/event-processing-glossary-
version-11/, 2008.

[26] Overview of the Event Processing Language (EPL) http://docs.oracle.com/
cd/E13157_01/wlevs/docs30/epl_guide/overview.html, 2013.

[27] Michael Eckert et al., “A CEP Babel Fish: Languages for Complex Event
Processing and Querying Surveyed,” Reasoning in Event-Based Distributed
Systems, Studies in Computational Intelligence, vol. 347, pp. 47-70, 2011.

[28] Arvind Arasu et al., “STREAM: The Stanford Stream Data Manager,” IEEE
Data Engineering Bulletin, vol. 26, no. 1, pp 19–26, 2003.

[29] “Coral8 Continuous Computation Language (CCL),” SAP Sybase Event
Stream Processor, http://www.sybase.in, 2009.

[30] Joachim Reinert and Norbert Ritter, “Applying ECA Rules in DB-based
Design Environments,” Proceedings of the International Conference on
Distributed Systems and Information Systems, pp.188-201, Tagungsband,
1998.

[31] Eric N. Hanson and Jennifer Widom, “An Overview of Production Rules in
Database Systems,” The Knowledge Engineering Review, vol. 8, no. 2, pp.
121-143, 1993.

[32] Darko Anicic et al., “Rule-Based Language for Complex Event Processing
and Reasoning,” Proceedings of the Fourth International Conference on Web
Reasoning and Rule Systems, pp. 42-57, 2010.

[33] Olle Wedin et al., “Data Filtering Methods,” http://www.transportresearch.
info/Upload/Documents/201204/20120411_170257_85602_ROADIDEA%2
0D3.1%20Data%20filtering%20methods.pdf, 2008.

[34] Francis Wolinski et al., “Using Learning-based Filters to Detect Rule-based
Filtering Obsolescence,” Proceedings of the 6th International Conference on
Computer-Assisted Information Retrieval, France, April,pp.12-14, 2000.

[35] Lakshmish. Dutt and Mathew Kurian, “Handling of Uncertainty - A Survey,”
International Journal of Scientific and Research Publications, vol. 3, no.1,pp.
1-4, 2013.

133

[36] Yanlei Diao et al., “Capturing Data Uncertainty in High Volume Stream
Processing,”https://www.unido.org/foresight/rwp/dokums_pres/ruff_exercise_50
.pdf, 2009.

[37] Alexander Artikis et al., “Event Processing Under Uncertainty,” ACM
Conference on Distributed Event-Based Systems , pp. 32-43, 2012.

[38] Prithviraj Sen et al., “PrDB: Managing and Exploiting Rich Correlations in
Probabilistic Databases,” The International Journal on Very Large Data
Bases , vol.18, no.5, pp. 1065-1090 , October 2009.

[39] Omar Benjelloun et al., “ULDBs: Databases with Uncertainty and Lineage,”
Proceedings of the 32nd International Conference on Very Large Databases,
pp.953-964, 2006.

[40] Ming Hua et al., “Ranking Queries on Uncertain Data: A Probabilistic
Threshold Approach,” Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, pp. 673-686, USA, 2008.

[41] Amir H. Meghdadi and Mohammad-R Akbarzadeh, “Probabilistic Fuzzy
Logic and Probabilistic Fuzzy Systems,” Proceedings of the 10th IEEE
International Conference on Fuzzy Systems, vol. 3, pp. 1127 - 1130,
Melbourne, 2001.

 [42] Hani Hagras, “Fuzzy Logic Systems to Enable Better Uncertainty Handling
for Real World Application,” IEEE Computational Intelligence Magazine,
vol. 7, no. 3, pp. 14-24, 2012.

[43] Luis M. de Campos et al., “The BNR model: Foundations and Performance
of a Bayesian Network-based Retrieval Model,” International Journal of
Approximate Reasoning, vol 34, no 2-3, pp 265-285, 2003.

[44] Kristian Kersting and Luc De Raedt, “Bayesian Logic Programming: Theory
and Tool,” In: Getoor, L., Taskar, B. (eds.) An Introduction to Statistical
Relational Learning, pp.291-321, MIT Press, Cambridge, 2007.

[45] Alexis Campailla et al., “Efficient Filtering in Publish-Subscribe Systems
using Binary Decision Diagrams,” Proceedings of the 23rd International
Conference on Software Engineering, pp. 443-452, Canada, 2001.

[46] Kyoung Soo Bok et al., “Efficient Complex Event Processing over RFID
Streams,” International Journal of Distributed Sensor Networks, pp.1-9,
2012.

[47] Ehab S. Al-Shaern, “High-performance Event Filtering for Distributed
Dynamic Multi-point Applications: Survey and Evaluation,”
Technical Report, Old Dominion University Norfolk, VA, USA, 1997.

