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CHAPTER

ONE

INTRODUCTION

In the last seven decades the theory of Stochastic Processes has developed

very rapidly and enormously and it has wide range of applications in a large

number of fields. Doob (1953) has defined the Stochastic Process as ‘The

mathematical abstraction of an emprical process whose development is gov-

erned by probabilistic laws’. The mathematicians faced with real life problems,

conceptualised them as mathematical models and in solving such problems

they used stochastic processes. In recent years the theory has been applied

with greater advantage to solve complex problems in diversified fields like Nu-

clear Physics, Statistical Mechanics, Communication Engineering, Computer

Science, Chemistry, Astronomy, Astrophysics, Operation Research, Psychology,

Sociology, Economics, Acturial Science and Biological Sciences. In this thesis,

we present some interesting mathematical models of Queueing theory, an

important area of Stochastic Processes.
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1.1 Queueing Theory

Congestion is a natural phenomenon in human activities. All of us have

experienced the annoyance of having to wait for service. A service facility

gets congested if there are more people than the server can possibly handle.

Queueing theory attempts to answer questions such as how long must a

customer wait and how many people will form the queue through detailed

Mathematical Analysis.

It is no surprise that the study of queueing systems began in the fields of

telephony when, during the first two decades of last century, Erlang in 1909

developed the basic foundations of the theory long before probability theory

was popularized or even well developed. He published his work ‘The theory

of probabilities and Telephone conversations’ in 1909 (see Brockmayer et al.

(1948)). The 1920’s were basically devoted to the application of his results and

until the mid 1930’s, when Feller introduced the concept of the birth-death

process, the queueing theory was not recognized by the world of Mathematics

as an interesting area of research work. During and following the world war

II, this theory played an important role in the development of the new field

of operation research, which seemed to hold so much promise in the early

postwar years. As the enchantment with operations research diminished in the

face of the real world’s complicated models, the mathematicians proceeded

to advance the field of queueing theory rapidly and elegantly. The frontiers

of this research proceeded into far-reaches of deep and complex mathematics.

It was soon found the really interesting models did not yield to solution and

the field quietened down considerably. In early 1930’s Pollaczek did some

further work. Additonal work was done at that time by Khintchine (1932)

and by Palm (1938). Recent contributions are those of Lindley (1952) using

integral equations, Bailey (1956), Lendermann and Reuter (1956) on time

dependent solutions, Takacs (1962) considering waiting time, Cox (1955) with
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the concept of supplementary variables, Kendall (1951, 1953, 1964) employing

the technique of imbedded markov chains, Champernowe (1956) considering

the concept of random walks and Neuts (1978) with the use of Markov chains

in queueing theory which have a matrix geometric invariant probability vector.

It is mainly with the advent of digital computers that once again the tools

of queueing theory are brought to bear on a class of practical problems, but

this time with great success. The fact is that at present, one of the few tools

we have for analysing the performance of computer system is that of queueing

theory and this explains its popularity among Engineers and Scientists to-day.

A good number of new problems are being formulated in terms of this theory

and new tools and methods are being developed to meet the challenge posed

by these problems. Also the applications of digital computers in solving the

equations of queueing theory has produced enormous interest in the field.

The theory of queues has been applied to a large number of problems

viz. (1) the telephone traffic (2) the landing of air craft (3) the loading and

unloading of ships (4) machine break-down and repair (5) the scheduling of

patients in clinics (6) the timing of traffic lights (7) restaurant service (8)

checkout stand in supermarkets (9) Inventory control and (10) the theory of

dams and provisions.

1.2 Description of the Queueing System

A queueing system can be described by a customer arriving for service,

customer waiting for service if it is not immediate and customer leaving the

system after being served. The common characteristics of such systems are

the following:
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1.2.1 Input Process

If the arrivals and services are strictly according to schedule, a queue can be

avoided, but in practice this is not in case. In most of the situations arrivals

are controlled by external factors. Therefore, the best that can be done is to

represent the input process in terms of random variables. Some factors needed

for the complete specification of an input process are the source of arrivals,

the type of arrivals and the inter-arrival times. It is also necessary to know the

reaction of a customer upon entering the system. If a customer decides not to

enter the queue upon arrivals, he is said to have balked. On the otherhand,

customer may enter the queue, but after sometime lose patience and decide

to leave. In this case he is said to have reneged. In the event that there are

two or more parallel waiting lines, customers may switch from one to another,

that is, jockeying for position.

1.2.2 Service Mechanism

The uncertainties involved in the service mechanism are the number of

servers, the number of customers getting served at any time and the duration

of service. The situation in which service depends on the number of customers

waiting is referred to as state-dependent service.

1.2.3 Queue Discipline

All other factors regarding the rules of conduct of the queue can be pooled

under this heading. One of these is the rule followed by the server in taking

the customers into service. The most common discipline that can be observed

in every day life is First Come First Served (FCFS). Some others in common

usages are Last Come First Served (LCFS) which is applicable to many

inventory system, selections for service in random order independent of the

4



time of arrival to the queue and a variety of priority schemes where customers

are given priorities upon entering the system.

1.2.4 Number of Queues

If in a queueing system there is only one server, then the first three factors

can completely define the system. However, in many cases one has to deal

with more than one queue in service and/or in parallel.

In is convenient to specify the description of queueing system by a notational

representation. Kendall (1953) introduced a shorthand notation to represent

queueing system, which is now rather standard throughout the literature. A

queueing process is described by the symbol A /B /C /X /Y where ‘A’ denotes

the inter-arrival time distribution, ‘B’ denotes service time distribution, ‘C’

denotes the number of servers, ‘X’ for the system capacity and ‘Y’ specifies

the queue discipline.

During the early periods, queueing models with single arrival and indi-

vidual service have been studied in depth. But in real life we come across

queueing situations with (i) bulk arrival and single service, (ii) single arrival

and bulk service and (iii) both bulk arrival and bulk service. Such situations,

in general are knows as Bulk queueing systems. Queues with both bulk arrival

and bulk service are difficult to analyse. This is because of the fact that

added difficulties arise due to the necessity of breaking up arrival batches in

order to form service groups. Also the methods used for such systems involve

combination of two or more techniques for a single model. To study the recent

developments in bulk queues, one may refer Chaudhry and Templeton (1983)

and Medhi (1984). Mail bags arriving at a central sorting station and people

going to a theater or restaurant are examples of the bulk arrival queueing

system. In this system the size of an arriving group may be a random variable

or a fixed number.
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The theory of bulk queues originated with the pioneering work by Bailey

(1954). Gaver (1959) seems to be the first to take up bulk arrival queues for

study. Gorsky (1983) used bulk arrival queue for modelling the effect of food

intake on the activity pattern of an individual. The transportation problems

involving buses, trains, airplanes etc. are bulk service queueing systems in

which the arrival occur singly or in bulk, but the service is in bulk.

1.3 Objective

The main objective of this research work is to analyze the behavior of

transient analysis of batch arrival queueing system with vacation. Much of

the results found in the literature are confined to steady state solutions only.

However there are areas in computer and communication system which require

time dependent analyse. Eg., adaptive isolated routing and load balancing

in computer communication system (incoming customers are directed to an

appropriate server based on the estimated current queue length or waiting

time), effects of flow congestion control policies in packet switching networks.

These are the areas where one needs to know how the system will operate

at an instant of time t. There are many systems which are operated only

for a specified period of time t. Business establishments, service operations

such as banks, doctors clinics, reservation counters etc., which are open and

closed, but never operate under steady state (time independent) conditions.

The assumptions required to derive the steady state solutions for queueing

systems are not always satisfied in the design and analysis of real systems.

The situations often occur in communication networks where the load on the

network usually depends on time. Thus the investigation of the transient

behaviour of the queueing system is very much important, not only from a
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theoretical view point but also from the point of view of its tremendous use in

engineering applications.

The study of transient behavior of queueing models have been increased

recently. Takagi (1990) studied the time-dependent analysis of on M/G/1

vacation models with exhaustive service. The theory of continued fractions

can be found in Jones and Thron (1980). Parthasarathy and Selvaraju (2001),

Thangaraj and Vanitha (2010c) have applied continued fraction technique

to study the transient behaviour of the queueing systems. Madan (1992),

Thangaraj and Vanitha (2010a), Srinivasan and Maragatha Sundari (2012b)

has obtained the time dependent solution of M/G/1 model with compulsory

vacation. Khalaf et al. (2010, 2011) studied M [X]/G/1 queue with general

vacation times. Badamchi Zadeh (2012) have studied a batch arrival queue

system with Coxian-2 server vacations and admissibility restricted.

We have used the probability generating functions in terms of Laplace

transforms to obtain the transient solution of the M [X]/G/1 queue and the

following performance measures were derived.

1. Mean number of customer in the queue.

2. Mean number of customer in the system.

3. Mean waiting time in the queue.

4. Mean waiting time in the system.

In this research work, we are analyzing transient and steady state be-

haviours of our queueing models by implementing various concepts like Break-

down and repair, Second optional service, Feedback service, Vacation policies,

Restricted admissibility, Balking, Retrial policy and Staring failure.
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Breakdown and Repair

In real life situations, a queueing system might suddenly breakdown and

hence the server will not be able to continue providing service unless the

system is repaired.

In many waiting line systems, the role of a server is played by mechanical,

electrical and electronic devices like robots, computers, traffic lights etc.,

which can be subject to accidental failures and they need to be repaired to

resume service. For instance, in computer network service the servers are

deactivated because of virus infected files, the packets (messages) are lost at

a node (processor) in communication channel due to the lack of buffer size.

Therefore, queueing models which cater to server breakdowns are more realistic

in an emerging technological world. Takine and Sengupta (1997), Aissani and

Artalejo (1998), Vinck and Bruneel (2006), Thangaraj and Vanitha (2010a),

Khalaf et al. (2010) studied different queueing systems subject to breakdowns.

Second Optional Service

Second optional service plays a vital role in queueing systems. The server

provides two phases of services namely essential service and second optional

service. The essential service will be given first to all arriving customers. The

second optional service will be extended to the customers if they demand.

In many applications such as hospital services, production systems, bank

services, computer and communication networks. Choudhury (2003) studied

some aspects of M/G/1 queueing system with second optional service and

derived the steady state queue size distribution at the stationary point of time

for general second optional service.
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Feedback Service

After the completion of service, if the customer is dissatisfied with his

service, he can immediately join the tail of the queue for re-service with

some probability. Formulation of queues with feedback mechanism was first

introduced by Takacs (1963). Choi and Kulkarni (1992) have studied M/G/1

retrial queue with feedback. The queueing systems which include the possibility

for a customer to return to the server for re-service are called feedback queues.

Feedback queues play a vital role in production systems subject to rework,

hospital management, super markets and banking businesses, etc. In this

area the contributions of eminent authors, like Finch (1959), Scharge (1967),

Glenbe and Pujolle (1987), Madan and Al-Rawwash (2005) and Badamchi

Zadeh and Shankar (2008).

Vacation Policies

Vacation queueing theory was developed in the 1970’s as an extension of the

classical queueing theory. In a queueing system with vacations, other than

serving randomly arriving customers, the server is allowed to take vacations.

The vacations may represent server’s working on some supplementary jobs,

performing server maintenance inspection and repairs, simply taking a break.

The period of temporary server absence for the primary customers is considered

as a server vacation. Therefore, queues with vacations or simply called vacation

models attracted great attentions of queueing researchers and became an active

research area.

In recent years, vacation models had been the subject of interest to queueing

theorists because of their applicability and theoretical structures in real life

congestion situations such as manufacturing and production, computer and

communication systems, service and distribution system, etc. There are

different vacation polices such as single, multiple and Bernoulli vacation policy,
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introduced and applied on queueing models by different researchers. The most

remarkable works done in recent past by some researchers on vacation models

include Fuhrmann and Cooper (1985), Baba (1986), Lee (1989), Doshi (1986),

Takagi (1992), Madan and Anabosi (2003) and Maraghi et al. (2009).

Resrticted Admissibility

In some queueing systems with batch arrival there is a restriction such

that not all batches are allowed to join the system at all time. This policy is

named restricted admissibility. Earliar, Madan and Abu-Dayyeh (2002) and

Madan and Choudhury (2004) studied this type of model with batch arrivals

Bernoulli vacation and restricted admissibility, where all arriving batches are

not allowed into the system at all time.

Balking

In real practice, it often happens that arrivals become discouraged when the

queue is long and do not wish to wait. This type of customer behavior called

balking. The remarkable attention has been given on many queueing models

with customer impatience. The concept of customer impatience has been

studied in 1950’s. Haight (1957) has first studied about queueing with balking.

Jau-Chuan Ke (2007) analyzed the steady state batch arrival queueing system

with balking and a variant vacation policy.

Retrial Policy

At the arrival epoch, if the server is busy the whole batch joins the orbit.

Whereas if the server is free, then one of the arriving customer starts its service

immediately and the rest joins the orbit. For bibliographies on retrial queues

refer Artalejo (1999) and Artalejo and Gomez-Corral (2008).
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Starting Failure

One of the most important characteristic in the service facility of a queueing

system is its starting failures. An arriving customer who finds the server idle

must turn on the server. If the server is started successfully the customer

gets the service immediately. Otherwise the repair for the server begins

and the customer must join the orbit. The server is assumed to be reliable

during service. Such systems with starting failures have been studied in retrial

queueing models by Yang and Li (1994), Krishna Kumar et al. (2002b) and

Mokaddis et al. (2007).

1.4 Author’s Work

This thesis is divided into ten chapters as detailed in the sequel.

The basic definitions of the queue and motivation are given in the first

chapter. Also a brief survey of related literature, the objective of the research

and a chapter wise structure are given.

Chapter 2 deals with an M [X]/G/1 queue with second optional service

and second optional vacation. A single server provides two phases of service.

The first phase of service is essential for all customers, as soon as the first

service of a customer is completed, then with probability θ he may opt for the

second service or else with probability (1− θ), he leaves the system. At each

service completion, the server will take compulsory vacation. The server has

two heterogeneous phases of vacation. Phase one is compulsory and phase

two follows the phase one vacation in such a way that the server may take

phase two vacation with probability p or return back to the system with

probability (1 − p). Customers arrive at the system according to Poisson
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process with rate λ. The service and vacation periods are assumed to be

general (arbitrary) distribution. Stability condition of this model is derived

and various system performance measures have been calculated. Numerical

results are also presented for some values of parameters.

The research paper related to this model have been published in refereed

Journal as given below:

“Time dependent solution of Non-Markovian queue with two

phases of service and general vacation time distribution” - Malaya

Journal of Matematik, Vol. 4, No. 1, 2013, pp. 20-29.

Chapter 3 - This chapter consist of two models.

Model 1 deals with an M [X]/G/1 queue with second optional service,

optional re-service and Bernoulli vacations, where the arrivals are Poisson.

Each customer undergoes first phase of service, after completion of service the

customer has the option to repeat or not to repeat the first phase of service

and leave the system without taking the second phase or take the second phase

service. Similarly after the second phase service he has yet another option to

repeat or not to repeat the second phase service. As soon as each service is

over, the server may take a vacation with probability θ or may continue to

stay in the system with probability 1− θ. The service and vacation periods

are assumed to be general (arbitrary) distribution. The stability condition for

this model have been derived and various system performance measures have

been calculated. Numerical results have been done for various values of arrival

rate, service rate and vacation rate.

The research paper related to this model have been published in refereed

Journal as given below.
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“Time Dependent Solution of Batch Arrival Queue with Sec-

ond Optional Service, Optional Re-Service and Bernoulli Vacation”

Mathematical Theory and Modelling, Vol. 3, No. 1, 2014, pp. 1-8.

Model II deals with single server queue with Poisson arrivals where cus-

tomers arrive in batches of variable size, the server provides two types of

heterogeneous service. Customer has the option of choosing either type 1

service with probability p1 or type 2 service with probability p2 with the service

times follow general distribution. After completion type 1 or type 2 service a

customer has the option to repeat or not to repeat the same type of service.

After every service completion the server has the option to leave for vacation

of random length with probability θ or to continue to stay in the system with

probability 1− θ. The service period and vacation period are assumed to be

general (arbitrary) distribution. Stability condition of this model is derived

and various system performance measures have been calculated. Numerical

results are also presented for some values of parameters.

The research paper related to this model is accepted for publi-

cation in the Proceedings of International Conference on Applied

Mathematical Models, 2014, PSG Tech, Coimbatore.

Chapter 4 deals with the analysis of a single server batch arrival feedback

queue with server vacation and balking. The customers arrive according

to Poisson process with rate λ. An arriving batch may join the system

with probability b or balks (refuses to join) the system with probability

(1 − b) during the period of server’s busy or vacation times. As soon as

the completion of service, if the customer is dissatisfied with his service, he

can immediately join the tail of the original queue as a feedback customer.

At each service completion epoch, the server may opt to take vacation with
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probability p or else with probability (1− p) to stay in the system for the next

service. The service and vacation periods are assumed to be general (arbitrary)

distributions. The stability condition for this model have been derived and

various system performance measures have been calculated. Numerical results

are also presented for some values of parameters.

The research paper related to this model have been published in the

Proceedings as given below:

“Transient behaviour of batch arrival feedback queue with server

vacation and balking”- Proceedings of National Conference on Re-

cent Advances in Mathematical Analysis and Applications, 2013,

pp. 86-96, Bonfring Publications, India.

Chapter 5 deals with the study of batch arrival queueing system with

service interruption and extended server vacation based on Bernoulli schedule.

A single server provides essential service to all arriving customers with service

time follows general (arbitrary) distribution. After every service completion

the server may take vacation or stay in the system. The vacation period has

three heterogeneous phase. The server has the option for phase one vacation

of random length with probability p or to continue to stay in the system with

probability (1− p). The server has the option to go on phase two extended

vacation after the phase one vacation completion with probability r or rejoins

the system to provide service with probability (1− r). As soon as the comple-

tion of phase two vacation, the server undergoes phase three vacation with

probability θ or rejoins the system to provide service with probability (1− θ).

The vacation times are assumed to be general. The server is interrupted

at random and the duration of attending interruption follows exponential

distribution. Also we assume, the customer whose service is interrupted goes

back to the head of the queue where the arrivals are Poisson. The stability
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condition for this model have been derived and various system performance

measures have been calculated. Numerical results are also presented for some

values of parameters.

Chapter 6 deals with a Poisson arrival queue with two types of service

subject to random breakdowns having multiple vacation, where the customers

arrive to the system in batches of variable size. A single server provides two

types of service, type 1 service with probability p1 and type 2 service with

probability p2 with the service times follow general (arbitrary) distribution

and each arriving customer may choose either type of service. The server

takes vacation only if the system becomes empty and the vacation period

is assumed to be general. On returning from vacation if the server finds no

customer waiting in the system, then the server again goes for vacation until

he finds at least one customer in the system. The system may breakdown

at random and repair time follow exponential distribution. In addition we

assume restricted admissibility of arriving batches in which not all batches are

allowed to join the system at all times. Stability condition of this model is

derived. We obtained some performance measures of the system. Numerical

results are carried out for various values of parameters.

The research paper related to this model has been published in refereed

Journal as detailed below:

“Transient solution of batch arrival queue with two types of ser-

vice, multiple vacation, random breakdown and restricted admissibility”-

International Journal of Management and Information Technol-

ogy, Vol. 3, No. 3, 2013, pp. 16-25.

In chapter 7 we studies a single server queue with batch arrival queueing

system, two stages of heterogeneous service subject to random breakdowns,
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delayed repair with Bernoulli schedule server vacations. The customers arrive

according to Poisson process with rate λ. After first-stage service the server

must provide the second stage service. The repair process does not start

immediately after a breakdown and there is a delay waiting time for repairs to

start. However, after the completion of each second stage service, the server

has the option to leave for a phase one vacation with probability p or continue

to serve customers with probability 1− p. The server has the option to go on

extended vacation after the original vacation completion with probability r or

rejoins the system to provide service with probability 1− r. The service times,

vacation times, extended vacation times, delay times and repair times are all

assumed to follow general (arbitrary) distributions, while the breakdown time

is exponentially distributed. The stability condition for this model have been

derived and various system performance measures have been calculated. Some

numerical results were presented to demonstrate how the various parameters

of the model influence the behavior of the system.

The research paper related to this model have been published in refereed

Journal as detailed below:

“ Two stage heterogeneous service, random breakdowns, delayed

repairs and extended server vacations with Bernoulli schedule” - In-

ternational Journal of Statistical and System, Vol. 8, No. 3, 2013,

pp. 183-201.

Chapter 8 deals with batch arrival queueing system with three stages of het-

erogeneous service provided by a single server with different general (arbitrary)

service time distributions subject to random interruption. Each customer

undergoes three stages of heterogeneous service. However at the completion

of each third stage of service, the server will take compulsory vacation. After

a completion of compulsory vacation the server may take optional vacation
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with probability p or stay in the system with probability (1 − p) for next

service. The server is interrupted at random and the duration of attending

interruption follows exponential distribution. Also we assume, the customer

whose service is interrupted goes back to the head of the queue where the

arrivals are Poisson. The vacation times are assumed to be general (arbitrary)

distributions. The stability condition for this model have been derived and

various system performance measures have been calculated. Numerical results

have been carried out for various parameters.

The research paper related to this model have been published in refereed

Journal as detailed below.

“Batch arrival queue with three stages of service having server

vacations and service interruptions”- Advances and Applications

in Statistics, Vol. 3, No. 1, pp. 111-126, 2013.

Chapter 9 deals with batch arrival queueing system with three stage

heterogeneous service provided by a single server with different (arbitrary)

service time distributions. Customers arrive to the system according to

a Poisson process with rate λ. Each customer undergoes three stages of

heterogeneous service. As soon as the completion of third stage of service,

if the customer is dissatisfied with his service, he can immediately join the

tail of the original queue. After service completion of a customer the server

may take a vacation or stay in the system. The vacation period has two

heterogeneous phases. Phase one is Bernoulli vacation. As soon as the

completion of Bernoulli vacation, the server undergoes optional vacation. The

vacation times are assumed to be general (arbitrary) distributions. In addition

we assume restricted admissibility of arriving batches in which not all batches

are allowed to join the system at all times. Stability condition of this model is

derived. Numerical results are also presented for some values of parameters.
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The research paper related to this model have been published in refereed

Journal as detailed below.

“M [X]/G/1 feedback queue with three stage heterogeneous ser-

vice and server vacations having restricted admissibility”- Journal

of Computations and Modelling, Vol. 3, No. 2, 2013, pp. 203-225.

Chapter 10 deals with M [X]/G/1 feedback retrial queue, subject to starting

failures and Bernoulli vacation. The customers arrive to the system in batches

of variable size, but served one by one on a first come - first served basis. We

assume that there is no waiting space and therefore if an arriving customer

finds the server busy or down, the customer leaves the service area and enters a

group of blocked customers called orbit in accordance with an FCFS discipline.

That is, only the customer at the head of the orbit queue is allowed for access

to the server where the arrival follows Poisson. As soon as the completion of

service, if the customer is dissatisfied with his service, he can immediately join

the retrial group as a feedback customer for receiving the same service with

probability p or to leave the system forever with probability q(= 1− p). The

successful commencement of service for a new customer who finds the server

idle and sees no other customer in the orbit with probability δ and is α for all

other new and returning customers. After the completion of each service, the

server either goes for a vacation with probability β or may wait for serving

the next customer with probability 1 − β. Repair times, service times and

vacation times are assumed to be general (arbitrary) distributed.

The stability condition for this model have been derived and various system

performance measures have been calculated. Numerical results have been

carried out for various values of arrival rate, service rate and vacation rate.

The research paper related to this model have been published in refereed

Journal as detailed below.
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“Transient analysis of batch arrival feedback retrial queue with

starting failure and Bernoulli vacation”- Mathematical Theory and

Modelling, Vol. 3, No. 8, 2013, pp. 60-67.
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CHAPTER

TWO

M [X]/G/1 QUEUE WITH SECOND OPTIONAL

SERVICE AND SECOND OPTIONAL VACATION

2.1 Introduction

Vacation queues have been the subject of deep study in recent years

because of their theoretical structure as well as their applicability in various

real life situations. Recently the M [X]/G/1 queue with vacation has drawn the

attention of various researchers notable among them are Baba (1986, 1987),

Lee (1989), Choudhury and Madan (2005) and Badamchi Zadeh (2009).

There is extensive literature on the M/G/1 queue, which has been studied

in various forms by numerous authors including Cox (1955), Keilson and

Kooharian (1960), Kleinrock (1975), Medhi (1982), Jacob and Madhusoodanan

(1988), Choi and Park (1990), Madan (1992) and Singh et al. (2012). Madan

(2000b) have studied the time-dependent as well as the steady state behavior

of an M/G/1 queue with second optional service, using the supplementary

variable technique.

Krishnakumar and Arivudainambi (2001), Choudhury (2003), Artalejo

A part of this chapter is published with entitled:
Time dependent solution of Non-Markovian queue with two phases of service and general
vacation time distribution – Malaya Journal of Matematik, 4(1):20–29, 2013.

20



and Choudhury (2004), Wang (2004) and Choudhury and Paul (2005) and

Kasturi and Kalidass (2010) have studied queueing system with optional

second service. Madan and Al-Rawwash (2005) have studied the M [X]/G/1

queue with feedback and optional server vacations based on a single vacation

policy.

In this chapter, we consider an M [X]/G/1 queue with second optional

service, with different service time and second optional vacation. A single

server provides two phases of service. The first phase of service is essential

for all customers, as soon as the first service of a customer is completed, then

with probability θ, he may opt for the second optional service or else with

probability (1−θ), he leaves the system. At each service completion, the server

will take vacation. The vacation period of the server has two heterogeneous

phases. Phase one is compulsory and phase two is optional. After completion

of phase one vacation the server may take phase two vacation with probability

p or return back to the system with probability (1 − p) where the arrival

follows Poisson. The service and vacation periods follow general (arbitrary)

distribution.

Here we derive time dependent probability generating functions in terms of

Laplace transforms. We also derive the average queue size and average waiting

time in the queue and the system. Some particular cases and numerical results

are also discussed.

The rest of the chapter is organized as follows. The model description is

given in section 2.2. Definitions and equations governing the system are given

in section 2.3. The time dependent solution have been obtained in section 2.4

and corresponding steady state results have been derived explicitly in section

2.5. Average queue size and average waiting time are computed in section 2.6.

Some particular cases and numerical results are discussed in section 2.7 and

2.8. respectively.
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2.2 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t+ dt], where 0 ≤ ci ≤ 1 ,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) There is a single server who provides two phases of service. The first

phase is compulsory and second phase is optional. The first phase of

service is essential for all customers, as soon as the essential service of

a customer is completed, then with probability θ, he may opt for the

second optional service or else with probability (1 − θ), he leave the

system.

c) The service time follows a general (arbitrary) distribution with distribution

function Bi(s) and density function bi(s). Let µi(x)dx be the conditional

probability density of service completion during the interval (x, x+ dx],

given that the elapsed service time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2,

and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

d) After completion of each service, the server will take vacation of random

length. The vacation time has two phases with phase one is compulsory

and phase two is second optional vacation. However, after phase one
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vacation, the server take phase two optional vacation with probability p

or may return back to the system with probability (1− p).

e) The server’s vacation time follows a general (arbitrary) distribution with

distribution function Vi(t) and density function vi(t). Let γi(x)dx be

the conditional probability density of vacation completion during the

interval (x, x+ dx], given that the elapsed vacation time is x, so that

γi(x) =
vi(x)

1− Vi(x)
, i = 1, 2,

and therefore,

vi(t) = γi(t)e
−

t∫
0

γi(x)dx
, i = 1, 2.

f) Various stochastic processes involved in the system are assumed to be

independent of each other.

2.3 Definitions and equations governing the

system

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing first

essential service and there are n (n ≥ 0) customers in the queue excluding the

one being served and the elapsed service time is x. Consequently P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n customers in

the queue excluding one customer in the first essential service irrespective of

the value of x.

P
(2)
n (x, t) = Probability that at time t, the server is active providing

second optional service and there are n (n ≥ 0) customers in the queue
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excluding the one being served and the elapsed service time is x. Consequently

P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding one customer in the second optional service

irrespective of the value of x.

V
(1)
n (x, t) = Probability that at time t, the server is under phase one

compulsory vacation with elapsed vacation time is x and there are n (n ≥ 0)

customers in the queue. Consequently V
(1)
n (t)=

∞∫
0

V
(1)
n (x, t)dx denotes the

probability that at time t there are n customers in the queue and the server is

under phase one compulsory vacation irrespective of the value of x.

V
(2)
n (x, t) = Probability that at time t, the server is under second optional

vacation with elapsed vacation time is x and there are n (n ≥ 0) customers in

the queue. Consequently V
(2)
n (t)=

∞∫
0

V
(2)
n (x, t)dx denotes the probability that

at time t there are n customers in the queue and the server is under second

optional vacation irrespective of the value of x.

Q(t)= Probability that at time t, there are no customers in the system

and the server is idle but available in the system.

The system is then governed by the following set of differential-difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + [λ+ µ1(x)]P

(1)
0 (x, t) = 0 (2.1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x)]P (1)

n (x, t) = λ

n∑
k=1

ckP
(1)
n−k(x, t),

n ≥ 1 (2.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x)]P

(2)
0 (x, t) = 0 (2.3)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x)]P (2)

n (x, t) = λ

n∑
k=1

ckP
(2)
n−k(x, t),

n ≥ 1 (2.4)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ+ γ1(x)]V

(1)
0 (x, t) = 0 (2.5)
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∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ γ1(x)]V (1)

n (x, t) = λ

n∑
k=1

ckV
(1)
n−k(x, t),

n ≥ 1 (2.6)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ+ γ2(x)]V

(2)
0 (x, t) = 0 (2.7)

∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ γ2(x)]V (2)

n (x, t) = λ

n∑
k=1

ckV
(2)
n−k(x, t),

n ≥ 1 (2.8)

d

dt
Q(t) + λQ(t) =(1− p)

∫ ∞
0

γ1(x)V
(1)
0 (x, t)dx

+

∫ ∞
0

γ2(x)V
(2)
0 (x, t)dx (2.9)

The above set of equations are to be solved subject to the following boundary

conditions:

P (1)
n (0, t) = λcn+1Q(t) + (1− p)

∫ ∞
0

γ1(x)V
(1)
n+1(x, t)dx

+

∫ ∞
0

γ2(x)V
(2)
n+1(x, t)dx, n ≥ 0 (2.10)

P (2)
n (0, t) = θ

∫ ∞
0

µ1(x)P (1)
n (x, t)dx, n ≥ 0 (2.11)

V (1)
n (0, t) = (1− θ)

∫ ∞
0

µ1(x)P (1)
n (x, t)dx

+

∫ ∞
0

µ2(x)P (2)
n (x, t)dx, n ≥ 0 (2.12)

V (2)
n (0, t) = p

∫ ∞
0

γ1(x)V (1)
n (x, t)dx, n ≥ 0 (2.13)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

P (i)
n (0) = V (i)

n (0) = 0 and Q(0) = 1

for n = 0, 1, 2, ..., i = 1, 2. (2.14)
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2.4 Generating functions of the queue length:

The time-dependent solution

In this section, we obtain the transient solution for the above set of differential-

difference equations.

Theorem: The system of differential difference equations to describe an

M [X]/G/1 queue with second optional service and second optional vacation

are given by equations (2.1) to (2.13) with initial conditions (2.14) and the

generating functions of transient solution are given by equation (2.64) to (2.67).

Proof: We define the probability generating functions for i=1, 2.

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t); (2.15)

V (i)(x, z, t) =
∞∑
n=0

znV (i)
n (x, t); V (i)(z, t) =

∞∑
n=0

znV (i)
n (t);C(z) =

∞∑
n=1

cnz
n;

(2.16)

which are convergent inside the circle given by | z |≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (2.17)

Taking the Laplace transform of equations (2.1) to (2.13) and using (2.14), we

obtain

∂

∂x
P̄

(1)
0 (x, s) + (s+ λ+ µ1(x))P̄

(1)
0 (x, s) = 0 (2.18)

∂

∂x
P̄ (1)
n (x, s) + (s+ λ+ µ1(x))P̄ (1)

n (x, s) = λ
n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1 (2.19)
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∂

∂x
P̄

(2)
0 (x, s) + (s+ λ+ µ2(x))P̄

(2)
0 (x, s) = 0 (2.20)

∂

∂x
P̄ (2)
n (x, s) + (s+ λ+ µ2(x))P̄ (2)

n (x, s) = λ

n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1 (2.21)

∂

∂x
V̄

(1)
0 (x, s) + (s+ λ+ γ1(x))V̄

(1)
0 (x, s) = 0 (2.22)

∂

∂x
V̄ (1)
n (x, s) + (s+ λ+ γ1(x))V̄ (1)

n (x, s) = λ
n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (2.23)

∂

∂x
V̄

(2)
0 (x, s) + (s+ λ+ γ2(x))V̄

(2)
0 (x, s) = 0 (2.24)

∂

∂x
V̄ (2)
n (x, s) + (s+ λ+ γ2(x))V̄ (2)

n (x, s) =λ
n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (2.25)

(s+ λ)Q̄(s) = 1 + (1− p)
∫ ∞
0

γ1(x)V̄
(1)
0 (x, s)dx

+

∫ ∞
0

γ2(x)V̄
(2)
0 (x, s)dx (2.26)

P̄ (1)
n (0, s) = λcn+1Q̄(s) + (1− p)

∫ ∞
0

γ1(x)V̄
(1)
n+1(x, s)dx

+

∫ ∞
0

γ2(x)V̄
(2)
n+1(x, s)dx, n ≥ 0 (2.27)

P̄ (2)
n (0, s) = θ

∫ ∞
0

µ1(x)P̄ (1)
n (x, s)dx, n ≥ 0 (2.28)

V̄ (1)
n (0, s) = (1− θ)

∫ ∞
0

µ1(x)P̄ (1)
n (x, s)dx

+

∫ ∞
0

µ2(x)P̄ (2)
n (x, s)dx, n ≥ 0 (2.29)

V̄ (2)
n (0, s) = p

∫ ∞
0

γ1(x)V̄ (1)
n (x, s)dx, n ≥ 0 (2.30)

Now multiplying equations (2.19), (2.21), (2.23) and (2.25) by zn and summing

over n from 1 to ∞, adding to equations (2.18), (2.20), (2.22) and (2.24) and

using the generating functions defined in (2.15) and (2.16), we get

∂

∂x
P̄ (1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]P̄ (1)(x, z, s) = 0 (2.31)
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∂

∂x
P̄ (2)(x, z, s) + [s+ λ− λC(z) + µ2(x)]P̄ (2)(x, z, s) = 0 (2.32)

∂

∂x
V̄ (1)(x, z, s) + [s+ λ− λC(z) + γ1(x)]V̄ (1)(x, z, s) = 0 (2.33)

∂

∂x
V̄ (2)(x, z, s) + [s+ λ− λC(z) + γ2(x)]V̄ (2)(x, z, s) = 0 (2.34)

For the boundary conditions, we multiply both sides of equation (2.27) by zn

summing over n from 0 to ∞, and use the equation (2.26), we get

zP̄ (1)(0, z, s) = [1− sQ̄(s)] + λ[C(z)− 1]Q̄(s)

+(1− p)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx+

∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx (2.35)

Performing similar operation on equations (2.28) to (2.30), we get

P̄ (2)(0, z, s) = θ

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx (2.36)

V̄ (1)(0, z, s) = (1− θ)
∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx

+

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx (2.37)

V̄ (2)(0, z, s) = p

∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx (2.38)

Integrating equation (2.31) between 0 and x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
(2.39)

where P (1)(0, z, s) is given by equation (2.35).

Again integrating equation (2.39) by parts with respect to x, yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(2.40)
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where

B̄1(s+ λ− λC(z)) =

∞∫
0

e−[s+λ−λC(z)]xdB1(x) (2.41)

is the Laplace-Stieltjes transform of the first phase of service time B1(x). Now

multiplying both sides of equation (2.39) by µ1(x) and integrating over x, we

obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λ(1− C(z))] (2.42)

Similarly, on integrating equations (2.32) to (2.34) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
(2.43)

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ1(t)dt
(2.44)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ2(t)dt
(2.45)

where P̄ (2)(0, z, s), V̄ (1)(0, z, s) and V̄ (2)(0, z, s) are given by equations (2.36)

to (2.38). Again integrating equations (2.43) to (2.45) by parts with respect

to x, yields

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− B̄2(s+ λ− λC(z))

s+ λ− λc(z)

]
(2.46)

V̄ (1)(z, s) = V̄ (1)(0, z, s)

[
1− V̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(2.47)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

[
1− V̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(2.48)

where

B̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdB2(x) (2.49)
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V̄1(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV1(x) (2.50)

V̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV2(x) (2.51)

are the Laplace-Stieltjes transform of the second optional service time B2(x),

phase one compulsory vacation time V1(x) and second optional vacation V2(x)

respectively.

Now multiplying both sides of equations (2.43) to (2.45) by µ2(x), γ1(x)

and γ2(x) and integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λ− λC(z)] (2.52)

∞∫
0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s+ λ− λC(z)] (2.53)

∞∫
0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s+ λ− λC(z)] (2.54)

Using equations (2.42) and (2.52), we can write equation (2.37) as

V̄ (1)(0, z, s) = (1− θ)B̄1(a)P̄ (1)(0, z, s) + B̄2(a)P̄ (2)(0, z, s) (2.55)

Using equation (2.42) in (2.36), we get

P̄ (2)(0, z, s) = θB̄1(a)P̄ (1)(0, z, s) (2.56)

By using equation (2.56) in (2.55), we get

V̄ (1)(0, z, s) = B̄1(a)[1− θ + θB̄2(a)]P̄ (1)(0, z, s) (2.57)
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Using equations (2.53) and (2.57) in (2.38), we get

V̄ (2)(0, z, s) = pB̄1(a)V̄1(a)[1− θ + θB̄2(a)]P̄ (1)(0, z, s) (2.58)

Similarly using equations (2.53), (2.54), (2.57) and (2.58) in (2.35), we get

P̄ (1)(0, z, s) =
[1− sQ̄(s)] + λ[(C(z)− 1]Q̄(s)

Dr
(2.59)

where Dr = z − B̄1(a)V̄1(a)[1− θ + θB̄2(a)](1− p+ pV̄2(a)), (2.60)

and a = s+ λ− λC(z).

Substituting the value of P̄ (1)(0, z, s) from equation (2.59) into equations

(2.56), (2.57) and (2.58), we get

P̄ (2)(0, z, s) =
θB̄1(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(2.61)

V̄ (1)(0, z, s) = B̄1(a)(1− θ + θB̄2(a))

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(2.62)

V̄ (2)(0, z, s) = pB̄1(a)(1− θ + θB̄2(a))V̄1(a)

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(2.63)

Using equations (2.59), (2.61), (2.62) and (2.63) in (2.40), (2.46), (2.47) and

(2.48), we get

P̄ (1)(z, s) =
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

[1− B̄1(a)]

a
(2.64)

P̄ (2)(z, s) =
θB̄1(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

[1− B̄2(a)]

a
(2.65)

V̄ (1)(z, s) =
[1− θ + θB̄2(a)]B̄1(a)

Dr

× [(1− sQ̄(s)) + (λC(z)− λ)Q̄(s)]
[1− V̄1(a)]

a
(2.66)
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V̄ (2)(z, s) = pB̄1(a)V̄1(a)
[1− θ + θB̄2(a)]

Dr

× [(1− sQ̄(s)) + (λC(z)− λ)Q̄(s)]
[1− V̄2(a)]

a
(2.67)

where Dr is given by equation (2.60). Thus P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s)

and V̄ (2)(z, s) are completely determined from equations (2.64) to (2.67)

which completes the proof of the theorem.

2.5 The steady state results

In this section, we shall derive the steady state probability distribution for

our queueing model. To define the steady state probabilities, we suppress the

argument t wherever it appears in the time-dependent analysis. This can be

obtained by applying the Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t) (2.68)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s) and V̄ (2)(z, s) completely,

we have yet to determine the unknown Q which appears in the numerators of

the right hand sides of equations (2.64) to (2.67).

For that purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) + V (1)(1) + V (2)(1) +Q = 1 (2.69)

The steady state probabilities for an M [X]/G/1 queue with second optional

service and second optional vacation are given by

P (1)(1) =
λE(I)E(B1)Q

dr
(2.70)
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P (2)(1) =
θλE(I)E(B2)Q

dr
(2.71)

V (1)(1) =
λE(I)E(V1)Q

dr
(2.72)

V (2)(1) =
pλE(I)E(V2)Q

dr
(2.73)

where

dr = 1− λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)]. (2.74)

P (1)(1), P (2)(1), V (1)(1), V (2)(1) and Q are the steady state probabilities that

the server is providing first essential service, second optional service, server

under phase one compulsory vacation, second optional vacation and server

under idle respectively without regard to the number of customers in the

queue.

Multiplying both sides of equations (2.64) to (2.67) by s, taking limit as

s→ 0, applying property (2.68) and simplifying, we obtain

P (1)(z) =
[B̄1(b)− 1]Q

D(z)
(2.75)

P (2)(z) =
θB̄1(b)[B̄2(b)− 1]Q

D(z)
(2.76)

V (1)(z) =
B̄1(b)[1− θ + θB̄2(b)][V̄1(b)− 1]Q

D(z)
(2.77)

V (2)(z) =
pB̄1(b)[1− θ + θB̄2(b)]V̄1(b)[V̄2(b)− 1]Q

D(z)
(2.78)

where
D(z) = z − V̄1(b)B̄1(b)[1− θ + θB̄2(b)][1− p+ pV̄2(b)], (2.79)

and b = λ− λC(z).

Let Wq(z) denote the probability generating function of the queue size

irrespective of the state of the system. Then adding equations (2.75) to (2.78),
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we obtain

Wq(z) =P (1)(z) + P (2)(z) + V (1)(z) + V (2)(z)

Wq(z) =
[B̄1(b)− 1]Q

D(z)
+
θB̄1(b)[B̄2(b)− 1]Q

D(z)

+
B̄1(b)[1− θ + θB̄2(b)][V̄1(b)− 1]Q

D(z)

+
pB̄1(b)[1− θ + θB̄2(b)]V̄1(b)[V̄2(b)− 1]Q

D(z)
(2.80)

In order to find Q, we use the normalization condition Wq(1) + Q = 1.

We see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore, we

apply L’Hopital’s rule and on simplifying, we get

Wq(1) =
λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)]

1− λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)]
Q (2.81)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(Bi) = −B̄′i(0), E(Vi) = −V̄ ′i (0) for i = 1, 2.

Therefore adding Q to equation (2.81), equating to 1 and simplifying, we

get

Q = 1− ρ (2.82)

and hence the utilization factor ρ of the system is given by

ρ = λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)] (2.83)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (2.82) gives the probability that the server is idle. Substituting Q

from (2.82) into (2.80), we have completely and explicitly determined Wq(z),

the probability generating function of the queue size.
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2.6 The average queue size and average wait-

ing time

Let Lq denote the mean number of customers in the queue under the steady

state. Then

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write Wq(z) given in (2.80) as

Wq(z) =
N(z)

D(z)
Q where

N(z) = B̄1(b)V̄1(b)(1− θ + θB̄2(b))(1− p+ pV̄2(b))− 1

and D(z) is given by equation (2.79).

N ′(z) =B̄′1(b)(b
′)V̄1(b)(1− θ + θB̄2(b))(1− p+ pV̄2(b))

+ B̄1(b)V̄
′
1(b)(b′)(1− θ + θB̄2(b))(1− p+ pV̄2(b))

+ B̄1(b)V̄1(b)θB̄
′
2(b)(b

′)(1− p+ pV̄2(b))

+ B̄1(b)V̄1(b)(1− θ + θB̄2(b))pV̄
′
2(b)(b′)

D′(z) =1− [V̄ ′1(b)b′B̄1(b) + V̄1(b)B̄
′
1(b)b

′](1− θ + θB̄2(b))

× (1− p+ pV̄2(b))− B̄1(b)V̄1(b)[θB̄
′
2(b)b

′(1− p+ pV̄2(b))

+ (1− θ + θB̄2(b))pV̄
′
2(b)b′]

N ′′(z) =(B̄′′1 (b)(b′)2V̄1(b) + b′′B̄′1(b)V̄1(b)

+ 2B̄′1(b)V̄
′
1(b)(b′)2 + B̄1(b)V̄

′′
1 (b)(b′)2

+ B̄1(b)V̄
′
1(b)b′′)(1− θ + θB̄2(b))(1− p+ pV̄2(b))

+ 2(B̄′1(b)(b
′)V̄1(b) + B̄1(b)V̄

′
1(b)b′)

× (θB̄′2(b)b
′(1− p+ pV̄2(b)) + (1− θ + θB̄2(b))pV̄

′
2(b)b′)

+ B̄1(b)B̄2(b)(θB̄
′′
2 (b)(b′)2(1− p+ pV̄2(b))
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+ θb′′B̄′2(b)(1− p+ pV̄ ′2(b))

+ 2θB̄′2(b)(b
′)pV̄ ′2(b)(b′)

+ (1− θ + θB̄2(b))pV̄
′′
2 (b)(b′)2

+ (1− θ + θB̄2(b))pV̄
′
2(b)(b′′))

D′′(z) =− [(V̄ ′′1 (b)B̄1(b) + 2V̄ ′1(b)B̄′1(b) + V̄1(b)B̄
′′
1 (b))

× (b′)2(1− θ + θB̄2(b))(1− p+ pV̄2(b))

+ 2b′(V̄ ′1(b)B̄1(b) + V̄1(b)B̄
′
1(b))

× [θB̄′2(b)b
′(1− p+ pV̄2(b)) + (1− θ + θB̄2(b))pV̄

′
2(b)b′]

+ V̄1(b)B̄1(b)[(θB̄
′′
2 (b)b′2 + θB̄′2(b)b

′′)(1− p+ pV̄2(b))

+ 2θB̄′2(b)b
′pV̄ ′2(b)b′ + (1− θ + θB̄2(b))(pV̄

′′
2 (b)b′2 + pV̄ ′2(b)b′′)]]

Lq =
d

dz
Wq(z) =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (2.84)

where primes and double primes in (2.84) denote first and second derivative

at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)] (2.85)

N ′′(1) =λ2(E(I))2[E(B2
1) + θE(B2

2) + E(V 2
1 ) + pE(V 2

2 )]

+ λE(I(I − 1))[E(B1) + θE(B2) + E(V1) + pE(V2)]

+ 2λ2(E(I))2[E(B1)E(V1) + pθE(B2)E(V2)]

+ 2λ2(E(I))2[E(B1) + E(V1)][θE(B2) + pE(V2)] (2.86)

D′(1) =1− λE(I)[E(B1) + θE(B2) + E(V1) + pE(V2)] (2.87)

D′′(1) =− λ2(E(I))2[E(B2
1) + θE(B2

2) + E(V 2
1 ) + pE(V 2

2 )]

− 2λ2(E(I))2[E(B1)E(V1) + pθE(B2)E(V2)]

− 2λ2(E(I))2[E(B1) + E(V1)][θE(B2) + pE(V2)]

− λE(I(I − 1))[E(B1) + θE(B2) + E(V1) + pE(V2)] (2.88)
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where E(B2
1), E(B2

2), E(V 2
1 ) and E(V 2

2 ) are the second moment of the service

times and vacation times respectively. E(I(I − 1)) is the second factorial

moment of the batch size of arriving customers.

Then if we substitute the values N ′(1), N ′′(1), D′(1), D′′(1) from equations

(2.85) to (2.88) into equation (2.84), we obtain Lq in the closed form.

Further, we find the mean system size L using Little’s formula. Thus we

have

L = Lq + ρ (2.89)

where Lq has been found by equation (2.84) and ρ is obtained from equation

(2.83).

Let Wq and W denote the mean waiting time in the queue and in the system

respectively. Then by using Little’s formula, we obtain

Wq =
Lq
λ

and
W =

L

λ

where Lq and L have been found in equations (2.84) and (2.89).

2.7 Particular cases

Case 1: If there is no optional service, i.e, θ = 0. Then our model reduces to

the M [X]/G/1 queue with compulsory vacation and optional vacation.

Using this in the main result of (2.82), (2.83) and (2.84), we can find the

idle probability Q, utilization factor ρ, and the mean queue size Lq can be

simplified to the following expressions.

Q = 1− λE(I)[E(B1) + E(V1) + pE(V2)]
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ρ = λE(I)[E(B1) + E(V1) + pE(V2)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′′(1))2

]
Q

where

N ′(1) =λE(I)[E(B1) + E(V1) + pE(V2)]

N ′′(1) =λ2(E(I))2[E(B2
1) + E(V 2

1 ) + pE(V 2
2 )]

+ λE(I(I − 1))[E(B1) + E(V1) + pE(V2)]

+ 2λ2(E(I))2E(B1)E(V1)

+ 2λ2(E(I))2[E(B1) + E(V1)]pE(V2)

D′(1) =1− λE(I)[E(B1) + E(V1) + pE(V2)]

D′′(1) =− λ2(E(I))2[E(B2
1) + E(V 2

1 ) + pE(V 2
2 )]

− 2λ2(E(I))2E(B1)E(V1)

− 2pλ2(E(I))2[E(B1) + E(V1)]E(V2)

− λE(I(I − 1))[E(B1) + E(V1) + pE(V2)]

Case 2: If the server has no vacations and C(z) = z. i.e, p = 0, E(I) =

1, E(I(I − 1)) = 0 then our model reduces to the M/G/1 queue with second

optional service.

Using this in the main result of (2.82), (2.83) and (2.84), we can find the

idle probability Q, utilization factor ρ, and the mean queue size Lq can be

simplified to the following expressions.

Q =1− ρ

ρ =λ[E(B1) + θE(B2)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′′(1))2

]
Q
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where

N ′(1) =λ[E(B1) + θE(B2)]

N ′′(1) =λ2[E(B2
1) + θE(B2

2)] + 2λ2E(B1)θE(B2)

D′(1) =1− λ[E(B1) + θE(B2)]

D′′(1) =− λ2[E(B2
1) + θE(B2

2)]− 2λ2E(B1)θE(B2)

The above equations coincide with result given by Jehad Al-Jararha and

Madan (2003).

Case 3: If the second service follows exponential distribution for case 2,

then the result coincide with Madan (2000b).

Case 4: When the server has no optional service, no vacation and C(z) = z

i.e, θ= 0, p = 0, E(V1) = 0, E(I)= 1 and E(I(I − 1)) = 0 then our model

reduces to the M/G/1 queueing system.

Using this in the main result of (2.82), (2.83) and (2.84), we can find the

idle probability Q, utilization factor ρ, and the mean queue size Lq can be

simplified to the following expressions.

Q =1− λE(B1)

ρ =λE(B1)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where
N ′(1) =λE(B1)

N ′′(1) =λ2E(B2
1)

D′(1) =1− λE(B1)

D′′(1) =− λ2E(B2
1)

The above equations coincide with result given by Medhi (1982).
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2.8 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service times and vacation times are exponentially distributed with rates

µ1, µ2, γ1 and γ2.

In order to see the effect of various parameters on server’s idle time Q,

utilization factor ρ and various other queue characteristics such as L,W ,

Lq,Wq. We base our numerical example on the result found in case 1.

For this purpose in Table 2.1, we choose the following arbitrary values:

E(I) = 0.3, E(I(I − 1)) = 0.05, µ = 3, γ1 = 3, γ2 = 2, and p = 0.25 while λ

varies from 0.1 to 1.0 such that the stability condition is satisfied.

The Table 2.1 gives computed values of the idle time, the utilization factor,

the average queue size, system size and average waiting time in the queue

and the system of our queueing model. It clearly shows as long as increasing

Table 2.1: Computed values of various queue characteristics

λ Q ρ Lq L Wq W

0.1 0.968333 0.038500 0.002836 0.034502 0.028356 0.345023
0.2 0.936667 0.077000 0.007500 0.070833 0.037500 0.354167
0.3 0.905000 0.115500 0.014185 0.109185 0.047284 0.363950
0.4 0.873333 0.154000 0.023111 0.149777 0.057777 0.374443
0.5 0.841667 0.192500 0.034530 0.192863 0.069059 0.385726
0.6 0.778333 0.231000 0.048735 0.238735 0.081224 0.397891
0.7 0.746667 0.269500 0.066065 0.287732 0.094379 0.411046
0.8 0.715000 0.308000 0.086920 0.340253 0.108650 0.425316
0.9 0.683333 0.346500 0.111766 0.396766 0.124184 0.440851
1.0 0.615000 0.385000 0.141159 0.457825 0.141159 0.457825

the arrival rate, the server’s idle time decreases while the utilization factor,

the average queue size, system size and average waiting time of our queueing

model are all increases.

In Table 2.2, we choose the following arbitrary values: µ1 = 2, γ1 = 4,
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Table 2.2: Computed values of various queue characteristics

γ2 Q ρ Lq L Wq W

1 0.250000 0.750000 1.900000 2.650000 0.950000 1.325000
2 0.325000 0.675000 1.107692 1.782692 0.553846 0.891350
3 0.350000 0.650000 0.947619 1.597619 0.473810 0.798810
4 0.362500 0.637500 0.881034 1.518534 0.440517 0.759270
5 0.370000 0.630000 0.844865 1.474865 0.422432 0.737430
6 0.375000 0.625000 0.822222 1.447222 0.411111 0.723610
7 0.378571 0.621429 0.806739 1.428167 0.403369 0.714080
8 0.381250 0.618750 0.795492 1.414242 0.397746 0.707120
9 0.383333 0.616667 0.786695 1.403623 0.393478 0.701810
10 0.385000 0.615000 0.780260 1.395260 0.390130 0.697630

λ = 2, E(I) = 0.3, E(I(I − 1)) = 0.02 and p = 0.25 while γ2 varies from 1 to

10 such that the stability condition is satisfied.

The Table 2.2 gives computed values of the idle time, the utilization factor,

the average queue size, system size and average waiting time in the queue and

the system of our queueing model.

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, the average queue size, system size

and average waiting time of our queueing model are all decreases.
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Service, Optional Re-Service and

Bernoulli Vacation



CHAPTER

THREE

M [X]/G/1 QUEUE WITH TWO PHASES OF

SERVICE, OPTIONAL RE-SERVICE AND

BERNOULLI VACATION

3.1 Introduction

Vacation queues have been studied extensively by numerous authors including

Levy and Yechiali (1976), Borthakur and Chaudhury (1997), Fuhrmann and

Cooper (1985), Doshi (1986), Madan (1991), Chaudhury (2000) and Chae

et al. (2001) due to their various applications in Communication systems,

Computer network etc. For the first time the concept of Bernoulli vacation

were studied by Keilson and Servi (1986).

A two phase queueing system with vacation have studied by Doshi (1991),

Krishna Kumar et al. (2002a), Artalejo and Choudhury (2004), Choudhury

and Paul (2005), Badamchi Zadeh and Shankar (2008), Choudhury and Tadj

A part of this chapter is published with entitled:

1. Time Dependent Solution of Batch Arrival Queue with Second Optional Service,
Optional Re-Service and Bernoulli Vacation– Mathematical Theory and Modelling, Vol. 3,
No. 1, pp. 1-8, 2013.

2. Batch Arrival Queue with Two Types of Service, Optional Re-Service and Bernoulli
Vacation – Accepted for publication in the Proceedings of International Conference on
Applied Mathematical Models, PSG Tech., Coimbatore, 2014.

42



(2009), and Gautam Choudhury and Mitali Deka (2012), Arivudainambi and

Godhandaraman (2012). Madan and Ayman Baklizi (2002) have studied an

M/G/1 queue with additional second stage service and optional re-service.

M [X]/G1, G2/1 queue with optional re-service have studied by Madan et al.

(2004). Madan and Anabosi (2003) have studied a single server queue with

two types of service, Bernoulli schedule server vacation and a single vacation

policy.

This chapter consists of two models. In Model I, we consider M [X]/G/1

queues with second optional service, optional re-service and Bernoulli vacation

and in Model II, we consider M [X]/G/1 queues with two types of service,

optional re-service and Bernoulli vacation.

Model 1: M [X]/G/1 queue with second optional service,

optional re-service and Bernoulli vacation

In Model I, we assume that the customers arrive to the system in batches

of variable size, but are served one by one where the arrival follows Poisson.

A single server provides two phases of service. Each customer undergoes first

phase of essential service whereas second phase of service is optional. After

completion of first phase of service, customer has the option to repeat or not

to repeat the first phase of service and leave the system without taking the

second phase or take the second phase service. Similarly after the second

phase service he has yet another option to repeat or not to repeat the second

phase service. After each service completion, the server may take a vacation

with probability θ or may continue to stay in the system with probability

1− θ. The service and vacation periods follow general (arbitrary) distribution.

Further, we assume that this option of repeating the first phase or the second

phase service can be availed only once.

Here we derive time dependent probability generating functions in terms of
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Laplace transforms. We also derive the average queue size and average waiting

time in the queue and the system. Some particular cases and numerical results

are also discussed.

The Model I is organised as follows. The model description is given in

section 3.2. Definitions and equations governing the system are given in

section 3.3. The time dependent solution have been obtained in section 3.4

and corresponding steady state results have been derived explicitly in section

3.5. Average queue size and average waiting time in the queue and system

are computed in section 3.6. Some particular cases and numerical results are

discussed in section 3.7 and 3.8 respectively.

3.2 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt ( i ≥ 1) be the first order probability that

a batch of i customers arrives at the system during a short interval of

time (t, t+ dt], where 0 ≤ ci ≤ 1 and
∞∑
i=1

ci = 1, λ > 0 is the arrival rate

of batches.

b) There is a single server who provides the first phase of service for all

customers, as soon as the first phase of service of a customer is completed,

he may opt to repeat the first phase of service with probability r1 or

may not repeat with probability 1− r1. After completing the first phase

of service, the customer may opt to take the second phase of service with

probability p or may leave the system without taking the second phase

of service with probability 1− p. Similarly after taking the second phase

of service he may demand repetation of second phase of service with
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probability r2 or may leave the system without repeating the second

phase of service with probability 1- r2. Further, we assume that this

option of repeating the first phase or the second phase of service can be

availed only once.

c) The service time follows a general (arbitrary) distribution with distribution

function Bi(s) and density function bi(s). Let µi(x)dx be the conditional

probability density of service completion during the interval (x, x+ dx],

given that the elapsed service time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2,

and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

d) As soon as each service is over, the server may take a vacation with

probability θ or may continue to stay in the system with probability

1− θ.

e) The server’s vacation time follows a general (arbitrary) distribution with

distribution function V (t) and density function v(t). Let γ(x)dx be the

conditional probability density of vacation completion during the interval

(x, x+ dx], given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1− V (x)
,

and therefore,

v(t) = γ(t)e
−

t∫
0

γ(x)dx

f) Various stochastic processes involved in the system are assumed to be

independent of each other.
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3.3 Definitions and equations governing the

system

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing first

phase of service and there are n (n ≥ 0) customers in the queue excluding the

one being served and the elapsed service time is x. Consequently P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n customers in

the queue excluding the one customer in the first phase of service irrespective

of the value of x.

P
(2)
n (x, t) = Probability that at time t, the server is active providing second

phase of optional service and there are n (n ≥ 0) customers in the queue

excluding the one being served and the elapsed service time is x. Consequently

P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the second phase of

optional service irrespective of the value of x.

R
(1)
n (x, t) = Probability that at time t, the server is active providing first

phase of re-service and there are n (n ≥ 0) customers in the queue excluding

the one customer who is repeating first phase service and the elapsed service

time is x. Consequently R
(1)
n (t) =

∞∫
0

R
(1)
n (x, t)dx denotes the probability that

at time t there are n customers in the queue excluding the one customer who

is repeating first phase of service irrespective of the value of x.

R
(2)
n (x, t) = Probability that at time t, the server is active providing second

phase of re-service and there are n (n ≥ 0) customers in the queue excluding

the one customer who is repeating second optional service and the elapsed

service time is x. Consequently R
(2)
n (t) =

∞∫
0

R
(2)
n (x, t)dx denotes the probability

that at time t there are n customers in the queue excluding the one customer

who is repeating second phase of service irrespective of the value of x.
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Vn(x, t) = Probability that at time t, the server is under vacation with

elapsed vacation time is x and there are n (n ≥ 0) customers in the queue.

Accordingly Vn(t)=
∞∫
0

Vn(x, t)dx denotes the probability that at time t there

are n customers in the queue and the server is under vacation irrespective of

the value of x.

Q(t) = Probability that at time t, there are no customers in the system

and the server is idle but available in the system.

The system is then governed by the following set of differential - difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + [λ+ µ1(x)]P

(1)
0 (x, t) = 0 (3.1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x)]P (1)

n (x, t) = λ
n∑
k=1

ckP
(1)
n−k(x, t),

n ≥ 1 (3.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x)]P

(2)
0 (x, t) = 0 (3.3)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x)]P (2)

n (x, t) = λ
n∑
k=1

ckP
(2)
n−k(x, t),

n ≥ 1 (3.4)

∂

∂x
R

(1)
0 (x, t) +

∂

∂t
R

(1)
0 (x, t) + [λ+ µ1(x)]R

(1)
0 (x, t) = 0 (3.5)

∂

∂x
R(1)
n (x, t) +

∂

∂t
R(1)
n (x, t) + [λ+ µ1(x)]R(1)

n (x, t) = λ

n∑
k=1

ckR
(1)
n−k(x, t),

n ≥ 1 (3.6)

∂

∂x
R

(2)
0 (x, t) +

∂

∂t
R

(2)
0 (x, t) + [λ+ µ2(x)]R

(2)
0 (x, t) = 0 (3.7)

∂

∂x
R(2)
n (x, t) +

∂

∂t
R(2)
n (x, t) + [λ+ µ2(x)]R(2)

n (x, t) = λ

n∑
k=1

ckR
(2)
n−k(x, t),

n ≥ 1 (3.8)
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∂

∂x
V0(x, t) +

∂

∂t
V0(x, t) + [λ+ γ(x)]V0(x, t) = 0 (3.9)

∂

∂x
Vn(x, t) +

∂

∂t
Vn(x, t) + [λ+ γ(x)]Vn(x, t) = λ

n∑
k=1

ckVn−k(x, t),

n ≥ 1 (3.10)

d

dt
Q(t) = − λQ(t) + (1− θ)(1− p)(1− r1)

∫ ∞
0

P
(1)
0 (x, t)µ1(x)dx

+ (1− θ)(1− r2)
∫ ∞
0

P
(2)
0 (x, t)µ2(x)dx

+ (1− θ)(1− p)
∫ ∞
0

R
(1)
0 (x, t)µ1(x)dx

+ (1− θ)
∫ ∞
0

R
(2)
0 (x, t)µ2(x)dx+

∫ ∞
0

V0(x, t)γ(x)dx (3.11)

The above set of equations are to be solved subject to the following boundary

conditions

P (1)
n (0, t) = λcn+1Q(t) + (1− θ)(1− p)(1− r1)

∫ ∞
0

P
(1)
n+1(x, t)µ1(x)dx

+ (1− θ)(1− r2)
∫ ∞
0

P
(2)
n+1(x, t)µ2(x)dx

+ (1− θ)(1− p)
∫ ∞
0

R
(1)
n+1(x, t)µ1(x)dx

+ (1− θ)
∫ ∞
0

R
(2)
n+1(x, t)µ2(x)dx

+

∫ ∞
0

Vn+1(x, t)γ(x)dx, n ≥ 0 (3.12)

P (2)
n (0, t) = p(1− r1)

∫ ∞
0

P (1)
n (x, t)µ1(x)dx

+ p

∫ ∞
0

R(1)
n (x, t)µ1(x)dx, n ≥ 0 (3.13)

R(1)
n (0, t) = r1

∫ ∞
0

P (1)
n (x, t)µ1(x)dx, n ≥ 0 (3.14)

R(2)
n (0, t) = r2

∫ ∞
0

P (2)
n (x, t)µ2(x)dx, n ≥ 0 (3.15)

Vn(0, t) = (1− p)θ(1− r1)
∫ ∞
0

P (1)
n (x, t)µ1(x)dx
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+ θ(1− r2)
∫ ∞
0

P (2)
n (x, t)µ2(x)dx

+ (1− p)θ
∫ ∞
0

R(1)
n (x, t)µ1(x)dx

+ θ

∫ ∞
0

R(2)
n (x, t)µ2(x)dx, n ≥ 0 (3.16)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

P (i)
n (0) = R(i)

n (0) = Vn(0) = 0 for i = 1, 2, n ≥ 0 and Q(0) = 1. (3.17)

3.4 Generating functions of the queue length:

The time - dependent solution

In this section, we obtain the transient solution for the above set of differential

- difference equations.

Theorem: The system of differential difference equations to describe

an M [X]/G/1 queue with second optional service, optional re-services and

Bernoulli vacation are given by equations (3.1) to (3.16) with initial conditions

(3.17) and the generating functions of transient solution are given by equations

(3.72) to (3.76).

Proof : We define the probability generating functions, for i =1, 2.

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t);C(z) =

∞∑
n=1

cnz
n;

R(i)(x, z, t) =
∞∑
n=0

znR(i)
n (x, t); R(i)(z, t) =

∞∑
n=0

znR(i)
n (t); (3.18)

V (x, z, t) =
∞∑
n=0

znVn(x, t); V (i)(z, t) =
∞∑
n=0

znVn(t); (3.19)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace
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transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (3.20)

We take the Laplace transform of equations (3.1) to (3.16) and using (3.17),

we obtain

∂

∂x
P̄

(1)
0 (x, s) + (s+ λ+ µ1(x))P̄

(1)
0 (x, s) =0 (3.21)

∂

∂x
P̄ (1)
n (x, s) + (s+ λ+ µ1(x))P̄ (1)

n (x, s) =λ
n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1 (3.22)

∂

∂x
P̄

(2)
0 (x, s) + (s+ λ+ µ2(x))P̄

(2)
0 (x, s) =0 (3.23)

∂

∂x
P̄ (2)
n (x, s) + (s+ λ+ µ2(x))P̄ (2)

n (x, s) =λ
n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1 (3.24)

∂

∂x
R̄

(1)
0 (x, s) + (s+ λ+ µ1(x))R̄

(1)
0 (x, s) =0 (3.25)

∂

∂x
R̄(1)
n (x, s) + (s+ λ+ µ1(x))R̄(1)

n (x, s) =λ
n∑
k=1

ckR̄
(1)
n−k(x, s), n ≥ 1 (3.26)

∂

∂x
R̄

(2)
0 (x, s) + (s+ λ+ µ2(x))R̄

(2)
0 (x, s) =0 (3.27)

∂

∂x
R̄(2)
n (x, s) + (s+ λ+ µ2(x))R̄(2)

n (x, s) =λ
n∑
k=1

ckR̄
(2)
n−k(x, s), n ≥ 1 (3.28)

∂

∂x
V̄0(x, s) + [s+ λ+ γ(x)]V̄0(x, s) =0 (3.29)

∂

∂x
V̄n(x, s) + [s+ λ+ γ(x)]V̄n(x, s) =λ

n∑
k=1

ckV̄n−k(x, s), n ≥ 1 (3.30)

(s+ λ)Q̄(s) = 1 + (1− p)(1− r1)(1− θ)
∫ ∞
0

P̄
(1)
0 (x, s)µ1(x)dx

+ (1− r2)(1− θ)
∫ ∞
0

P̄ 2
0 (x, s)µ2(x)dx

+ (1− θ)(1− p)
∫ ∞
0

R̄
(1)
0 (x, s)µ1(x)dx

+ (1− θ)
∫ ∞
0

R̄
(2)
0 (x, s)µ2(x)dx+

∫ ∞
0

V̄0(x, s)γ(x)dx (3.31)
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P̄ (1)
n (0, s) = (1− θ)(1− p)(1− r1)

∫ ∞
0

P̄
(1)
n+1(x, s)µ1(x)dx

+ (1− θ)(1− r2)
∫ ∞
0

P̄
(2)
n+1(x, s)µ2(x)dx

+ (1− θ)(1− p)
∫ ∞
0

R̄
(1)
n+1(x, s)µ1(x)dx

+ (1− θ)
∫ ∞
0

R̄
(2)
n+1(x, s)µ2(x)dx+ λcn+1Q̄(s)

+

∫ ∞
0

V̄n+1(x, s)γ(x)dx, n ≥ 0 (3.32)

P̄ (2)
n (0, s) = p(1− r1)

∫ ∞
0

P̄ (1)
n (x, s)µ1(x)dx

+ p

∫ ∞
0

R̄(1)
n (x, s)µ1(x)dx, n ≥ 0 (3.33)

R̄(1)
n (0, s) = r1

∫ ∞
0

P̄ (1)
n (x, s)µ1(x)dx, n ≥ 0 (3.34)

R̄(2)
n (0, s) = r2

∫ ∞
0

P̄ (2)
n (x, s)µ2(x)dx, n ≥ 0 (3.35)

V̄n(0, s) = θ(1− r1)(1− p)
∫ ∞
0

P̄ (1)
n (x, s)µ1(x)dx

+ θ(1− r2)
∫ ∞
0

P̄ (2)
n (x, s)µ2(x)dx

+ θ(1− p)
∫ ∞
0

R̄(1)
n (x, s)µ1(x)dx

+ θ

∫ ∞
0

R̄(2)
n (x, s)µ2(x)dx, n ≥ 0 (3.36)

Now multiplying equations (3.22), (3.24), (3.26), (3.28) and (3.30) by zn and

summing over n from 1 to ∞, adding to equations (3.21), (3.23), (3.25) (3.27)

and (3.29) and using the generating functions defined in (3.18) and (3.19), we

get

∂

∂x
P̄ (1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]P̄ (1)(x, z, s) = 0 (3.37)

∂

∂x
P̄ (2)(x, z, s) + [s+ λ− λC(z)) + µ2(x)]P̄ (2)(x, z, s) = 0 (3.38)

∂

∂x
R̄(1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]R̄(1)(x, z, s) = 0 (3.39)
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∂

∂x
R̄(2)(x, z, s) + [s+ λ− λC(z) + µ2(x)]R̄(2)(x, z, s) = 0 (3.40)

∂

∂x
V̄ (x, z, s) + [s+ λ− λC(z) + γ(x)]V̄ (x, z, s) = 0 (3.41)

For the boundary conditions, we multiply both sides of equation (3.32) by zn

summing over n from 0 to ∞, and use the equation (3.31), we get

zP̄ (1)(0, z, s) =[1− (s+ λ)Q̄(s)] + λC(z)Q̄(s)

+ (1− θ)(1− r1)(1− p)
∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx

+ (1− θ)(1− p)
∫ ∞
0

R̄(1)(x, z, s)µ1(x)dx

+ (1− θ)
∫ ∞
0

R̄(2)(x, z, s)µ2(x)dx

+ (1− θ)(1− r2)
∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx

+

∫ ∞
0

V̄ (x, z, s)γ(x)dx (3.42)

Performing similar operation on equations (3.33) to (3.36), we get

P̄ (2)(0, z, s) =(1− r1)p
∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx

+ p

∫ ∞
0

R̄(1)(x, z, s)µ1(x)dx (3.43)

R̄(1)(0, z, s) = r1

∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx (3.44)

R̄(2)(0, z, s) = r2

∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx (3.45)

V̄ (0, z, s) = θ(1− r1)(1− p)
∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx

+ θ(1− r2)
∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx

+ θ(1− p)
∫ ∞
0

R̄(1)(x, z, s)µ1(x)dx

+ θ

∫ ∞
0

R̄(2)(x, z, s)µ2(x)dx, n ≥ 0 (3.46)
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Integrating equation (3.37) between 0 and x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
(3.47)

where P (1)(0, z, s) is given by equation (3.42).

Again integrating equation (3.47) by parts with respect to x, yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.48)

where

B̄1(s+ λ− λC(z)) =

∞∫
0

e−[s+λ−λC(z)]xdB1(x)

is the Laplace-Stieltjes transform of the first phase of service time B1(x). Now

multiplying both sides of equation (3.47) by µ1(x) and integrating over x, we

obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λ(1− C(z))] (3.49)

Similarly, on integrating equations (3.38) to (3.41) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
(3.50)

R̄(1)(x, z, s) = R̄(1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
(3.51)

R̄(2)(x, z, s) = R̄(2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
(3.52)

V̄ (x, z, s) = V̄ (0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ(t)dt
(3.53)

where P̄ (2)(0, z, s), R̄(1)(0, z, s), R̄(2)(0, z, s) and V̄ (0, z, s) are given by equa-

tions (3.43) to (3.46). Again integrating equations (3.50) to (3.53) by parts
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with respect to x, yields

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− B̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.54)

R̄(1)(z, s) = R̄(1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.55)

R̄(2)(z, s) = R̄(2)(0, z, s)

[
1− B̄2(s+ λ(1− C(z)))

s+ λ− λC(z)

]
(3.56)

V̄ (z, s) = V̄ (0, z, s)

[
1− V̄ (s+ λ− λC(z))

s+ λ− λC(z)

]
(3.57)

where

B̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdB2(x)

V̄ (s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV (x)

are the Laplace-Stieltjes transform of the second phase of service time B2(x)

and vacation time V (x). Now multiplying both sides of equations (3.50) to

(3.53) by µ1(x), µ2(x) and γ(x) integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λ− λC(z)] (3.58)

∞∫
0

R̄(1)(x, z, s)µ1(x)dx = R̄(1)(0, z, s)B̄1[s+ λ− λC(z)] (3.59)

∞∫
0

R̄(2)(x, z, s)µ2(x)dx = R̄(2)(0, z, s)B̄2[s+ λ− λC(z)] (3.60)

∞∫
0

V̄ (x, z, s)γ(x)dx = V̄ (0, z, s)V̄ [s+ λ− λC(z)] (3.61)

Using equation (3.58) in (3.45), we get

R̄(2)(0, z, s) = r2B̄2(a)P̄ (2)(0, z, s) (3.62)

54



where a = s+ λ− λC(z).

By using equation (3.49) in (3.44), we get

R̄(1)(0, z, s) = r1B̄1(a)P̄ (1)(0, z, s) (3.63)

Using equations (3.49), (3.59) and (3.63) in (3.43), we get

P̄ (2)(0, z, s) = pB̄1(a)[1− r1 + r1B̄1(a)]P̄ (1)(0, z, s) (3.64)

Using equations (3.49), (3.58) to (3.60), (3.62) to (3.64) in (3.46), we get

V̄ (0, z, s) = θB̄1(a)(1− r1 + r1B̄1(a))

× [1− p+ pB̄2(a)(1− r2 + r2B̄2(a))]P̄ (1)(0, z, s) (3.65)

Using equations (3.49), (3.58) to (3.61) in (3.42), we get

zP̄ (1)(0, z, s) =[1− sQ̄(s)] + λ[C(z)− 1]Q̄(s)

+ (1− θ)(1− r1)(1− p)B̄1(a)P̄ (1)(0, z, s)

+ (1− θ)(1− p)B̄1(a)R̄(1)(0, z, s)

+ (1− θ)B̄2(a)R̄(2)(0, z, s)

+ (1− θ)(1− r2)B̄2(a)P̄ (2)(0, z, s)

+ V̄ (a)V̄ (0, z, s) (3.66)

Similarly using equations (3.62) to (3.65), in (3.66), we get

P̄ (1)(0, z, s) =
λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))

Dr
(3.67)

where

Dr = z−B̄1(a)(1−r1+r1B̄1(a))(1−θ+θV̄ (a))[1−p+pB̄2(a)(1−r2+r2B̄2(a))],
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Substituting (3.67) into equations (3.62) to (3.65), we get

P̄ (2)(0, z, s) = pB̄1(a)(1− r1 + r1B̄1(a))
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

(3.68)

R̄(1)(0, z, s) = r1B̄1(a)
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(3.69)

R̄(2)(0, z, s) = r2pB̄1(a)B̄2(a)(1− r + rB̄1(a))

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(3.70)

V̄ (0, z, s) =
θ

Dr
B̄1(a)(1− r1 + r1B̄1(a))(1− p+ pB̄2(a)

× (1− r2 + r2B̄2(a)))[λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))] (3.71)

Using equations (3.67) to (3.71) in (3.48), (3.54) to (3.57), we get

P̄ (1)(z, s) =
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

[1− B̄1(a)]

a
(3.72)

P̄ (2)(z, s) =
pB̄1(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

× (1− r + rB̄1(a))
[1− B̄2(a)]

a
(3.73)

R̄(1)(z, s) =
rB̄1(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

× [1− B̄1(a)]

a
(3.74)

R̄(2)(z, s) = r2pB̄1(a)B̄2(a)
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

× (1− r + rB̄1(a))
[1− B̄2(a)]

a
(3.75)

V̄ (z, s) =
θ

Dr
B̄1(a)(1− r1 + r1B̄1(a))(1− p+ pB̄2(a)(1− r2 + r2B̄2(a)))

× [λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))]

[
1− V̄ (a)

a

]
(3.76)

Thus P̄ (1)(z, s), P̄ (2)(z, s), R̄(1)(z, s), R̄(2)(z, s) and V̄ (z, s) are completely

determined from equations (3.72) to (3.76) which completes the proof of the

theorem.
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3.5 The steady state results

In this section, we shall derive the steady state probability distribution for

our queueing model. To define the steady state probabilities, we suppress the

argument t wherever it appears in the time-dependent analysis. This can be

obtained by applying the well-known Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t) (3.77)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), R̄(1)(z, s), R̄(2)(z, s) and V̄ (z, s)

completely, we have yet to determine the unknown Q which appears in the

numerators of the right hand sides of equations (3.72) to (3.76). For that

purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) +R(1)(1) +R(2)(1) + V (1) +Q = 1 (3.78)

The steady state probabilities for M [X]/G/1 queue with second phase of service,

optional re-services and Bernoulli vacation are given by

P (1)(1) =
λE(I)E(B1)Q

dr

P (2)(1) =
pλE(I)E(B2)Q

dr

R(1)(1) =
r1λE(I)E(B1)Q

dr

R(2)(1) =
r2pλE(I)E(B2)Q

dr

V (1) =
λθE(I)E(V )Q

dr

where
dr = 1− λE(I)[(1 + r1)E(B1) + p(1 + r2)E(B2) + θE(V )], (3.79)
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P (1)(1), P (2)(1), R(1)(1), R(2)(1), V (1) and Q are the steady state probabilities

that the server is providing first phase of service, second phase of optional

service, first phase of re-optional service, second phase of re-optional service,

server under vacation and idle respectively without regard to the number of

customers in the queue.

Thus multiplying both sides of equations (3.72) to (3.76) by s, taking limit

as s→ 0, applying property (3.77) and simplifying, we obtain

P (1)(z) =
[B̄1(b)− 1]

D(z)
Q (3.80)

P (2)(z) =
pB̄1(b)[1− r1 + r1B̄1(b)][B̄2(b)− 1]

D(z)
Q (3.81)

R(1)(z) =
r1B̄1(b)[B̄1(b)− 1]

D(z)
Q (3.82)

R(2)(z) =
pr2B̄1(b)B̄2(b)[1− r1 + r1B̄1(b)][B̄2(b)− 1]

D(z)
Q (3.83)

V (z) =
1

D(z)
[θB̄1(b)(1− r1 + r1B̄1(b))(1− p+ pB̄2(b)

× (1− r2 + r2B̄2(b)))(V̄ (b)− 1)]Q (3.84)

where

D(z) = z − B̄1(b)[1− p+ pB̄2(b)(1− r2 + r2B̄2(b))

× (1− θ + θV̄ (b))][1− r1 + r1B̄1(b)], (3.85)

and b = λ− λC(z).

Let Wq(z) denote the probability generating function of the queue size ir-

respective of the state of the system. Then adding equations (3.80) to (3.84),

we obtain

Wq(z) = P (1)(z) + P (2)(z) +R(1)(z) +R(2)(z) + V (z)
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Wq(z) =
[B̄1(b)− 1]Q

D(z)

+
pB̄1(b)[1− r1 + r1B̄1(b)][B̄2(b)− 1]Q

D(z)

+
r1B̄1(b)[B̄1(b)− 1]Q

D(z)

+
pr2B̄1(b)B̄2(b)[1− r1 + r1B̄1(b)][B̄2(b)− 1]Q

D(z)

+
θB̄1(b)(1− r1 + r1B̄1(b))[1− p+ pB̄2(b)

D(z)

× (1− r2 + r2B̄2(b))][V̄ (b)− 1]Q (3.86)

In order to find Q, we use the normalization condition Wq(1) + Q = 1. We

see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore, we apply

L’Hopital’s rule and on simplifying, we get

Wq(1) =
λE(I)[(1 + r1)E(B1) + p(1 + r2)E(B2) + θE(V )]

1− λE(I)[(1 + r1)E(B1) + p(1 + r2)E(B2) + θE(V )]
Q (3.87)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(V ) = −V̄ ′(0), E(Bi) = −B̄′i(0) for i = 1, 2.

Therefore adding Q to equation (3.87), equating to 1 and simplifying, we

get

Q = 1− ρ (3.88)

and hence the utilization factor ρ of the system is given by

ρ = λE(I)[(1 + r1)E(B1) + p(1 + r2)E(B2) + θE(V )] (3.89)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (3.88) gives the probability that the server is idle. By knowing Q from

(3.88), we have completely and explicitly determined Wq(z), the probability

generating function of the queue size.
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3.6 The average queue size and average wait-

ing time

Let Lq denote the average number of customers in the queue. Then

Lq =
d

dz
Wq(z) at z = 1 (3.90)

since this formula gives 0/0 form, then we write Wq(z) given in (3.86) as

Wq(z) =
N(z)

D(z)
Q where

N(z) =(B̄1(b)− 1)(1 + r1B̄1(b))

+ pB̄1(b)(1− r1 + r1B̄1(b))(B̄2(b)− 1)(1 + r2B̄2(b))

+ θB̄1(b)(1− r1 + r1B̄1(b))(V̄ (b)− 1)

× (1− p+ pB̄2(b)(1− r2 + r2B̄2(b)))

and D(z) is given by equation (3.85)

N ′(z) =B̄′1(b)b
′(1 + r1B̄1(b)) + (B̄1(b)− 1)(r1B̄

′
1(b)b

′)

+ pB̄′1(b)b
′(B̄2(b)− 1)(1 + r2B̄2(b))(1− r1 + r1B̄1(b))

+ pB̄1(a)[(r1B̄
′
1(a)b′)(B̄2(b)− 1)(1 + r2B̄2(b))

+ (1− r1 + r1B̄1(b))b
′B̄′2(b))(1 + r2B̄2(b))

+ (1− r1 + r1B̄1(b))(B̄2(b)− 1)b′B̄′2(b))]

+ θB̄′1(b)b
′(1− r1 + r1B̄1(b))(V̄ (b)− 1)

× (1− p+ pB̄2(b)(1− r2 + r2B̄2(b)))

+ θB̄1(b)[(r1B̄
′
1(b)b

′)(V̄ (a)− 1)(1− p+ pB̄2(a)(1− r2 + r2B̄2(a)))

+ (1− r1 + r1B̄1(b))V̄
′(b)b′(1− p+ pB̄2(b)(1− r2 + r2B̄2(b)))

+ (1− r1 + r1B̄1(b))(V̄ (b)− 1)(pB̄′2(b)b
′(1− r2 + r2B̄2(b))

+ pB̄2(b)r2B̄
′
2(b)b

′)] (3.91)
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D′(z) =1− B̄′1(b)b′(1− r1 + r1B̄1(b))(1− θ + θV̄ (b))

× (1− p+ pB̄2(b)(1− r2 + r2B̄2(b)))− B̄1(b)[(r1B̄
′
1(b)b

′)

× (1− θ + θV̄ (b))(1− p+ pB̄2(b)(1− r2 + r2B̄2(b)))

+ (1− r1 + r1B̄1(b))[θV̄
′(b)b′(1− p+ pB̄2(b)

× (1− r2 + r2B̄2(b))) + (1− r1 + r1B̄1(b))

× (1− θ + θV̄ (b))(pB̄′2(b)b
′(1− r2 + r2B̄2(b))

+ pr2B̄2(b)B̄
′
2(b)b

′)] (3.92)

Lq =
d

dz
Wq(z) =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (3.93)

where primes and double primes in equation (3.93) denote first and second

derivative at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λE(I)[(1 + r1)E(B1) + p(1 + r2)E(B2) + θE(V )] (3.94)

N ′′(1) =λ2(E(I))2[(1 + r1)E(B2
1) + p(1 + r2)E(B2

2) + θE(V 2)]

+ λE(I(I − 1))[E(B1)(1 + r1) + p(1 + r2)E(B2) + θE(V )]

+ 2λ2(E(I))2[r1(E(B1))
2 + pr2(E(B2))

2]

+ 2λ2(E(I))2θE(V )[(1 + r1)E(B1) + p(1 + r2)E(B2)]

+ 2pλ2(E(I))2(1 + r1)(1 + r2)E(B1)E(B2) (3.95)

D′(1) =1− λE(I)[(1 + r1)E(B1) + p(1 + r2)E(B2) + θE(V )] (3.96)

D′′(1) =− [λ2(E(I))2[(1 + r1)E(B2
1) + θE(V 2) + p(1 + r2)E(B2

2)]

+ λE(I(I − 1))[E(B1)(1 + r1) + p(1 + r2)E(B2) + θE(V )]

+ 2θλ2(E(I))2E(V )[(1 + r1)E(B1) + p(1 + r2)E(B2)]

+ 2λ2(E(I))2[r1(E(B1))
2 + pr2(E(B2))

2]

+ 2pλ2(1 + r1)(1 + r2)E(B1)E(B2)] (3.97)
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where E(B2
1), E(B2

2) and E(V 2) are the second moment of the service time

of phase one, phase two and vacation times respectively. E(I(I − 1)) is the

second factorial moment of the batch size of arriving customers. Then if

we substitute the values N ′(1), N ′′(1), D′(1), D′′(1) into equation (3.93), we

obtain Lq in the closed form.