134

[48] Leonardo Neumeyer et al., “S4: Distributed Stream Computing Platform,”
Proceedings of the 2010 IEEE International Conference on Data Mining
Workshops, pp.170-177, USA, 2010.

[49] Carl Hewitt and Henry Baker. JR, “Actors and Continuous Functionals,”
Cambridge : Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, 1977 .

[50] Daniel J. Abadi et al., “Aurora: a New Model and Architecture for Data
Stream Management,” The VLDB Journal, pp. 120-139, 2003.

[51] Don Carney et al., “Monitoring Streams - A New Class of Data Management
Applications,” Proceedings of the 28th International Conference on Very
Large Data Bases, pp. 215–226, 2002.

[52] Sirish Chandrasekaran et al., “TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World,” Proceedings of the 2003 Conference on
Innovative Data Systems Research, New York, USA, 2003.

[53] Sailesh Krishnamurthy et al., “TelegraphCQ: An Architectural Status
Report,” IEEE Data Engineering Bulletin,no.1, pp. 11-18, 2003.

[54] Rajeev Motwani et al., “Query Processing, Resource Management, and
Approximation in a Data Stream Management System,” CIDR,Technical
Report, Stanford InfoLab, 2003.

[55] Arvind Arasu et al., “The CQL Continuous Query Language: Semantic
Foundations and Query Execution,” The VLDB Journal, vol. 15, no. 2, pp.
121–142, 2006.

[56] EsperTech: Event Stream Intelligence, http://www.espertech.com/ 2013.

[57] Espertech, Esper Reference Manual, http://esper.codehaus.
org/esper/documentation/documentation.html, 2013.

[58] D. Gyllstrom et al., “SASE: Complex Event Processing Over Stream,”
Proceedings of the Biennial Conference on Innovative Data Systems
Research, pp. 407–411, 2007.

[59] Eugene Wu et al., “High-Performance Complex Event Processing over
Streams,” Proceedings of the ACM SIGMOD International conference on
Management of data, pp. 407-418, USA, 2006.

 [60] Alan Demers et al., “Cayuga: A General Purpose Event Monitoring System,”
Proceedings of the Conference on Innovative Data Systems Research, pp.
412-422, 2007.

135

[61] Lars Brenna et al., “Cayuga: A High-Performance Event Processing Engine,”
Proceedings of ACM SIGMOD International Conference on Management of
Data, pp 1100-1102, 2007.

 [62] John Morrell and Stevan D. Vidich, “Complex Event Processing with
Coral8,” 2008.

[63] Coral8 Complex Event Processing Engine, White Paper, http://www.coral8.
com/system/files/assets/pdf/Complex_EventProcessing_with_Coral8.pdf,
2013.

[64] Asaf Adi and Opher Etzion, “AMiT-the Situation Manager,” The VLDB
Journal, vol 13, no 2, pp 177–203, 2004.

[65] MS Analog Software, “ruleCore(R) Complex Event Processing (CEP),”
http://www.rulecore.com, 2013.

[66] “JBoss Rules User Guide,” http://docs.jboss.org/drools/ release/ 5.3.0.
Final/drools-expert-docs/html/ch01.html.

[67] Christopher Ré et al., “Event Queries on Correlated Probabilistic Streams,”
Proceedings of the Fourth International Conference on SIGMOD’08, pp.
715-728,Canada, 2008.

[68] Mohamed A. Soliman et al., “Top-k Query Processing in Uncertain
Database,” Proceedings of the 23rd International conference on Data
Engineering, pp. 806-905,2007.

[69] Ke Yi et al., “Efficient Processing of Top-k Queries in Uncertain Databases
with X-Relations,” IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 12, pp. 1669-1682, USA, 2008.

[70] Christopher Re Nilesh Dalvi and Dan Suciu, “Efficient Top-k Query
Evaluation on Probabilistic Data,” Proceedings of the 23rd International
Conference on Data Engineering, pp. 886-895, Turkey, 2007.

[71] Nilesh Dalvi and Dan Suciu, “Efficient Query Evaluation on Probabilistic
Databases,” International Journal on Very Large Data Bases, vol. 16,no. 4,
pp. 523-544, New York, USA,2007.

[72] Daisy Zhe Wang et al., “Probabilistic Complex Event Triggering,” Technical
Report-EECS-2009-114, EECS Department, University of California,
Berkeley, 2009.

 [73] Thanh Tran et al., “Probabilistic Inference over RFID Streams in Mobile
Environments,” IEEE 25th International Conference on Date of Conference,
pp. 1096 – 1107, 2009.

136

[74] Shariq Rizvi, “Complex Event Processing Beyond Active Databases:
Streams and Uncertainties,” Berkeley Technical Report No. UCB/EECS-
2005-26, 2005,http://www.eecs.berkeley.edu/Pubs/TechRpts/2005/EECS-
2005-26.pdf,2005.