Further, we find the average system size L using Little’s formula. Thus we

have

L = Lq + ρ (3.98)

Lq has been found by equation (3.93) and ρ is obtained from equation (3.89).

Let Wq and W denote the average waiting time in the queue and in the

system respectively. Then by using Little’s formula, we obtain

Wq =
Lq
λ

(3.99)

W =
L

λ
(3.100)

where Lq and L have been found in equations (3.93) and (3.98).

3.7 Particular cases

Case 1: When the server has no option to take vacation and C(z) = z, i.e,

θ=0, E(I)=1 and E(I(I− 1))=0 then our model reduces to the M/G/1 queue

with second optional service and optional re-services.

Using this in the main result of (3.88), (3.89) and (3.93), we can find the

idle probability Q, utilization factor ρ, and the mean queue size Lq can be

simplified to the following expressions.

Q =1− λ[(1 + r1)E(B1) + p(1 + r2)E(B2)]

ρ =λ[1 + r1)E(B1) + p(1 + r2)E(B2)]
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Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λ[(1 + r1)E(B1) + p(1 + r2)E(B2)]

N ′′(1) =λ2[(1 + r1)E(B2
1) + p(1 + r2)E(B2

2)]

+ 2λ2[r1(E(B1))
2 + pr2(E(B2))

2]

+ 2pλ2(1 + r1)(1 + r2)E(B1)E(B2)]

D′(1) =1− λ[(1 + r1)E(B1) + p(1 + r2)E(B2)]

D′′(1) =− [λ2[(1 + r1)E(B2
1) + p(1 + r2)E(B2

2)]

+ 2λ2[r1(E(B1))
2 + pr2(E(B2))

2]

+ 2pλ2(1 + r1)(1 + r2)E(B1)E(B2)]

The above result coincide with Madan and Ayman Baklizi (2002).

Case 2: If there is no optional re-service. i.e, r1 = r2 = 0. Then our

model reduces to M [X]/G/1 queue with second optional service and Bernoulli

vacation.

Using this in the main result of (3.88), (3.89) and (3.93), we can find the

idle probability Q, utilization factor ρ, and the mean queue size Lq can be

simplified to the following expressions.

Q =1− λE(I)[E(B1) + pE(B2) + θE(V )]

ρ =λE(I)[E(B1) + pE(B2) + θE(V )]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)[E(B1) + pE(B2) + θE(V )]
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N ′′(1) =λ2(E(I))2[E(B2
1) + pE(B2

2) + θE(V 2)]

+ λE(I(I − 1))[E(B1) + pE(B2) + θE(V )]

+ 2λ2(E(I))2θE(V )[E(B1) + pE(B2)]

+ 2pλ2(E(I))2E(B1)E(B2)]

D′(1) =1− λE(I)[E(B1) + pE(B2) + θE(V )]

D′′(1) =− [λ2(E(I))2[E(B2
1) + θE(V 2) + pE(B2

2)]

+ λE(I(I − 1))[E(B1) + pE(B2) + θE(V )]

+ 2θλ2(E(I))2E(V )[E(B1) + pE(B2)]

+ 2pλ2E(B1)E(B2)]

Case 3: If there is no second optional service, re-service, no first type re-

service, no vacation and C(z) = z. i.e, p = 0, r1= 0 and θ = 0, E(I) = 1 and

E(I(I − 1))=0. Then our model reduces M/G/1 queueing system.

Using this in the main result of (3.188), (3.189) and (3.190) we can find

the idle probability Q, utilization factor ρ and the mean queue size Lq can be

simplified to the following expressions.

Q =1− λE(B1)

ρ =λE(B1)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where
N ′(1) =λE(B1)

N ′′(1) =λ2E(B2
1)

D′(1) =1− λE(B1)

D′′(1) =− λ2E(B1)
2

The above results coincide with Kashyap and Chaudhry (1988).
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3.8 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service times and vacation times are exponentially distributed with rates

µ1, µ2 and γ.

In order to see the effect of various parameters on server’s idle time Q,

utilization factor ρ and various other queue characteristics such as Lq, L,Wq,W .

We base our numerical example on the result found in case 1. For this

purpose in Table 3.1, we choose the following arbitrary values: r1= 0.3, r2=

0.5, µ1 =4, µ2 =3, p=0.6 while λ varies from 0.1 to 1.0 such that the

stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the average queue size, system size and

average waiting time in the queue and system of our queueing model are all

increases.

Table 3.1: Computed values of various queue characteristics

λ Q ρ Lq L Wq W

0.1 0.93750 0.06250 0.00353 0.06603 0.03529 0.66029
0.2 0.87500 0.12500 0.01513 0.14012 0.07562 0.70062
0.3 0.81250 0.18750 0.03665 0.22415 0.12215 0.74715
0.4 0.75000 0.25000 0.07058 0.32058 0.17644 0.80144
0.5 0.68750 0.31250 0.12030 0.43280 0.24061 0.86561
0.6 0.62500 0.37500 0.19056 0.56556 0.31760 0.94260
0.7 0.56250 0.43750 0.28819 0.72569 0.41170 1.03670
0.8 0.50000 0.50000 0.42347 0.92347 0.52933 1.15433
0.9 0.43750 0.56250 0.61251 1.17501 0.68057 1.30557
1.0 0.37500 0.62500 0.88222 1.50722 0.88222 1.50722

In Table 3.2, we base our numerical example on result found in case 2. For

this purpose we choose the following arbitrary values: E(I)=0.3, E(I(I−1))=

0.04, µ1 =5, µ2 =3, θ= 0.6, λ = 3, p = 0.5 while γ varies from 1 to 10

such that the stability condition is satisfied.
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Table 3.2: Computed values of various queue characteristics

γ Q ρ Lq L Wq W

1 0.13000 0.87000 7.73931 8.60931 2.57970 2.86977
2 0.40000 0.60000 1.19700 1.79700 0.39900 0.59900
3 0.49000 0.51000 0.72863 1.23863 0.24288 0.41288
4 0.53500 0.46500 0.57247 1.03747 0.19082 0.34582
5 0.56200 0.43800 0.49654 0.93454 0.16551 0.31151
6 0.58000 0.42000 0.45217 0.87217 0.15072 0.29072
7 0.59286 0.40714 0.42325 0.83039 0.14108 0.27679
8 0.60250 0.39750 0.40297 0.80046 0.13432 0.26682
9 0.61000 0.39000 0.38799 0.77798 0.12933 0.25933
10 0.61600 0.38400 0.37649 0.76048 0.12550 0.25349

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, the average queue size, the average

queue size, system size and average waiting time in the queue and system of

our queueing model are all decreases.

Model II: M [X]/G/1 queue with two types of service, op-

tional re-service and Bernoulli vacation

Model II differ from Model I in such a way that the customer has the option

of choosing either type 1 service with probability p1 or type 2 service with

probability p2. After completion of either type 1 or type 2 service, a customer

has the option to repeat or not to repeat the same type of service. As soon as

the service of a customer is completed, the server will take a vacation with

probability θ or may continue to stay in the system with probability 1− θ.

Model II is described as follows. The model description is given in section

3.9. Definitions and equations governing the system are given in section

3.10. The time dependent solution have been obtained in section 3.11 and

corresponding steady state results have been derived explicitly in section 3.12.

Average queue size, system size and average waiting time in the queue and

66



the system are computed in section 3.13. Some particular cases and numerical

results are discussed in section 3.14 and 3.15 respectively.

3.9 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i ≥ 1) be the first order probability that

a batch of i customers arrives at the system during a short interval of

time (t, t+ dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival rate

of batches.

b) There is a single server who provides either type 1 service with probability

p1 or type 2 service with probability p2 for all customers, as soon as

the service of a customer is completed, he may opt to repeat the type 1

service with probability r1 or may not repeat with probability (1− r1).

Similarly after taking the type 2 service he may opt to repeat the type 2

with probability r2 or may not repeat with probability (1− r2). Further,

we assume that this option of repeating the type 1 or the type 2 service

can be availed once.

c) The service time follows a general (arbitrary) distribution with distribution

function Bi(s) and density function bi(s). Let µi(x)dx be the conditional

probability density of service completion during the interval (x, x+ dx],

given that the elapsed service time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2,
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and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

d) As soon as each service is over, the server may take a vacation with

probability θ or may continue to stay in the system with probability

1− θ.

e) The server’s vacation time follows a general (arbitrary) distribution with

distribution function V (t) and density function v(t). Let γ(x)dx be the

conditional probability density of vacation completion during the interval

(x, x+ dx], given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1− V (x)
,

and therefore,

v(t) = γ(t)e
−

t∫
0

γ(x)dx

f) Various stochastic processes involved in the system are assumed to be

independent of each other.

3.10 Definitions and equations governing the

system

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing type

1 service and there are n (n ≥ 0) customers in the queue excluding the

one customer in the service being served and the elapsed service time is x.

P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the type 1 service

irrespective of the value of x.
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P
(2)
n (x, t) = Probability that at time t, the server is active providing type

2 service and there are n (n ≥ 0) customers in the queue excluding the

one customer in the service being served and the elapsed service time is x.

P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the type 2 service

irrespective of the value of x.

R
(1)
n (x, t) = Probability that at time t, the server is active providing type

1 re-service and there are n (n ≥ 0) customers in the queue excluding the

one customer who is repeating type 1 service and the elapsed re-service time

is x. Consequently R
(1)
n (t) =

∞∫
0

R
(1)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue excluding the one customer who is

repeating type 1 service irrespective of the value of x.

R
(2)
n (x, t) = Probability that at time t, the server is active providing type

2 re-service and there are n (n ≥ 0) customers in the queue excluding the

one customer who is repeating type 2 service and the elapsed re-service time

is x. Consequently R
(2)
n (t) =

∞∫
0

R
(2)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue excluding the one customer who is

repeating type 2 service irrespective of the value of x.

Vn(x, t) = Probability that at time t, the server is under vacation with

elapsed vacation time is x and there are n (n ≥ 0) customers in the queue.

Accordingly Vn(t)=
∞∫
0

Vn(x, t)dx denotes the probability that at time t there

are n customers in the queue and the server is under vacation irrespective of

the value of x.
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Q(t) = Probability that at time t, there are no customers in the system

and the server is idle but available in the system.

The model is then, governed by the following set of differential- difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + (λ+ µ1(x))P

(1)
0 (x, t) = 0 (3.101)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + (λ+ µ1(x))P (1)

n (x, t) =λ
n∑
k=1

ckP
(1)
n−k(x, t),

n ≥ 1 (3.102)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x)]P

(2)
0 (x, t) =0 (3.103)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x)]P (2)

n (x, t) =λ
n∑
k=1

ckP
(2)
n−k(x, t),

n ≥ 1 (3.104)

∂

∂x
R

(1)
0 (x, t) +

∂

∂t
R

(1)
0 (x, t) + [λ+ µ1(x)]R

(1)
0 (x, t) =0 (3.105)

∂

∂x
R(1)
n (x, t) +

∂

∂t
R(1)
n (x, t) + [λ+ µ1(x)]R(1)

n (x, t) =λ
n∑
k=1

ckR
(1)
n−k(x, t),

n ≥ 1 (3.106)

∂

∂x
R

(2)
0 (x, t) +

∂

∂t
R

(2)
0 (x, t) + [λ+ µ2(x)]R

(2)
0 (x, t) =0 (3.107)

∂

∂x
R(2)
n (x, t) +

∂

∂t
R(2)
n (x, t) + [λ+ µ2(x)]R(2)

n (x, t) =λ
n∑
k=1

ckR
(2)
n−k(x, t),

n ≥ 1 (3.108)

∂

∂x
V0(x, t) +

∂

∂t
V0(x, t) + [λ+ γ(x)]V0(x, t) =0 (3.109)

∂

∂x
Vn(x, t) +

∂

∂t
Vn(x, t) + [λ+ γ(x)]Vn(x, t) =λ

n∑
k=1

ckVn−k(x, t),

n ≥ 1 (3.110)
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d

dt
Q(t) = λQ(t) + (1− r1)(1− θ)

∫ ∞
0

P
(1)
0 (x, t)µ1(x)dx

+ (1− r2)(1− θ)
∫ ∞
0

P
(2)
0 (x, t)µ2(x)dx

+ (1− θ)
∫ ∞
0

R
(1)
0 (x, t)µ1(x)dx

+ (1− θ)
∫ ∞
0

R
(2)
0 (x, t)µ2(x)dx+

∫ ∞
0

V0(x, t)γ(x)dx (3.111)

The above equations are to be solved subject to the following boundary

conditions

P (1)
n (0, t) = p1λcn+1Q(t) + p1(1− r1)(1− θ)

∫ ∞
0

P
(1)
n+1(x, t)µ1(x)dx

+ p1(1− r2)(1− θ)
∫ ∞
0

P
(2)
n+1(x, t)µ2(x)dx

+ p1(1− θ)
∫ ∞
0

R
(1)
n+1(x, t)µ1(x)dx

+ p1(1− θ)
∫ ∞
0

R
(2)
n+1(x, t)µ2(x)dx

+ p1

∫ ∞
0

Vn+1(x, t)γ(x)dx, n ≥ 0 (3.112)

P (2)
n (0, t) = p2λcn+1Q(t) + p2(1− r1)(1− θ)

∫ ∞
0

P
(1)
n+1(x, t)µ1(x)dx

+ p2(1− r2)(1− θ)
∫ ∞
0

P
(2)
n+1(x, t)µ2(x)dx

+ p2(1− θ)
∫ ∞
0

R
(1)
n+1(x, t)µ1(x)dx

+ p2(1− θ)
∫ ∞
0

R
(2)
n+1(x, t)µ2(x)dx

+ p2

∫ ∞
0

Vn+1(x, t)γ(x)dx, n ≥ 0 (3.113)

R(1)
n (0, t) = r1

∫ ∞
0

P (1)
n (x, t)µ1(x)dx, n ≥ 0 (3.114)

R(2)
n (0, t) = r2

∫ ∞
0

P (2)
n (x, t)µ2(x)dx, n ≥ 0 (3.115)

Vn(0, t) = θ(1− r2)
∫ ∞
0

P (2)
n (x, t)µ2(x)dx
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+ θ(1− r1)
∫ ∞
0

P (1)
n (x, t)µ1(x)dx

+ θ

∫ ∞
0

R(1)
n (x, t)µ1(x)dx

+ θ

∫ ∞
0

R(2)
n (x, t)µ2(x)dx, n ≥ 0 (3.116)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

P (i)
n (0) = R(i)

n (0) = Vn(0) = 0 for i = 1, 2, n ≥ 0 and Q(0) = 1. (3.117)

3.11 Probability generating functions of queue

length: The time-dependent solution

In this section, we obtain the transient solution for the above set of differential

- difference equations.

Theorem: The system of differential difference equations to describe an

M [X]/G/1 queue with two types of service, optional re-service and Bernoulli

vacation are given by equations (3.101) to (3.116) with initial conditions (3.117)

and the generating functions of transient solution are given by equations (3.173)

to (3.177).

Proof : We define the probability generating functions, for i =1, 2.

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t); C(z) =

∞∑
n=1

cnz
n;

R(i)(x, z, t) =
∞∑
n=0

znR(i)
n (x, t); R(i)(z, t) =

∞∑
n=0

znR(i)
n (t);

V (x, z, t) =
∞∑
n=0

znVn(x, t); V (z, t) =
∞∑
n=0

znVn(t) (3.118)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace
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transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0 (3.119)

We take the Laplace transform of equations (3.101) to (3.116) and using

(3.117), we get

∂

∂x
P̄

(1)
0 (x, s) + [s+ λ+ µ1(x)]P̄

(1)
0 (x, s) =0 (3.120)

∂

∂x
P̄ (1)
n (x, s) + [s+ λ+ µ1(x)]P̄ (1)

n (x, s) =λ
n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1 (3.121)

∂

∂x
P̄

(2)
0 (x, t) + [s+ λ+ µ2(x)]P̄

(2)
0 (x, s) =0 (3.122)

∂

∂x
P̄ (2)
n (x, s) + [s+ λ+ µ2(x)]P̄ (2)

n (x, s) =λ
n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1 (3.123)

∂

∂x
R̄

(1)
0 (x, s) + [s+ λ+ µ1(x)]R̄

(1)
0 (x, s) =0 (3.124)

∂

∂x
R̄(1)
n (x, s) + [s+ λ+ µ1(x)]R̄(1)

n (x, s) =λ
n∑
k=1

ckR̄
(1)
n−k(x, s), n ≥ 1 (3.125)

∂

∂x
R̄

(2)
0 (x, s) + [s+ λ+ µ2(x)]R̄

(2)
0 (x, s) =0 (3.126)

∂

∂x
R̄(2)
n (x, s) + [s+ λ+ µ2(x)]R̄(2)

n (x, s) =λ
n∑
k=1

ckR̄
(2)
n−k(x, s), n ≥ 1 (3.127)

∂

∂x
V̄0(x, s) + [s+ λ+ γ(x)]V̄0(x, s) =0 (3.128)

∂

∂x
V̄n(x, s) + [s+ λ+ γ(x)]V̄n(x, s) =λ

n∑
k=1

ckV̄n−k(x, s), n ≥ 1 (3.129)

(s+ λ)Q̄(s) = 1 + (1− r1)(1− θ)
∫ ∞
0

P̄
(1)
0 (x, s)µ1(x)dx

+ (1− r2)(1− θ)
∫ ∞
0

P̄ 2
0 (x, s)µ2(x)dx

+ (1− θ)
∫ ∞
0

R̄
(1)
0 (x, s)µ1(x)dx

+ (1− θ)
∫ ∞
0

R̄
(2)
0 (x, s)µ2(x)dx+

∫ ∞
0

V0(x, s)γ(x)dx (3.130)
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P̄ (1)
n (0, s) = p1λcn+1Q̄(s) + p1(1− r1)(1− θ)

∫ ∞
0

P̄
(1)
n+1(x, s)µ1(x)dx

+ p1(1− r2)(1− θ)
∫ ∞
0

P̄
(2)
n+1(x, s)µ2(x)dx

+ p1(1− θ)
∫ ∞
0

R̄
(1)
n+1(x, s)µ1(x)dx

+ p1(1− θ)
∫ ∞
0

R̄
(2)
n+1(x, s)µ2(x)dx

+ p1

∫ ∞
0

Vn+1(x, s)γ(x)dx, n ≥ 0 (3.131)

P̄ (2)
n (0, s) = p2λcn+1Q̄(s) + p2(1− r1)(1− θ)

∫ ∞
0

P̄
(1)
n+1(x, s)µ1(x)dx

+ p2(1− r2)(1− θ)
∫ ∞
0

P̄
(2)
n+1(x, s)µ2(x)dx

+ p2(1− θ)
∫ ∞
0

R̄
(1)
n+1(x, s)µ1(x)dx

+ p2(1− θ)
∫ ∞
0

R̄
(2)
n+1(x, s)µ2(x)dx

+ p2

∫ ∞
0

Vn+1(x, s)γ(x)dx, n ≥ 0 (3.132)

R̄(1)
n (0, s) = r1

∫ ∞
0

P̄ (1)
n (x, s)µ1(x)dx (3.133)

R̄(2)
n (0, s) = r2

∫ ∞
0

P̄ (2)
n (x, s)µ2(x)dx (3.134)

V̄n(0, s) = θ(1− r2)
∫ ∞
0

P̄ (2)
n (x, s)µ2(x)dx

+ θ(1− r1)
∫ ∞
0

P̄ (1)
n (x, s)µ1(x)dx+ θ

∫ ∞
0

R̄(1)
n (x, s)µ1(x)dx

+ θ

∫ ∞
0

R̄(2)
n (x, s)µ2(x)dx, n ≥ 0 (3.135)

Now multiplying equations (3.121), (3.123), (3.125), (3.127) and (3.129) by

suitable powers of z, adding to equations (3.120), (3.122), (3.124), (3.126)

and (3.128) summing over n from 0 to ∞ and using the generating functions

74



defined in (3.118), we get

∂

∂x
P̄ (1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]P̄ (1)(x, z, s) = 0 (3.136)

∂

∂x
P̄ (2)(x, z, s) + [s+ λ− λC(z) + µ2(x)]P̄ (2)(x, z, s) = 0 (3.137)

∂

∂x
R̄(1)(x, z, s) + [s+ λ− λC(z) + µ1(x)]R̄(1)(x, z, s) = 0 (3.138)

∂

∂x
R̄(2)(x, z, s) + [s+ λ− λC(z) + µ2(x)]R̄(2)(x, z, s) = 0 (3.139)

∂

∂x
V̄ (x, z, s) + [s+ λ− λC(z) + γ(x)]V̄ (x, z, s) = 0 (3.140)

For the boundary conditions, we multiply both sides of equation (3.131) by zn

summing over n from 0 to ∞, and use the equation (3.130), we get

zP̄ (1)(0, z, s) = p1λC(z)Q̄(s) + p1[1− (s+ λ)Q̄(s)]

+ p1(1− r1)(1− θ)
∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx

+ p1(1− r2)(1− θ)
∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx

+ p1(1− θ)
∫ ∞
0

R̄(1)(x, z, s)µ1(x)dx

+ p1(1− θ)
∫ ∞
0

R̄(2)(x, z, s)µ2(x)dx

+ p1

∫ ∞
0

V (x, z, s)γ(x)dx, n ≥ 0 (3.141)

Performing similar operation on equations (3.132) to (3.135), we get

zP̄ (2)(0, z, s) = p2λC(z)Q̄(s) + p2[1− (s+ λ)Q̄(s)]

+ p2(1− r1)(1− θ)
∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx

+ p2(1− r2)(1− θ)
∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx

+ p2(1− θ)
∫ ∞
0

R̄(1)(x, z, s)µ1(x)dx
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+ p2(1− θ)
∫ ∞
0

R̄(2)(x, z, s)µ2(x)dx

+ p2

∫ ∞
0

V̄ (x, z, s)γ(x)dx, n ≥ 0 (3.142)

R̄(1)(0, z, s) = r1

∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx (3.143)

R̄(2)(0, z, s) = r2

∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx (3.144)

V̄n(0, z, s) = θ(1− r1)
∫ ∞
0

P̄ (1)
n (x, z, s)µ1(x)dx

+ θ

∫ ∞
0

R̄(1)
n (x, z, s)µ1(x)dx

+ θ(1− r2)
∫ ∞
0

P̄ (2)
n (x, z, s)µ2(x)dx

+ θ

∫ ∞
0

R̄(2)
n (x, z, s)µ2(x)dx, n ≥ 0 (3.145)

Integrating equations (3.136) to (3.140) between 0 and x, we obtain

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
(3.146)

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
(3.147)

R̄(1)(x, z, s) = R̄(1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ1(t)dt
(3.148)

R̄(2)(x, z, s) = R̄(2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ2(t)dt
(3.149)

V̄ (x, z, s) = V̄ (0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ(t)dt
(3.150)

Again integrating equations (3.146) to (3.150) with respect to x, we have

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.151)

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− B̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.152)

R̄(1)(z, s) = R̄(1)(0, z, s)

[
1− B̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.153)
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R̄(2)(z, s) = R̄(2)(0, z, s)

[
1− B̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(3.154)

V̄ (z, s) = V̄ (0, z, s)

[
1− V̄ (s+ λ− λC(z))

s+ λ− λC(z)

]
(3.155)

where

B̄1(s+ λ− λC(z)) =

∞∫
0

e−[s+λ−λC(z)]xdB1(x)

B̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdB2(x)

V̄ (s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV (x)

are the Laplace-Stieltjes transform of the type 1 service time B1(x), type 2

service time B2(x) and vacation time V (x). Now multiplying both sides of

equations (3.146) to (3.150) by µ1(x), µ2(x), µ1(x), µ2(x) and γ(x) respectively

and integrating over x, we obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λ− λC(z)] (3.156)

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λ− λC(z)] (3.157)

∞∫
0

R̄(1)(x, z, s)µ1(x)dx = R̄(1)(0, z, s)B̄1[s+ λ− λC(z)] (3.158)

∞∫
0

R̄(2)(x, z, s)µ2(x)dx = R̄(2)(0, z, s)B̄2[s+ λ− λC(z)] (3.159)

∞∫
0

V̄ (x, z, s)γ(x)dx = V̄ (0, z, s)V̄ [s+ λ− λC(z)] (3.160)

Using equations (3.156) and (3.157) in (3.143) and (3.144), we get

R̄(1)(0, z, s) = r1B̄1(a)P̄ (1)(0, z, s) (3.161)
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R̄(2)(0, z, s) = r2B̄2(a)P̄ (2)(0, z, s) (3.162)

where a = s+ λ− λC(z).

Using equations (3.156) to (3.159) in (3.145), we get

V̄ (0, z, s) = θ(1− r1)B̄1(a)P̄ (1)(0, z, s)

+ θ(1− r2)B̄2(a)P̄ (2)(0, z, s)

+ θB̄1(a)R̄(1)(0, z, s) + θB̄2(a)R̄(2)(0, z, s) (3.163)

Using equations (3.161) and (3.162) in the above equation, we have

V̄ (0, z, s) = θB̄1(a)(1− r1 + r1B̄1(a))P̄ (1)(0, z, s)

+ θB̄2(a)(1− r2 + r2B̄2(a))P̄ (2)(0, z, s) (3.164)

Using equations (3.156) to (3.164) in (3.141) and (3.142), we get

[z − p1B̄1(a)A]P̄ (1)(0, z, s) = p1[1− (s+ λ)Q̄(s)] + λp1C(z)Q̄(s)

+ p1B̄2(a)BP̄ (2)(0, z, s) (3.165)

[z − p2B̄2(a)B]P̄ (2)(0, z, s) = p2[1− (s+ λ)Q̄(s)] + λp2C(z)Q̄(s)

+ p2B̄1(a)AP̄ (1)(0, z, s) (3.166)

where

A = (1− r1 + r1B̄1(a))(1− θ + θV̄ (a))

and

B = (1− r2 + r2B̄2(a))(1− θ + θV̄ (a))

From equations (3.165) and (3.166), we get

P̄ (1)(0, z, s) =
p1[1− sQ̄(s)] + p1λ(C(z)− 1)Q̄(s)

Dr
(3.167)
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where

Dr = z − (1− θ + θV̄ (a))[p1B̄1(a)(1− r1 + r1B̄1(a))

+ p2B̄2(a)(1− r2 + r2B̄2(a))] (3.168)

P̄ (2)(0, z, s) =
p2[1− sQ̄(s)] + λp2(C(z)− 1)Q̄(s)

Dr
(3.169)

By substituting equations (3.167) and (3.169) in (3.161), (3.162)

and (3.164), we get

R̄(1)(0, z, s) =
r1B̄1(a)[p1(1− sQ̄(s)) + p1λ(C(z)− 1)Q̄(s)]

Dr
(3.170)

R̄(2)(0, z, s) =
r2B̄2(a)[p2(1− sQ̄(s)) + p2λ(C(z)− 1)Q̄(s)]

Dr
(3.171)

V̄ (0, z, s) =
θ

Dr
[p1B̄1(a)(1− r1 + r1B̄1(a)) + p2B̄2(a)

× (1− r2 + r2B̄2(a))][λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))]

(3.172)

By sustituting equations (3.167), (3.169) to (3.172) in (3.151) to (3.155), we

have

P̄ (1)(z, s) =
[λp1(C(z)− 1)Q̄(s) + p1(1− sQ̄(s))]

Dr

[
1− B̄1(a)

a

]
(3.173)

P̄ (2)(z, s) =
[λp2(C(z)− 1)Q̄(s) + p2(1− sQ̄(s))]

Dr

[
1− B̄2(a)

a

]
(3.174)

R̄(1)(z, s) =
r1B̄1(a)[λp1(C(z)− 1)Q̄(s) + p1(1− sQ̄(s))]

Dr

[
1− B̄1(a)

a

]
(3.175)

R̄(2)(z, s) =
r2B̄2(a)[λp2(C(z)− 1)Q̄(s) + p2(1− sQ̄(s))]

Dr

[
1− B̄2(a)

a

]
(3.176)

V̄ (z, s) =
θ

Dr
[p1B̄1(a)(1− r1 + r1B̄1(a)) + p2B̄2(a)(1− r2 + r2B̄2(a))]

× [λ(C(z)− 1)Q̄(s) + (1− sQ̄(s))]

[
1− V̄ (a)

a

]
(3.177)
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Thus P̄ (1)(z, s), P̄ (2)(z, s), R̄(1)(z, s), R̄(2)(z, s) and V̄ (z, s) are completely

determined from equations (3.173) to (3.177).

3.12 The steady state results

In this section, we shall derive the steady state probability distribution for

our queueing model. To define the steady state probabilities, we suppress the

argument t wherever it appears in the time-dependent analysis. This can be

obtained by applying the Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t) (3.178)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), R̄(1)(z, s), R̄(2)(z, s) and V̄ (z, s)

completely, we have yet to determine the unknown Q which appears in the

numerators of the right hand sides of equations (3.173) to (3.177). For that

purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) +R(1)(1) +R(2)(1) + V (1) +Q = 1

The steady state probabilities for M [X]/G/1 queue with two types of service,

optional re-service and Bernoulli vacation are given by

P (1)(1) =
λp1E(I)E(B1)Q

dr

P (2)(1) =
λp2E(I)E(B2)Q

dr

R(1)(1) =
λr1p1E(I)E(B1)Q

dr

R(2)(1) =
λr2p2E(I)E(B2)Q

dr

V (1) =
λθE(I)E(V )Q

dr

80



where

dr = 1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )], (3.179)

P (1)(1), P (2)(1), R(1)(1), R(2)(1), V(1) and Q are the steady state probabilities

that the server is providing type 1 service, type 2 service, type 1 re-optional

service, type 2 re-optional service, server under vacation and idle respectively

without regard to the number of customers in the queue.

Thus multiplying both sides of equations (3.173) to (3.177) by s, taking

limit as s→ 0, applying property (3.178) and simplifying, we obtain

P (1)(z) =
p1[B̄1(b)− 1]Q

D(z)
(3.180)

P (2)(z) =
p2[B̄2(b)− 1]Q

D(z)
(3.181)

R(1)(z) =
p1r1B̄1(b)[B̄1(b)− 1]Q

D(z)
(3.182)

R(2)(z) =
p2r2B̄2(b)[B̄2(b)− 1]Q

D(z)
(3.183)

V (z) =
θ[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))][V̄ (b)− 1]

D(z)

(3.184)

where

D(z) =z − (1− θ + θV̄ (b))[p1B̄1(b)(1− r1 + r1B̄1(b))

+ p2B̄2(b)(1− r2 + r2B̄2(b))] (3.185)

and b = λ− λC(z).

Let Wq(z) denote the probability generating function of the queue size irre-

spective of the state of the system. Then adding equations (3.180) to (3.184),

we obtain

Wq(z) = P (1)(z) + P (2)(z) +R(1)(z) +R(2)(z) + V (z)
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Wq(z) =
p1[B̄1(b)− 1]Q

D(z)
+
p2[B̄2(b)− 1]Q

D(z)
+
p1r1B̄1(b)[B̄1(b)− 1]Q

D(z)

+
p2r2B̄2(b)[B̄2(b)− 1]Q

D(z)

+
θ[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))][V̄ (b)− 1]

D(z)
(3.186)

In order to find Q, we use the normalization condition Wq(1) + Q = 1. We

see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore, we apply

L’Hopital’s rule and on simplifying, we get

Wq(1) =
λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )]Q

dr
(3.187)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(V ) = −V̄ ′(0), E(Bi) = −B̄′i(0) for i = 1, 2.

Therefore adding Q to equation (3.187), equating to 1 and simplifying, we

get

Q = 1− ρ (3.188)

and hence the utilization factor ρ of the system is given by

ρ = λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )] (3.189)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (3.188) gives the probability that the server is idle. By knowing

Q from (3.188), we have completely and explicitly determined Wq(z), the

probability generating function of the queue size.

3.13 The average queue size and average wait-

ing time

Let Lq denote the mean number of customers in the queue. Then
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Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write Wq(z) given in (3.186) as

Wq(z) =
N(z)

D(z)
Q where

N(z) = p1(B̄1(b)− 1)(1 + r1B̄1(b)) + p2(B̄2(b)− 1)(1 + r2B̄2(b))

+ θ[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))](V̄ (b)− 1)

and D(z) given in equation (3.185).

N ′(z) =p1B̄
′
1(b)b

′(1 + r1B̄1(b)) + p1(B̄1(b)− 1)r1B̄
′
1(b)b

′

+ p2B̄
′
2(b)b

′(1 + r2B̄2(b)) + p2(B̄2(b)− 1)r2B̄
′
2(b)b

′

+ θV̄ ′(b)b′[p1B̄1(b)(1− r1 + r1B̄1(b))

+ p2B̄2(b)(1− r2 + r2B̄2(b))] + θ(V̄ (b)− 1)

× [p1B̄
′
1(b)b

′(1− r1 + r1B̄1(b)) + p1B̄1(b)r1B̄
′
1(b)b

′

+ p2B̄
′
2(b)b

′(1− r2 + r2B̄2(b)) + p2B̄2(b)r2B̄
′
1(b)b

′]

D′(z) =1− θV̄ ′(b)(b′)[p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b))]

− (1− θ + θV̄ (b))[p1B̄
′
1(b)(b

′)(1− r1 + r1B̄1(b)) + p1B̄1(b)r1B̄
′
1(b)b

′

+ p2B̄
′
2(b)b

′(1− r2 + r2B̄2(b)) + p2B̄2(b)r2B̄
′
1(b)b

′]

N ′′(z) =[p1(B̄
′′
1 (b)(b′)2 + b′′B̄′1(b))(1 + r1B̄1(b))

+ p1r1(B̄1(b)− 1)(B̄′′1 (b)(b′)2 + b′′B̄′1(b))

+ 2p1B̄
′
1(b)b

′r1B̄
′
1(b)b

′

+ p2(B̄
′′
2 (b)(b′)2 + b′′B̄′2(b))(1 + r2B̄2(b))

+ p2(B̄2(b)− 1)r2(B̄
′′
2 (b)(b′)2 + b′′B̄′2(b))

+ 2p2B̄
′
2(b)b

′r2B̄
′
2(b)b

′

+ θ(V̄ ′′(b)(b′)2 + b′′V̄ ′(b))[p1B̄1(b)(1− r1 + r1B̄1(b))
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+ p2B̄2(b)(1− r1 + r1B̄2(b))]

+ 2θV̄ ′(b)b′[p1B̄
′
1(b)b

′(1− r1 + r1B̄1(b)) + p1B̄1(b)r1B̄
′
1(b)b

′

+ p2B̄
′
2(b)b

′(1− r2 + r2B̄2(b)) + p1B̄2(b)r2B̄
′
2(b)b

′]

+ θ(V̄ (b)− 1)p1[(1− r1 + r1B̄1(b))(B̄
′′
1 (b)(b′)2 + B̄′1(b)b

′′)

+ 2p1r1B̄
′
1(b)(b

′)2 + p1r1B̄1(b)(B̄
′′
1 (b)(b′)2 + B̄′1(b)b

′′)

+ p2(1− r2 + r2B̄2(b))(B̄
′′
2 (b)(b′)2 + B̄′2(b)b

′′)

+ 2p2r2B̄
′
2(b)(b

′)2 + p2r2B̄2(b)(B̄
′′
2 (b)(b′)2 + B̄′2(b)b

′′)]

D′′(z) =− 2θV̄ ′(b)b′(p1B̄
′
1(b)b

′(1− r1 + r1B̄1(b)) + p1B̄1(b)r1B̄
′
1(b)b

′

+ p2B̄
′
2(b)b

′(1− r2 + r2B̄2(b)) + p2B̄2(b)r2B̄
′
2(b)b

′)− θ[(b′)2V̄ ′′(b) + b′′V̄ ′(b)]

× (p1B̄1(b)(1− r1 + r1B̄1(b)) + p2B̄2(b)(1− r2 + r2B̄2(b)))

− (1− θ + θV̄ (b)))[p1(1− r1 + r1B̄1(b))(B̄
′′
1 (b)(b′)2 + B̄′1(b)b

′′)

+ 2p1r1B̄1(b)(b
′)2 + p1r1B̄1(b)(B̄

′′
1 (b)(b′)2 + B̄′1(b)b

′′)

+ p2(1− r2 + r2B̄2(b))(B̄
′′
2 (b)(b′)2 + B̄′2(b)b

′′)

+ 2p2r2B̄
′
2(b)(b

′)2 + p2r2B̄2(b)(B̄
′′
2 (b)(b′)2 + B̄′2(b)b

′′)]

Then, we use

Lq = lim
z→1

d

dz
Wq(z)

= lim
z→1

[
D′(z)N ′′(z)−N ′(z)D′′(z)

2(D′(z))2

]
Q

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (3.190)

where primes and double primes in equation (3.190) denote first and second

derivative at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )]

N ′′(1) =λ2(E(I))2[p1(1 + r1)E(B2
1) + p2(1 + r2)E(B2

2) + θE(V 2)]

+ λE(I(I − 1))[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )]

84



+ 2λ2(E(I))2[p1r1(E(B1))
2 + p2r2(E(B2))

2]

+ 2θλ2(E(I))2E(V )[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)])

D′(1) =1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2) + θE(V )]

D′′(1) =− 2λ2(E(I))2θE(V )[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

− λ2(E(I))2[θE(V 2) + p1(1 + r1)E(B2
1) + p2(1 + r2)E(B2

2)]

− λE(I(I − 1))[θE(V ) + p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

− 2λ2(E(I))2[p1r1(E(B1))
2 + p2r2(E(B2))

2]

where E(B2
1), E(B2

2) and E(V 2) are the second moment of type 1 service, type

2 service and vacation time respectively. E(I(I − 1)) is the second factorial

moment of the batch size of arriving customers. Further, we find the average

system size L by using Little’s formula. Thus we have

L = Lq + ρ (3.191)

where Lq has been found by equation (3.190) and ρ is obtained from equation

(3.189).

Let Wq and W denote the average waiting time in the queue and in the system

respectively. Then by using Little’s formula, we obtain,

Wq =
Lq
λ

W =
L

λ

where Lq and L have been found in equations (3.190) and (3.191).

3.14 Particular cases

Case 1: If server has no vacation i.e, θ=0. Then our model reduces to the

M [X]/G/1 queue with two types of service and optional re-service.
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Using this in the main result of (3.188), (3.189) and (3.190), we can find

the the idle probability Q, utilization factor ρ and the mean queue size Lq can

be simplified to the following expressions.

Q =1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

ρ =λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

N ′′(1) =λ2(E(I))2[p1(1 + r1)E(B2
1) + p2(1 + r2)E(B2

2)]

+ λE(I(I − 1))[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

+ 2λ2(E(I))2[p1r1(E(B1))
2 + p2r2(E(B2))

2]

D′(1) =1− λE(I)[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

D′′(1) =− λ2(E(I))2[p1(1 + r1)E(B2
1) + p2(1 + r2)E(B2

2)]

− λE(I(I − 1))[p1(1 + r1)E(B1) + p2(1 + r2)E(B2)]

− 2λ2(E(I))2[p1r1(E(B1))
2 + p2r2(E(B2))

2]

The above result coincides with results given by Madan et al. (2004).

Case 2: If there is no second type of service i.e, p2= 0. Then our model

reduces to M [X]/G/1 queue with re-service and Bernoulli vacation.

Using this in the main result of (3.188), (3.189) and (3.190) we can find

the idle probability Q, utilization factor ρ and the mean queue size Lq can be

simplified to the following expressions.

Q =1− λE(I)[(1 + r1)E(B1) + θE(V )]
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ρ =λE(I)[(1 + r1)E(B1) + θE(V )]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)[(1 + r1)E(B1) + θE(V )]

N ′′(1) =λ2(E(I))2[(1 + r1)E(B2
1) + θE(V 2)]

+ λE(I(I − 1))[(1 + r1)E(B1) + θE(V )]

+ 2λ2(E(I))2r1(E(B1))
2

+ 2θλ2(E(I))2E(V )(1 + r1)E(B1)

D′(1) =1− λE(I)[(1 + r1)E(B1) + θE(V )]

D′′(1) =− 2λ2(E(I))2θE(V )[(1 + r1)E(B1)]

− λ2(E(I))2[θE(V 2) + (1 + r1)E(B2
1)]

− λE(I(I − 1))[θE(V ) + (1 + r1)E(B1)]

− 2λ2(E(I))2r1(E(B1))
2

Case 3: If there is no second type of service, re-service, no first type re-

service, no vacation and C(z) = z. i.e, p2 = 0, r1= 0 and θ = 0, E(I) = 1 and

E(I(I − 1))=0. Then our model reduces M/G/1 queueing system.

Using this in the main result of (3.188), (3.189) and (3.190), we can find

the idle probability Q, utilization factor ρ and the mean queue size Lq can be

simplified to the following expressions.

Q = 1− λE(B1)

ρ = λE(B1)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q
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where

N ′(1) =λE(B1)

N ′′(1) =λ2E(B2
1)

D′(1) =1− λE(B1)

D′′(1) =− λ2E(B1)
2)

we note that the above results coincide with the results given by Kashyap and

Chaudhry (1988).

3.15 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service times and vacation times are exponentially distributed with rates

µ1, µ2 and γ.

In order to see the effect of various parameters on server’s idle time Q,

utilization factor ρ and various other queue characteristics such as Lq, L,Wq,W .

We base our numerical example on the result found in case 1. For this

purpose in Table 3.3, we choose the following arbitrary values: E(I)= 0.3,

E(I(I − 1))= 0.04 , r1= 0.4, r2= 0.5, µ1 =6, µ2 =4 and p1= 0.4, p2= 0.6

while λ varies from 0.1 to 1.0 such that the stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the average queue size, system size and

average waiting time in the queue and system of our queueing model are all

increases.

We base our numerical example on the result found in case 2. For

this purpose in Table 3.4, we choose the following arbitrary values: r1=

0.3, E(I)=0.3, E(I(I − 1))= 0.04, µ1 =4, θ= 0.6, λ = 2 while γ varies

from 1 to 10 such that the stability condition is satisfied.
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Table 3.3: Computed values of various queue characteristics

λ Q ρ Lq L Wq W

0.1 0.990450 0.009550 0.000729 0.010279 0.007291 0.102791
0.2 0.980900 0.019100 0.001647 0.020747 0.008234 0.103734
0.3 0.971350 0.028650 0.002759 0.031409 0.009195 0.104695
0.4 0.961800 0.038200 0.004070 0.042270 0.010175 0.105675
0.5 0.952250 0.047750 0.005588 0.053338 0.011175 0.106675
0.6 0.942700 0.057300 0.007317 0.064617 0.012195 0.107695
0.7 0.933150 0.066850 0.009266 0.076116 0.013237 0.108737
0.8 0.923600 0.076400 0.011439 0.087839 0.014299 0.109799
0.9 0.914050 0.085950 0.013846 0.099796 0.015384 0.110884
1.0 0.904500 0.095500 0.016492 0.111992 0.016492 0.111992

Table 3.4: Computed values of various queue characteristics

γ Q ρ Lq L Wq W

1 0.445000 0.555000 0.537798 1.092798 0.268899 0.546399
2 0.625000 0.375000 0.207760 0.582760 0.103880 0.291380
3 0.685000 0.315000 0.141372 0.450372 0.070686 0.228186
4 0.715000 0.285000 0.114969 0.399969 0.057484 0.199984
5 0.733000 0.267000 0.101191 0.368191 0.050596 0.184096
6 0.745000 0.255000 0.092846 0.347846 0.046423 0.173923
7 0.753570 0.246430 0.087290 0.333718 0.043645 0.166859
8 0.760000 0.240000 0.083342 0.323342 0.041671 0.161671
9 0.765000 0.235000 0.080401 0.315401 0.040200 0.157700
10 0.769000 0.231000 0.078129 0.309129 0.039064 0.154564

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, average queue size, system size,

average waiting time in the queue and system of our queueing model are all

decreases.
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CHAPTER

FOUR

M [X]/G/1 FEEDBACK QUEUE WITH SERVER

VACATION AND BALKING

4.1 Introduction

The M [X]/G/1 queue has been studied by numerous authors including Gross

and Harris (1985), Baba (1987), Madan and Al-Rawwash (2005), Badamchi

Zadeh and Shankar (2008) and Deepak Gupta et al. (2011). Queueing systems

with servers vacations have been studied extensively. A comprehensive review

of vacation models, methods, results, examples and applications can be found

in the survey of Doshi (1986).

In real life, many queueing situations arise in which there may be tendency

of customers to be discouraged by a long queue. As a result, the customers

either decide not join the queue (i.e. balk) or depart after joining the queue

without getting served due to impatience (i.e. renege). The importance of this

system appears in many real life problems such as the situations involving

impatient telephone switchboard customers and the inventory systems that

store perishable goods.

A part of this chapter is published with entitled:
Transient Behaviour of Batch Arrival Feedback Queue with Server Vacation and Balking
– Proceedings of National Conference on Recent Advances in Mathematical Analysis and
Applications, Bonfring Publications, India:86–96, 2013.
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Haight (1957) first presented the M/M/1 queue with balking. Madan

(2012) analyzed the steady state batch arrival queueing system with balking

and re-service in a vacation queue, having two types of heterogeneous services.

Kumar and Sharma (2012) have studied Markovian queueing model with

balking and reneging.

In this chapter, we consider M [X]/G/1 feedback queue with server vacation

and balking. Customers arrive to the service station in batches of variable

size, but are served one by one where the arrival follows Poisson. An arriving

batch may join with probability b or balks (refuses to join) the system with

probability (1−b) during the period of servers busy or vacation times. As soon

as the completion of service, if the customer is dissatisfied with his service,

he can immediately join the tail of the original queue with probability r or

he leaves the system with probability (1− r) without re-joining the system.

At each service completion epoch, the server may opt to take vacation with

probability p or else with probability (1− p) stay in the system for the next

service. The service and vacation periods are assumed to be general (arbitrary)

distribution.

Here we derive time dependent probability generating functions in terms

of Laplace transforms. We also derive the average system size and average

waiting time. Some particular cases and numerical results are also discussed.

The rest of the chapter is organized as follows. The model description is

given in section 4.2. Definitions and equations governing the model are given

in section 4.3. The time dependent solution have been obtained in section 4.4

and corresponding steady state results have been derived explicitly in section

4.5. Average system size and average waiting time are computed in section

4.6. Some particular cases and numerical results are discussed in section 4.7

and 4.8 respectively.
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4.2 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a ‘first come

- first served basis’. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t + dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) In real life, many queueing situations arise in which there may be

tendency of customers to be discouraged by a long queue. As a result,

the customers either decide not to join the queue (balks i.e. refuses to

join) with probability (1− b) during the period of server’s busy/vacation

or may join the system with probability b.

c) As soon as the completion of service, if the customer is dissatisfied with

his service, he can immediately join the tail of the original queue as a

feedback customer for receiving the same service with probability r or he

leaves the system with probability (1− r) without re-joining the system.

d) The service time follows a general (arbitrary) distribution with distribution

function B(s) and density function b(s). Let µ(x)dx be the conditional

probability density of service completion during the interval (x, x+ dx],

given that the elapsed service time is x, so that

µ(x) =
b(x)

1−B(x)
,

and therefore,

b(s) = µ(s)e
−

s∫
0

µ(x)dx
.
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e) As soon as each service of a customer is completed, then with probability

p, the server may decide to take a vacation or with probability (1− p)

he may decide to continue to be available for the next service.

f) The server vacation time follows a general (arbitrary) distribution with

distribution function V (t) and density function v(t). Let β(x)dx be the

conditional probability density of vacation completion during the interval

(x, x+ dx], given that the elapsed vacation time is x, so that

β(x) =
v(x)

1− V (x)
,

and therefore,

v(t) = β(t)e
−

t∫
0

β(x)dx
.

g) Various stochastic processes involved in the system are assumed to be

independent of each other.

4.3 Definitions and equations governing the

system

We define

Pn(x, t) = Probability that at time t, the server is active providing service

and there are n (n ≥ 0) customers in the system and the elapsed service time

is x. Consequently Pn(t) =
∞∫
0

Pn(x, t)dx denotes the probability that at time

t there are n customers in the system irrespective of the value of x.

Vn(x, t) = Probability that at time t, the server is under vacation with

elapsed vacation time is x and there are n (n ≥ 0) customers in the system.

Consequently Vn(t)=
∞∫
0

Vn(x, t)dx denotes the probability that at time t there

are n customers in the queue and the server is under vacation irrespective of

the value of x.
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Q(t) = Probability that at time t, there are no customers in the system

and the server is idle but available in the system.

The model is then, governed by the following set of differential-difference

equations:

∂

∂x
Pn(x, t) +

∂

∂t
Pn(x, t) + [λ+ µ(x)]Pn(x, t) = λ(1− b)Pn(x, t)

+ λb
n∑
k=1

ckPn−k(x, t), n ≥ 1 (4.1)

∂

∂x
V0(x, t) +

∂

∂t
V0(x, t) + [λ+ β(x)]V0(x, t) = λ(1− b)V0(x, t) (4.2)

∂

∂x
Vn(x, t) +

∂

∂t
Vn(x, t) + [λ+ β(x)]Vn(x, t) = λ(1− b)Vn(x, t),

+ λb
n∑
k=1

ckVn−k(x, t), n ≥ 1 (4.3)

d

dt
Q(t) + λQ(t) = λ(1− b)Q(t) + (1− r)(1− p)

∫ ∞
0

P1(x, t)µ(x)dx

+

∫ ∞
0

V0(x, t)β(x)dx (4.4)

The above set of equations are to be solved subject to the following boundary

conditions:

Pn(0, t) = λbcnQ(t) + (1− r)(1− p)
∫ ∞
0

Pn+1(x, t)µ(x)dx

+ r(1− p)
∫ ∞
0

Pn(x, t)µ(x)dx+

∫ ∞
0

Vn(x, t)β(x)dx, n ≥ 1(4.5)

V0(0, t) = (1− r)p
∫ ∞
0

P1(x, t)µ(x)dx (4.6)

Vn(0, t) = (1− r)p
∫ ∞
0

Pn+1(x, t)µ(x)dx+ rp

∫ ∞
0

Pn(x, t)µ(x)dx, n ≥ 1

(4.7)
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We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

Pn(0) = Vn(0) = 0, n ≥ 1 and Q(0) = 1. (4.8)

4.4 Generating functions of the system length:

The time-dependent solution

In this section, we obtain the transient solution for the above set of differential-

difference equations.

Theorem: The system of differential-difference equations to describe an

M [X]/G/1 feedback queue with server vacation and balking are given by equa-

tions (4.1) to (4.7) with initial conditions (4.8) and the generating functions

of transient solution are given by equation (4.33) and (4.34).

Proof : We define the probability generating functions,

P (x, z, t) =
∞∑
n=1

znPn(x, t); P (z, t) =
∞∑
n=1

znPn(t); (4.9)

V (x, z, t) =
∞∑
n=0

znVn(x, t); V (z, t) =
∞∑
n=0

znVn(t); C(z) =
∞∑
n=1

cnz
n; (4.10)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0

Taking the Laplace transform of equations (4.1) to (4.7) and using (4.8), we

obtain

∂

∂x
P̄n(x, s) + [s+ λ+ µ(x)]P̄n(x, s) = λ(1− b)P̄n(x, s)

+ λb

n∑
k=1

ckP̄n−k(x, s), n ≥ 1 (4.11)
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∂

∂x
V̄0(x, s) + [s+ λ+ β(x)]V̄0(x, s) = λ(1− b)V̄0(x, s) (4.12)

∂

∂x
V̄n(x, s) + [s+ λ+ β(x)]V̄n(x, s) = λ(1− b)V̄n(x, s),

+ λb

n∑
k=1

ckV̄n−k(x, s), n ≥ 1 (4.13)

(s+ λb)Q̄(s) = 1 + (1− r)(1− p)
∫ ∞
0

P̄1(x, s)µ(x)dx

+

∫ ∞
0

V̄0(x, s)β(x)dx (4.14)

P̄n(0, s) = λbcnQ̄(s) + (1− r)(1− p)
∫ ∞
0

P̄n+1(x, s)µ(x)dx

+r(1− p)
∫ ∞
0

P̄n(x, s)µ(x)dx+

∫ ∞
0

V̄n(x, s)β(x)dx, n ≥ 1 (4.15)

V̄0(0, s) = (1− r)p
∫ ∞
0

P̄1(x, s)µ(x)dx (4.16)

V̄n(0, s) = (1− r)p
∫ ∞
0

P̄n+1(x, s)µ(x)dx+ rp

∫ ∞
0

P̄n(x, s)µ(x)dx,

n ≥ 1 (4.17)

Now multiplying equation (4.11) by zn and summing over n from 1 to ∞, and

using equation (4.9) and (4.10), we get

∂

∂x
P̄ (x, z, s) + [s+ λb− λbC(z) + µ(x)]P̄ (x, z, s) = 0 (4.18)

Now multiplying equation (4.13) by zn and summing over n from 1 to ∞,

adding to equation (4.12) and using equation (4.10), we get

∂

∂x
V̄ (x, z, s) + [s+ λb− λbC(z) + β(x)]V̄ (x, z, s) = 0 (4.19)

For the boundary condition, we multiply both sides of equation (4.15) by zn
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summing over n from 1 to ∞ and use the equation (4.14), we get

zP̄ (0, z, s) =z(1− sQ̄(s)) + λbz(C(z)− 1)Q̄(s)

+ (1− r + rz)(1− p)
∫ ∞
0

P̄ (x, z, s)µ(x)dx

+ z

∫ ∞
0

V̄ (x, z, s)β(x)dx (4.20)

Performing similar operation on equations (4.16) and (4.17), we get

zV̄ (0, z, s) = (1− r + rz)p

∫ ∞
0

P̄ (x, z, s)µ(x)dx (4.21)

Integrating equations (4.18) and (4.19) between 0 and x, we get

P̄ (x, z, s) = P̄ (0, z, s)e
−[s+λb−λbC(z)]x−

x∫
0

µ(t)dt
(4.22)

V̄ (x, z, s) = V̄ (0, z, s)e
−[s+λb−λbC(z)]x−

x∫
0

β(t)dt
(4.23)

Again integrating equations (4.22) and (4.23) by parts with respect to x, yields

P̄ (z, s) = P̄ (0, z, s)

[
1− B̄(s+ λb− λbC(z))

s+ λb− λbC(z)

]
(4.24)

V̄ (z, s) = V̄ (0, z, s)

[
1− V̄ (s+ λb− λbC(z))

s+ λb− λbC(z)

]
(4.25)

where

B̄(s+ λb− λbC(z)) =

∞∫
0

e−[s+λb−λbC(z)]xdB(x) (4.26)

V̄ (s+ λb− λbC(z)) =

∫ ∞
0

e−[s+λb−λbC(z)]xdV (x) (4.27)

are the Laplace-Stieltjes transform of the service time B(x) and vacation time

V (x).

Now multiplying both sides of equations (4.22) and (4.23) by µ(x) and
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β(x) respectively and integrating over x, we obtain

∞∫
0

P̄ (x, z, s)µ(x)dx = P̄ (0, z, s)B̄[s+ λb− λbC(z)] (4.28)

∞∫
0

V̄ (x, z, s)β(x)dx = V̄ (0, z, s)V̄ [s+ λb− λbC(z)] (4.29)

Using equation (4.28) in (4.21), we get

zV̄ (0, z, s) = (1− r + rz)pB̄(a)P̄ (0, z, s) (4.30)

where a = s+ λb− λb(z).

Similarly using equations (4.28), (4.29) and (4.30) in (4.20), we get

zP̄ (0, z, s) =z[1− sQ̄(s)] + λbz[C(z)− 1]Q̄(s)

+ (1− r + rz)(1− p)B̄(a)P̄ (0, z, s)

+ (1− p)(1− r + rz)V̄ (a)B̄(a)P̄ (0, z, s)

P̄ (0, z, s) =
z[1− sQ̄(s)] + λbz[C(z)− 1]Q̄(s)

z − (1− p+ pV̄ (a))(1− r + rz)B̄(a)
(4.31)

Using equation (4.31) in (4.30), we get

V̄ (0, z, s) =
(1− r + rz)pB̄(a)[(1− sQ̄(s)) + λb(C(z)− 1)Q̄(s)]

z − (1− p+ pV̄ (a))(1− r + rz)B̄(a)
(4.32)

Using equations (4.31) and (4.32) in (4.24) and (4.25), we get

P̄ (z, s) =
[z(1− sQ̄(s)) + λbz(C(z)− 1)Q̄(s)]

z − (1− p+ pV̄ (a))(1− r + rz)B̄(a)

[
1− B̄(a)

a

]
(4.33)

V̄ (z, s) =
p(1− r + rz)B̄(a)[(1− sQ̄(s)) + λb(C(z)− 1)Q̄(s)]

z − (1− p+ pV̄ (a))(1− r + rz)B̄(a)

×
[

1− V̄ (a)

a

]
(4.34)

Thus P̄ (z, s) and V̄ (z, s) are completely determined from equations (4.33)

and (4.34) which completes the proof of the theorem.
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4.5 The steady state results

In this section, we shall derive the steady state probability distribution for

our queueing model. To define the steady state probabilities, we suppress the

argument t wherever it appears in the time-dependent analysis. This can be

obtained by applying the well-known Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t) (4.35)

In order to determine P̄ (z, s) and V̄ (z, s) completely, we have yet to determine

the unknown Q which appears in the numerators of the right hand sides of

equations (4.33) and (4.34). For that purpose, we shall use the normalizing

condition

P (1) + V (1) +Q = 1 (4.36)

The steady state probabilities for an M [X]/G/1 feedback queue with server

vacation and balking are given by

P (1) =
λbE(I)E(B)Q

1− r − λbE(I)E(B)− λbpE(I)E(V )
(4.37)

V (1) =
λbpE(I)E(V )Q

1− r − λbE(I)E(B)− λbpE(I)E(V )
(4.38)

P (1), V (1) and Q are the steady state probabilities that the server is providing

service, server under vacation and server under idle respectively without regard

to the number of customers in the system.

Multiplying both sides of equations (4.33) and (4.34) by s, taking limit as

s→ 0, applying property (4.35) and simplifying, we obtain

P (z) =
z[B̄(f(z))− 1]Q

D(z)
(4.39)

V (z) =
p(1− r + rz)B̄(f(z))[V̄ (f(z))− 1]Q

D(z)
(4.40)
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where

D(z) = z − B̄(f(z))(1− r + rz)[1− p+ pV̄ (f(z))], (4.41)

and f(z) = λb− λbC(z).

Let W (z) denote the probability generating function of the system size

irrespective of the state of the system. Then adding equations (4.39) and

(4.40), we obtain

W (z) = P (z) + V (z)

W (z) =
[z(B̄(f(z))− 1) + p(1− r + rz)B̄(f(z))(V̄ (f(z))− 1)]Q

D(z)
(4.42)

In order to find Q, we use the normalization condition W (1) + Q = 1. We

see that for z=1, W (1) is indeterminate of the form 0/0. Therefore, we apply

L’Hopital’s rule and on simplifying, we get

W (1) =
λbE(I)(E(B) + pE(V ))Q

1− r − λbE(I)(E(B) + pE(V ))
(4.43)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(B) = −B̄′(0) and E(V ) = −V̄ ′(0).

Therefore adding Q to equation (4.43), equating to 1 and simplifying, we

get

Q = 1− ρ (4.44)

and hence the utilization factor ρ of the system is given by

ρ =
λbE(I)(E(B) + pE(V ))

1− r
, r 6= 1 (4.45)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (4.44) gives the probability that the server is idle. By knowing Q from

(4.44), we have completely and explicitly determined W (z), the probability

generating function of the system size.
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4.6 Average system size and average waiting

time

Let L denote the mean number of customers in the system. Then

L =
d

dz
W (z) at z = 1

since this formula gives 0/0 form, then we write W (z) given in (4.42) as

W (z) =
N(z)

D(z)
Q where

N(z) = z(B̄(f(z))− 1) + p(1− r + rz)B̄(f(z))(V̄ (f(z))− 1)

and D(z) is given in equation (4.41).

N ′(z) =(B̄(f(z))− 1) + zB̄′(f(z))(f ′(z)) + prB̄(f(z))(V̄ (f(z))− 1)

+ p(1− r + rz)B̄′(f(z))(f ′(z))(V̄ (f(z))− 1)

+ p(1− r + rz)B̄(f(z))V̄ ′(f(z))f ′(z)

N ′′(z) =2B̄′(f(z))f ′(z) + z(B̄′′(f(z))(f ′(z))2 + (B̄′(f(z))f ′′(z))

+ 2prB̄′(f(z))f ′(z)(V̄ (f(z))− 1)

+ 2prB̄(f(z))(V̄ ′(f(z))f ′(z)

+ p(1− r + rz)[B̄′′(f(z))(f ′(z))2

+ B̄′(f(z))f ′′(z)](V̄ (f(z))− 1)

+ 2p(1− r + rz)B̄′(f(z))f ′(z)V̄ ′(f(z))f ′(z)

+ p(1− r + rz)B̄(f(z))[V̄ ′′(f(z))(f ′(z))2 + V̄ ′(f(z))(f ′′(z)]

D′(z) =1− B̄′(f(z)(f ′(z))(1− r + rz)(1− p+ pV̄ (f(z))

− B̄(f(z))r(1− p+ pV̄ (f(z))

− B̄(f(z))(1− r + rz)p(V̄ ′(f(z))(f ′(z))

D′′(z) =− [B̄′′(f(z))f ′(z)2 + B̄′(f(z))f ′′(z)](1− r + rz)

× (1− p+ pV̄ (f(z)))− 2B̄′(f(z)f ′(z)r(1− p+ pV̄ (f(z)))
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− 2B̄′(f(z))f ′(z)(1− r + rz)pV̄ ′(f(z))f ′(z)

− 2B̄(f(z))rpV̄ ′(f(z))f ′(z)

− B̄(f(z))(1− r + rz)p[V̄ ′′(f(z))(f ′(z))2 + V̄ ′(f(z))f ′′(z)]

Then, we use

L = lim
z→1

d

dz
W (z) =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (4.46)

where primes and double primes in equation(4.46) denote first and second

derivative at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λbE(I)[E(B) + pE(V )] (4.47)

N ′′(1) =λ2b2(E(I))2[E(B2) + pE(V 2)]

+ λbE(I(I − 1))[E(B) + pE(V )]

+ 2λbpE(I)E(V )(r + λbE(I)E(B)) + 2λbE(I)E(B) (4.48)

D′(1) =1− r − λbE(I)E(B)− λbpE(I)E(V ) (4.49)

D′′(1) =− [λ2b2(E(I))2[E(B2) + pE(V 2)]

+ λbE(I(I − 1))[E(B) + pE(V )]

+ 2λbr(E(I))[E(B) + pE(V )]

+ 2λ2b2p(E(I))2E(B)E(V )] (4.50)

where E(B2), E(V 2) are the second moment of the service time and vacation

time. E(I(I − 1)) is the second factorial moment of the batch size of arriving

customers. Then if we substitute the values N ′(1), N ′′(1), D′(1), D′′(1) from

equations (4.47) to (4.50) into equation (4.46), we obtain L in the closed form.

Let W denote the average waiting time in the system. Then by using

Little’s formula, we obtain,

W =
L

λ
(4.51)

where L have been found in equation (4.46).
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4.7 Particular cases

Case 1: If there is no balking in the queueing system. i.e, b=1.

Then our model reduces to the M [X]/G/1 queue with feedback and vacation.

Using this in the main result of (4.44), (4.45) and (4.46), we can find the

idle probability Q, utilization factor ρ and the average system size L can be

simplified to the following expressions.

Q =1− λE(I)(E(B) + pE(V ))

1− r

ρ =
λE(I)(E(B) + pE(V ))

1− r

L =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)[E(B) + pE(V )]

N ′′(1) =λ2(E(I))2[E(B2) + pE(V 2)]

+ λE(I(I − 1))[E(B) + pE(V )]

+ 2λpE(I)E(V )(r + λE(I)E(B)) + 2λE(I)E(B)

D′(1) =1− r − λE(I)E(B)− λpE(I)E(V )

D′′(1) =− [λ2(E(I))2[E(B2) + pE(V 2)]

+ λE(I(I − 1))[E(B) + pE(V )]

+ 2λr(E(I))[E(B) + pE(V )]

+ 2λ2p(E(I))2E(B)E(V )]

The above equations coincide with result given by Madan and Al-Rawwash

(2005).

Case 2: If there is no feedback and no balking in the queueing system.

i.e, r=0 and b=1.

Then our model reduces to the M [X]/G/1 queue with vacation. Using this
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in the main result of (4.44), (4.45) and (4.46) we can find the idle probability

Q, utilization factor ρ and the average system size L can be simplified to the

following expressions.

Q = 1− λE(I)(E(B) + pE(V )) (4.52)

ρ = λE(I)(E(B) + pE(V )) (4.53)

L =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (4.54)

where

N ′(1) =λE(I)[E(B) + pE(V )]

N ′′(1) =λ2(E(I))2[E(B2) + pE(V 2)]

+ λE(I(I − 1))[E(B) + pE(V )]

+ 2pλ2(E(I))2E(V )E(B) + 2λE(I)E(B)

D′(1) =1− λE(I)E(B)− λpE(I)E(V )

D′′(1) =− [λ2(E(I))2[E(B2) + pE(V 2)]

+ λE(I(I − 1))[E(B) + pE(V )]

+ 2λ2p(E(I))2E(B)E(V )]

Case 3: If there is no feedback and no balking and no vacation. In this

case, we put r=0, b=1, p=0.

Then our model reduces to the M [X]/G/1 queue with no feedback and no

balking and no vacation. Using this in the main result of (4.44), (4.45) and

(4.46) we can find the idle probability Q, utilization factor ρ and the mean

system size can be simplified to the following expressions.

Q = 1− λE(I)E(B) (4.55)

ρ = λE(I)E(B) (4.56)
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L =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (4.57)

where

N ′(1) =λE(I)E(B)

N ′′(1) =λ2(E(I))2E(B2) + λE(I(I − 1))E(B) + 2λE(I)E(B)

D′(1) =1− λE(I)E(B)

D′′(1) =− λ2(E(I))2E(B2) + λE(I(I − 1))E(B)

We note that the above results agree with known resuts of the M [X]/G/1

queue with no vacation, no feedback and no balking.

4.8 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service time and vacation time are exponentially distributed with rates µ

and γ.

We base our numerical example on the result found in case 1. For this

purpose in Table 4.1, we choose the following arbitrary values: r=0.4, p=0.5,

µ=6, γ = 4, E(I)=0.3, E(I(I − 1))= 0.04, while λ varies from 0.1 to 1.0

such that the stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the average system size and average

waiting time of our queueing model are all increases.

In Table 4.2 we choose E(I)=0.2, E(I(I − 1))= 0.03, λ = 2, r=0.3, p=0.6,

µ=2, while γ varies from 1 to 10 such that the stability condition is satisfied.

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, the average system size and average

waiting time of our queueing model are all decreases.

105



Table 4.1: Computed values of various queue characteristics

λ Q ρ L W

0.1 0.985417 0.014583 0.012028 0.120278
0.2 0.970833 0.029167 0.024514 0.122568
0.3 0.956250 0.043750 0.037478 0.124927
0.4 0.941667 0.058333 0.050944 0.127360
0.5 0.927083 0.072917 0.064934 0.129869
0.6 0.912500 0.087500 0.079475 0.132458
0.7 0.897917 0.102083 0.094592 0.135131
0.8 0.883333 0.116667 0.110314 0.137893
0.9 0.868750 0.131250 0.126673 0.140747
1.0 0.854167 0.145833 0.143699 0.143699

Table 4.2: Computed values of various queue characteristics

γ Q ρ L W

1 0.371429 0.628571 1.542308 0.771154
2 0.542857 0.457143 0.747368 0.373684
3 0.600000 0.400000 0.608730 0.304365
4 0.628571 0.371429 0.553409 0.276705
5 0.645714 0.354286 0.523982 0.261991
6 0.657143 0.342857 0.505797 0.252899
7 0.665306 0.334694 0.493471 0.246735
8 0.671429 0.328571 0.484574 0.242287
9 0.676190 0.323810 0.477856 0.238928
10 0.680000 0.320000 0.472605 0.236303
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CHAPTER

FIVE

M [X]/G/1 QUEUE WITH SERVICE INTERRUPTION

AND EXTENDED SERVER VACATION

5.1 Introduction

During the last three or four decades, queueing models with vacations had

been the subject of interest to queueing theorists of deep study because of

their applicability and theoretical structures in real life situations such as

manufacturing and production systems, computer and communication systems,

service and distribution systems, etc.

Queuing systems with server vacations have been studied by numerous

researchers including Baba (1986), Shanthikumar (1988), Lee (1989), Choi and

Park (1990), Madan (1991), Borthakur and Chaudhury (1997), Chaudhury

(2000) and Choudhury and Tadj (2011).

In queueing theory, periods of temporary service unavailability are referred

to as server vacations, server interruptions or server breakdowns. Queueing

models with service interruptions have proved to be a useful abstraction in

situations where a service facility is shared by multiple queues or where the

facility is subject to failure. Queuing systems with service interruptions are

considered by Avi-Itzhak and Naor (1963), Thiruvengadam (1963), Baskar et

107



al. (2011), Balamani (2012) and Maragatha Sundari and Srinivasan (2012b).

In this chapter, we consider M [X]/G/1 queueing system with service inter-

ruption and extended server vacation. We assume that the customers arrive

to the service station in batches of variable size, but are served one by one.

While serving the customer, we assume interruptions arrive at random and

assumed to occur according to a Poisson process with mean rate α. Let β be

the server rate of attending interruption are exponentially distributed. Also

we assume, the customer whose service is interrupted goes back to the head

of the queue where the arrivals are Poisson. The vacation period has three

heterogeneous phases. After every service completion the server takes phase

one vacation of random length with probability p or to continue to stay in

the system with probability 1 − p. As soon as the completion of phase one

vacation, the server may take phase two vacation with probability q or to join

in the system with probability 1− q, after phase two vacation again the server

has the option to take phase three vacation with probability r or to join in the

system with probability 1− r. We assume that the service times and vacation

times have a general (arbitrary) distribution.

Here we derive time dependent probability generating functions in terms

of Laplace transforms. We also derive the average queue size, system size and

average waiting time in the queue, the system. Some particular cases and

numerical results are also discussed.

The rest of the chapter is organized as follows. Analysis of the model is

given in section 5.2. Definitions and equations governing the system are given

in section 5.3. The time dependent solution have been obtained in section 5.4

and corresponding steady state results have been derived explicitly in section

5.5. Average queue size, system size and average waiting time in the queue,

the system are computed in section 5.6 and 5.7 respectively. Particular cases

and numerical results are discussed in section 5.8 and 5.9 respectively.
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5.2 Analysis of the model

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t + dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) A single server provides service to all arriving customer, with the service

time having general (arbitrary) distribution. Let B(v) and b(v) be the

distribution and the density function of the service time respectively.

c) Let µ(x)dx be the conditional probability density of service completion

during the interval (x, x+ dx], given that the elapsed service time is x,

so that

µ(x) =
b(x)

1−B(x)
,

and therefore,

b(s) = µ(s)e
−

s∫
0

µ(x)dx

d) We assume interruptions arrive at random while serving the customers

and assumed to occur according to a Poisson process with mean rate α >

0. Let β be the server rate of attending interruption are exponentially

distributed. Further we assume that once the interruption arrives, the

customer whose service is interrupted comes back to the head of the

queue.
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e) After service completion, the server may take phase one vacation with

probability p or continue to stay in the system with probability 1− p.

As soon as the completion of phase one vacation, the server may take

phase two vacation with probability q or continue to join in the system

with probability 1 − q, after phase two vacation, again the server has

the option to take phase three vacation with probability r or to join in

the system with probability 1− r.

f) The server’s vacation time follows a general (arbitrary) distribution with

distribution function Vi(t) and density function vi(t). Let γi(x)dx be

the conditional probability density of vacation completion during the

interval (x, x+ dx], given that the elapsed vacation time is x, so that

γi(x) =
vi(x)

1− Vi(x)
, i = 1, 2, 3

and therefore,

vi(t) = γi(t)e
−

t∫
0

γi(x)dx
, i = 1, 2, 3.

g) Various stochastic processes involved in the system are assumed to be

independent of each other.

5.3 Definitions and equations governing the

system

We define

Pn(x, t) = Probability that at time t, the server is active providing service

and there are n (n ≥ 0) customers in the queue excluding the one being served

and the elapsed service time is x. Consequently Pn(t) =
∞∫
0

Pn(x, t)dx denotes
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the probability that at time t there are n customers in the queue excluding

one customer in the service irrespective of the value of x.

V
(1)
n (x, t) = Probability that at time t, the server is under phase one vaca-

tion with elapsed vacation time is x and there are n (n ≥ 0) customers in the

queue. Consequently V
(1)
n (t)=

∞∫
0

V
(1)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue and the server is under phase one

vacation irrespective of the value of x.

V
(2)
n (x, t) = Probability that at time t, the server is under phase two vaca-

tion with elapsed vacation time is x and there are n (n ≥ 0) customers in the

queue. Consequently V
(2)
n (t)=

∞∫
0

V
(2)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue and the server is under phase two

vacation irrespective of the value of x.

V
(3)
n (x, t) = Probability that at time t, the server is under phase three

vacation with elapsed vacation time is x and there are n (n ≥ 0) customers in

the queue. Consequently V
(3)
n (t)=

∞∫
0

V
(3)
n (x, t)dx denotes the probability that

at time t there are n customers in the queue and the server is under phase

three vacation irrespective of the value of x.

Rn(t)= Probability that at time t, the server is inactive due to the arrival

of interruption while there are n (n ≥ 0) customers in the queue.

Q(t) = Probability that at time t, there are no customers in the system

and the server is idle but available in the system.
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According to the mathematical model mentioned above, the system has

the following set of differential-difference equations:

∂

∂x
P0(x, t) +

∂

∂t
P0(x, t) + [λ+ α + µ(x)]P0(x, t) =0 (5.1)

∂

∂x
Pn(x, t) +

∂

∂t
Pn(x, t) + [λ+ α + µ(x)]Pn(x, t) =λ

n∑
k=1

ckPn−k(x, t),

n ≥ 1 (5.2)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ+ γ1(x)]V

(1)
0 (x, t) =0 (5.3)

∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ γ1(x)]V (1)

n (x, t) =λ
n∑
k=1

ckV
(1)
n−k(x, t),

n ≥ 1 (5.4)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ+ γ2(x)]V

(2)
0 (x, t) =0 (5.5)

∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ γ2(x)]V (2)

n (x, t) =λ
n∑
k=1

ckV
(2)
n−k(x, t),

n ≥ 1 (5.6)

∂

∂x
V

(3)
0 (x, t) +

∂

∂t
V

(3)
0 (x, t) + [λ+ γ3(x)]V

(3)
0 (x, t) =0 (5.7)

∂

∂x
V (3)
n (x, t) +

∂

∂t
V (3)
n (x, t) + [λ+ γ3(x)]V (3)

n (x, t) =λ
n∑
k=1

ckV
(3)
n−k(x, t),

n ≥ 1 (5.8)

d

dt
R0(t) =− (λ+ β)R0(t) (5.9)

d

dt
Rn(t) =− (λ+ β)Rn(t) + λ

n∑
k=1

ckRn−k(t) + α

∫ ∞
0

Pn−1(x, t)dx (5.10)

d

dt
Q(t) =− λQ(t) + βR0(t) + (1− p)

∫ ∞
0

µ(x)P0(x, t)dx

+ (1− q)
∫ ∞
0

γ1(x)V
(1)
0 (x, t)dx

+ (1− r)
∫ ∞
0

γ2(x)V
(2)
0 (x, t)dx+

∫ ∞
0

γ3(x)V
(3)
0 (x, t)dx (5.11)
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The above equations are to be solved subject to the following boundary

conditions:

Pn(0, t) =λcn+1Q(t) + (1− p)
∫ ∞
0

µ(x)Pn+1(x, t)dx

+ βRn+1(t) + (1− q)
∫ ∞
0

γ1(x)V
(1)
n+1(x, t)dx

+ (1− r)
∫ ∞
0

γ2(x)V
(2)
n+1(x, t)dx

+

∫ ∞
0

γ3(x)V
(3)
n+1(x, t)dx (5.12)

V (1)
n (0, t) =p

∫ ∞
0

µ(x)Pn(x, t)dx, n ≥ 0 (5.13)

V (2)
n (0, t) =q

∫ ∞
0

γ1(x)V (1)
n (x, t)dx, n ≥ 0 (5.14)

V (3)
n (0, t) =r

∫ ∞
0

γ2(x)V (2)
n (x, t)dx, n ≥ 0 (5.15)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

Q(0) = 1, V (i)
n (0) =0, Rn(0) = 0

Pn(0) =0 for n ≥ 0 and i = 1, 2, 3. (5.16)

5.4 Generating functions of the queue length:

The time-dependent solution

In this section, we obtain the transient solution for the above set of differential-

difference equations.

Theorem: The system of differential difference equations to describe an

M [X]/G/1 queue with service interruption and extended vacation are given

by equations (5.1) to (5.15) with initial conditions (5.16) and the generating
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functions of transient solution are given by equation (5.63) to (5.67).

Proof : We define the probability generating functions for i=1, 2, 3.

P (x, z, t) =
∞∑
n=0

znPn(x, t);P (z, t) =
∞∑
n=0

znPn(t);

R(z, t) =
∞∑
n=0

znRn(t);C(z) =
∞∑
n=1

cnz
n;

V (i)(x, z, t) =
∞∑
n=0

znV (i)
n (x, t);V (i)(z, t) =

∞∑
n=0

znV (i)
n (t); (5.17)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∫ ∞
0

e−stf(t)dt, <(s) > 0.

We take the Laplace transform of equations (5.1) to (5.15) and using (5.16),

we obtain

∂

∂x
P̄0(x, s) + (s+ λ+ α + µ(x))P̄0(x, s) =0 (5.18)

∂

∂x
P̄n(x, s) + (s+ λ+ α + µ(x))P̄n(x, s) =λ

n∑
k=1

ckP̄n−k(x, s), n ≥ 1 (5.19)

∂

∂x
V̄

(1)
0 (x, s) + (s+ λ+ γ1(x))V̄

(1)
0 (x, s) =0 (5.20)

∂

∂x
V̄ (1)
n (x, s) + (s+ λ+ γ1(x))V̄ (1)

n (x, s) =λ
n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (5.21)

∂

∂x
V̄

(2)
0 (x, s) + (s+ λ+ γ2(x))V̄

(2)
0 (x, s) =0 (5.22)

∂

∂x
V̄ (2)
n (x, s) + (s+ λ+ γ2(x))V̄ (2)

n (x, s) =λ
n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (5.23)

∂

∂x
V̄

(3)
0 (x, s) + (s+ λ+ γ3(x))V̄

(3)
0 (x, s) =0 (5.24)

∂

∂x
V̄ (3)
n (x, s) + (s+ λ+ γ3(x))V̄ (3)

n (x, s) =λ
n∑
k=1

ckV̄
(3)
n−k(x, s), n ≥ 1 (5.25)
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(s+ λ+ β)R̄0(s) = 0 (5.26)

(s+ λ+ β)R̄n(s) = λ
n∑
k=1

ckR̄n−k(s) + α

∫ ∞
0

P̄n−1(x, s)dx, n ≥ 1 (5.27)

(s+ λ)Q̄(s) = 1 + βR̄0(s) + (1− p)
∫ ∞
0

µ(x)P̄0(x, s)dx

+ (1− q)
∫ ∞
0

γ1(x)V̄
(1)
0 (x, s)dx

+ (1− r)
∫ ∞
0

γ2(x)V̄
(2)
0 (x, s)dx

+

∫ ∞
0

γ3(x)V̄
(3)
0 (x, s)dx (5.28)

P̄n(0, s) = λcn+1Q̄(s) + (1− p)
∫ ∞
0

µ(x)P̄n+1(x, s)dx

+ βR̄n+1(s) + (1− q)
∫ ∞
0

γ1(x)V̄
(1)
n+1(x, s)dx

+ (1− r)
∫ ∞
0

γ2(x)V̄
(2)
n+1(x, s)dx

+

∫ ∞
0

γ3(x)V̄
(3)
n+1(x, s)dx (5.29)

V̄ (1)
n (0, s) = p

∫ ∞
0

P̄n(x, s)µ(x)dx, n ≥ 0 (5.30)

V̄ (2)
n (0, s) = q

∫ ∞
0

V̄ (1)
n (x, s)γ1(x)dx, n ≥ 0 (5.31)

V̄ (3)
n (0, s) = r

∫ ∞
0

V̄ (2)
n (x, s)γ2(x)dx, n ≥ 0. (5.32)

Now multiplying equations (5.19), (5.21), (5.23), (5.25), (5.27) by zn and

summing over n from 1 to∞, adding to equations (5.18), (5.20), (5.22), (5.24),

(5.26) and using the generating functions defined in equations (5.17), we get

∂

∂x
P̄ (x, z, s) + [s+ λ− λC(z) + α + µ(x)]P̄ (x, z, s) = 0 (5.33)

∂

∂x
V̄ (1)(x, z, s) + [s+ λ− λC(z) + γ1(x)]V̄ (1)(x, z, s) = 0 (5.34)
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∂

∂x
V̄ (2)(x, z, s) + [s+ λ− λC(z) + γ2(x)]V̄ (2)(x, z, s) = 0 (5.35)

∂

∂x
V̄ (3)(x, z, s) + [s+ λ− λC(z) + γ3(x)]V̄ (3)(x, z, s) = 0 (5.36)

(s+ λ− λC(z) + β)R̄(z, s) = αz

∫ ∞
0

P̄ (x, z, s)dx (5.37)

For the boundary conditions, we multiply both sides of equation (5.29) by zn

summing over n from 0 to ∞, and use the equation (5.17), we get

zP̄ (0, z, s) = λC(z)Q̄(s) + βR̄(z, s)− βR̄0(s)

+ (1− p)
∫ ∞
0

µ(x)P̄ (x, z, s)dx

− (1− p)
∫ ∞
0

µ(x)P̄0(x, s)dx

+ (1− q)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx

− (1− q)
∫ ∞
0

γ1(x)V̄
(1)
0 (x, s)dx

+ (1− r)
∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx

− (1− r)
∫ ∞
0

γ2(x)V̄
(2)
0 (x, s)dx

+

∫ ∞
0

γ3(x)V̄
(3)
0 (x, z, s)dx−

∫ ∞
0

γ3(x)V̄0(x, s)dx

Using equation (5.28), the above equation becomes

zP̄ (0, z, s) = [1− sQ̄(s)] + λ(C(z)− 1)Q̄(s) + βR̄(z, s)

+ (1− p)
∫ ∞
0

µ(x)P̄ (x, z, s)dx

+ (1− q)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx

+ (1− r)
∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx

+

∫ ∞
0

γ3(x)V̄ (3)(x, z, s)dx (5.38)
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Performing similar operation on equations (5.30) to (5.32), we get

V̄ (1)(0, z, s) = p

∫ ∞
0

µ(x)P̄ (x, z, s)dx (5.39)

V̄ (2)(0, z, s) = q

∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx (5.40)

V̄ (3)(0, z, s) = r

∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx (5.41)

Integrating equation (5.33) between 0 and x, we get

P̄ (x, z, s) = P̄ (0, z, s)e
−[s+λ−λC(z)+α]x−

x∫
0

µ(t)dt
(5.42)

where P̄ (0, z, s) is given by equation (5.38).