[75] Reynold Cheng et al., “Evaluating Probabilistic Queries over Imprecise
Data,” Proceedings of the 2003 ACM SIGMOD International Conference on
Management of data, pp. 551-562, USA,2003.

 [76] Nodira Khoussainova and Magdalena Balazinska Dan Suciu, “PEEX:
Extracting Probabilistic Events from RFID Data,” Technical Report, 2007-
11-2, Department of Computer Science and Engineering, University of
Washington, 2007 .

[77] Nodira Khoussainova et al., “Probabilistic Event Extraction from RFID
Data,” IEEE 24th International Conference on Data Engineering, pp. 1480-
1482, 2008.

[78] Zhitao Shen et al., “Probabilistic Event Stream Processing with Lineage,” In
Proceedings of Data Engineering Workshop, 2008.

[79] Patrick TH. Eugster et al., “The Many Faces of Publisher/Subscriber,” ACM
Computing Surveys, vol. 35, no. 2, pp. 114–131, 2003.

[80] Lars Brenna et al., “Distributed Event Stream Processing with Non-
deterministic Finite Automata,” Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, no.3, pp. 1-12,USA, 2009.

[81] Angelo Corsaro B et al., “Quality of Service in Publisher/Subscriber
Middleware,” Global Data Management, pp. 1–19. IOS Press, Amsterdam,
2006.

[82] Jagrati Agrawal et al., “Efficient Pattern Matching over Event Streams,”
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 147-160, USA, 2008.

[83] Franchoise Fabret et al., “Filtering Algorithms and Implementation for Very
Fast Publisher/Subscriber Systems,” Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 115-126, USA, 2001.

[84] Yanming Nie et al., “Complex Event Processing over Unreliable RFID Data
Streams,” Proceeding of the Thirteenth Asia-Pacific Web Conference on
Web Technologies and Applications, pp. 278-289, China, 2011.

[85] Alan Demers et al., “Towards Expressive Publish/Subcribe Systems,”
Proceedings of the 10th International Conference on Advances in Database
Technology, pp. 627-644, Heidelberg, 2006.

137

[86] Sumit Sanghai Pedro Domingos and DanielWeld, “Dynamic Probabilistic
Relational Models,” Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pp. 992-997, USA, 2003.

[87] Lise Gatoor et al., “Learning Probabilistic Relational Model,” International
Joint Conferences on Artificial Intelligence, pp. 1300-1309, 1999.

[88] Lise Gatoor et al., “Selectivity Estimation using Probabilistic Models,”
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 461-472, USA, 2001.

[89] Fabian Kaelin and Doina Precup, “An Approach to Inference in Probabilistic
Relational Models using Block Sampling,” Workshop and Conference
Proceedings of 2nd Asian Conference on Machine Learning, pp. 325-
340,Tokyo, Japan, 2010.

[90] Lotfi A.Zadeh, “Probability Theory and Fuzzy Logic are complementary
rather than Competitive,” Technometrics, vol. 37, no. 3, pp. 271-276, 1995.

[91] E Diaz-Hermida et al., “A General Framework for Probabilistic Approaches
to Fuzzy Quantification,” EUSFLAT Conference, pp. 34-37, 2001.

[92] Yihua li and Wenjing Huang, “A Probabilistic Fuzzy Set for Uncertainties
based Modeling in Logistics Manipulator System,” Journal of Theoretical &
Applied Information Technology, vol. 46, no. 2, pp. 977-982, 2012.

[93] Isabel L. Nunes, “Handling Human-Centered Systems Uncertainty Using
Fuzzy Logics – A Review,” The Ergonomics Open Journal, vol. 3, pp. 38-48,
2010.

[94] Gianpaolo Cugolaa and Alessandro Margaraa, “Complex Event Processing
with T-REX,” The Journal of Systems and Software, vol. 85,no. 8, pp. 1709-
1728, 2012.

[95] Bilal Hameed et al., “An RFID Based Consistency Management Framework
for Production Monitoring In a Smart Real-Time Factory,” 2nd International
Conference on Internet of Things, pp. 1-8,Tokyo, Japan, 2010.

[96] Oleksandr Mylyy, “RFID Data Management,Aggregation and Filtering,”
Proceedings of the 31st International Conference on Very Large Data Bases
Seminar on RFID Technology, pp. 6-15, USA, 2007.

[97] Tao Ku et al., “Novel Complex Event Mining Network for Monitoring
RFID-Enable Application,” IEEE Computer Society, pp. 925-929, 2008.

[98] Guangqian Zhang et al., “Study on CEP-Based BCEPS Model of RFID
based RLTLUM System,” Journal of Software, vol. 4, no. 6, pp. 605-613,
2009.