Again integrating equation (5.42) by parts with respect to x, yields

P̄ (z, s) = P̄ (0, z, s)

[
1− B̄(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(5.43)

where

B̄(s+ λ− λC(z) + α) =

∫ ∞
0

e−[s+λ−λC(z)+α]xdB(x)

is the Laplace-Stieltjes transform of the service time B(x).

Now multiplying both sides of equation (5.42) by µ(x) and integrating over

x, we obtain

∫ ∞
0

P̄ (x, z, s)µ(x)dx = P̄ (0, z, s)B̄[s+ λ− λC(z) + α] (5.44)

Similarly, on integrating equations (5.34) to (5.36) from 0 to x, we get

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ1(t)dt
(5.45)
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V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ2(t)dt
(5.46)

V̄ (3)(x, z, s) = V̄ (3)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ3(t)dt
(5.47)

where V̄ (1)(0, z, s), V̄ (2)(0, z, s), and V̄ (3)(0, z, s) are given by equations (5.39)

to (5.41).

Again integrating equations (5.45) to (5.47) by parts with respect to x,

yields

V̄ (1)(z, s) = V̄ (1)(0, z, s)

[
1− V̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(5.48)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

[
1− V̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(5.49)

V̄ (3)(z, s) = V̄ (3)(0, z, s)

[
1− V̄3(s+ λ− λC(z))

s+ λ− λC(z)

]
(5.50)

where

V̄1(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV1(x)

V̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV2(x)

V̄3(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV3(x)

are the Laplace-Stieltjes transform of phase one, phase two and phase three

vacation times V1(x), V2(x) and V3(x) respectively.

Now multiplying both sides of equations (5.45), (5.46), (5.47) by γ1(x),

γ2(x) and γ3(x) and integrating over x, we obtain

∫ ∞
0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s+ λ− λC(z)] (5.51)

∫ ∞
0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s+ λ− λC(z)] (5.52)
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∫ ∞
0

V̄ (3)(x, z, s)γ3(x)dx = V̄ (3)(0, z, s)V̄3[s+ λ− λC(z)] (5.53)

Using equation (5.44) in equation (5.39), we get

V̄ (1)(0, z, s) = pB̄(a)P̄ (0, z, s) (5.54)

Now using equations (5.51) and (5.54) in (5.40), we get

V̄ (2)(0, z, s) = pqV̄1(a1)B̄(a)P̄ (0, z, s) (5.55)

where a = s+ λ− λC(z) + α and a1 = s+ λ− λC(z).

By using equations (5.52) and (5.55) in (5.41), we get

V̄ (3)(0, z, s) = pqrV̄1(a1)V̄2(a1)B̄(a)P̄ (0, z, s) (5.56)

Using equations (5.44), (5.51) to (5.56) in (5.38), we get

[z − B̄(a)(1− p+ pV̄1(a1)(1− q + qV̄2(a1)(1− r + rV̄3(a1)))]P̄ (0, z, s)

= [1− sQ̄(s)] + λ(C(z)− 1)Q̄(s) + βR̄(z, s) (5.57)

From (5.37), we get

R̄(z, s) =
αz

a2
P̄ (0, z, s)

[
1− B̄(a)

a

]
(5.58)

Now using equation (5.58) in (5.57), we have

P̄ (0, z, s) =
a2a[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))
(5.59)

where a2 = s+ λ− λC(z) + β, a3 = 1− q + qV̄2(a1)a4, a4 = 1− r + rV̄3(a1).
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Using equation (5.59), in equations (5.54), (5.55) and (5.56), we get

V̄ (1)(0, z, s) =
pB̄(a)a2a[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))
(5.60)

V̄ (2)(0, z, s) =
pqV̄1(a1)B̄(a)a2a

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (5.61)

V̄ (3)(0, z, s) =
pqrV̄1(a1)V̄2(a1)B̄(a)a2a

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (5.62)

Using equations (5.59) to (5.62) in equations (5.43), (5.48), (5.49), (5.50) and

(5.58), we get

P̄ (z, s) =
a2(1− B̄(a))[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))
(5.63)

V̄ (1)(z, s) =
pB̄(a)aa2[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

×
[

1− V̄1(a1)
a1

]
(5.64)

V̄ (2)(z, s) =
pqB̄(a)aa2V̄1(a1)[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

×
[

1− V̄2(a1)
a1

]
(5.65)

V̄ (3)(z, s) =
pqrB̄(a)aa2V̄1(a1)V̄2(a1)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))

×
[

1− V̄3(a1)
a1

]
(5.66)

R̄(z, s) =
αz(1− B̄(a))[1− sQ̄(s) + λ(C(z)− 1)Q̄(s)]

aa2[z − B̄(a)(1− p+ pV̄1(a)a3)]− αzβ(1− B̄(a))
(5.67)

Thus P̄ (z, s), V̄ (1)(z, s), V̄ (2)(z, s), V̄ (3)(z, s) and R̄(z, s) are completely de-

termined from equations (5.63) to (5.67) which completes the proof of the

theorem.
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5.5 The steady state results

In this section, we shall derive the steady state probability distribution for our

queueing model. These probabilities are obtained by suppress the argument t

wherever it appears in the time-dependent analysis. This can be obtained by

applying the Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t)

In order to determine P̄ (z, s), V̄ (1)(z, s), V̄ (2)(z, s), V̄ (3)(z, s) and R̄(z, s)

completely, we have yet to determine the unknown Q which appears in the

numerators of the right hand sides of equations (5.63) to (5.67). For that

purpose, we shall use the normalizing condition

P (1) + V (1)(1) + V (2)(1) + V (3)(1) +R(1) +Q = 1

The steady state probabilities for an M [X]/G/1 queue with service interruption

and extended server vacation are given by

P (1) =
λE(I)β[1− B̄(α)]Q

Dr

V (1)(1) =
λpαβE(I)B̄(α)E(V1)Q

Dr

V (2)(1) =
λpqαβE(I)B̄(α)E(V2)Q

Dr

V (3)(1) =
λpqrαβE(I)B̄(α)E(V3)Q

Dr

R(1) =
λαE(I)[1− B̄(α)]Q

Dr

where
Dr =− λE(I)(α + β)[1− B̄(α)] + αβB̄(α)

× [1− λpE(I)(E(V1) + q(E(V2) + rE(V3)))] (5.68)
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P (1), V (1)(1), V (2)(1), V (3)(1), R(1) and Q are the steady state probabilities

that the server is providing service, server under phase one vacation, phase

two vacation, phase three vacation, server under interruption and server under

idle respectively without regard to the number of customers in the queue.

Multiplying both sides of equations (5.63) to (5.67) by s, taking limit as

s→ 0, applying Tauberian property and simplifying, we obtain

P (z) =
f1(z)(1− B̄)λ(C(z)− 1)Q

D(z)
(5.69)

V (1)(z) =
pf1(z)f2(z)B̄[V̄1 − 1]Q

D(z)
(5.70)

V (2)(z) =
pqf1(z)f2(z)V̄1B̄[V̄2 − 1]Q

D(z)
(5.71)

V (3)(z) =
pqrf1(z)f2(z)V̄1V̄2B̄[V̄3 − 1]Q

D(z)
(5.72)

R(z) =
λαz(1− B̄)(C(z)− 1)Q

D(z)
(5.73)

where

D(z) = f1(z)f2(z)[z − B̄(1− p+ pV̄1f3(z))]− αzβ(1− B̄), (5.74)

f1(z) = λ − λC(z) + β, f2(z) = λ − λC(z) + α, f3(z) = 1 − q + qV̄2f4(z)

f4(z) = 1− r + rV̄3, B̄ = B̄(f2(z)), V̄1 = V̄1(λ− λC(z)), V̄2 = V̄2(λ− λC(z))

and V̄3 = V̄3(λ− λC(z)).

Let Wq(z) denote the probability generating function of the queue size

irrespective of the state of the system. Then adding equations (5.69) to (5.73),

we obtain

Wq(z) = P (z) + V (1)(z) + V (2)(z) + V (3)(z)

122



Wq(z) =
f1(z)(1− B̄)λ(C(z)− 1)Q

D(z)

+
pf1(z)f2(z)B̄[V̄1 − 1]Q

D(z)

+
pqf1(z)f2(z)V̄1B̄[V̄2 − 1]Q

D(z)

+
pqrf1(z)f2(z)V̄1V̄2B̄[V̄3 − 1]Q

D(z)

+
λαz(1− B̄)(C(z)− 1)Q

D(z)
(5.75)

we see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore, we

apply L’Hopital’s rule and on simplifying, we obtain

Wq(1) =
λE(I)[(α + β)(1− B̄(α)) + pαβB̄(α)(E(V1) + q(E(V2) + rE(V3)))]Q

Dr
(5.76)

where Dr is given by equation (5.68). C(1)= 1, C ′(1) = E(I) is mean batch

size of the arriving customers, −B̄′(0) = E(B),−V̄ ′i (0) = E(Vi), i = 1, 2, 3.

Therefore adding Q to above equation and equating to 1 and simplifying,

we get

Q = 1− ρ (5.77)

and hence the utilization factor ρ of the system is given by

ρ = λpE(I)[E(V1) + q(E(V2) + rE(V3))] +
λE(I)

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)] (5.78)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (5.77) gives the probability that the server is idle. Substituting Q

from (5.77) into (5.75), we have completely and explicitly determined Wq(z),

the probability generating function of the queue size.
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5.6 The average queue size and average sys-

tem size

Let Lq denote the average number of customers in the queue under the steady

state. Then

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write Wq(z) given in (5.75) as

Wq(z) =
N(z)

D(z)
Q where

N(z) =λ(C(z)− 1)(1− B̄)(f1(z) + αz) + pf1(z)f2(z)B̄

× [V̄1 − 1 + qV̄1(V̄2(1− r + rV̄3)− 1)]

D(z) is given by the equation (5.74).

N ′(z) =(1− B̄)(f1(z) + αz)λC ′(z)

+ λ(C(z)− 1)(f1(z) + αz)B̄′(α)λC ′(z)

+ λ(C(z)− 1)(1− B̄)(−λC ′(z) + α)

+ p(f ′1(z)f2(z)B̄ + f1(z)f ′2(z)B̄ + f1(z)f2(z)B̄′(−λC ′(z)))

× [V̄1 − 1 + qV̄1(V̄2(1− r + rV̄3)− 1)]

+ pf1(z)f2(z)B̄[V̄ ′1(−λC ′(z)) + qV̄ ′1(−λC ′(z))(V̄2(1− r + rV̄3)− 1)

+ qV̄1(V̄
′
2(−λC ′(z))(1− r + rV̄3) + V̄2rV̄

′
3(−λC ′(z)))]

N ′′(z) =(1− B̄)(f1(z) + αz)λC ′′(z) + 2λC ′(z)B̄′(α)λC ′(z)(f1(z) + αz)

+ 2λC ′(z)(1− B̄)(−λC ′(z) + α) + λ(C(z)− 1)(f ′1(z) + αz)

× [B̄′′(−λC ′(z))2 + λC ′′(z)B̄′] + 2λ2(C(z)− 1)C ′(z)B̄′(f ′1(z) + α)

+ λ(C(z)− 1)(1− B̄)f ′′1 (z)

+ 2p(f ′1(z)f2(z)B̄ + f1(z)f ′2(z)B̄ + f1(z)f2(z)B̄′(−λC ′(z)))

124



× [V̄ ′1(−λC ′(z)) + qV̄ ′1(−λC ′(z))(V̄2(1− r + rV̄3)− 1)

+ qV̄1(V̄
′
2(−λC ′(z))(1− r + rV̄3) + V̄2rV̄

′
3(−λC ′(z))]

+ p(f ′′1 (z)f2(z)B̄ + 2f1(z)f2(z)B̄ + 2f ′1(z)f2(z)B̄(−λC ′(z))

+ 2f1(z)f ′2(z)B̄(−λC ′(z)) + f ′1(z)f ′′2 (z)B̄ + f1(z)f2(z)

× (B̄′′(−λC ′(z))2 + B̄(−λC ′′(z))))[V̄1 − 1 + qV̄1(V̄2(1− r + rV̄3)− 1)]

+ pf1(z)f2(z)B̄[V̄ ′′1 (−λC ′(z))2 + V̄ ′1(−λC ′′(z))

+ qV̄ ′′1 (−λC ′(z))2(V̄2(1− r + rV̄3)− 1)

+ qV̄ ′1(−λC ′′(z))(V̄2(1− r + rV̄3)− 1)

+ 2qV̄ ′1(−λC ′(z))(V̄ ′2(−λC ′(z))(1− r + rV̄3) + V̄2rV̄
′
3(−λC ′(z))

+ qV̄1(V̄
′′
2 (−λC ′(z))2(1− r + rV̄3) + V̄ ′2(−λC ′′(z))(1− r + rV̄3)

+ 2V̄ ′2rV̄
′
3λ

2(C ′(z))2 + V̄2rV̄
′′
3 λ

2(C ′(z))2 + rV̄2V̄
′
3(−λC ′′(z))))

D′(z) =[f ′1(z)f2(z) + f1(z)f ′2(z)][z − B̄(1− p+ pV̄1f3(z))]

+ f1(z)f2(z)[1− B̄′(−λC ′(z))(1− p+ pV̄1f3(z))

− B̄(pV̄ ′1(−λC ′(z))f3(z) + pV̄1f
′
3(z))]

− αβ(1− B̄)− αβzλB̄′(C ′(z))

D′′(z) =2[f ′1(z)f2(z) + f1(z)f ′2(z)][1− B̄′(−λC ′(z))(1− p+ pV̄1f3(z))

− B̄(pV̄ ′1(−λC ′(z))f3(z)) + pV̄1f
′
3(z))]

+ [f ′′1 (z)f2(z) + 2f ′1(z)f ′2(z) + f1(z)f ′′2 (z)][z − B̄(1− p+ pV̄1f3(z))]

+ f1(z)f2(z)[−2B̄′(−λC ′(z))(pV̄ ′1(−λC ′(z))f3(z) + pV̄1f
′
3(z))

− (1− p+ pV̄1f3(z))(B̄′′(−λC ′(z))2 + B̄′(−λC ′′(z)))

− B̄p(V̄ ′′1 (−λC ′(z))2f3(z) + pV̄ ′1(−λC ′′(z))f3(z)

+ 2pV̄ ′1(−λC ′(z))f ′3(z) + pV̄1f
′′
3 (z))]

− 2αβB̄′(λC ′(z))− αβz[B̄′′(λ(C ′(z))2 + B̄′(α)(λC ′′(z))]

Lq = lim
z→1

d

dz
Wq(z) =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (5.79)
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where primes and double primes in (5.79) denote first and second derivative

at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λE(I)(α + β)[1− B̄(α)]

+ λpαβE(I)B̄(α)[E(V1) + q(E(V2) + rE(V3))] (5.80)

N ′′(1) =λE(I(I − 1))(α + β)[1− B̄(α)]

+ 2λ2(E(I))2(α + β)B̄′(α)

+ 2λE(I)(1− B̄(α))[α− λE(I)]

− 2λ2p(E(I))2[(α + β)B̄(α)

+ αβB̄′(α)][E(V1) + q(E(V2) + rE(V3))]

+ αβpB̄(α)[λ2(E(I))2(E(V 2
1 ) + q(E(V 2

2 ) + rE(V 2
3 )))

+ λE(I(I − 1))(E(V1) + q(E(V2) + rE(V3)))

+ 2qλ2(E(I))2E(V1)(E(V2) + rE(V3))

+ 2qrλ2(E(I))2E(V2)E(V3)] (5.81)

D′(1) =αβB̄(α)[1− λE(I)p(E(V1) + q(E(V2) + rE(V3)))]

− λE(I)(α + β)[1− B̄(α)] (5.82)

D′′(1) =− 2λE(I)(α + β)[1 + λE(I)B̄′(α)− B̄(α)(λpE(I)E(V1)

+ λpqE(I)(E(V2) + rE(V3)))] + [2λ2(E(I))2

− λαE(I(I − 1))− λβE(I(I − 1))][1− B̄(α)]

+ 2αβλE(I)B̄′(α)(λpE(I)E(V1) + λpqE(I)(E(V2) + rE(V3)))

− αβ[λ2(E(I))2B̄′′(α)− λE(I(I − 1))B̄′(α)]

− αβB̄(α)[pλ2(E(I))2(E(V 2
1 ) + q(E(V 2

2 )

+ rE(V 2
3 ))) + λpE(I(I − 1))(E(V1) + q(E(V2) + rE(V3)))

+ 2pqλ2(E(I))2E(V1)(E(V2) + rE(V3))

+ 2pqrλ2(E(I))2E(V2)E(V3)]− 2λαβE(I)B̄′(α)

− αβ[λ2(E(I))2B̄′′(α) + λE(I(I − 1))B̄′(α)] (5.83)

126



where E(B2), E(V 2
1 ), E(V 2

2 ), E(V 2
3 ) are the second moment of service time

and vacation times respectively. E(I(I − 1)) is the second factorial moment

of the batch size of arriving customers. Then if we substitute the values

N ′(1), N ′′(1), D′(1), D′′(1) from equations (5.80) to (5.83) into equations (5.79),

we obtain Lq in the closed form.

Further, we find the average system size L by using Little’s formula. Thus

we have

L = Lq + ρ (5.84)

where Lq has been found by equation (5.79) and ρ is obtained from equation

(5.78).

5.7 The average waiting time

Let Wq and W denote the average waiting time in the queue and in the system

respectively. Then by using Little’s formula, we obtain

Wq =
Lq
λ

W =
L

λ

where Lq and L have been found in equations (5.78) and (5.84).

5.8 Particular cases

Case 1: If there is no third phase of extended vacation. i.e, r=0.

Then our model reduces to a single server M [X]/G/1 queue with service

interruption and two phases of server vacation.

In this case, we find the idle probability Q, utilization factor ρ and the
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average queue size Lq can be simplified to the following expressions.

Q =1− λpE(I)[E(V1) + qE(V2)]−
λE(I)

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

ρ =λpE(I)[E(V1) + qE(V2)] +
λE(I)

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)(α + β)[1− B̄(α)]

+ λpαβE(I)B̄(α)[E(V1) + qE(V2)]

N ′′(1) =λE(I(I − 1))(α + β)[1− B̄(α)]

+ 2λ2(E(I))2(α + β)B̄′(α)

+ 2λE(I)(1− B̄(α))[α− λE(I)]

− 2λ2p(E(I))2[(α + β)B̄(α)

+ αβB̄′(α)][E(V1) + qE(V2)]

+ αβpB̄(α)[λ2(E(I))2(E(V 2
1 ) + qEV 2

2 ))

+ λE(I(I − 1))(E(V1) + qE(V2))

+ 2qλ2(E(I))2E(V1)E(V2)

D′(1) =αβB̄(α)[1− λE(I)p(E(V1) + qE(V2)]

− λE(I)(α + β)[1− B̄(α)]

D′′(1) =− 2λE(I)(α + β)[1 + λE(I)B̄′(α)− B̄(α)(λpE(I)E(V1)

+ λpqE(I)E(V2))] + [2λ2(E(I))2

− λαE(I(I − 1))− λβE(I(I − 1))][1− B̄(α)]

+ 2αβλE(I)B̄′(α)(λpE(I)E(V1) + λpqE(I)E(V2))

− αβ[λ2(E(I))2B̄′′(α)− λE(I(I − 1))B̄′(α)]
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− αβB̄(α)[pλ2(E(I))2(E(V 2
1 ) + qE(V 2

2 )

+ λpE(I(I − 1))(E(V1) + qE(V2))

+ 2pqλ2(E(I))2E(V1)E(V2)]− 2λαβE(I)B̄′(α)

− αβ[λ2(E(I))2B̄′′(α) + λE(I(I − 1))B̄′(α)]

Case 2: If there is no second phase and third phase extended vacation and

C(z) = z i.e, q = r= 0, E(I) = 1 and E(I(I − 1)) = 0.

Then our model reduces to a single server M/G/1 queue with service

interruption and Bernoulli schedule server vacation.

In this case we find the idle probability Q, utilization factor ρ and the

average queue size Lq can be simplified to the following expressions.

Q =1− λpE(V1)−
λ

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

ρ =λpE(V1) +
λ

B̄(α)
(
1

β
+

1

α
)[1− B̄(α)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where
N ′(1) =λ(α + β)[1− B̄(α)] + λpαβB̄(α)E(V1)

N ′′(1) =2λ2(α + β)B̄′(α) + 2λ(1− B̄(α))[α− λ]

− 2λ2p[(α + β)B̄(α) + αβB̄′(α)]E(V1)

+ αβpB̄(α)λ2E(V 2
1 )

D′(1) =αβB̄(α)(1− λpE(V1))− λ(α + β)[1− B̄(α)]

D′′(1) =− 2λ(α + β)[1 + λB̄′(α)− B̄(α)λpE(V1)]

+ 2λ2[1− B̄(α)] + 2pαβλ2B̄′(α)E(V1)

− αβλ2B̄′′(α)− αβB̄(α)pλ2E(V 2
1 )

− 2λαβB̄′(α)− αβλ2B̄′′(α)
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The above equations coincides with Balamani (2012).

Case 3: When the vacation follows exponential distribution for case 2

then the results coincide with Baskar et al. (2011).

5.9 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service time and vacation times are exponentially distributed with rates µ

and γ.

In order to see the effect of various parameters on server’s idle time Q,

utilization factor ρ and various other queue characteristics such as L,W ,

Lq,Wq. We base our numerical example on the result found in case 2.

For this purpose in Table 5.1, we can choose the following arbitrary values:

α= 2, β= 4, µ =8, γ =3, p=0.7 while λ varies from 0.1 to 1.0 such that

the stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the average queue size, system size and

the average waiting time in the queue and the system of our queueing model

are all increases.

In Table 5.2, we choose the following values: α= 6, β= 5, µ =7, λ =0.7,

p=0.3 while γ varies from 1 to 10 such that the stability condition is satisfied.

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, average queue size, system size and

average waiting time in the queue and system of our queueing model are all

decreases.
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Table 5.1: Computed values of various queue characteristics

λ Q ρ Lq L Wq W

0.1 0.957917 0.042083 0.008058 0.050141 0.080576 0.501409
0.2 0.915833 0.084167 0.020099 0.104266 0.100497 0.521330
0.3 0.873750 0.126250 0.036759 0.163009 0.122529 0.543362
0.4 0.831667 0.168333 0.058797 0.227131 0.146993 0.567827
0.5 0.789583 0.210417 0.087139 0.297556 0.174279 0.595112
0.6 0.747500 0.252500 0.122917 0.375417 0.204862 0.625695
0.7 0.705417 0.294583 0.167533 0.462116 0.239332 0.660166
0.8 0.663333 0.336667 0.222744 0.559411 0.278430 0.699264
0.9 0.621250 0.378750 0.290787 0.669537 0.323097 0.743930
1.0 0.579167 0.420833 0.374544 0.795378 0.374544 0.795378

Table 5.2: Computed values of various queue characteristics

γ ρ Q Lq L Wq W

1 0.430000 0.570000 0.577708 1.007708 0.825297 1.439583
2 0.325000 0.675000 0.308051 0.633051 0.440073 0.904359
3 0.290000 0.710000 0.258894 0.548894 0.369849 0.784135
4 0.272500 0.727500 0.240299 0.512799 0.343285 0.732570
5 0.262000 0.738000 0.230893 0.492893 0.329848 0.704133
6 0.255000 0.745000 0.225318 0.480318 0.321883 0.686169
7 0.250000 0.750000 0.221666 0.471666 0.316666 0.673809
8 0.246200 0.753750 0.219104 0.465354 0.313006 0.664792
9 0.243300 0.756667 0.217215 0.460548 0.310307 0.657926
10 0.241000 0.759000 0.215767 0.456767 0.308239 0.652525
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CHAPTER

SIX

M [X]/G/1 QUEUE WITH TWO TYPES OF

SERVICE, MULTIPLE VACATION, RANDOM

BREAKDOWN AND RESTRICTED ADMISSIBILITY

6.1 Introduction

A queueing system might suddenly break down and hence the server will

not be able to continue providing service unless the system is repaired. Tang

(1997), Madan et al. (2003), Thangaraj and Vanitha (2010a), Khalaf et al.

(2011), Deepak Gupta et al. (2011) and Kalidass and Kasturi (2012) have

studied different queueing system subject to random breakdowns.

Vacation queues have been studied by numerous researchers including Doshi

(1986), Takagi (1990), Chae et al. (2001). Borthakur and Chaudhury (1997)

and Hur and Ahn (2005) have studied vacation queues with batch arrivals.

Queue with multiple vacations has been studied by Rosenberg and Yechiali

(1993), Tian and Zhang (2002), Jeyakumar and Arumuganathan (2011) and

Maragatha Sundari and Srinivasan (2012a). Thangaraj and Vanitha (2010b)

A part of this chapter is published with entitled
Transient Solution of Batch Arrival Queue with Two Types of Service, Multiple Vacation,
Random Breakdown and Restricted Admissibility – International Journal of Management
and Information Technology, 3(3):16–25, 2013.
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have studied a single server M/G/1 feedback queue with two types of service

having general distribution.

In some queueing systems with batch arrival there is a restriction such

that not all batches are allowed to join the system at all time. This policy is

named as restricted admissibility. Choudhury and Madan (2007) proposed an

M [X]/G/1 queueing system with restricted admissibility of arriving batches

and Bernoulli schedule server vacation.

In this chapter, we discuss M [X]/G/1 queue with two types of service,

multiple vacation, random breakdown and restricted admissibility. Here a

single server provides two types of service and each arriving customer has the

option of choosing either type of service. If there are no customer waiting

in the system then the server goes for vacation with random duration. On

returning from vacation, if the server again finds no customer waiting in the

system, then the server continues to go for vacation until he finds at least one

customer in the system. Here the server takes multiple vacation. The service

time and the vacation time are generally (arbitrary) distributed. The system

may break down at random. Further we assume that once the system breaks

down, it enters a repair process immediately and the customer whose service

is interrupted comes back to the head of the queue where the arrival follows

Poisson. The breakdown and repair times are exponentially distributed. The

customers arrive to the system in batches of variable size, but served one by

one on a first come - first served basis. In addition, we assume that restricted

admissibility of arriving batches in which not all batches are allowed to join

the system at all times.

Here we derive time dependent probability generating functions in terms of

Laplace transforms. We also derive the average queue size and average system

size. Some particular cases and numerical results are also discussed.

The rest of this chapter is organized as follows. The mathematical descrip-
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tion of our model is given in section 6.2. Definitions and Equations governing

the system are given in section 6.3 and 6.4 respectively. The time dependent

solution have been obtained in section 6.5. Steady state results have been

derived explicitly in section 6.6. Average queue size and average system size

are computed in section 6.7. Some particular cases and numerical results are

discussed in section 6.8 and 6.9 respectively.

6.2 Description of the model

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a ‘first

come - first served basis’. Let λcidt (i = 1, 2, . . .) be the first order

probability that a batch of i customers arrives at the system during a

short interval of time (t, t + dt], where 0 ≤ ci ≤ 1 and
∞∑
i=1

ci = 1 and

λ > 0 is the arrival rate of batches.

b) The server provides two types of service. Just before the service, a

customer may choose first type of service with probability p1 or second

type of service with probability p2, where p1 + p2 = 1.

c) The service time follows a general (arbitrary) distribution with distribution

function Bi(s) and density function bi(s). Let µi(x)dx be the conditional

probability density of service completion during the interval (x, x+ dx],

given that the elapsed service time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2.
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and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

d) If the system becomes empty, then the server goes for vacation. On

returning from vacation, if there are no customer waiting in the system,

then the server continues vacation until he finds at least one customer

in the system. Here the server takes multiple vacation.

e) The server’s vacation time follows a general (arbitrary) distribution with

distribution function V (t) and density function v(t). Let γ(x)dx be the

conditional probability density of vacation completion during the interval

(x, x+ dx], given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1− V (x)

and therefore,

v(t) = γ(t)e
−

t∫
0

γ(x)dx
.

f) The system may breakdown at random, and breakdowns are assumed

to occur according to a Poisson stream with mean breakdown rate

η > 0. Further we assume that once the system breaks down, it enters a

repair process immediately and the customer whose service is interrupted

comes back to the head of the queue. The repair times are exponentially

distributed with mean repair rate β > 0.

g) In addition, we assume that restricted admissibility of batches in which not

all batches are allowed to join the system at all times. Let α (0 ≤ α ≤ 1)

and ξ (0 ≤ ξ ≤ 1) be the probability that an arriving batch will be

allowed to join the system during the period of server’s non-vacation

period and vacation period respectively.
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h) Various stochastic processes involved in the system are assumed to be

independent of each other.

6.3 Definitions

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing service

and there are n (n ≥ 0) customers in the queue excluding the one customer

in the first type of service being served and the elapsed service time is x.

P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the first type of service

irrespective of the value of x.

P
(2)
n (x, t) = Probability that at time t, the server is active providing service

and there are n (n ≥ 0) customers in the queue excluding the one customer

in the second type of service being served and the elapsed service time is

x. P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are

n customers in the queue excluding the one customer in the second type of

service irrespective of the value of x.

Vn(x, t) = Probability that at time t, the server is under vacation with

elapsed vacation time is x and there are n (n ≥ 0) customers in the queue.

Vn(t) =
∞∫
0

Vn(x, t)dx denotes the probability that at time t there are n cus-

tomers in the queue and the server is under vacation irrespective of the value

of x.

Rn(t) = Probability that at time t, the server is inactive due to system

breakdown and the system is under repair, while there are n (n ≥ 0) customers

in the queue.
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6.4 Equations governing the system

The model is then, governed by the following set of differential - difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x) + η]P

(1)
0 (x, t) = λ(1− α)P

(1)
0 (x, t)

(6.1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x) + η]P (1)

n (x, t) = λ(1− α)P (1)
n (x, t)

+ λα
n∑
k=1

ckP
(1)
n−k(x, t), n ≥ 1 (6.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x) + η]P

(2)
0 (x, t) = λ(1− α)P

(2)
0 (x, t)

(6.3)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x) + η]P (2)

n (x, t) = λ(1− α)P (2)
n (x, t)

+ λα
n∑
k=1

ckP
(2)
n−k(x, t), n ≥ 1 (6.4)

∂

∂x
V0(x, t) +

∂

∂t
V0(x, t)+[λ+ γ(x)]V0(x, t) = λ(1− ξ)V0(x, t) (6.5)

∂

∂x
Vn(x, t) +

∂

∂t
Vn(x, t)+[λ+ γ(x)]Vn(x, t) = λ(1− ξ)Vn(x, t)

+ λξ
n∑
k=1

ckVn−k(x, t), n ≥ 1 (6.6)

d

dt
R0(t) + (λ+ β)R0(t) =0 (6.7)

d

dt
Rn(t) + (λ+ β)Rn(t) =λ

n∑
k=1

ckRn−k(t) + η

∫ ∞
0

P
(1)
n−1(x, t)dx

+ η

∫ ∞
0

P
(2)
n−1(x, t)dx (6.8)
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The above set of equations are to be solved subject to the following boundary

conditions

P (1)
n (0, t) = p1

∫ ∞
0

γ(x)Vn+1(x, t)dx+ p1

∫ ∞
0

µ1(x)P
(1)
n+1(x, t)dx

+ p1

∫ ∞
0

µ2(x)P
(2)
n+1(x, t)dx+ p1βRn+1(t), n ≥ 0 (6.9)

P (2)
n (0, t) = p2

∫ ∞
0

γ(x)Vn+1(x)dx+ p2

∫ ∞
0

µ1(x)P
(1)
n+1(x, t)dx

+ p2

∫ ∞
0

µ2(x)P
(2)
n+1(x, t)dx+ p2βRn+1(t), n ≥ 0 (6.10)

V0(0, t) =

∫ ∞
0

γ(x)V0(x, t)dx+

∫ ∞
0

µ1(x)P
(1)
0 (x, t)dx

+

∫ ∞
0

µ2(x)P
(2)
0 (x, t)dx+ βR0(t) (6.11)

Vn(0, t) = 0, n ≥ 1 (6.12)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

Vn(0) = P (i)
n (0) = Rn(0) = 0 for n = 0, 1, 2, ..., i = 1, 2. (6.13)

6.5 Probability generating functions of the queue

length: The time-dependent solution

In this section, we obtain the transient solution for the above set of differential-

difference equations.

Theorem: The system of differential-difference equations to describe an

M [X]/G/1 queue with two types of service subject to random breakdown and

multiple vacation with restricted admissibility are given by equations (6.1) to

(6.12) with initial conditions (6.13) and the generating functions of transient

solution are given by equations (6.53), (6.57) to (6.59).
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Proof : We define the probability generating functions for i= 1, 2.

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t); (6.14)

V (x, z, t) =
∞∑
n=0

znVn(x, t); V (z, t) =
∞∑
n=0

znVn(t); (6.15)

R(z, t) =
∞∑
n=0

znRn(t); C(z) =
∞∑
n=1

cnz
n; (6.16)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (6.17)

We take the Laplace transform of equations (6.1) to (6.12) and using equation

(6.13) we get

∂

∂x
P̄

(1)
0 (x, s) + (s+ λα + µ1(x) + η)P̄

(1)
0 (x, s) =0 (6.18)

∂

∂x
P̄ (1)
n (x, s) + (s+ λα + µ1(x) + η)P̄ (1)

n (x, s) =λα
n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1

(6.19)

∂

∂x
P̄

(2)
0 (x, s) + [s+ λα + µ2(x) + η]P̄

(2)
0 (x, s) =0 (6.20)

∂

∂x
P̄ (2)
n (x, s) + [s+ λα + µ2(x) + η]P̄ (2)

n (x, s) =λα
n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1

(6.21)

∂

∂x
V̄0(x, s) + [s+ λξ + γ(x)]V̄0(x, s) =0 (6.22)

∂

∂x
V̄n(x, s) + [s+ λξ + γ(x)]V̄n(x, s) =λξ

n∑
k=1

ckV̄n−k(x, s), n ≥ 1 (6.23)
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(s+ λ+ β)R̄0(s) = 0 (6.24)

(s+ λ+ β)R̄n(s) =λ
n∑
k=1

ckR̄n−k(s) + η

∫ ∞
0

P̄
(1)
n−1(x, s)dx

+ η

∫ ∞
0

P̄
(2)
n−1(x, s)dx (6.25)

P̄ (1)
n (0, s) = p1βR̄n+1(s) + p1

∫ ∞
0

γ(x)V̄n+1(x, s)dx

+ p1

∫ ∞
0

µ1(x)P̄
(1)
n+1(x, s)dx

+ p1

∫ ∞
0

µ2(x)P̄
(2)
n+1(x, s)dx, n ≥ 0 (6.26)

P̄ (2)
n (0, s) = p2βR̄n+1(s) + p2

∫ ∞
0

γ(x)V̄n+1(x, s)dx

+ p2

∫ ∞
0

µ1(x)P̄
(1)
n+1(x, s)dx

+ p2

∫ ∞
0

µ2(x)P̄
(2)
n+1(x, s)dx, n ≥ 0 (6.27)

V̄0(0, s) =

∫ ∞
0

γ(x)V̄0(x, s)dx+

∫ ∞
0

µ1(x)P̄
(1)
0 (x, s)dx

+

∫ ∞
0

µ2(x)P̄
(2)
0 (x, s)dx+ βR̄0(s) (6.28)

V̄n(0, s) = 0, n ≥ 1 (6.29)

Now multiplying equations (6.19), (6.21), (6.23) and (6.25) by suitable powers

of z, adding to equations (6.18), (6.20), (6.22) and (6.24) and summing over n

from 0 to ∞ and using the generating function defined in (6.14) to (6.16), we

get

∂

∂x
P̄ (1)(x, z, s) + [s+ λα− λαC(z) + µ1(x) + η]P̄ (1)(x, z, s) = 0 (6.30)

∂

∂x
P̄ (2)(x, z, s) + [s+ λα− λαC(z) + µ2(x) + η]P̄ (2)(x, z, s) = 0 (6.31)

∂

∂x
V̄ (x, z, s) + [s+ λξ − λξC(z) + γ(x)]V̄ (x, z, s) = 0 (6.32)
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(s+ λ− λC(z) + β)R̄(z, s) = ηz

∫ ∞
0

P̄ (1)(x, z, s)dx

+ηz

∫ ∞
0

P̄ (2)(x, z, s)dx (6.33)

For the boundary condition, we multiply both sides of equation (6.26) by zn

summing over n from 0 to ∞ and use the equations (6.14) to (6.16), we get

zP (1)(0, z, s) = p1

∫ ∞
0

γ(x)V̄ (x, z, s)dx− p1
∫ ∞
0

γ(x)V̄0(x, s)dx

+ p1

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx− p1
∫ ∞
0

µ1(x)P̄
(1)
0 (x, s)dx

+ p1

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx− p1
∫ ∞
0

µ2(x)P̄
(2)
0 (x, s)dx

+ p1βR̄(z, s)− p1βR̄0(s), n ≥ 0 (6.34)

Performing similar operation on equations (6.27) to (6.29), we get

zP (2)(0, z, s) = p2

∫ ∞
0

γ(x)V̄ (x, z, s)dx− p2
∫ ∞
0

γ(x)V̄0(x, s)dx

+ p2

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx− p2
∫ ∞
0

µ1(x)P̄
(1)
0 (x, s)dx

+ p2

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx− p2
∫ ∞
0

µ2(x)P̄
(2)
0 (x, s)dx

+ p2βR̄(z, s)− p2βR̄0(s), n ≥ 0 (6.35)

V̄ (0, z, s) =V̄0(0, s) (6.36)

Using equation (6.36) in (6.34) and (6.35), we get

zP (1)(0, z, s) = p1

∫ ∞
0

γ(x)V̄ (x, z, s)dx+ p1

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx

+ p1

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx

+ p1βR̄(z, s)− p1V̄0(0, s) (6.37)
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zP (2)(0, z, s) = p2

∫ ∞
0

γ(x)V̄ (x, z, s)dx+ p2

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx

+ p2

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx

+ p2βR̄(z, s)− p2V̄0(0, s) (6.38)

Integrating equation (6.30) between 0 and x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λα−λαC(z)+η]x−

x∫
0

µ1(t)dt
(6.39)

where P (1)(0, z, s) is given by equation (6.37).

Again integrating equation (6.39) by parts with respect to x, yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λα− λαC(z) + η)

s+ λα− λαC(z) + η

]
(6.40)

where

B̄1(s+ λα− λαC(z) + η) =

∞∫
0

e−[s+λα−λαC(z)+η]xdB1(x)

is the Laplace-Stieltjes transform of the first type of service time B1(x).

Now multiplying both sides of equation (6.39) by µ1(x) and integrating

over x, we obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x) = P̄ (1)(0, z, s)B̄1[s+ λα− λαC(z) + η] (6.41)

Similarly, on integrating equations (6.31) and (6.32) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λα−λαC(z)+η]x−

x∫
0

µ2(t)dt
(6.42)

V̄ (x, z, s) = V̄ (0, z, s)e
−[s+λξ−λξC(z)]x−

x∫
0

γ(t)dt
(6.43)
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where V̄ (0, z, s) and P̄ (2)(0, z, s) are given by equation (6.36) and (6.38).

Again integrating equation (6.42) and (6.43) by parts with respect to x, yields

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− B̄2(s+ λα− λαC(z) + η)

s+ λα− λαC(z) + η

]
(6.44)

V̄ (z, s) = V̄ (0, z, s)

[
1− V̄ (s+ λξ − λξC(z))

s+ λξ − λξC(z)

]
(6.45)

where

B̄2(s+ λα− λαC(z) + η) =

∞∫
0

e−[s+λα−λαC(z)+η]xdB2(x)

V̄ (s+ λξ − λξC(z)) =

∞∫
0

e−[s+λξ−λξC(z)]xdV (x)

is the Laplace-Stieltjes transform of the second type of service time B2(x) and

vacation time V (x). Now multiplying both sides of equation (6.42) and (6.43)

by µ2(x) and γ(x) and integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λα− λαC(z) + η] (6.46)

∞∫
0

V̄ (x, z, s)γ(x)dx = V̄ (0, z, s)V̄ [s+ λξ − λξC(z)] (6.47)

Using equations (6.36), (6.41), (6.46) and (6.47) in (6.37) and (6.38), we get

[z − p1B̄1(a)]P̄ (1)(0, z, s) =p1[V̄ (c)− 1]V̄0(0, s) + p1βR̄(z, s)

+ p1B̄2(a)P̄ (2)(0, z, s) (6.48)

[z − p2B̄2(a)]P̄ (2)(0, z, s) =p2[V̄ (c)− 1]V̄0(0, s) + p2βR̄(z, s)

+ p2B̄1(a)P̄ (1)(0, z, s) (6.49)
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Using equation (6.48) and (6.49), we get

[z−(p1B̄1(a)+p2B̄2(a))]P̄ (1)(0, z, s) = p1[V̄ (c)−1]V̄0(0, s)+p1βR̄(z, s) (6.50)

[z−(p1B̄1(a)+p2B̄2(a))]P̄ (2)(0, z, s) = p2[V̄ (c)−1]V̄0(0, s)+p2βR̄(z, s) (6.51)

where a = s+ λα− λαC(z) + η and c = s+ λξ − λξC(z).

Substituting equations (6.39) and (6.42) in (6.33), we get

R̄(z, s) =
αz

ab
[P̄ (1)(0, z, s)(1− B̄1(a)) + P̄ (2)(0, z, s)(1− B̄2(a))] (6.52)

Using equations (6.50) and (6.51) in (6.52), we get

R̄(z, s) =
ηz[1− (p1B̄1(a) + p2B̄2(a))][V̄ (c)− 1]V̄0(0, s)

Dr
(6.53)

where b = s+ λ− λC(z) + β.

Dr = ab[z − (p1B̄1(a) + p2B̄2(a))]− ηβz[1− (p1B̄1(a) + p2B̄2(a))] (6.54)

By substituting equation (6.53) in (6.50) and (6.51), we get,

P̄ (1)(0, z, s) =
p1ab[V̄ (c)− 1]V̄0(0, s)

Dr
(6.55)

P̄ (2)(0, z, s) =
p2ab[V̄ (c)− 1]V̄0(0, s)

Dr
(6.56)

Using equations (6.36), (6.55), (6.56) in (6.40), (6.44) and (6.45), we have

P̄ (1)(z, s) =
p1b[1− B̄1(a)][V̄ (c)− 1]V̄0(0, s)

Dr
(6.57)

P̄ (2)(z, s) =
p2b[1− B̄2(a)][V̄ (c)− 1]V̄0(0, s)

Dr
(6.58)
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V̄ (z, s) =
[1− V̄ (c)]

c
V̄0(0, s) (6.59)

Thus R̄(z, s), P̄ (1)(z, s), P̄ (2)(z, s) and V̄ (z, s) are completely determined from

equations (6.53), (6.57) to (6.59) which completes the proof of the theorem.

6.6 The steady state results

In this section, we shall derive the steady state probability distribution for our

queueing model. To define the steady probabilities we suppress, the argument

t wherever it appears in the time-dependent analysis. This can be obtained

by applying the Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), V̄ (z, s) and R̄(z, s) completely, we

have yet to determine the unknown V̄0(0, s) which appears in the numerators

of the right hand sides of equations (6.53), (6.57), (6.58) and (6.59).

For that purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) + V (1) +R(1) = 1

The steady state probabilities for an M [X]/G/1 queue with two types of

service subject to random breakdown and multiple vacation with restricted

admissibility are given by

P (1)(1) =
λβξp1E(I)(1− B̄1(η))E(V )

dr
V0(0) (6.60)

P (2)(1) =
λβξp2E(I)(1− B̄2(η))E(V )

dr
V0(0) (6.61)
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R(1) =
ληξE(I)[1− (p1B̄1(η) + p2B̄2(η))]E(V )

dr
V0(0) (6.62)

V (1) = E(V )V0(0) (6.63)

where dr = ηβ − [1− (p1B̄1(η) + p2B̄2(η))][λE(I)(αη + β) + ηβ].

P (1)(1), P (2)(1), V (1), R(1) denote the steady state probabilities that the

server is providing first type of service, second type of service, server on

vacation and server under repair without regard to the number of customers

in the queue.

Multiplying both sides of equations (6.53), (6.57), (6.58) and (6.59) by s,

taking limit as s → 0, by applying Tauberian property and simplifying, we

obtain

P (1)(z) =
p1(λ− λC(z) + β)[V̄ (a2)− 1][1− B̄1(a1)]V0(0)

D(z)
(6.64)

P (2)(z) =
p2(λ− λC(z) + β)[V̄ (a2)− 1][1− B̄2(a1)]V0(0)

D(z)
(6.65)

V (z) =
[1− V̄ (a2)]

a2
V0(0) (6.66)

R(z) =
ηz[V̄ (a2)− 1][1− (p1B̄1(a1) + p2B̄2(a1))]

D(z)
V0(0) (6.67)

where

D(z) = a1(λ− λC(z) + β)[z − (p1B̄1(a1) + p2B̄2(a1)]

− ηzβ[1− (p1B̄1(a1) + p2B̄2(a1))], (6.68)

a1 = λα− λαC(z) + η, a2 = λξ − λξC(z).

Let Wq(z) denote the probability generating function of the queue size ir-

respective of the server state. Then adding equations (6.64) to (6.67), we
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obtain

Wq(z) = P (1)(z) + P (2)(z) + V (z) +R(z)

Wq(z) =
N(z)

D(z)
V0(0) + (

1− V̄ (a2)

a2
)V0(0) (6.69)

where

N(z) =[V̄ (a2)− 1][1− (p1B̄1(a1) + p2B̄2(a1))]

×[λ(1− C(z)) + β + ηz] (6.70)

and D(z) is given in the equation (6.68).

we see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore,

we apply L’Hopital’s rule and on simplifying, we obtain

V0(0) =
ηβ − [λE(I)(αβ + η) + ηβ][1− p1B̄1(η)− p2B̄2(η)]

dr1
(6.71)

where

dr1 =E(V )[(p1B̄1(η) + p2B̄2(η))− 1]

× [λE(I)(β(α− ξ) + η(1− ξ)) + ηβ] + ηβE(V )

C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(V ) = −V̄ ′(0)

and hence, the utilization factor ρ of the system is given by

ρ =
λξ(β + η)E(I)[1− p1B̄1(η)− p2B̄2(η)]

ηβ − [1− p1B̄1(η)− p2B̄2(η)][λE(I)(β(α− ξ) + η(1− ξ)) + ηβ]
(6.72)

where ρ < 1 is the stability condition under which the steady states exits.

Substituting for V0(0) from (6.71) into (6.69), we have completely and

explicitly determined the probability generating function of the queue size.
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6.7 The average queue size and the average

system size

Let Lq the denote the mean number of customers in the queue under the

steady state. Then we have

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write

Wq(z) =
N(z)

D(z)
V0(0)+(

1− V̄ (a2)

a2
)V0(0)

N ′(z) =V̄ ′(a2)a
′
2[1− (p1B̄1(a1) + p2B̄2(a1))][λ(1− C(z)) + β + ηz]

+ (V̄ (a2)− 1)[−a′1(p1B̄′1(a1) + p2B̄
′
2(a1))][λ(1− C(z)) + β + ηz]

+ (V̄ (a2)− 1)[1− (p1B̄1(a1) + p2B̄2(a1))][−λC ′(z) + η]

N ′′(z) =[V̄ ′′(a2)a
′2
2 [1− (p1B̄1(a1) + p2B̄2(a1))]

+ V̄ ′(a2)a
′′
2[1− (p1B̄1(a1) + p2B̄2(a1))]

+ V̄ ′(a2)a
′
2(−a′1(p1B̄′1(a1) + p2B̄

′
2(a1))]

× [λ(1− C(z)) + β + ηz]

+ V̄ ′(a2)a
′
2(1− (p1B̄1(a1) + p2B̄2(a1)))(−λC ′(z) + η)

+ [V̄ (a2)a
′
2(−a′1(p1B̄′1(a1) + p2B̄

′
2(a1)))

+ (V̄ (a2)− 1)(−a21((p1B̄′′1 (a1) + p2B̄
′′
2 (a1))

− a′′1(p1B̄
′
1(a1) + p2B̄

′
2(a1)))][λ(1− C(z)) + β + ηz]

+ (V̄ (a2)− 1)(−a′1(p1B̄′1(a1) + p2B̄
′
2(a1)))[−λC ′(z) + η]

+ [V̄ ′(a2)a
′
2[1− (p1B̄1(a1) + p2B̄2(a1))]

+ (V̄ (a2)− 1)(−a′1(p1B̄′1(a1) + p2B̄
′
2(a1)))][−λC ′(z) + η]

+ (V̄ (a2)− 1)(1− (p1B̄1(a1) + p2B̄2(a1))][−λC ′′(z)]
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D′(z) =[a′1[z − (p1B̄1(a1) + p2B̄2(a1))

+ a1[1− (p1B̄
′
1(a1) + p2B̄

′
2(a1))a

′
1]]

× (λ− λC(z) + β) + a1(z − (p1B̄1(a1) + p2B̄2(a1))(−λC ′(z))

− ηβ(1− (p1B̄1(a1) + p2B̄2(a1)))

− ηβz(−p1B̄′1(a1)− p2B̄′2(a1))a′1)

D′′(z) =[a′′1(z − (p1B̄1(a1) + p2B̄2(a1))

+ 2a′1(1− a′1(p1B̄′1(a1) + p2B̄
′
2(a1)))

− a1(a21(p1B̄′′1 (a1) + p2B̄
′′
2 (a1))

+ a′′1(p1B̄
′
1(a1) + p2B̄

′
2(a1)))](λ− λC(z) + β)

+ 2[a′1(z − (p1B̄1(a1) + p2B̄2(a1)))

+ a1(1− (p1B̄
′
1(a1) + p2B̄

′
2(a1)))](−λC ′(z))

+ a1(z − (p1B̄1(a1) + p2B̄2(a1)))(−λC ′′(z))

− 2ηβ(−a′1(p1B̄′1(a1) + p2B̄
′
2(a1))

− ηβz(−a21(p1B̄′′1 (a1)) + p2B̄
′′
2 (a1))

− a′′1(p1B̄
′
1(a1) + p2B̄

′
2(a1)))

Lq =
D′(1)N ′′(1)−N ′(1)D′′(1)

2D′(1)2
V0(0) +

λξE(I)E(V 2)

2
V0(0) (6.73)

where primes and double primes in (6.73) denote first and second derivative

at z =1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λξE(I)(β + η)E(V )[1− (p1B̄1(η) + p2B̄2(η))] (6.74)

N ′′(1) =[1− (p1B̄1(η) + p2B̄2(η))][λ2ξ2(E(I))2(β + η)E(V 2)

+ λξE(V )((β + η)E(I(I − 1)) + 2E(I)(η − λE(I)))]

+ 2λ2αξ(E(I))2(β + η)E(V )[p1B̄
′
1(η) + p2B̄

′
2(η)] (6.75)
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D′(1) =ηβ − [λE(I)(αβ + η) + ηβ][1− (p1B̄1(η) + p2B̄2(η))] (6.76)

D′′(1) =[1− (p1B̄1(η) + p2B̄2(η))][−λE(I(I − 1))(αβ + η)

+ 2λ2α(E(I))2]− 2λαβηE(I)(p1B̄
′
1(η) + p2B̄

′
2(η))

− 2λ(αβ + η)E(I)[1 + λαE(I)(p1B̄
′
1(η) + p2B̄

′
2(η))] (6.77)

where E(B2
1), E(B2

2) and E(V 2) are the second moment of the service times

and vacation time respectively. E(I(I − 1)) is the second factorial moment of

the batch size of arriving customers. Then if we substitute the values from

(6.74), (6.75), (6.76) and (6.77) into (6.73), we obtain Lq in the closed form.

Further, we find the average system size L by using Little’s formula. Thus

we have

L = Lq + ρ (6.78)

where Lq has been found by equation (6.73) and ρ is obtained from equation

(6.72).

6.8 Particular cases

Case 1: If there is no restricted admissibility i.e, α = ξ = 1, then our model

reduces to the M [X]/G/1 queue with two types of service, random breakdown

and multiple vacation.

Using this in the main result of (6.71), (6.72) and (6.73), we can find the

idle probability V0(0), utilization factor ρ and the mean queue size Lq can be

simplified to the following expressions.

V0(0) =
ηβ − [λE(I)(β + η) + ηβ][1− p1B̄1(η) + p2B̄2(η)]

dr1
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where

dr1 = E(V )[(p1B̄1(η) + p2B̄2(η))− 1]ηβ + ηβE(V )

ρ =
λ(β + η)E(I)[1− p1B̄1(η)− p2B̄2(η)]

ηβ − [1− p1B̄1(η)− p2B̄2(η)]ηβ

Lq =
D′(1)N ′′(1)−N ′(1)D′′(1)

2D′(1)2
V0(0) +

λE(I)E(V 2)

2

where

N ′(1) =λE(I)(β + η)E(V )[1− (p1B̄1(η) + p2B̄2(η))]

N ′′(1) =[1− (p1B̄1(η) + p2B̄2(η))][λ2(E(I))2(β + η)E(V 2)

+ λE(V )(β + η)E(I(I − 1)) + 2E(I)λE(V )(η − λE(I))]

+ 2λ2(E(I))2(β + η)E(V )[p1B̄
′
1(η) + p2B̄

′
2(η)]

D′(1) =ηβ − [λE(I)(β + η) + ηβ][1− (p1B̄1(η) + p2B̄2(η))]

D′′(1) =[1− (p1B̄1(η) + p2B̄2(η))][−λE(I(I − 1))(β + η)

+ 2λ2(E(I))2]− 2λ(β + η)E(I)[1 + λE(I)(p1B̄
′
1(η) + p2B̄

′
2(η))]

− 2λβηE(I)(p1B̄
′
1(η) + p2B̄

′
2(η))

Case 2: If there is no type 2 service, no restricted admissibility and service

and vacation times are exponentialy distributed. i.e, p2 = 0 and α = ξ = 1,

then our model reduces to the M [X]/M/1 queue with random breakdown and

multiple vacation.

Using this in the main result of (6.71), (6.72) and (6.73), we can find the

idle probability V0(0), utilization factor ρ and the mean queue size Lq can be

simplified to the following expressions.

V0(0) =
γβ(η + µ)− γ[λE(I)(β + η) + ηβ]

βµ
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ρ =
λE(I)(β + η)

βµ

Lq =
D′(1)N ′′(1)−N ′(1)D′′(1)

2D′(1)2
V0(0) +

λE(I)

γ2
V0(0)

where

N ′(1) =γληE(I)(β + η)

N ′′(1) =η(η + µ)[2λ2(E(I))2(β + η) + λγ((β + η)E(I(I − 1))

+ 2E(I)(η − λE(I)))]− 2λ2µγ(E(I))2(β + η)

D′(1) =ηβ(η + µ)− η[λE(I)(β + η) + ηβ]

D′′(1) =η(η + µ)[−λE(I(I − 1))(β + η) + 2λ2(E(I))2]

− 2λ(β + η)E(I)[(η + µ)2 − λµE(I)] + 2ληβµE(I)

6.9 Numerical results

In order to see the effect of various parameters on utilization factor ρ and

various other queue characteristics such as L, Lq. We base our numerical

example on the result found in case 2.

For this purpose in Table 6.1, we choose the following arbitrary values:

E(I)=0.3, E(I(I − 1))= 0.04, η= 3, β= 4 , µ = 5 , γ = 2 while λ varies

from 0.1 to 1.0 such that the stability condition is satisfied.

The Table 6.1 clearly shows as long as increasing the arrival rate, the

utilization factor, the average queue size and average system size of our

queueing model are all increases.

In Table 6.2, we can choose the following arbitrary values: η = 1, β = 9,

λ = 1, E(I)=0.1, E(I(I − 1))= 0.02, γ =4, p =0.6 while µ varies from 1 to

10 such that the stability condition is satisfied.
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Table 6.1: Computed values of various queue characteristics

λ ρ Lq L

0.1 0.010500 0.033090 0.043590
0.2 0.021000 0.088705 0.109705
0.3 0.031000 0.167169 0.198669
0.4 0.042000 0.268822 0.310822
0.5 0.052500 0.394018 0.446518
0.6 0.063000 0.543128 0.606128
0.7 0.073500 0.716539 0.790039
0.8 0.084000 0.914656 0.998656
0.9 0.094500 1.137903 1.232403
1.0 0.105000 1.386723 1.491723

Table 6.2: Computed values of various queue characteristics

µ ρ Lq L

1 0.112500 1.019793 1.132293
2 0.056250 0.482087 0.538337
3 0.037500 0.337050 0.374550
4 0.028125 0.270386 0.298511
5 0.022500 0.232197 0.254697
6 0.018750 0.207477 0.226227
7 0.016071 0.190178 0.206249
8 0.014063 0.177397 0.191460
9 0.012500 0.167571 0.180071
10 0.011250 0.159781 0.171031

The Table 6.2 clearly shows as long as increasing the service rate, the

utilization factor, the average queue size and average system size of our

queueing model are all decreases.
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CHAPTER

SEVEN

M [X]/G/1 QUEUE WITH TWO STAGE

HETEROGENEOUS SERVICE, RANDOM

BREAKDOWN, DELAYED REPAIRS AND

EXTENDED SERVER VACATIONS WITH

BERNOULLI SCHEDULE

7.1 Introduction

Server vacation models are useful for the systems in which the server wants to

utilize the idle time for different purposes. In fact, queueing systems with server

breakdowns are very common in communication systems and manufacturing

systems. The study on two phases queueing system with vacation have become

an interesting area in queueing theory. Many researchers have put their efforts

in this area by considering various aspects like two phase queueing system

with Bernoulli feedback, random break downs, Bernoulli vacation etc.

Also queueing systems with breakdowns have been studied by several

authors including Federgruen and Green (1986), Tang (1997), Li et al. (1997),

A part of this chapter is published with entitled
Two stage heterogeneous service, random breakdowns, delayed repairs and extended server
vacations with Bernoulli schedule – International Journal of Computational and Applied
Mathematics, 8(3):183–201, 2013.
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Aissani and Artalejo (1998), Madan et al. (2003), Choudhury and Tadj (2009)

and Deepak Gupta et al. (2011). Wang (2004) studied an M/G/1 queue with

a second optional service and server breakdowns.

Recently Maraghi et al. (2009) have studied some queueing systems with

vacations and breakdowns. Thangaraj and Vanitha (2010a) have obtained

transient solution for M/G/1 queue with two-stage heterogeneous service with

compulsory server vacation and random breakdowns. Khalaf et al. (2010)

studied an M [X]/G/1 queue with Bernoulli schedule general vacation times,

random breakdowns, general delay times for repairs to start and general repair

times. They have obtained steady state results in terms of the probability

generating functions for the number of customers in the queue. Choudhury

and Madan (2005) and Madan (2000a) have studied two stage service with

server vacations.

In this chapter, we considerM [X]/G/1 queue with two stage service, random

breakdown, delayed repairs and extended server vacations. Customers arrive

at the system in batches of variable size in a compound Poisson process and

they are provided one by one service on a first come - first served basis. The

server provides two stages of service which is essential for all customers with

service times having general (arbitrary) distribution. As soon as the second

stage of a customer’s service is completed, the server will take a vacation

with probability p or may continue to stay in the system with probability

1 − p. On completion of first phase of vacation, the server has the further

option of taking an extended vacation. We assume that with probability r

the server takes an extended vacation and with probability 1− r rejoins the

system immediately after completion of phase one vacation. The system may

break down at random and breakdowns are assumed to occur according to a

Poisson. Further, we assume that once the system breaks down, its repairs do

not start immediately and there is a delay time, the customer whose service is
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interrupted comes back to the head of the queue. Repair times, delay times

and vacation times follow general (arbitrary) distribution.

Here we derive time dependent probability generating functions in terms

of Laplace transforms. We also derive the average queue size, system size and

average waiting time in the queue, the system. Some particular cases and

numerical results are also discussed.

The rest of this chapter is organized as follows. The mathematical descrip-

tion of our model is given in section 7.2. Definitions and equations governing

the system are given in section 7.3. The time dependent solution have been ob-

tained in section 7.4 and corresponding steady state results have been derived

explicitly in section 7.5. Average queue size, system size and average waiting

time in the queue, system are computed in section 7.6. Some particular cases

and numerical results are discussed in section 7.7 and 7.8 respectively.

7.2 Mathematical description of the model

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t + dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) The server provides two stages of service which is essential for all cus-

tomers. The service time follows a general (arbitrary) distribution with

distribution function Bi(s) and density function bi(s). Let µi(x)dx be the

conditional probability density of service completion during the interval
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(x, x+ dx], given that the elapsed service time is x, so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2,

and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2.

c) As soon as the second stage of a customer’s service is completed, the server

will take a vacation with probability p or may continue to stay in the

system with probability 1− p. On completion of first phase of vacation,

the server has the further option of taking an extended vacation. We

assume that with probability r, the server takes an extended vacation and

with probability 1− r rejoins the system immediately after completion

of phase one vacation.

d) The server’s vacation time follows a general (arbitrary) distribution with

distribution function V(t) and density function v(t). Let βi(x)dx be the

conditional probability of a completion of a vacation during the interval

(x, x+ dx], given that the elapsed vacation time is x, so that

βi(x) =
v(x)

1− V (x)
, i = 1, 2,

and therefore,

v(t) = βi(t)e
−

t∫
0

βi(x)dx
, i = 1, 2.

e) The system may break down at random and breakdowns are assumed to

occur according to a Poisson stream with mean breakdown rate α > 0.

Further we assume that once the system breaks down, its repairs do not

start immediately and there is a delay time, the customer whose service

is interrupted comes back to the head of the queue.
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f) The delay times follow a general (arbitrary) distribution with distribution

function F (x) and density function f(x). Let θ(x)dx be the conditional

probability of a completion of a delay during the interval (x, x + dx],

given that the elapsed delay time is x, so that

θ(x) =
f(x)

1− F (x)

and therefore,

f(t) = θ(t)e
−

t∫
0

θ(x)dx
.

g) The duration of repairs follows a general (arbitrary) distribution with

distribution function G(x) and density function g(x). Let γ(x)dx be the

conditional probability of a completion of repairs during the interval

(x, x+ dx], given that the elapsed repair time is x, so that

γ(x) =
g(x)

1−G(x)

and therefore,

g(t) = γ(t)e
−

t∫
0

γ(x)dx
.

i) Various stochastic processes involved in the system are assumed to be

independent of each other.

7.3 Definitions and equations governing of the

system

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing first
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stage of service and there are n (n ≥ 0) customers in the queue excluding the

one being served and the elapsed service time is x. Accordingly, P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n customers in

the queue excluding the one customer in the first stage of service irrespective

of the value of x.

P
(2)
n (x, t) = Probability that at time t, the server is active providing

second stage of service and there are n (n ≥ 0) customers in the queue

excluding the one being served and the elapsed service time is x. Accordingly,

P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the second stage of

service irrespective of the value of x.

V
(1)
n (x, t) = Probability that at time t, the server is under phase one

vacation with elapsed vacation time is x and there are n (n ≥ 0) customers in

the queue. Accordingly V
(1)
n (t)=

∞∫
0

V
(1)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue and the server is under phase one

vacation irrespective of the value of x.

V
(2)
n (x, t) = Probability that at time t, the server is under extended vacation

with elapsed vacation time is x and there are n (n ≥ 0) customers in the

queue. Accordingly V
(2)
n (t)=

∞∫
0

V
(2)
n (x, t)dx denotes the probability that at

time t there are n customers in the queue and the server is under extended

vacation irrespective of the value of x.

Dn(x, t) = Probability that at time t, there are n (n ≥ 0) customers in

the queue and the server is inactive due to system breakdown and waiting for

repairs to start with elapsed delay time is x. Accordingly Dn(t)=
∞∫
0

Dn(x, t)dx

denotes the probability that at time t, there are n customers in the queue and

the server is waiting for repairs to start irrespective of the value of x.

Rn(x, t) = probability that at time t, there are n (n ≥ 0) customers

in the queue, and the server is under repair with elapsed repair time is x.
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Accordingly Rn(t)=
∞∫
0

Rn(x, t)dx denotes the probability that at time t, there

are n customers in the queue and the server is under repair irrespective of the

value of x.

Q(t) is the probability that at time t, there are no customers in the system

and the server is idle but available in the system.

The system is then governed by the following set of differential-difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + [λ+ µ1(x) + α]P

(1)
0 (x, t) =0 (7.1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x) + α]P (1)

n (x, t) =λ
n∑
k=1

ckP
(1)
n−k(x, t),

n ≥ 1 (7.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x) + α]P

(2)
0 (x, t) =0 (7.3)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x) + α]P (2)

n (x, t) =λ
n∑
k=1

ckP
(2)
n−k(x, t),

n ≥ 1 (7.4)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ+ β1(x)]V

(1)
0 (x, t) =0 (7.5)

∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ β1(x)]V (1)

n (x, t) =λ
n∑
k=1

ckV
(1)
n−k(x, t),

n ≥ 1 (7.6)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ+ β2(x)]V

(2)
0 (x, t) =0 (7.7)

∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ β2(x)]V (2)

n (x, t) =λ
n∑
k=1

ckV
(2)
n−k(x, t),

n ≥ 1 (7.8)

∂

∂x
D0(x, t) +

∂

∂x
D0(x, t) + [λ+ θ(x)]D0(x, t) =0 (7.9)
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∂

∂x
Dn(x, t) +

∂

∂x
Dn(x, t) + [λ+ θ(x)]Dn(x, t) =λ

n∑
k=1

ckDn−k(x, t),

n ≥ 1 (7.10)

∂

∂x
R0(x, t) +

∂

∂x
R0(x, t) + [λ+ γ(x)]R0(x, t) =0 (7.11)

∂

∂x
Rn(x, t) +

∂

∂x
Rn(x, t) + [λ+ γ(x)]Rn(x, t) =λ

n∑
k=1

ckRn−k(x, t),

n ≥ 1 (7.12)

d

dt
Q(t) =− λQ(t) + (1− p)

∫ ∞
0

P
(2)
0 (x, t)µ2(x)dx

+

∫ ∞
0

R0(x, t)γ(x)dx+ (1− r)
∫ ∞
0

V
(1)
0 (x, t)β1(x)dx

+

∫ ∞
0

V
(2)
0 (x, t)β2(x)dx (7.13)

The above set of equations are to be solved subject to the following boundary

conditions:

P (1)
n (0, t) = λcn+1Q(t) + (1− p)

∫ ∞
0

P
(2)
n+1(x, t)µ2(x)dx

+ (1− r)
∫ ∞
0

V
(1)
n+1(x, t)β1(x)dx+

∫ ∞
0

V
(2)
n+1(x, t)β2(x)dx

+

∫ ∞
0

Rn+1(x, t)γ(x)dx, n ≥ 0 (7.14)

P (2)
n (0, t) =

∫ ∞
0

P (1)
n (x, t)µ1(x)dx, n ≥ 0 (7.15)

V (1)
n (0, t) = p

∫ ∞
0

P (2)
n (x, t)µ2(x)dx, n ≥ 0 (7.16)

V (2)
n (0, t) = r

∫ ∞
0

V (1)
n (x, t)β1(x)dx, n ≥ 0 (7.17)

D0(0, t) = 0 (7.18)

Dn(0, t) = α

∫ ∞
0

P
(1)
n−1(x, t)dx+ α

∫ ∞
0

P
(2)
n−1(x, t)dx, n ≥ 1 (7.19)

Rn(0, t) =

∫ ∞
0

Dn(x, t)θ(x)dx, n ≥ 0 (7.20)
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We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

P (i)
n (0) = V (i)

n (0) = 0, for i = 1, 2, Q(0) = 1 and

Dn(0) = 0, Rn(0) = 0 for n = 0, 1, 2, ... (7.21)

7.4 Probability generating functions of the queue

length: The time - dependent solution

In this section, we obtain the transient solution for the above set of differential

- difference equations.

Theorem: The system of differential difference equations to describe an

M [X]/G/1 Queue with Two Stage Heterogeneous Service,

Random Breakdown, Delayed Repairs and Extended Server Vacations with

Bernoulli Schedule are given by equations (7.1) to (7.20) with initial conditions

(7.21) and the generating functions of transient solution are given by equations

(7.84) to (7.89).

Proof : We define the probability generating functions, for i =1, 2.

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t);

V (i)(x, z, t) =
∞∑
n=0

znV (i)
n (x, t); V (i)(z, t) =

∞∑
n=0

znV (i)
n (t);

D(x, z, t) =
∞∑
n=0

znDn(x, t); D(z, t) =
∞∑
n=0

znDn(t); C(z) =
∞∑
n=1

cnz
n;

R(x, z, t) =
∞∑
n=0

znRn(x, t);R(z, t) =
∞∑
n=0

znRn(t); (7.22)
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which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0.

Taking the Laplace transform of equations (7.1) to (7.20) and using (7.21), we

obtain

∂

∂x
P̄

(1)
0 (x, s) + (s+ λ+ µ1(x) + α)P̄

(1)
0 (x, s) =0 (7.23)

∂

∂x
P̄ (1)
n (x, s) + (s+ λ+ µ1(x) + α)P̄ (1)

n (x, s) =λ
n∑
k=1

ckP̄
(1)
n−k(x, s),

n ≥ 1 (7.24)

∂

∂x
P̄

(2)
0 (x, s) + (s+ λ+ µ2(x) + α)P̄

(2)
0 (x, s) =0 (7.25)

∂

∂x
P̄ (2)
n (x, s) + (s+ λ+ µ2(x) + α)P̄ (2)

n (x, s) =λ
n∑
k=1

ckP̄
(2)
n−k(x, s),

n ≥ 1 (7.26)

∂

∂x
V̄

(1)
0 (x, s) + (s+ λ+ β1(x))V̄

(1)
0 (x, s) =0 (7.27)

∂

∂x
V̄ (1)
n (x, s) + (s+ λ+ β1(x))V̄ (1)

n (x, s) =λ
n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (7.28)

∂

∂x
V̄

(2)
0 (x, s) + (s+ λ+ β2(x))V̄

(2)
0 (x, s) =0 (7.29)

∂

∂x
V̄ (2)
n (x, s) + (s+ λ+ β2(x))V̄ (2)

n (x, s) =λ
n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (7.30)

∂

∂x
D̄0(x, s) + (λ+ θ(x))D̄0(x, s) =0 (7.31)

∂

∂x
D̄n(x, s) + (λ+ θ(x))D̄n(x, s) =λ

n∑
k=1

ckD̄n−k(x, s), n ≥ 1 (7.32)

∂

∂x
R̄0(x, s) + (λ+ γ(x))R̄0(x, s) =0 (7.33)
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∂

∂x
R̄n(x, s) + (λ+ γ(x))R̄n(x, s) =λ

n∑
k=1

ckR̄n−k(x, s), n ≥ 1 (7.34)

(s+ λ)Q̄(s) =1 + (1− p)
∫ ∞
0

P̄
(2)
0 (x, s)µ2(x)dx

+ (1− r)
∫ ∞
0

V̄
(1)
0 (x, s)β1(x)dx

+

∫ ∞
0

R̄0(x, s)γ(x)dx+

∫ ∞
0

V̄
(2)
0 (x, s)β2(x)dx (7.35)

P̄ (1)
n (0, s) =λcn+1Q̄(s) + (1− p)

∫ ∞
0

P̄
(2)
n+1(x, s)µ2(x)dx

+ (1− r)
∫ ∞
0

V̄
(1)
n+1(x, s)β1(x)dx+

∫ ∞
0

V̄
(2)
n+1(x, s)β2(x)dx

+

∫ ∞
0

R̄n+1(x, s)γ(x)dx, n ≥ 0 (7.36)

P̄ (2)
n (0, s) =

∫ ∞
0

P̄ (1)
n (x, s)µ1(x)dx, n ≥ 0 (7.37)

V̄ (1)
n (0, s) = p

∫ ∞
0

P̄ (2)
n (x, s)µ2(x)dx, n ≥ 0 (7.38)

V̄ (2)
n (0, s) = r

∫ ∞
0

V̄ (1)
n (x, s)β1(x)dx, n ≥ 0 (7.39)

D̄0(0, s) = 0 (7.40)

D̄n(0, s) = α

∫ ∞
0

P̄
(1)
n−1(x, s)dx+ α

∫ ∞
0

P̄
(2)
n−1(x, s)dx, n ≥ 1 (7.41)

R̄n(0, s) =

∫ ∞
0

D̄n(x, s)θ(x)dx, n ≥ 0 (7.42)

Now multiplying equations (7.24), (7.26), (7.28), (7.30), (7.32) and (7.34) by

zn and summing over n from 1 to∞, adding to equations (7.23), (7.25), (7.27),

(7.29), (7.31), (7.33) and using the generating functions defined in (7.22), we

get

∂

∂x
P̄ (1)(x, z, s) + [s+ λ− λC(z) + µ1(x) + α]P̄ (1)(x, z, s) = 0 (7.43)
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∂

∂x
P̄ (2)(x, z, s) + [s+ λ− λC(z) + µ2(x) + α]P̄ (2)(x, z, s) = 0 (7.44)

∂

∂x
V̄ (1)(x, z, s) + [s+ λ− λC(z) + β1(x)]V̄ (1)(x, z, s) = 0 (7.45)

∂

∂x
V̄ (2)(x, z, s) + [s+ λ− λC(z) + β2(x)]V̄ (2)(x, z, s) = 0 (7.46)

∂

∂x
D̄(x, z, s) + [s+ λ− λC(z) + θ(x)]D̄(x, z, s) = 0 (7.47)

∂

∂x
R̄(x, z, s) + [s+ λ− λC(z) + γ(x)]R̄(x, z, s) = 0 (7.48)

For the boundary conditions, we multiply both sides of equation (7.36) by zn

summing over n from 0 to ∞ and use the equations (7.22), we get

zP̄ (1)(0, z, s) =λC(z)Q̄(s) + (1− p)
∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx

− (1− p)
∫ ∞
0

P̄
(2)
0 (x, s)µ1(x)dx

+ (1− r)
∫ ∞
0

V̄ (1)(x, z, s)β1(x)dx

− (1− r)
∫ ∞
0

V̄
(1)
0 (x, s)β1(x)dx

+

∫ ∞
0

V̄ (2)(x, z, s)β2(x)dx−
∫ ∞
0

V̄
(2)
0 (x, s)β2(x)dx

+

∫ ∞
0

R̄(x, z, s)γ(x)dx−
∫ ∞
0

R̄0(x, s)γ(x)dx

Using equation (7.35), the above equation becomes

zP̄ (1)(0, z, s) =(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)

+ (1− p)
∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx

+ (1− r)
∫ ∞
0

V̄ (1)(x, z, s)β1(x)dx

+

∫ ∞
0

V̄ (2)(x, z, s)β2(x)dx+

∫ ∞
0

R̄(x, z, s)γ(x)dx (7.49)
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Performing similar operation on equations (7.37) to (7.42), we get

P̄ (2)(0, z, s) =

∫ ∞
0

P̄ (1)(x, z, s)µ1(x)dx (7.50)

V̄ (1)(0, z, s) =p

∫ ∞
0

P̄ (2)(x, z, s)µ2(x)dx (7.51)

V̄ (2)(0, z, s) =r

∫ ∞
0

V̄ (1)(x, z, s)β1(x)dx (7.52)

D̄(0, z, s) =αz

∫ ∞
0

P̄ (1)(x, z, s)dx+ αz

∫ ∞
0

P̄ (2)(x, z, s)dx (7.53)

R̄(0, z, s) =

∫ ∞
0

D̄(x, z, s)θ(x)dx (7.54)

Integrating equation (7.43) between 0 and x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)+α]x−

x∫
0

µ1(t)dt
(7.55)

where P (1)(0, z, s) is given by equation (7.49).

Again integrating equation (7.55) by parts with respect to x, yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(7.56)

where

B̄1(s+ λ− λC(z) + α) =

∞∫
0

e−[s+λ−λC(z)+α]xdB1(x)

is the Laplace-Stieltjes transform of the first stage of service time B1(x). Now

multiplying both sides of equation (7.55) by µ1(x) and integrating over x, we

obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λ− λc(z) + α] (7.57)
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Similarly, on integrating equations (7.44) to (7.48) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)+α]x−

x∫
0

µ2(t)dt
(7.58)

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

β1(t)dt
(7.59)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

β2(t)dt
(7.60)

D̄(x, z, s) = D̄(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

θ(t)dt
(7.61)

R̄(x, z, s) = R̄(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ(t)dt
(7.62)

where P̄ (2)(0, z, s), V̄ (1)(0, z, s), V̄ (2)(0, z, s), D̄(0, z, s) and R̄(0, z, s) are

given by equations (7.50) to (7.54).

Again integrating equations (7.58) to (7.62) by parts with respect to x,

yields

P̄ (2)(z, s) =P̄ (2)(0, z, s)

[
1− B̄2(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(7.63)

V̄ (1)(z, s) =V̄ (1)(0, z, s)

[
1− V̄1(s+ λ− λC(z)

s+ λ− λC(z)

]
(7.64)

V̄ (2)(z, s) =V̄ (2)(0, z, s)

[
1− V̄2(s+ λ− λC(z)

s+ λ− λC(z))

]
(7.65)

D̄(z, s) =D̄(0, z, s)

[
1− F̄ (s+ λ− λC(z)

s+ λ− λC(z)

]
(7.66)

R̄(z, s) =R̄(0, z, s)

[
1− Ḡ(s+ λ− λC(z)

s+ λ− λC(z)

]
(7.67)

where

B̄2(s+ λ− λC(z) + α) =

∫ ∞
0

e−[s+λ−λC(z)+α]xdB2(x)

V̄1(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV1(x)
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V̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV2(x)

F̄ (s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdF (x)

Ḡ(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdG(x)

are the Laplace-Stieltjes transform of the second stage of service timeB2(x), phase

one vacation time V1(x), extended vacation time V2(x), delay time F (x) and

repair time G(x).

Now multiplying both sides of equations (7.58) to (7.62) by µ2(x), β1(x),

β2(x), θ(x) and γ(x) and integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx =P̄ (2)(0, z, s)B̄2[s+ λ− λC(z) + α] (7.68)

∞∫
0

V̄ (1)(x, z, s)β1(x)dx =V̄ (1)(0, z, s)V̄1[s+ λ− λC(z))] (7.69)

∞∫
0

V̄ (2)(x, z, s)β2(x)dx =V̄ (2)(0, z, s)V̄2[s+ λ− λC(z))] (7.70)

∞∫
0

D̄(x, z, s)θ(x)dx =D̄(0, z, s)F̄ [s+ λ− λC(z))] (7.71)

∞∫
0

R̄(x, z, s)γ(x)dx =R̄(0, z, s)Ḡ[s+ λ− λC(z))] (7.72)

Now, using equation (7.57) in (7.50), we get

P̄ (2)(0, z, s) = B̄1(a)P̄ (1)(0, z, s) (7.73)
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By using equations (7.68) and (7.73) in (7.51), we get

V̄ (1)(0, z, s) = pB̄(a)P̄ (1)(0, z, s) (7.74)

Now using equations (7.69) and (7.74) in (7.52), we get

V̄ (2)(0, z, s) = rpB̄(a)V̄1(b)P̄
(1)(0, z, s) (7.75)

Similarly, using equations (7.55), (7.58) and (7.73) in (7.53), we get

D̄(0, z, s) = αz

[
1− B̄(a)

a

]
P̄ (1)(0, z, s) (7.76)

Now using equations (7.71) and (7.76) in (7.54), we get

R̄(0, z, s) = αzF̄ (b)

[
1− B̄(a)

a

]
P̄ (1)(0, z, s) (7.77)

Using equations (7.68), (7.69) (7.70), (7.72) in (7.49), we get

zP̄ (1)(0, z, s) =[1− sQ̄(s)] + (1− p)B̄2(a)P̄ (2)(0, z, s)

+ λ(C(z)− 1)Q̄(s) + (1− r)V̄1(b)V̄ (1)(0, z, s)

+ V̄2(b)V̄
(2)(0, z, s) + Ḡ(b)R̄(0, z, s)

where

a = s+ λ− λC(z) + α, b = s+ λ− λC(z) and B̄(a) = B̄1(a)B̄2(a).

Similarly using equations (7.73) to (7.75) and (7.77) in the above equation,

we get

P̄ (1)(0, z, s) =
[1− s ¯Q(s)] + λ[C(z)− 1]Q̄(s)

Dr
(7.78)
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where

Dr =z − B̄(a)[1− p+ pV̄1(b)(1− r + rV̄2(b))]

− αz

a
F̄ (b)Ḡ(b)[1− B̄(a)]

Substituting the value of P̄ (1)(0, z, s) from equation (7.78) into equations (7.73)

to (7.77), we get

P̄ (2)(0, z, s) = B̄1(a)
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.79)

V̄ (1)(0, z, s) = pB̄(a)
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.80)

V̄ (2)(0, z, s) = rpB̄(a)V̄1(b)
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.81)

D̄(0, z, s) = αz

[
1− B̄(a)

a

]
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.82)

R̄(0, z, s) = αzF̄ (b)

[
1− B̄(a)

a

]
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.83)

Using equations (7.78) to (7.83) in (7.56), (7.63) to (7.67), we get

P̄ (1)(z, s) =
[1− B̄1(a)]

a

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.84)

P̄ (2)(z, s) = B̄1(a)
[1− B̄2(a)]

a

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.85)

V̄ (1)(z, s) = pB̄(a)
[1− V̄1(b)]

b

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.86)

V̄ (2)(z, s) = prB̄(a)V̄1(b)
[1− V̄2(b)]

b

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.87)

D̄(z, s) = αz
[1− F̄ (b)]

b

[1− B̄(a)]

a

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(7.88)

R̄(z, s) = αzF̄ (b)
[1− Ḡ(b)]

b

[1− B̄(a)]

a

[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

(7.89)

Thus P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s), V̄ (2)(z, s) D̄(z, s) and R̄(z, s) are
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completely determined from equations (7.84) to (7.89) which completes the

proof of the theorem.