138

[99] Fusheng Wang et al., “Bridging Physical and Virtual Worlds: Complex
Event Processing for RFID Data Streams,” Lecture Notes in Computer
Science, vol.3896, pp. 588-607, 2006.

[100] Xiaoyong Su and Rajit Gadh, “A Rule Language and Framework for RFID
Data Capture and Processing in Manufacturing Enterprise System,”
International Journal of Internet Manufacturing and Services, vol. 2, no. 2,
pp. 111 - 127, 2010.

[101] Yijian Bai et al., “RFID Data Processing with a Data Stream Query
Language,” Proceedings of the IEEE 23rd International Conference on Data
Engineering, pp. 1184-1193, Istanbul, 2007.

[102] Mark Palmer, “Seven Principles of Effective RFID Data Management,”
Progress Softwares Realtime Division, http://www.psdn.progress.com/
realtime/ docs/articles/7principles_rfid_ mgmnt.pdf, 2004.

[103] Nova Ahmed et al., “RF2ID: A Reliable Middleware Framework for RFID
Deployment,” IEEE International Parallel and Distributed Processing
Symposium, pp. 1-10, USA, 2007.

[104] Kia Teymourian et al., “Knowledge-Based Processing of Complex Stock
Market Events,” Proceedings of the fifteenth International Conference on
Extending Database Technology, pp. 594-597, USA, 2012.

[105] “Enabling the Real-time Enterprise Business Activity Monitoring with
Ensemble,” White Paper of Intersystem Corporation, www.Inter Systems.
com/Ensemble, 2013.

139

LIST OF PUBLICATIONS

International Journals

1. Govindasamy, V. and Thambidurai, P., “Probabilistic and Fuzzy Logic based
Event Processing For Effective Business Intelligence,” International Arab
Journal of Information Technology, (Accepted for Publication),
SCIE, Impact Factor : 0.390

2. Govindasamy, V. and Thambidurai, P., “CAMEP – Complex Business
Activity Monitoring System with Event Processing,” Journal Tehni ki
Vjesnik/Technical Gazette, Vol. 20, No. 5, October 2013, pp. 823 -829,
SCIE, Impact Factor : 0.601.

3. Govindasamy, V. and Thambidurai, P., “Uncertain Event Processing Using
Prediction Correction Paradigm,” International Journal of Engineering
Research and Technology, 2, 4, April 2013, pp. 973-979.

4. Govindasamy, V. and Thambidurai, P., “Heuristic Event Filtering
Methodology for Interval based Temporal Semantics,” International Journal
of Computer Applications, 70, 7, May 2013, pp. 16-20.

5. Govindasamy, V. and Thambidurai, P., “RFID Probabilistic Complex Event
Processing in a Real-Time Product Manufacturing,” International Journal of
Engineering and Innovative Technology, 2, 10, April 2013, pp. 139-144.

6. Govindasamy, V. and Thambidurai, P., “Complex Event Processing - A
Survey,” Journal of Computing, 5, 4, April 2013, pp: 1-7.

7. Govindasamy, V. and Thambidurai, P., “An Efficient Methodology for
Uncertain Complex Event Processing,” European Journal of Scientific
Research, 101, 1, May 2013, pp.125-137.

8. Govindasamy, V. and Thambidurai, P., “Probabilistic Fuzzy Logic based
Stock Price Prediction,” International Journal of Computer Application, 71,
5, June 2013, pp. 28-32.

140

International Conferences

9. Govindasamy, V. and Thambidurai, P., “An Efficient and Generic Filtering
Approach for Uncertain Complex Event Processing,” in Proceedings of
International Conference on Data Mining and Computer Engineering
(ICDMCE’2012), Bangkok, Thailand, 22 December, 2012, pp. 211-216.

10. Govindasamy, V. and Thambidurai, P., “Study of Event Query Languages in
Complex Event Processing,” in Proceedings of IEEE International
Conference on Computing, Cybernetics and Intelligent Information System
(CCISS ’2013), Vellore, India, 21-23 November, 2013.

141

VITAE

 V.GOVINDASAMY, the author of this thesis is currently working as

Assistant Professor in the Department of Information Technology at Pondicherry

Engineering College, Puducherry, India. He was born in October 1974 at

Puducherry. He received his B.Tech. degree in Computer Science and Engineering

from Pondicherry University, Puducherry, India in the year 1996 and M.E degree in

Computer Science and Engineering from Vellore Engineering College, Vellore in

2000. He joined as Lecturer in Department of Information Technology, Pondicherry

Engineering College, Puducherry in the year 2002. His areas of interest include

Business Intelligence, Business Process Management and Event Processing. He has

published several research papers in International Journals and Conferences.