7.5 The steady state results

In this section, we shall derive the steady state probability distribution for our

queueing model. These probabilities are obtained by suppressing the argument

t wherever it appears in the time-dependent analysis. This can be obtained

by applying the Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s), V̄ (2)(z, s) D̄(z, s) and

R̄(z, s) completely, we have yet to determine the unknown Q which appears

in the numerators of the right hand sides of equations (7.84) to (7.89). For

that purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) + V (1)(1) + V (2)(1) +D(1) +R(1) +Q = 1

The steady state probabilities for an M [X]/G/1 queue with two stage heteroge-

neous service, random breakdown, delayed repair and extended server vacation

with Bernoulli schedule are given by

P (1)(1) =
λE(I)[1− B̄1(α)]Q

αdr1

P (2)(1) =
λE(I)B̄1(α)[1− B̄2(α)]Q

αdr1

V (1)(1) =
λpE(I)B̄1(α)B̄2(α)E(V )Q

dr1

V (2)(1) =
λprE(I)B̄1(α)B̄2(α)E(eV )Q

dr1
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D(1) =
λE(I)(1− B̄1(α)B̄2(α))E(D)Q

dr1

R(1) =
λE(I)(1− B̄1(α)B̄2(α))E(R)Q

dr1

where
dr1 =− λpB̄1(α)B̄2(α)E(I)[E(V ) + rE(eV )]

− λE(I)

α
(1− B̄1(α)B̄2(α))(α + λE(I))

− λE(I)(1− B̄1(α)B̄2(α))(E(D) + E(R))

P (1)(1), P (2)(1), V (1)(1), V (2)(1), D(1), R(1) and Q are the steady state proba-

bilities that the server is providing first stage of service, second stage of service,

server under phase one vacation, extended vacation, delay time, repair time

and server under idle respectively without regard to the number of customers

in the system.

Thus multiplying both sides of equations (7.84) to (7.89) by s, taking limit

as s→ 0, applying Tauberian property and simplifying, we obtain

P (1)(z) =
[B̄1(f1(z))− 1](f2(z))Q

f1(z)dr
(7.90)

P (2)(z) =
f2(z)B̄1(f1(z))[B̄2(f1(z))− 1]Q

f1(z)dr
(7.91)

V (1)(z) =
pB̄1(f1(z))B̄2(f1(z))[V̄1(f2(z))− 1]Q

dr
(7.92)

V (2)(z) =
prB̄1(f1(z))B̄2(f1(z))V̄1(f2(z))[V̄2(f2(z))− 1]Q

dr
(7.93)

D(z) =
αz[F̄ (f2(z))− 1][1− B̄1(f1(z))B̄2(f1(z))]Q

f1(z)dr
(7.94)

R(z) =
αzF̄ (f2(z))[Ḡ(f2(z))− 1][1− B̄1(f1(z))B̄2(f1(z))]Q

f1(z)dr
(7.95)
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where

dr =z − B̄1(f1(z))B̄2(f1(z))[1− p+ pV̄1(f2(z))(1− r + rV̄2(f2(z))]

− αz

f1(z)
F̄ (f2(z))Ḡ(f2(z))[1− B̄1(f1(z))B̄2(f1(z))],

f1(z) = λ− λC(z) + α and f2(z) = λ− λC(z).

Let Wq(z) denote the probability generating function of the queue size

irrespective of the state of the system. Then adding equations (7.90) to (7.95),

we obtain

Wq(z) = P (1)(z) + P (2)(z) + V (1)(z) + V (2)(z) +D(z) +R(z)

Wq(z) =
[B̄1(f1(z))− 1](f2(z))Q

f1(z)dr

+
(f2(z))B̄1(f1(z))[B̄2(f1(z))− 1]Q

f1(z)dr

+
pB̄1(f1(z))B̄2(f2(z))[V̄1(f2(z))− 1]Q

dr

+
prB̄1(f1(z))B̄2(f1(z))V̄1(f2(z))[V̄2(f2(z))− 1]Q

dr

+
αz[F̄ (f2(z))− 1][1− B̄1(f1(z))B̄2(f1(z))]Q

f1(z)dr

+
αzF̄ (f2(z))[Ḡ(f2(z))− 1][1− B̄1(f1(z))B̄2(f1(z))]Q

f1(z)dr
(7.96)

we see that for z=1, Wq(z) is indeterminate of the form 0/0. Therefore, we

apply L’Hopital’s rule and on simplifying, we obtain

Wq(1) =
λE(I)Q[(1− B̄1(α)B̄2(α))N + pαB̄1(α)B̄2(α)M ]

−λE(I)[1− B̄1(α)B̄2(α)]N − λpαE(I)B̄1(α)B̄2(α)M + αB̄1(α)B̄2(α)
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where

N = 1 + α(E(D) + E(R)) and M = E(V ) + rE(eV ), C(1)= 1, C ′(1) = E(I)

is mean batch size of the arriving customers, −V̄ ′1(0) = E(V ) the mean first

phase of vacation time, −V̄ ′2(0) = E(eV ) the mean extended vacation time,

−F̄ ′(0) = E(D) the mean delay time and −Ḡ′(0) = E(R) the mean repair

time.

Therefore adding Q to the above equation and equating to 1, simplifying,

we get

Q = 1− ρ (7.97)

and hence the utilization factor ρ of the system is given by

ρ = λE(I)

[
1

αB̄1(α)B̄2(α)
+

(E(D) + (ER))

B̄1(α)B̄2(α)
− 1

α
− E(D)− E(R) + pM

]
(7.98)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (7.97) gives the probability that the server is idle.

Substituting Q from (7.97) into (7.96), we have completely and explicitly

determined Wq(z), the probability generating function of the queue size.

7.6 The average queue size and the average

waiting time

Let Lq denote the mean number of customers in the queue under the steady

state. Then

Lq =
d

dz
Wq(z) at z = 1
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since this formula gives indeterminate of the form 0/0, then we write Wq(z)

given in (7.96) as Wq(z) =
N(z)

D(z)
Q where

N(z) =− [1− B̄1(f1(z))B̄2(f1(z))][f2(z)

+ αz(1− F̄ (f2(z))Ḡ(f2(z)))]− pf1(z))B̄1(f1(z))B̄2(f1(z))

× [1− V̄1(f2(z))(1− r + rV̄2(f2(z))]

D(z) =f1(z)[z − B̄1(f1(z))B̄2(f1(z))(1− p+ pV̄1(f2(z))(1− r + rV̄2(f2(z)))]

− αzF̄ (f2(z))Ḡ(f2(z))[1− B̄1(f1(z))B̄2(f1(z))]

N ′(z) =[B̄′1(f1(z))f ′1(z)B̄2(f1(z)) + B̄1(f1(z))B̄′2(f1(z))f ′1(z)]

× [f2(z) + αz(1− F̄ (f2(z))Ḡ(f2(z)))]− [1− B̄1(f1(z))B̄2(f1(z))]

× [f ′2(z) + α(1− F̄ (f2(z))Ḡ(f2(z)))

− αz(F̄ ′(f2(z))f ′2(z)Ḡ(f2(z)) + F̄ (f2(z))Ḡ′(f2(z))f ′2(z))]

− p[1− V̄1(f2(z))(1− r + rV̄2(f2(z))]

× [f ′1(z))B̄1(f1(z))B̄2(f1(z))

+ f1(z)B̄′1(f1(z))f ′1(z)B̄2(f1(z)) + f1(z)B̄1(f1(z))B̄′2(f1(z))f ′1(z)]

+ pf1(z)B̄1(f1(z))B̄2(f1(z))[V̄ ′1(f2(z))f ′2(z)(1− r + rV̄2(f2(z))

+ V̄1(f2(z))rV̄ ′2(f2(z))f ′2(z)]

D′(z) =f ′1(z)[z − B̄1(f1(z))B̄2(f1(z))(1− p+ pV̄1(f2(z))

(1− r + rV̄2(f2(z)))] + f1(z)[1− (B̄′1(f1(z))f ′1(z)B̄2(f1(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′1(z))(1− p+ pV̄1(f2(z))

× (1− r + rV̄2(f2(z)))− B̄1(f1(z))B̄2(f1(z))

× (pV̄ ′1(f2(z))f ′2(z)(1− r + rV̄2(f2(z)))

+ pV̄1(f2(z))rV̄ ′2(f2(z))f ′2(z))]

− αF̄ (f2(z))Ḡ(f2(z))[1− B̄1(f1(z))B̄2(f1(z))]

− αz[F̄ ′(f2(z))f ′2(z)Ḡ(f2(z)) + F̄ (f2(z))Ḡ′(f2(z))f ′2(z))]
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× [1− B̄1(f1(z))B̄2(f1(z))] + αzF̄ (f2(z))Ḡ(f2(z))

× [B̄′1(f1(z))f ′1(z)B̄2(f1(z)) + B̄1(f1(z))B̄′2(f1(z))f ′1(z)]

Then, we use

Lq = lim
z→1

d

dz
Wq(z)

= lim
z→1

[
D′(z)N ′′(z)−N ′(z)D′′(z)

2(D′(z))2

]
Q

=

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (7.99)

where primes and double primes in the above equation denote the first and

second derivatives at z = 1 respectively. Carrying out the derivative at z = 1,

we have

N ′(1) =λE(I)[(1− B̄1(α)B̄2(α))N + pαB̄1(α)B̄2(α)M ] (7.100)

N ′′(1) =(λE(I))2[α(1− B̄1(α)B̄2(α))[E(D2) + E(R2)

+ 2E(D)E(R)] + 2[B̄′1(α)B̄2(α) + B̄1(α)B̄′2(α)]N

+ pαB̄1(α)B̄2(α)[E(V 2) + 2rE(V )E(eV ) + rE(eV 2)]

− 2pM(B̄1(α)B̄2(α) + αB̄′1(α)B̄2(α) + αB̄1(α)B̄′2(α))]

+ λE(I(I − 1))[(1− B̄1(α)B̄2(α))N + pαB̄1(α)B̄2(α)M ]

+ 2λαE(I)[1− B̄1(α)B̄2(α)](E(D) + E(R)) (7.101)

D′(1) =− λE(I)[1− B̄1(α)B̄2(α)]N

− λpαE(I)B̄1(α)B̄2(α)M + αB̄1(α)B̄2(α) (7.102)

D′′(1) =− (λE(I))2B̄1(α)B̄2(α)[−2pM + αp(E(V 2)

+ 2rE(V )E(eV ) + rE(eV 2))

− α(E(D2) + E(R2) + 2E(D)E(R))]

− α(λE(I))2[E(D2) + E(R2) + 2E(D)E(R)]
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− λE(I(I − 1))[(1− B̄1(α)B̄2(α))N + αpB̄1(α)B̄2(α)M ]

− 2(λE(I))2[B̄′1(α)B̄2(α) + B̄1(α)B̄′2(α)](N − αpM)

− 2λE(I)[1 + α(E(D) + E(R))(1− B̄1(α)B̄2(α))

+ α(B̄′1(α)B̄2(α) + B̄1(α)B̄′2(α))] (7.103)

where E(V 2), E(R2), E(D2), E(eV 2) are the second moment of phase one

vacation time, repair time, delay time and the extended vacation time respec-

tively. E(I(I − 1)) is the second factorial moment of the batch size of arriving

customers.

Then if we substitute the values N ′(1), N ′′(1), D′(1), D′′(1) from equations

(7.100) to (7.103) into equation (7.99), we obtain Lq in the closed form.

Further, we find the average system size L by using Little’s formula. Thus

we have

L = Lq + ρ (7.104)

where Lq has been found by equation (7.99) and ρ is obtained from equation

(7.98).

Let Wq and W denote the average waiting time in the queue and in the

system respectively. Then by using Little’s formula, we obtain

Wq =
Lq
λ

W =
L

λ

where Lq and L have been found in equations (7.99) and (7.104).

7.7 Particular cases

Case 1: If there is no delay for repairs to start, no extended vacation and no

177



second stage service i.e, E(D)=0, F̄ (b) = 1, r =0 and B̄2(α) = 1. Then our

model reduces to a single server M [X]/G/1 queue with random breakdown,

phase one vacation.

In this case, we find the idle probability Q, utilization factor ρ and the

average queue size Lq can be simplified to the following expressions.

Q =1− ρ

ρ =λE(I)[
1

αB̄1(α)
+
E(R)

B̄1(α)
− 1

α
− E(R) + pE(V )]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where
N ′(1) =λE(I)[(1− B̄1(α))(1 + αE(R)) + pαB̄1(α)E(V )]

N ′′(1) =(λE(I))2[α(1− B̄1(α))E(R2) + 2B̄′1(α)E(R)

+ αpB̄1(α)E(V 2)− 2pE(V )(B̄1(α) + αB̄′1(α))]

+ λE(I(I − 1))[(1− B̄1(α))(1 + αE(R))

+ pαB̄1(α)E(V )] + 2λαE(I)E(R)[1− B̄1(α)]

D′(1) =− λE(I)[1− B̄1(α)][1 + αE(R)]

− λpαE(I)B̄1(α)E(V ) + αB̄1(α)

D′′(1) =− (λE(I))2B̄1(α)[αpE(V 2)− 2pE(V )− αE(R2)]

− α(λE(I))2E(R2)− λE(I(I − 1))

× [(1− B̄1(α))(1 + αE(R)) + αpB̄1(α)(E(V ))]

− 2(λE(I))2B̄′1(α)[1− pα(E(V )) + αE(R)]

− 2λE(I)[1 + αE(R)(1− B̄1(α)) + αB̄′1(α)]

In the above equations if repair time is exponentially distributed then the

result coincide with the result given by Maraghi et al. (2009).
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Case 2: If there is no extended vacation and no second stage service i.e,

r =0 and B̄2(α) = 1. Then our model reduces to a single server M [X]/G/1

queue with random breakdown, delayed repairs and phase one vacation.

In this case we find the idle probability Q, utilization factor ρ and the

average queue size Lq can be simplified to the following expressions.

Q =1− ρ

ρ =λE(I)

[
1

αB̄1(α)
+

(E(D) + (ER))

B̄1(α)
− 1

α
− E(D)− E(R) + pE(V )

]
Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)[(1− B̄1(α))(1 + α(E(D) + E(R)))

+ pαB̄1(α)E(V )]

N ′′(1) =(λE(I))2[α(1− B̄1(α))(E(D2) + E(R2) + 2E(D)E(R))]

+ 2B̄′1(α)[1 + α(E(D) + E(R))]

+ pαB̄1(α)E(V 2)− 2pE(V )(B̄1(α) + αB̄′1(α))

+ λE(I(I − 1))[(1− B̄1(α))(1 + α(E(D) + E(R)))

+ pαB̄1(α)E(V )]

+ 2λαE(I)[1− B̄1(α)][E(D) + E(R)]

D′(1) =− λE(I)[1− B̄1(α)][1 + α(E(D) + E(R))]

− λpαE(I)B̄1(α)E(V ) + αB̄1(α)

D′′(1) =− (λE(I))2B̄1(α)[−2pE(V ) + αpE(V 2)

− α(E(D2) + E(R2) + 2E(D)E(R))]

− α(λE(I))2[E(D2) + E(R2) + 2E(D)E(R)]

− λE(I(I − 1))[(1− B̄1(α))(1 + α(E(D) + E(R)))

179



+ αpB̄1(α)E(V )]− 2(λE(I))2B̄′1(α)

× [1− pαE(V ) + α(E(D) + E(R))]

− 2λE(I)[1 + α(E(D) + E(R))(1− B̄1(α)) + α(B̄′1(α))]

The above equations coincide with result given by Khalaf et al. (2010).

Case 3: If there is no delay for repairs to start, no extended vacation.

Once the system breakdown, if its repairs start immediately and there is no

delay time i.e, E(D)=0, F̄ (b) = 1. Once the first phase of vacation finish, the

server is ready to start the service and there is no extended vacation time i.e,

r=0.

If E(I) = 1, E(I(I − 1)) = 0 then our model reduces to a single server

M/G/1 queue with two stage service with random breakdown, delayed repairs

and phase one vacation.

In this case we find the idle probability Q, utilization factor ρ and the

average queue size Lq can be simplified to the following expressions.

Q =1− ρ

ρ =λ[
1

αB̄1(α)B̄2(α)
+

E(R)

B̄1(α)B̄2(α)
− 1

α
− E(R) + pE(V )]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λ[(1− B̄1(α)B̄2(α))(1 + αE(R))

+ pαB̄1(α)B̄2(α)E(V )]

N ′′(1) =λ2[α(1− B̄1(α)B̄2(α))E(R2)

+ 2(B̄′1(α)B̄2(α) + B̄1(α)B̄′2(α))(1 + αE(R))
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+ αpB̄1(α)B̄2(α)E(V 2)− 2pE(V )(B̄1(α)B̄2(α)

+ αB̄′1(α)B̄2(α) + αB̄1(α)B̄′2(α))]

+ 2λα(1− B̄1(α)B̄2(α))E(R)

D′(1) =− λ[1− B̄1(α)B̄2(α)](1 + αE(R))

+ αB̄1(α)B̄2(α)− λpαB̄1(α)B̄2(α)E(V )

D′′(1) =− λ2B̄1(α)B̄2(α)[αpE(V 2)− 2pE(V )− αE(R2)]− λ2αE(R2)

− 2λ2[B̄′1(α)B̄2(α) + B̄1(α)B̄′2(α)][1− pαE(V ) + αE(R)]

− 2λ[1 + αE(R)(1− B̄1(α)B̄2(α))

+ αB̄′1(α)B̄2(α) + αB̄1(α)B̄′2(α)]

If repair times are exponentially distributed and p =1, then the above results

coincide with Thangaraj and Vanitha (2010a).

7.8 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service times, vacation times, delay times, extended vacation times and

repair times are exponentially distributed. .

In order to see the effect of various parameters on server’s idle time Q,

utilization factor ρ and various other queue characteristics such as L, W ,

Lq,Wq. We base our numerical example on the result found in case 3.

For this purpose in Table 7.1, we can choose the following values:

µ1 = 9, µ2 = 8, α = 1, β = 4, γ = 7 and p = 0.2 while λ varies from 0.1 to

10 such that the stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the average queue size, system size, the

average waiting time in the queue and the system of our queueing model are
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all increases.

Table 7.1: Computed values of various queue characteristics

λ Q ρ Lq L Wq W

0.1 0.966400 0.033600 0.002305 0.035876 0.023045 0.358760
0.2 0.932900 0.067100 0.014198 0.081341 0.070990 0.406705
0.3 0.899300 0.100700 0.032922 0.133637 0.109741 0.445456
0.4 0.865700 0.134300 0.056262 0.190548 0.140655 0.476370
0.5 0.832100 0.167900 0.082436 0.250293 0.164872 0.500586
0.6 0.798600 0.201400 0.110012 0.311441 0.183354 0.519068
0.7 0.765000 0.235000 0.137841 0.372841 0.196916 0.532630
0.8 0.731400 0.268600 0.165002 0.433573 0.206252 0.541960
0.9 0.697900 0.302100 0.190758 0.492900 0.211953 0.547667
1.0 0.664300 0.335700 0.214524 0.550239 0.214524 0.550239

Table 7.2: Computed values of various queue characteristics

β Q ρ Lq L Wq W

1 0.888000 0.112000 0.079153 0.191184 0.263843 0.637280
2 0.903000 0.097000 0.074950 0.171981 0.249833 0.573270
3 0.908000 0.092000 0.072672 0.164703 0.242239 0.549009
4 0.910500 0.087500 0.071358 0.160889 0.237859 0.536297
5 0.912000 0.088000 0.070512 0.158543 0.235040 0.528478
6 0.913000 0.087000 0.069924 0.156955 0.233081 0.523185
7 0.913700 0.086300 0.069492 0.155809 0.231641 0.519364
8 0.914200 0.085800 0.069162 0.154943 0.230540 0.516477
9 0.914600 0.085400 0.068901 0.154265 0.229670 0.514218
10 0.915000 0.085000 0.068690 0.153721 0.228966 0.512403

In Table 7.2, we can choose the following arbitrary values: µ1 = 9,

µ2 = 8, α = 0.5, λ = 0.3, γ = 4 and p = 0.1 while β varies from 1 to 10 such

that the stability condition is satisfied.

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, average queue size, system size,

average waiting time in the queue and system of our queueing model are all

decreases.
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CHAPTER

EIGHT

M [X]/G/1 QUEUE WITH THREE STAGE SERVICE,

SERVER VACATIONS AND SERVICE

INTERRUPTIONS

8.1 Introduction

Queueing system are powerful tool for modeling communication networks,

transportation networks, production lines, operating systems, etc. In recent

years, computer networks and data communication systems are the fastest

growing technologies, which lead to glorious development in many applications.

For example, the swift advance in internet, audio data traffic, video data

traffic, etc. Many authors have discussed about two stages of services. In

this chapter we have developed a three stages of services which will be more

advantageous in large scale industries.

Queueing models with vacations have been investigated by many authors

including Fuhrmann and Cooper (1985), Scholl and Kleinrock (1983), Shan-

thikumar (1988), Rosenberg and Yechiali (1993) and Arivudainambi and

Godhandaraman (2012). Service interruptions are considered by Avi -Itzhak

A part of this chapter is published with entitled:
Batch arrival queue with three stages of service having server vacations and service
Interruptions – Advances and application in statistics, 3(1):111–126, 2013.
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and Naor (1963), Thiruvengadan (1963), Federgruen and Green (1986), Basker

et al. (2011) and Balamani (2012). Triple stages of service with service

interruptions, have studied by Maragatha Sundari and Srinivasan (2012b).

In this chapter, we consider a M [X]/G/1 queue with three stage of hetero-

geneous service provided by a single server with general (arbitrary) service

time distribution, subject to random interruption and server vacation. Each

customer undergoes three stages of heterogeneous service. However at the com-

pletion of third stage of service, the server will take compulsory vacation. After

compulsory vacation the server may take optional vacation with probability p

or return back to the system with probability (1− p) for next service. While

serving the customer, we assume interruptions arrive at random and assumed

to occur according to a Poisson process with mean rate α. Let β be the server

rate of attending interruption which are exponentially distributed. Also we

assume, the customer whose service is interrupted goes back to the head of the

queue where the arrivals are Poisson. We assume that the customers arrive

to the system in batches of variable size, but are served one by one on a first

come - first served basis.

Here we derive time dependent probability generating functions in terms

of Laplace transforms. We also derive the mean queue size, system size and

mean waiting time in the queue and the system. Some particular cases and

numerical results are also discussed.

The rest of the chapter is organized as follows. Model description is given in

section 8.2. Definitions and equations governing the system are given in section

8.3 and 8.4 respectively. The time dependent solution have been obtained in

section 8.5 and corresponding steady state results have been derived explicitly

in section 8.6. Mean queue size and mean waiting time are computed in section

8.7. Some particular cases and numerical results are discussed in section 8.8

and 8.9 respectively.
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8.2 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t + dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) A single server provides three stages of different service for each customer,

with the service times having general (arbitrary) distribution. Let Bi(v)

and bi(v) (i =1, 2, 3) be the distribution and the density function of the

first stage, second stage and third stage service respectively.

c) Let µi(x)dx be the conditional probability density of service completion

during the interval (x, x+ dx], given that the elapsed service time is x,

so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2, 3,

and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2, 3.

d) As soon as the completion of each third stage of service, the server will

take compulsory vacation. After completion of compulsory vacation the

server may take optional vacation with probability p or return back to

the system with probability 1− p. On returning from vacation the server

starts instantly serving the customer at the head of the queue, if any.
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e) The server’s vacation time follows a general (arbitrary) distribution with

distribution function Vj(t) and density function vj(t). Let γj(x)dx be

the conditional probability density of vacation completion during the

interval (x, x+ dx], given that the elapsed vacation time is x, so that

γj(x) =
vj(x)

1− Vj(x)
, j = 1, 2,

and therefore,

vj(t) = γj(t)e
−

t∫
0

γj(x)dx
, j = 1, 2.

h) While serving the customers, we assume interruptions arrive at random

with rate α > 0. Let β be the server rate of attending interruption

which are exponentially distributed. Once the interruption arrives, the

customer whose service is interrupted comes back to the head of the

queue.

i) Various stochastic processes involved in the system are assumed to be

independent of each other.

8.3 Definitions

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing first

stage of service and there are n (n ≥ 0) customers in the queue exclud-

ing the one being served and the elapsed service time is x. Consequently

P
(1)
n (t) =

∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the first stage of service

irrespective of the value of x.

P
(2)
n (x, t) = Probability that at time t, the server is active providing second
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stage of service and there are n (n ≥ 0) customers in the queue exclud-

ing the one being served and the elapsed service time is x. Consequently

P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the second stage of

service irrespective of the value of x.

P
(3)
n (x, t) = Probability that at time t, the server is active providing third

stage of service and there are n (n ≥ 0) customers in the queue exclud-

ing the one being served and the elapsed service time is x. Consequently

P
(3)
n (t) =

∞∫
0

P
(3)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding one customer in the third stage of service

irrespective of the value of x.

V
(1)
n (x, t) = Probability that at time t, the server is under compulsory

vacation with elapsed vacation time is x and there are n (n ≥ 0) customers

in the queue. Consequently V
(1)
n (t)=

∞∫
0

V
(1)
n (x, t)dx denotes the probability

that at time t there are n customers in the queue and the server is under

compulsory vacation irrespective of the value of x.

V
(2)
n (x, t) = Probability that at time t, the server is under optional vacation

with elapsed vacation time is x and there are n (n ≥ 0) customers in the queue.

Consequently V
(2)
n (t)=

∞∫
0

V
(2)
n (x, t)dx denotes the probability that at time t

there are n customers in the queue and the server is under optional vacation

irrespective of the value of x.

Rn(t)= Probability that at time t, the server is inactive due to the arrival

of interruption while there are n (n ≥ 0) customers in the queue.
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Q(t) = Probability that at time t, there are no customers in the system

and the server is idle but available in the system.

8.4 Equations governing the system

The model is then, governed by the following set of differential - difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + [λ+ µ1(x) + α]P

(1)
0 (x, t) =0 (8.1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x) + α]P (1)

n (x, t) =λ
n∑
k=1

ckP
(1)
n−k(x, t),

n ≥ 1 (8.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x) + α]P

(2)
0 (x, t) =0 (8.3)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x) + α]P (2)

n (x, t) =λ
n∑
k=1

ckP
(2)
n−k(x, t),

n ≥ 1 (8.4)

∂

∂x
P

(3)
0 (x, t) +

∂

∂t
P

(3)
0 (x, t) + [λ+ µ3(x) + α]P

(3)
0 (x, t) =0 (8.5)

∂

∂x
P (3)
n (x, t) +

∂

∂t
P (3)
n (x, t) + [λ+ µ3(x) + α]P (3)

n (x, t) =λ
n∑
k=1

ckP
(3)
n−k(x, t),

n ≥ 1 (8.6)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ+ γ1(x)]V

(1)
0 (x, t) = 0 (8.7)

∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ γ1(x)]V (1)

n (x, t) =λ
n∑
k=1

ckV
(1)
n−k(x, t),

n ≥ 1 (8.8)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ+ γ2(x)]V

(2)
0 (x, t) = 0 (8.9)

∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ γ2(x)]V (2)

n (x, t) =λ
n∑
k=1

ckV
(2)
n−k(x, t),

n ≥ 1 (8.10)
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d

dt
R0(t) =− (λ+ β)R0(t) (8.11)

d

dt
Rn(t) =− (λ+ β)Rn(t) + λ

n∑
k=1

ckRn−k(t)

+ α

∫ ∞
0

P
(1)
n−1(x, t)dx+ α

∫ ∞
0

P
(2)
n−1(x, t)dx

+ α

∫ ∞
0

P
(3)
n−1(x, t)dx (8.12)

d

dt
Q(t) =− λQ(t) + (1− p)

∫ ∞
0

V
(1)
0 (x, t)γ1(x)dx

+ βR0(t) +

∫ ∞
0

V
(2)
0 (x, t)γ2(x)dx (8.13)

The above set of equations are to be solved subject to the following boundary

conditions:

P (1)
n (0, t) = λcn+1Q(t) + βRn+1(t) + (1− p)

∫ ∞
0

V
(1)
n+1(x, t)γ1(x)dx

+

∫ ∞
0

V
(2)
n+1(x, t)γ2(x)dx, n ≥ 0 (8.14)

P (2)
n (0, t) =

∫ ∞
0

P (1)
n (x, t)µ1(x)dx, n ≥ 0 (8.15)

P (3)
n (0, t) =

∫ ∞
0

P (2)
n (x, t)µ2(x)dx, n ≥ 0 (8.16)

V (1)
n (0, t) =

∫ ∞
0

P (3)
n (x, t)µ3(x)dx, n ≥ 0 (8.17)

V (2)
n (0, t) = p

∫ ∞
0

V (1)
n (x, t)γ1(x)dx, n ≥ 0 (8.18)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

P (i)
n (0) = V (j)

n (0) = Rn(0) = 0, for n ≥ 0,

i = 1, 2, 3; j = 1, 2 and Q(0) = 1. (8.19)
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8.5 Generating functions of the queue length:

The time-dependent solution

In this section, we obtain the transient solution for the above set of differential-

difference equations.

Theorem: The system of differential difference equations to describe a batch

arrival queue with three stages of heterogeneous service, server vacations and

service interruptions are given by equations (8.1) to (8.18) with initial condition

(8.19) and the generating functions of transient solution are given by equations

(8.85) to (8.90).

Proof : We define the probability generating functions, for i =1, 2, 3;

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t), C(z) =

∞∑
n=1

cnz
n;

(8.20)

V (j)(x, z, t) =
∞∑
n=0

znV (j)
n (x, t); V (j)(z, t) =

∞∑
n=0

znV (j)
n (t); j = 1, 2x > 0

(8.21)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (8.22)

Taking the Laplace transform of equations (8.1) to (8.18) and using (8.19), we

obtain
∂

∂x
P̄

(1)
0 (x, s) + [s+ λ+ α + µ1(x)]P̄

(1)
0 (x, s) =0 (8.23)

∂

∂x
P̄ (1)
n (x, s) + [s+ λ+ α + µ1(x)]P̄ (1)

n (x, s) =λ
n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1

(8.24)

∂

∂x
P̄

(2)
0 (x, s) + [s+ λ+ α + µ2(x)]P̄

(2)
0 (x, s) =0 (8.25)
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∂

∂x
P̄ (2)
n (x, s) + [s+ λ+ α + µ2(x)]P̄ (2)

n (x, s) =λ
n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1

(8.26)

∂

∂x
P̄

(3)
0 (x, s) + [s+ λ+ α + µ3(x)]P̄

(3)
0 (x, s) =0 (8.27)

∂

∂x
P̄ (3)
n (x, s) + [s+ λ+ α + µ3(x)]P̄ (3)

n (x, s) =λ
n∑
k=1

ckP̄
(3)
n−k(x, s), n ≥ 1

(8.28)
∂

∂x
V̄

(1)
0 (x, s) + [s+ λ+ γ1(x)]V̄

(1)
0 (x, s) =0 (8.29)

∂

∂x
V̄ (1)
n (x, s) + [s+ λ+ γ1(x)]V̄ (1)

n (x, s) =λ
n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1 (8.30)

∂

∂x
V̄

(2)
0 (x, s) + [s+ λ+ γ2(x)]V̄

(2)
0 (x, s) =0 (8.31)

∂

∂x
V̄ (2)
n (x, s) + [s+ λ+ γ2(x)]V̄ (2)

n (x, s) =λ
n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1 (8.32)

(s+ λ+ β)R̄0(s) = 0 (8.33)

(s+ λ+ β)R̄n(s) = λ
n∑
k=1

ckR̄n−k(s) + α

∫ ∞
0

P̄
(1)
n−1(x, s)dx

+ α

∫ ∞
0

P̄
(2)
n−1(x, s)dx+ α

∫ ∞
0

P̄
(3)
n−1(x, s)dx, n ≥ 1

(8.34)

[s+ λ]Q̄(s) = 1 + βR̄0(s) + (1− p)
∫ ∞
0

V̄
(1)
0 (x, s)γ1(x)dx

+

∫ ∞
0

V̄
(2)
0 (x, s)γ2(x)dx (8.35)

P̄ (1)
n (0, s) = λcn+1Q̄(s) + βR̄n+1(s)

+ (1− p)
∫ ∞
0

γ1(x)V̄
(1)
n+1(x, s)dx

+

∫ ∞
0

γ2(x)V̄
(2)
n+1(x, s)dx, n ≥ 0 (8.36)

P̄ (2)
n (0, s) =

∫ ∞
0

µ1(x)P̄ (1)
n (x, s)dx, n ≥ 0 (8.37)

P̄ (3)
n (0, s) =

∫ ∞
0

µ2(x)P̄ (2)
n (x, s)dx, n ≥ 0 (8.38)
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V̄ (1)
n (0, s) =

∫ ∞
0

µ3(x)P̄ (3)
n (x, s)dx, n ≥ 0 (8.39)

V̄ (2)
n (0, s) =p

∫ ∞
0

γ1(x)V̄ (1)
n (x, s)dx, n ≥ 0 (8.40)

Now multiplying equations (8.24), (8.26), (8.28), (8.30), (8.32) and (8.34) by

zn and summing over n from 1 to∞, adding to equations (8.23), (8.25), (8.27),

(8.29), (8.31), (8.33) and using the generating functions defined in (8.20) and

(8.21), we get

∂

∂x
P̄ (1)(x, z, s) + [s+ λ− λC(z) + α + µ1(x)]P̄ (1)(x, z, s) = 0 (8.41)

∂

∂x
P̄ (2)(x, z, s) + [s+ λ− λC(z) + α + µ2(x)]P̄ (2)(x, z, s) = 0 (8.42)

∂

∂x
P̄ (3)(x, z, s) + [s+ λ− λC(z) + α + µ3(x)]P̄ (3)(x, z, s) = 0 (8.43)

∂

∂x
V̄ (1)(x, z, s) + [s+ λ− λC(z) + γ1(x)]V̄ (1)(x, z, s) = 0 (8.44)

∂

∂x
V̄ (2)(x, z, s) + [s+ λ− λC(z) + γ2(x)]V̄ (2)(x, z, s) = 0 (8.45)

[s+ λ− λC(z) + β]R̄(z, s) = αz

∫ ∞
0

P̄ (1)(x, z, s)dx+ αz

∫ ∞
0

P̄ (2)(x, z, s)dx

+ αz

∫ ∞
0

P̄ (3)(x, z, s)dx, (8.46)

For the boundary conditions, we multiply both sides of equation (8.36) by zn

summing over n from 0 to ∞, and use the equations (8.20) and (8.21), we get

zP̄ (1)(0, z, s) =λC(z)Q̄(s) + βR̄(z, s)− βR̄0(s)

+ (1− p)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx

+

∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx

− (1− p)
∫ ∞
0

γ1(x)V̄
(1)
0 (x, s)dx

−
∫ ∞
0

γ2(x)V̄
(2)
0 (x, s) dx (8.47)
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Using equation (8.35) in (8.47), we get

zP̄ (1)(0, z, s) = [1− sQ̄(s)] + λ(C(z)− 1)Q̄(s) + βR̄(z, s)

+(1− p)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx+

∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx (8.48)

Performing similar operation on equations (8.37) to (8.40), we get

P̄ (2)(0, z, s) =

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx (8.49)

P̄ (3)(0, z, s) =

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx (8.50)

V̄ (1)(0, z, s) =

∫ ∞
0

µ3(x)P̄ (3)(x, z, s)dx (8.51)

V̄ (2)(0, z, s) =p

∫ ∞
0

γ2(x)V̄ (1)(x, z, s)dx (8.52)

Integrating equation (8.41) between 0 and x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λ−λC(z)+α]x−

x∫
0

µ1(t)dt
(8.53)

where P (1)(0, z, s) is given by equation (8.48).

Again integrating equation (8.53) by parts with respect to x, yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(8.54)

where

B̄1(s+ λ− λC(z) + α) =

∞∫
0

e−[s+λ−λC(z)+α]xdB1(x) (8.55)

is the Laplace-Stieltjes transform of the first stage of service time B1(x).

Now multiplying both sides of equation (8.53) by µ1(x) and integrating

over x, we obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λ− λc(z) + α] (8.56)
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Similarly, on integrating equations (8.42) to (8.45) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λ−λC(z)+α]x−

x∫
0

µ2(t)dt
(8.57)

P̄ (3)(x, z, s) = P̄ (3)(0, z, s)e
−[s+λ−λC(z)+α]x−

x∫
0

µ3(t)dt
(8.58)

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ1(t)dt
(8.59)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ2(t)dt
(8.60)

where P̄ (2)(0, z, s), P̄ (3)(0, z, s), V̄ (1)(0, z, s) and V̄ (2)(0, z, s) are given by

equations (8.49) to (8.52).

Again integrating equations (8.57) to (8.60) by parts with respect to x,

yields

P̄ (2)(z, s) =P̄ (2)(0, z, s)

[
1− B̄2(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(8.61)

P̄ (3)(z, s) =P̄ (3)(0, z, s)

[
1− B̄3(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

]
(8.62)

V̄ (1)(z, s) =V̄ (1)(0, z, s)

[
1− V̄1(s+ λ− λC(z))

s+ λ− λC(z)

]
(8.63)

V̄ (2)(z, s) =V̄ (2)(0, z, s)

[
1− V̄2(s+ λ− λC(z))

s+ λ− λC(z)

]
(8.64)

where

B̄2(s+ λ− λC(z) + α) =

∫ ∞
0

e−[s+λ−λC(z)+α]xdB2(x) (8.65)

B̄3(s+ λ− λC(z) + α) =

∫ ∞
0

e−[s+λ−λC(z)+α]xdB3(x) (8.66)

V̄1(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV1(x) (8.67)

V̄2(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV2(x) (8.68)

are the Laplace-Stieltjes transform of the second stage of service time B2(x),

third stage of service time B3(x), compulsory vacation time V1(x) and optional
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vacation time V2(x) respectively.

Now multiplying both sides of equations (8.57) to (8.60) by µ2(x), µ3(x),

γ1(x) and γ2(x) and integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λ− λC(z) + α] (8.69)

∞∫
0

P̄ (3)(x, z, s)µ3(x)dx = P̄ (3)(0, z, s)B̄3[s+ λ− λC(z) + α] (8.70)

∞∫
0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s+ λ− λC(z)] (8.71)

∞∫
0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s+ λ− λC(z)] (8.72)

Using equation (8.56), equation (8.49) reduces to

P̄ (2)(0, z, s) = P̄ (1)(0, z, s)B̄1(a) (8.73)

Now using equations (8.69) and (8.73) in (8.50), we get

P̄ (3)(0, z, s) = P̄ (1)(0, z, s)B̄1(a)B̄2(a) (8.74)

By using equations (8.70) and (8.74) in (8.51), we get

V̄ (1)(0, z, s) = B̄1(a)B̄2(a)B̄3(a)P̄ (1)(0, z, s) (8.75)

Using equations (8.71) and (8.75), we can write equation (8.52) as

V̄ (2)(0, z, s) = pB̄1(a)B̄2(a)B̄3(a)V̄1(b)P̄
(1)(0, z, s) (8.76)

where a = s+ λ− λC(z) + α and b = s+ λ− λC(z).
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Now using equations (8.71), (8.72), (8.75) and (8.76) in (8.48), we get

[z − (1− p+ pV̄2(b))B̄1(a)B̄2(a)B̄3(a)V̄1(b)]P̄
(1)(0, z, s) =

(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s) + βR̄(z, s) (8.77)

Using equations (8.53), (8.57) and (8.58) in (8.46), we get

R̄(z, s) =
αz

ac
[1− B̄1(a)B̄2(a)B̄3(a)]P̄ (1)(0, z, s) (8.78)

Similarly, using equations (8.78) in (8.77), we get

P̄ (1)(0, z, s) =
[1− sQ̄(s)] + λ(C(z)− 1)Q̄(s)

Dr
(8.79)

where

Dr = z − (1− p+ pV̄2(b))B̄1(a)B̄2(a)B̄3(a)V̄1(b)

− αβz

ac
[1− B̄1(a)B̄2(a)B̄3(a)], (8.80)

where c = s+ λ− λC(z) + β.

Substituting the value of P̄ (1)(0, z, s) from equation (8.79) into equations

(8.73), (8.74), (8.75), (8.76) and (8.78) we get

P̄ (2)(0, z, s) =
B̄1(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(8.81)

P̄ (3)(0, z, s) =
B̄1(a)B̄2(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(8.82)

V̄ (1)(0, z, s) =
B̄1(a)B̄2(a)B̄3(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(8.83)

V̄ (2)(0, z, s) =
pB̄1(a)B̄2(a)B̄3(a)V̄1(b)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(8.84)

R̄(z, s) =
αz

ac

(1− B̄1(a)B̄2(a)B̄3(a))

Dr
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (8.85)
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Using equations (8.79), (8.81) to (8.84) in (8.54), (8.61) to (8.64), we get

P̄ (1)(z, s) =
[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

[1− B̄1(a)]

a
(8.86)

P̄ (2)(z, s) =
B̄1(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

[1− B̄2(a)]

a
(8.87)

P̄ (3)(z, s) =
B̄1(a)B̄2(a)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr

[1− B̄3(a)]

a
(8.88)

V̄ (1)(z, s) =
B̄1(a)B̄2(a)B̄3(a)

Dr

[1− V̄1(b)]
b

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (8.89)

V̄ (2)(z, s) =
pB̄1(a)B̄2(a)B̄3(a)V̄1(b)

Dr

[1− V̄2(b)]
b

× [(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)] (8.90)

where Dr is given by equation (8.80). Thus R̄(z, s), P̄ (1)(z, s), P̄ (2)(z, s), P̄ (3)(z, s),

V̄ (1)(z, s) and V̄ (2)(z, s) are completely determined from equations (8.85) to

(8.90) which completes the proof of the theorem.

8.6 The steady state results

In this section, we shall derive the steady state probability distribution for

our queueing model. To define the steady state probabilities, we suppress the

argument t wherever it appears in the time-dependent analysis. This can be

obtained by applying the well-known Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t) (8.91)

In order to determine R̄(z, s), P̄ (1)(z, s), P̄ (2)(z, s), P̄ (3)(z, s), V̄ (1)(z, s)

and V̄ (2)(z, s) completely, we have yet to determine the unknown Q which

appears in the numerators of the right hand sides of equations (8.85) to (8.90).
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For that purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) + P (3)(1) + V (1)(1) + V (2)(1) +R(1) +Q = 1

The steady state probabilities for M [X]/G/1 queue with three stage heteroge-

neous service, server vacations and service interruption are given by

P (1)(1) =
λβE(I)[1− B̄1(α)]Q

dr

P (2)(1) =
λβE(I)B̄1(α)[1− B̄2(α)]Q

dr

P (3)(1) =
λβE(I)B̄1(α)B̄2(α)[1− B̄3(α)]Q

dr

V (1)(1) =
λαβE(I)B̄1(α)B̄2(α)B̄3(α)E(V1)Q

dr

V (2)(1) =
pλαβE(I)B̄1(α)B̄2(α)B̄3(α)E(V2)Q

dr

R(1)(1) =
λαE(I)(1− B̄1(α)B̄2(α)B̄3(α))Q

dr

where

dr = λ(α+ β)E(I)(B̄(α)− 1) +αβB̄(α)[1− λE(I)(E(V1) + pE(V2))] (8.92)

and B̄(α) = B̄1(α)B̄2(α)B̄3(α).

P (1)(1), P (2)(1), P (3)(1), V (1)(1), V (2)(1), R(1) and Q are the steady state

probabilities that the server is providing first stage of service, second stage

of service, third stage of service, server under compulsory vacation, optional

vacation, service interruption and server under idle respectively without regard

to the number of customers in the system.

Thus multiplying both sides of equations (8.85) to (8.90) by s, taking limit
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as s→ 0, applying property (8.91) and simplifying, we obtain

P (1)(z) =
f2(z)f3(z)[B̄1(f1(z))− 1]Q

D(z)
(8.93)

P (2)(z) =
f2(z)f3(z)B̄1(f1(z))[B̄2(f1(z))− 1]Q

D(z)
(8.94)

P (3)(z) =
f2(z)f3(z)B̄1(f1(z))B̄2(f1(z))[B̄3(f1(z))− 1]Q

D(z)
(8.95)

V (1)(z) =
f1(z)f2(z)B̄(f(z))[V̄1(f3(z))− 1]Q

D(z)
(8.96)

V (2)(z) =
pf1(z)f2(z)B̄(f(z))V̄1(f3(z))[V̄2(f3(z))− 1]Q

D(z)
(8.97)

R(z) =
αzf3(z)[B̄(f1(z))− 1]Q

D(z)
(8.98)

where

D(z) = f1(z)f2(z)[z−(1−p+pV̄2(f3(z)))B̄(f(z))V̄1(f3(z))]−αβz[1−B̄(f(z))],

(8.99)

B̄(f(z)) = B̄1(f1(z))B̄2(f1(z))B̄3(f1(z)), f1(z) = λ− λC(z) + α,

f2(z) = λ− λC(z) + β and f3(z) = λ− λC(z).

Let Wq(z) denote the probability generating function of the queue size

irrespective of the state of the system. Then adding equations (8.93) to (8.98),

we obtain

Wq(z) = P (1)(z) + P (2)(z) + P (3)(z) + V (1)(z) + V (2)(z) +R(z)

Wq(z) =
f2(z)f3(z)[B̄1(f1(z))− 1]Q

D(z)

+
f2(z)f3(z)B̄1(f1(z))[B̄2(f1(z))− 1]Q

D(z)

+
f2(z)f3(z)B̄1(f1(z))B̄2(f1(z))[B̄3(f1(z))− 1]Q

D(z)
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+
f1(z)f2(z)B̄(f(z))[V̄1(f3(z))− 1]Q

D(z)

+
pf1(z)f2(z)B̄(f(z))V̄1(f3(z))[V̄2(f3(z))− 1]Q

D(z)

+
αzf3(z)[B̄(f1(z))− 1]Q

D(z)
(8.100)

we see that for z=1, Wq(z) is indeterminate of the form 0/0. Therefore, we

apply L’Hopital’s rule and on simplifying, we get

Wq(1) =
λ(α + β)E(I)[1− B̄(α)] + λαβE(I)B̄(α)(E(V1) + pE(V2))Q

dr
(8.101)

where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(Vj) = −V̄ ′j (0) , j = 1, 2.

since Wq(1) + Q = 1, we have

Q =
λ(α + β)E(I)(B̄(α)− 1) + αβB̄(α)[1− λE(I)(E(V1) + pE(V2))]

αβB̄(α)
(8.102)

and hence the utilization factor ρ of the system is given by

ρ = 1−Q (8.103)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (8.102) gives the probability that the server is idle.

Substituting Q from (8.102) into (8.100), we have completely and explicitly

determined Wq(z), the probability generating function of the queue size.
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8.7 The mean queue size and the mean wait-

ing time

Let Lq denote the mean number of customers in the queue under the steady

state. Then

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write Wq(z) given in (8.100) as

Wq(z) =
N(z)

D(z)
Q

where

N(z) =f3(z)(f2(z) + αz)[B̄(f(z))− 1] + B̄(f(z))f1(z)f2(z)

× [V̄1(f3(z))(1− p+ pV̄2(f3(z)))− 1]

and D(z) is given by equation (8.99).

N ′(z) =[f ′3(z)(f2(z) + αz) + f3(z)(f ′2(z) + α)](B̄(f(z))− 1)

+ f3(z)(f2(z) + αz)[B̄′1(f1(z))f ′1(z)B̄2(f1(z))B̄3(f1(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′1(z)B̄3(f1(z))

+ B̄1(f1(z))B̄2(f1(z))B̄′3(f1(z))f ′1(z)]

+ [[B̄′1(f1(z))f ′1(z)B̄2(f1(z))B̄3(f1(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′1(z)B̄3(f1(z))

+ B̄1(f1(z))B̄2(f1(z))B̄′3(f1(z))f ′1(z)]

× (V̄1(f3(z))(1− p+ pV̄2(f3(z)))− 1)

+ B̄(f(z))(V̄ ′1(f3(z))f ′3(z)(1− p+ pV̄2(f3(z)))

+ V̄1(f3(z))pV̄ ′2(f3(z))f ′3(z))]f1(z)f2(z)

+ B̄(f(z))((V̄1(f3(z))(1− p+ pV̄2(f3(z)))− 1)

× [f ′1(z)f2(z) + f1(z)f ′2(z)]
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D′(z) =[f ′1(z)f2(z) + f1(z)f ′2(z)][z − (1− p+ pV̄2(f3(z)))

× B̄(f(z))V̄1(f3(z))] + f1(z)f2(z)

× [1− pV̄ ′2(f3(z))f ′3(z)B̄(f(z))V̄1(f3(z))

− (1− p+ pV̄2(f3(z)))[B̄′1(f1(z))f ′1(z)B̄2(f1(z))B̄3(f1(z))V̄1(f3(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′1(z)B̄3(f1(z))V̄1(f3(z))

+ B̄1(f1(z))f1(z)B̄2(f1(z))B̄′3(f1(z))f ′1(z))V̄1(f3(z))

+ B̄(f(z))V̄ ′1(f3(z))f ′3(z)]]− αβ(1− B̄f(z))

+ αβz[B̄′1(f1(z))f ′1(z)B̄2(f1(z))B̄3(f1(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′1(z)B̄3(f1(z))

+ B̄1(f1(z))B̄2(f1(z))B̄′3(f1(z))f ′1(z)]

Lq = lim
z→1

d

dz
Wq(z)

= lim
z→1

[
D′(z)N ′′(z)−N ′(z)D′′(z)

2(D′(z))2

]
Q

=

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (8.104)

where primes and double primes in (8.104) denote first and second derivative

at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λ(α + β)E(I)(1− B̄(α)) + λαβE(I)(E(V1) + pE(V2))B̄(α)

N ′′(1) =[−λ(α + β)E(I(I − 1))− 2λE(I)(−λE(I) + α)][B̄(α)− 1]

+ 2λ2(E(I))2[B̄′1(α)B̄2(α)B̄3(α) + B̄1(α)B̄′2(α)B̄3(α)

+ B̄1(α)B̄2(α)B̄′3(α)][α + β − αβ(E(V1) + pE(V2))]

+ B̄(α)[αβ(λ2(E(I))2(E(V 2
1 ) + pE(V 2

2 ))

+ λE(I(I − 1))(E(V1) + pE(V2))

+ 2λ2(E(I))2pE(V1)E(V2))

− 2λ2(E(I))2(α + β)(E(V1) + pE(V2))]
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D′(1) =λ(α + β)E(I)(B̄(α)− 1) + αβB̄(α)

× [1− λE(I)(E(V1) + pE(V2))]

D′′(1) =[−λ(α + β)E(I(I − 1)) + 2λ2(E(I))2][1− B̄(α)]

− 2λ(α + β)E(I)[1− λE(I)(E(V1) + pE(V2))]B̄(α)

+ [B̄′1(α)B̄2(α)B̄3(α) + B̄1(α)B̄′2(α)B̄3(α)

+ B̄1(α)B̄2(α)B̄′3(α)][−2λ2(E(I))2(α + β)

+ 2λ2(E(I))2αβ(E(V1) + pE(V2))− 2λE(I)αβ]

− 2λ2(E(I))2αβpE(V1)E(V2)B̄(α)

− αβB̄(α)[λ2(E(I))2(E(V 2
1 ) + pE(V 2

2 ))

+ λE(I(I − 1))(E(V1) + pE(V2))]

where E(B2
1), E(B2

2), E(B2
3), E(V 2

1 ) and E(V 2
2 ) are the second moment of

the service times and vacation times respectively. E(I(I − 1)) is the second

factorial moment of the batch size of arriving customers. Then if we substitute

the values N ′(1), N ′′(1), D′(1), D′′(1) in (8.104), we obtain Lq in the closed

form.

Further, we find the mean system size L by using Little’s formula. Thus

we have

L = Lq + ρ (8.105)

where Lq has been found by equation (8.104) and ρ is obtained from equation

(8.103).

Let Wq and W denote the mean waiting time in the queue and in the

system respectively. Then by using Little’s formula, we obtain

Wq =
Lq
λ

W =
L

λ
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where Lq and L have been found in equations (8.104) and (8.105).

8.8 Particular cases

Case 1: When the server has no optional vacation, i.e, p=0.

Then our model reduces to the M [X]/G/1 queue with three stage heteroge-

neous service, compulsory vacation and service interruption. Using this in the

main result of (8.102), (8.103) and (8.104), we can find the idle probability

Q, utilization factor ρ, and the mean queue size Lq can be simplified to the

following expressions.

Q =
λ(α + β)E(I)(B̄(α)− 1) + αβB̄(α)[1− λE(I)E(V1)]

αβB̄(α)

ρ =1− λ(α + β)E(I)(B̄(α)− 1) + αβB̄(α)[1− λE(I)E(V1)]

αβB̄(α)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λ(α + β)E(I)(1− B̄(α)) + λαβE(I)E(V1)B̄(α)

N ′′(1) =[−λ(α + β)E(I(I − 1))− 2λE(I)(−λE(I) + α)][B̄(α)− 1]

+ 2λ2(E(I))2[B̄′1(α)B̄2(α)B̄3(α) + B̄1(α)B̄′2(α)B̄3(α)

+ B̄1(α)B̄2(α)B̄′3(α)][α + β − αβE(V1)]

+ B̄(α)[αβ(λ2(E(I))2E(V 2
1 ) + λE(I(I − 1))E(V1))

− 2λ2(E(I))2(α + β)E(V1)]

D′(1) =λ(α + β)E(I)(B̄(α)− 1) + αβB̄(α)[1− λE(I)E(V1)]

D′′(1) =[−λ(α + β)E(I(I − 1)) + 2λ2(E(I))2][1− B̄(α)]

− 2λ(α + β)E(I)[1− λE(I)E(V1)]B̄(α)

+ [B̄′1(α)B̄2(α)B̄3(α) + B̄1(α)B̄′2(α)B̄3(α) + B̄1(α)B̄2(α)B̄′3(α)]
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× [−2λ2(E(I))2(α + β) + 2λ2(E(I))2αβE(V1)− 2λE(I)αβ]

− αβB̄(α)[λ2(E(I))2E(V 2
1 ) + λE(I(I − 1))E(V1)]

Case 2: When the server has no optional vacation and C(z) = z i.e, p=0,

E(I)= 1 and E(I(I − 1)) = 0, then our model reduces to the M/G/1 queue

with three stage heterogeneous service, service interruption and compulsory

vacation. Using this in the main result of (8.102), (8.103) and (8.104), we can

find the idle probability Q, utilization factor ρ, and the mean queue size Lq

can be simplified to the following expressions.

Q =
λ(α + β)(B̄(α)− 1) + αβB̄(α)[1− λE(V1)]

αβB̄(α)

ρ =1− λ(α + β)(B̄(α)− 1) + αβB̄(α)[1− λE(V1)]

αβB̄(α)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λ(α + β)(1− B̄(α)) + λαβB̄(α)E(V1)

N ′′(1) =− 2λ(−λ+ α)][B̄(α)− 1]

+ 2λ2[B̄′1(α)B̄2(α)B̄3(α) + B̄1(α)B̄′2(α)B̄3(α)

+ B̄1(α)B̄2(α)B̄′3(α)][α + β − αβE(V1)]

+ B̄(α)[λ2αβE(V 2
1 )− 2λ2(α + β)E(V1)]

D′(1) =λ(α + β)(B̄(α)− 1) + αβB̄(α)(1− λE(V1))

D′′(1) =2λ2[1− B̄(α)]− 2λ(α + β)[1− λE(V1)]B̄(α)

+ [B̄′1(α)B̄2(α)B̄3(α) + B̄1(α)B̄′2(α)B̄3(α)

+ B̄1(α)B̄2(α)B̄′3(α)][−2λ2(α + β)

+ 2λ2αβE(V1)− 2λαβ]

− λ2αβB̄(α)E(V 2
1 )
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Case 3: If C(z) = z and p = 0 then equations (8.85) to (8.89) coincide

with results of Maragatha Sundari and Srinivasan (2012b).

Case 4: If there are no second and third stages of service and server has

no compulsory vacation and C(z) = z i.e, E(I)= 1 and E(I(I − 1)) = 0

Then our model reduces to the M/G/1 queue with service interruption,

Bernoulli vacation. Using this in the main result of (8.102), (8.103) and (8.104),

we can find the idle probability Q, utilization factor ρ, and the mean queue

size Lq can be simplified to the following expressions.

Q =
λ(α + β)(B̄1(α)− 1) + αβB̄1(α)[1− λpE(V2)]

αβB̄1(α)

ρ =1− λ(α + β)(B̄1(α)− 1) + αβB̄1(α)[1− λE(I)pE(V2)]

αβB̄1(α)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λ(α + β)(1− B̄1(α)) + λαβpE(V2)B̄1(α)

N ′′(1) =− 2λ(−λ+ α)][B̄1(α)− 1]

+ 2λ2B̄′1(α)[α + β − αβpE(V2)]

+ B̄1(α)λ2pE(V 2
2 )− 2λ2p(α + β)E(V2)

D′(1) =λ(α + β)(B̄1(α)− 1)

+ αβB̄1(α)[1− λpE(V2)]

D′′(1) =2λ2[1− B̄1(α)]− 2λ(α + β)[1− λpE(V2)]B̄1(α)

+ B̄′1(α)[−2λ2(α + β) + 2λ2αβpE(V2)− 2λαβ]

− αβB̄1(α)λ2pE(V 2
2 )

The above equations coincides with results of Balamani (2012).
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Case 5: When the vacation follows exponential distribution in case 4 then

the results coincide with Baskar et al. (2011).

8.9 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the service times and vacation times are exponentially distributed with rates

µ1, µ2, µ3 and γ.

To see the effect of various parameters on server’s idle time Q, utilization

factor ρ and various other queue characteristics such as L,W , Lq,Wq, we base

our numerical example on the result found in case 1.

In Table 8.1, we can choose the following arbitrary values: µ1 =4, µ2 =3,

µ3 =2, E(I)= 0.4, E(I(I − 1))= 0.05, γ= 3, α= 2, β= 4 while λ varies

from 0.1 to 1.0 such that the stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the mean queue size, system size and

mean waiting time in the queue, the system of our queueing model are all

increases.

Table 8.1: Computed values of various queue characteristics

λ Q ρ Lq L Wq W

0.1 0.928333 0.071667 0.032789 0.104456 0.327893 1.044560
0.2 0.856667 0.143333 0.077539 0.220872 0.387695 1.104361
0.3 0.785000 0.215000 0.137586 0.352586 0.458620 1.175287
0.4 0.713333 0.286667 0.217609 0.504275 0.544021 1.260688
0.5 0.641667 0.358333 0.324374 0.682700 0.648749 1.365416
0.6 0.570000 0.430000 0.468056 0.898056 0.780093 1.496759
0.7 0.498333 0.501667 0.664675 1.166342 0.949536 1.666202
0.8 0.426667 0.573333 0.941022 1.514355 1.176277 1.892944
0.9 0.355000 0.645000 1.345516 1.990516 1.495017 2.211684
1.0 0.283333 0.716667 1.975569 2.692235 1.975569 2.692235

207



Table 8.2: Computed values of various queue characteristics

γ Q ρ Lq L Wq W

1 0.320000 0.680000 1.468438 2.148438 1.468438 2.148438
2 0.420000 0.580000 0.965074 1.545074 0.965074 1.545074
3 0.453333 0.546667 0.856197 1.402864 0.856197 1.402864
4 0.470000 0.530000 0.809040 1.339046 0.809046 1.339046
5 0.480000 0.520000 0.782767 1.302767 0.782767 1.302767
6 0.486667 0.513333 0.766021 1.279355 0.766021 1.279355
7 0.491429 0.508571 0.754421 1.262992 0.754421 1.262992
8 0.495000 0.505000 0.745911 1.250911 0.745911 1.250911
9 0.497778 0.502222 0.739402 1.241624 0.739402 1.241624
10 0.500000 0.500000 0.734263 1.234263 0.734263 1.234263

In Table 8.2, we can choose the following arbitrary values: µ1 =5, µ2 =4,

µ3 =2, E(I)= 0.4, E(I(I − 1))= 0.05, λ = 3, α= 2, β= 4 while γ varies

from 1 to 10 such that the stability condition is satisfied.

It clearly shows as long as increasing the vacation rate, the server’s idle

time increases while the utilization factor, the mean queue size, system size

and mean waiting time in the queue, the system of our queueing model are all

decreases.
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CHAPTER

NINE

M [X]/G/1 FEEDBACK QUEUE WITH THREE

STAGE HETEROGENEOUS SERVICE, SERVER

VACATIONS AND RESTRICTED ADMISSIBILITY

9.1 Introduction

Levy and Yechilai (1976), Madan (1991), Takagi (1992), Rosenberg and

Yechiali (1993), Borthakur and Chaudhury (1997), Madan and Al-Rawwash

(2005) and many others have studied vacation queues with different vacation

policies. In some queueing systems with batch arrival there is a restriction

such that not all batches are allowed to join the system at all time. This policy

is named restricted admissibility. Madan and Abu-Dayyeh (2002), Madan and

Choudhury (2004) and Badamchi Zadeh (2009, 2012) proposed an queueing

system with restricted admissibility of arriving batches and Bernoulli schedule

server vacation.

In this chapter, we consider a M [X]/G/1 feedback queue with three stage

service, server vacations and restricted admissibility. Each customer undergoes

three stage of heterogeneous service with general (arbitrary) service time

A part of this chapter is published with entitled:
M [X]/G/1 feedback queue with three stage heterogeneous service, server vacations having
restricted admissibility – Journal of Computations and Modelling, 3(2):203–225, 2013.

209



distributions. As soon as the completion of third stage of service, if the

customer is dissatisfied with his service, he can immediately join the tail of the

original queue as a feedback customer with probability p to repeat the same

service or may depart the system with probability 1− p if service happens to

be successful. The vacation period has two heterogeneous phases with general

(arbitrary) distributions. Further, after service completion of a customer the

server may take phase one vacation with probability r or may continue to

stay in the system with probability 1− r. After the completion of phase one

vacation the server may take phase two optional vacation with probability θ

or return back to the system with probability 1 - θ. Arrival to the system

follows Poisson distribution. In addition, we assume restricted admissibility of

arriving batches in which not all batches are allowed to join the system at all

times.

Here we derive time dependent probability generating functions in terms

of Laplace transforms. We also derive the mean queue size and mean system

size. Some particular cases and numerical results are also discussed.

The rest of this chapter is organized as follows. Model description is

given in section 9.2. Definitions and Equations governing the system are

given in section 9.3 and 9.4 respectively. The time dependent solution have

been obtained in section 9.5 and corresponding steady state results have been

derived explicitly in section 9.6. Mean queue size and mean system size are

computed in section 9.7. Some particular cases and numerical results are

discussed in section 9.8 and 9.9 respectively.

9.2 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound
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Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t + dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) A single server provides three stages of service for each customer, with

the service time follows general (arbitrary) distribution. Let Bi(v) and

bi(v) ( i =1, 2, 3 ) be the distribution and the density function of the

first stage, second stage and third stage of service respectively.

c) Let µi(x)dx be the conditional probability density of service completion

during the interval (x, x+ dx], given that the elapsed service time is x,

so that

µi(x) =
bi(x)

1−Bi(x)
, i = 1, 2, 3,

and therefore,

bi(s) = µi(s)e
−

s∫
0

µi(x)dx
, i = 1, 2, 3.

d) Moreover, after the completion of third stage of service, if the customer

is dissatisfied with his service, he can immediately join the tail of the

original queue as a feedback customer for receiving the same service

with probability p. Otherwise the customer may depart forever from the

system with probability (1− p). Further, we do not distinguish the new

arrival with feedback.

e) As soon as the completion of third stage of service, the server may take

phase one vacation with probability r or may continue to stay in the

system with probability 1− r. After completion of phase one vacation
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the server may take phase two vacation with probability θ or return back

to the system with probability 1− θ. On returning from vacation the

server starts instantly serving the customer at the head of the queue, if

any.

f) The server’s vacation time follows a general (arbitrary) distribution with

distribution function Vi(t) and density function vi(t). Let γi(x)dx be

the conditional probability density of vacation completion during the

interval (x, x+ dx], given that the elapsed vacation time is x, so that

γi(x) =
vi(x)

1− Vi(x)
, i = 1, 2,

and therefore,

vi(t) = γi(t)e
−

t∫
0

γi(x)dx
, i = 1, 2.

h) In addition, we assume that the restricted admissibility of batches in

which not all batches are allowed to join the system at all times. Let

α (0 ≤ α ≤ 1) and β (0 ≤ β ≤ 1) be the probability that an arriving

batch will be allowed to join the system during the period of server’s

non-vacation period and vacation period respectively.

g) Various stochastic processes involved in the system are assumed to be

independent of each other.

9.3 Definitions

We define

P
(1)
n (x, t) = Probability that at time t, the server is active providing first

stage of service and there are n (n ≥ 0) customers in the queue excluding the

one being served and the elapsed service time is x. Consequently P
(1)
n (t) =
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∞∫
0

P
(1)
n (x, t)dx denotes the probability that at time t there are n customers in

the queue excluding the one customer in the first stage of service irrespective

of the value of x.

P
(2)
n (x, t) = Probability that at time t, the server is active providing

second stage of service and there are n (n ≥ 0) customers in the queue

excluding the one being served and the elapsed service time is x. Consequently

P
(2)
n (t) =

∞∫
0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the second stage of

service irrespective of the value of x.

P
(3)
n (x, t) = Probability that at time t, the server is active providing third

stage of service and there are n (n ≥ 0) customers in the queue excluding the

one being served and the elapsed service time is x. Consequently P
(3)
n (t) =

∞∫
0

P
(3)
n (x, t)dx denotes the probability that at time t there are n customers in

the queue excluding the one customer in the third stage of service irrespective

of the value of x.

V
(1)
n (x, t) = Probability that at time t, the server is under phase one

vacation with elapsed vacation time is x and there are n (n ≥ 0) customers in

the queue. Consequently V
(1)
n (t) =

∞∫
0

V
(1)
n (x, t)dx denotes the probability that

at time t there are n customers in the queue and the server is under phase

one vacation irrespective of the value of x.

V
(2)
n (x, t) = Probability that at time t, the server is under phase two

vacation with elapsed vacation time is x and there are n (n ≥ 0) customers in

the queue. Consequently V
(2)
n (t)=

∞∫
0

V
(2)
n (x, t)dx denotes the probability that

at time t there are n customers in the queue and the server is under phase

two vacation irrespective of the value of x.

Q(t) = Probability that at time t, there are no customers in the system

and the server is idle but available in the system.
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9.4 Equations governing the system

The model is then, governed by the following set of differential-difference

equations:

∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + [λ+ µ1(x)]P

(1)
0 (x, t) = λ(1− α)P

(1)
0 (x, t)

(9.1)

∂

∂x
P (1)
n (x, t) +

∂

∂t
P (1)
n (x, t) + [λ+ µ1(x)]P (1)

n (x, t) = λ(1− α)P (1)
n (x, t)

+ λα
n∑
k=1

ckP
(1)
n−k(x, t), n ≥ 1 (9.2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + [λ+ µ2(x)]P

(2)
0 (x, t) = λ(1− α)P

(2)
0 (x, t)

(9.3)

∂

∂x
P (2)
n (x, t) +

∂

∂t
P (2)
n (x, t) + [λ+ µ2(x)]P (2)

n (x, t) = λ(1− α)P (2)
n (x, t)

+ λα
n∑
k=1

ckP
(2)
n−k(x, t), n ≥ 1 (9.4)

∂

∂x
P

(3)
0 (x, t) +

∂

∂t
P

(3)
0 (x, t)+[λ+ µ3(x)]P

(2)
0 (x, t) = λ(1− α)P

(3)
0 (x, t) (9.5)

∂

∂x
P (3)
n (x, t) +

∂

∂t
P (3)
n (x, t) + [λ+ µ3(x)]P (3)

n (x, t) = λ(1− α)P (3)
n (x, t)

+ λα
n∑
k=1

ckP
(3)
n−k(x, t), n ≥ 1 (9.6)

∂

∂x
V

(1)
0 (x, t) +

∂

∂t
V

(1)
0 (x, t) + [λ+ γ1(x)]V

(1)
0 (x, t) = λ(1− β)V

(1)
0 (x, t)

(9.7)

∂

∂x
V (1)
n (x, t) +

∂

∂t
V (1)
n (x, t) + [λ+ γ1(x)]V (1)

n (x, t) = λ(1− β)V (1)
n (x, t)

+ λβ
n∑
k=1

ckV
(1)
n−k(x, t), n ≥ 1 (9.8)

∂

∂x
V

(2)
0 (x, t) +

∂

∂t
V

(2)
0 (x, t) + [λ+ γ2(x)]V

(2)
0 (x, t) = λ(1− β)V

(2)
0 (x, t)

(9.9)
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∂

∂x
V (2)
n (x, t) +

∂

∂t
V (2)
n (x, t) + [λ+ γ2(x)]V (2)

n (x, t) = λ(1− β)V (2)
n (x, t)

+ λβ
n∑
k=1

ckV
(2)
n−k(x, t), n ≥ 1 (9.10)

d

dt
Q(t) =− λQ(t) + (1− θ)

∫ ∞
0

γ1(x)V
(1)
0 (x, t)dx

+ λ(1− α)Q(t) +

∫ ∞
0

γ2(x)V
(2)
0 (x, t)dx

+ (1− p)(1− r)
∫ ∞
0

µ3(x)P
(3)
0 (x, t)dx (9.11)

The above set of equations are to be solved subject to the following boundary

conditions:

P (1)
n (0, t) = αλCn+1Q(t) + (1− θ)

∫ ∞
0

γ1(x)V
(1)
n+1(x, t)dx

+

∫ ∞
0

γ2(x)V
(2)
n+1(x, t)dx

+ p(1− r)
∫ ∞
0

µ3(x)P (3)
n (x, t)dx

+ (1− p)(1− r)
∫ ∞
0

µ3(x)P
(3)
n+1(x, t)dx, n ≥ 0 (9.12)

P (2)
n (0, t) =

∫ ∞
0

µ1(x)P (1)
n (x, t)dx, n ≥ 0 (9.13)

P (3)
n (0, t) =

∫ ∞
0

µ2(x)P (2)
n (x, t)dx, n ≥ 0 (9.14)

V (1)
n (0, t) = r(1− p)

∫ ∞
0

µ3(x)P (3)
n (x, t)dx+ rp

∫ ∞
0

µ3(x)P
(3)
n−1(x, t)dx, n ≥ 0

(9.15)

V (2)
n (0, t) = θ

∫ ∞
0

γ1(x)V (1)
n (x, t)dx, n ≥ 0 (9.16)
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We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

V
(j)
0 (0) = V (j)

n (0) = P (i)
n (0) = 0 for n = 0, 1, 2, ...;

j = 1, 2 ; i = 1, 2, 3 and Q(0) = 1 (9.17)

9.5 Generating functions of the queue length:

The time-dependent solution

In this section, we obtain the transient solution for the above set of differential-

difference equations.

Theorem : The system of differential-difference equations to describe an

M [X]/G/1 feedback queue with three stages of heterogeneous service, Bernoulli

vacation and optional server vacation with restricted admissibility are given

by equations (9.1) to (9.16) with initial conditions (9.17) and the generating

functions of transient solution are given by equations (9.70) to (9.74).

Proof : We define the probability generating functions, for i =1, 2, 3

P (i)(x, z, t) =
∞∑
n=0

znP (i)
n (x, t); P (i)(z, t) =

∞∑
n=0

znP (i)
n (t), C(z) =

∞∑
n=1

cnz
n,

V (j)(x, z, t) =
∞∑
n=0

znV (j)
n (x, t); V (j)(z, t) =

∞∑
n=0

znV (j)
n (t), j = 1, 2. (9.18)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0.

216



Taking the Laplace transform of equations (9.1) to (9.16) and using (9.17), we

obtain

∂

∂x
P̄

(1)
0 (x, s) + (s+ λα + µ1(x))P̄

(1)
0 (x, s) =0 (9.19)

∂

∂x
P̄ (1)
n (x, s) + (s+ λα + µ1(x))P̄ (1)

n (x, s) =λα
n∑
k=1

ckP̄
(1)
n−k(x, s), n ≥ 1

(9.20)

∂

∂x
P̄

(2)
0 (x, s) + (s+ λα + µ2(x))P̄

(2)
0 (x, s) =0 (9.21)

∂

∂x
P̄ (2)
n (x, s) + (s+ λα + µ2(x))P̄ (2)

n (x, s) =λα
n∑
k=1

ckP̄
(2)
n−k(x, s), n ≥ 1

(9.22)

∂

∂x
P̄

(3)
0 (x, s) + (s+ λα + µ3(x))P̄

(3)
0 (x, s) =0 (9.23)

∂

∂x
P̄ (3)
n (x, s) + (s+ λα + µ3(x))P̄ (3)

n (x, s) =λα
n∑
k=1

ckP̄
(3)
n−k(x, s), n ≥ 1

(9.24)

∂

∂x
V̄

(1)
0 (x, s) + (s+ λβ + γ1(x))V̄

(1)
0 (x, s) =0 (9.25)

∂

∂x
V̄ (1)
n (x, s) + (s+ λβ + γ1(x))V̄ (1)

n (x, s) =λβ
n∑
k=1

ckV̄
(1)
n−k(x, s), n ≥ 1

(9.26)

∂

∂x
V̄

(2)
0 (x, s) + (s+ λβ + γ2(x))V̄

(2)
0 (x, s) =0 (9.27)

∂

∂x
V̄ (2)
n (x, s) + (s+ λβ + γ2(x))V̄ (2)

n (x, s) =λβ
n∑
k=1

ckV̄
(2)
n−k(x, s), n ≥ 1

(9.28)

[s+ λα]Q̄(s) =1 + (1− θ)
∫ ∞
0

γ1(x)V̄
(1)
0 (x, s)dx

+

∫ ∞
0

γ2(x)V̄
(2)
0 (x, s)dx

+ (1− p)(1− r)
∫ ∞
0

µ3(x)P̄
(3)
0 (x, s)dx (9.29)
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P̄ (1)
n (0, s) = αλcn+1Q̄(s) + (1− θ)

∫ ∞
0

γ1(x)V̄
(1)
n+1(x, s)dx

+

∫ ∞
0

γ2(x)V̄
(2)
n+1(x, s)dx

+ p(1− r)
∫ ∞
0

µ3(x)P̄ (3)
n (x, s)dx

+ (1− p)(1− r)
∫ ∞
0

P̄
(3)
n+1(x, s)µ3(x)dx, n ≥ 0 (9.30)

P̄ (2)
n (0, s) =

∫ ∞
0

µ1(x)P̄ (1)
n (x, s)dx, n ≥ 0 (9.31)

P̄ (3)
n (0, s) =

∫ ∞
0

µ2(x)P̄ (2)
n (x, s)dx, n ≥ 0 (9.32)

V̄ (1)
n (0, s) = r(1− p)

∫ ∞
0

µ3(x)P̄ (3)
n (x, s)dx

+ rp

∫ ∞
0

µ3(x)P̄
(3)
n−1(x, s)dx, n ≥ 0 (9.33)

V̄ (2)
n (0, s) = θ

∫ ∞
0

γ1(x)V̄ (1)
n (x, s)dx, n ≥ 0 (9.34)

Now multiplying equations (9.20), (9.22), (9.24), (9.26) and (9.28) by zn and

summing over n from 1 to ∞, adding to equation (9.19), (9.21), (9.23), (9.25),

(9.27) and using the generating functions defined in (9.18), we get

∂

∂x
P̄ (1)(x, z, s) + [s+ λα(1− C(z)) + µ1(x)]P̄ (1)(x, z, s) = 0 (9.35)

∂

∂x
P̄ (2)(x, z, s) + [s+ λα(1− C(z)) + µ2(x)]P̄ (2)(x, z, s) = 0 (9.36)

∂

∂x
P̄ (3)(x, z, s) + [s+ λα(1− C(z)) + µ3(x)]P̄ (3)(x, z, s) = 0 (9.37)

∂

∂x
V̄ (1)(x, z, s) + [s+ λβ(1− C(z)) + γ1(x)]V̄ (1)(x, z, s) = 0 (9.38)

∂

∂x
V̄ (2)(x, z, s) + [s+ λβ(1− C(z)) + γ2(x)]V̄ (2)(x, z, s) = 0 (9.39)

For the boundary conditions, we multiply both sides of equation (9.30) by zn
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summing over n from 0 to ∞ and use the equation (9.18), we get

zP̄ (1)(0, z, s) = αλC(z)Q̄(s) + (1− θ)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx

+

∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx−
∫ ∞
0

γ2(x)V̄
(2)
0 (x, s)dx

+ pz(1− r)
∫ ∞
0

µ3(x)P̄ (3)(x, z, s)dx

− (1− p)(1− r)
∫ ∞
0

µ3(x)P̄ (3)(x, z, s)dx

− (1− θ)
∫ ∞
0

γ1(x)V̄
(1)
0 (x, s)dx

Using equation (9.29), the above equation becomes

zP̄ (1)(0, z, s) = 1 + [λα(C(z)− 1)− s]Q̄(s)

+ (1− θ)
∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx

+

∫ ∞
0

γ2(x)V̄ (2)(x, z, s)dx

+ (pz + 1− p)(1− r)
∫ ∞
0

µ3(x)P̄ (3)(x, z, s)dx (9.40)

Performing similar operation on equations (9.31) to (9.34), we get

P̄ (2)(0, z, s) =

∫ ∞
0

µ1(x)P̄ (1)(x, z, s)dx (9.41)

P̄ (3)(0, z, s) =

∫ ∞
0

µ2(x)P̄ (2)(x, z, s)dx (9.42)

V̄ (1)(0, z, s) = r(1− p+ pz)

∫ ∞
0

µ3(x)P̄ (3)(x, z, s)dx (9.43)

V̄ (2)(0, z, s) = θ

∫ ∞
0

γ1(x)V̄ (1)(x, z, s)dx (9.44)
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Integrating equation (9.35) between 0 and x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e
−[s+λα(1−C(z))]x−

x∫
0

µ1(t)dt
(9.45)

where P̄ (1)(0, z, s) is given by equation (9.40).

Again integrating equation (9.45) by parts with respect to x, yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

[
1− B̄1(s+ λα(1− C(z)))

s+ λα(1− C(z))

]
(9.46)

where

B̄1(s+ λα(1− C(z))) =

∞∫
0

e−[s+λα(1−C(z))]xdB1(x)

is the Laplace-Stieltjes transform of the first stage of service time B1(x). Now

multiplying both sides of equation (9.45) by µ1(x) and integrating over x, we

obtain

∞∫
0

P̄ (1)(x, z, s)µ1(x)dx = P̄ (1)(0, z, s)B̄1[s+ λα(1− c(z))] (9.47)

Similarly, on integrating equations (9.36) to (9.39) from 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e
−[s+λα(1−C(z))]x−

x∫
0

µ2(t)dt
(9.48)

P̄ (3)(x, z, s) = P̄ (3)(0, z, s)e
−[s+λα(1−C(z))]x−

x∫
0

µ3(t)dt
(9.49)

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e
−[s+λβ(1−C(z))]x−

x∫
0

γ1(t)dt
(9.50)

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e
−[s+λβ(1−C(z))]x−

x∫
0

γ2(t)dt
(9.51)

where P̄ (2)(0, z, s), P̄ (3)(0, z, s), V̄ (1)(0, z, s) and V̄ (2)(0, z, s) are given by
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equations (9.41) to (9.44).

Again integrating equations (9.48) to (9.51) by parts with respect to x,

yields

P̄ (2)(z, s) = P̄ (2)(0, z, s)

[
1− B̄2(s+ λα(1− C(z)))

s+ λα(1− c(z))

]
(9.52)

P̄ (3)(z, s) = P̄ (3)(0, z, s)

[
1− B̄3(s+ λα(1− C(z)))

s+ λα(1− C(z))

]
(9.53)

V̄ (1)(z, s) = V̄ (1)(0, z, s)

[
1− V̄1(s+ λβ(1− C(z)))

s+ λβ(1− C(z))

]
(9.54)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

[
1− V̄2(s+ λβ(1− C(z)))

s+ λβ(1− C(z))

]
(9.55)

Now multiplying both sides of equations (9.48) to (9.51) by µ2(x), µ3(x), γ1(x),

γ2(x) and integrating over x, we obtain

∞∫
0

P̄ (2)(x, z, s)µ2(x)dx = P̄ (2)(0, z, s)B̄2[s+ λα(1− C(z))] (9.56)

∞∫
0

P̄ (3)(x, z, s)µ3(x)dx = P̄ (3)(0, z, s)B̄3[s+ λα(1− C(z))] (9.57)

∞∫
0

V̄ (1)(x, z, s)γ1(x)dx = V̄ (1)(0, z, s)V̄1[s+ λβ(1− C(z))] (9.58)

∞∫
0

V̄ (2)(x, z, s)γ2(x)dx = V̄ (2)(0, z, s)V̄2[s+ λβ(1− C(z))] (9.59)

where

B̄2(s+ λα− λαC(z)) =

∫ ∞
0

e−[s+λα(1−C(z))]xdB2(x)

B̄3(s+ λα− λαC(z)) =

∫ ∞
0

e−[s+λα(1−C(z))]xdB3(x)
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V̄1(s+ λα(1− C(z)) =

∫ ∞
0

e−[s+λβ(1−C(z))]xdV1(x)

V̄2(s+ λα(1− C(z)) =

∫ ∞
0

e−[s+λβ(1−C(z))]xdV2(x)

are the Laplace-Stieltjes transform of the second stage of service time B2(x),

third stage of service time B3(x), phase one vacation time V1(x) and phase

two vacation time V2(x) respectively.

Using equation (9.47), equation (9.41) reduces to

P̄ (2)(0, z, s) = B̄1(a)P̄ (1)(0, z, s) (9.60)

Now using equations (9.56) and (9.60) in (9.42), we get

P̄ (3)(0, z, s) = B̄1(a)B̄2(a)P̄ (1)(0, z, s) (9.61)

By using equations (9.57) and (9.61) in (9.43), we get

V̄ (1)(0, z, s) = r(1− p+ pz)B̄1(a)B̄2(a)B̄3(a)P̄ (1)(0, z, s) (9.62)

Using equations (9.58) and (9.62), we can write equation (9.44) as

V̄ (2)(0, z, s) = θr(1− p+ pz)B̄1(a)B̄2(a)B̄3(a)V̄1(b)P̄
(1)(0, z, s) (9.63)

Now using equations (9.57), (9.58) and (9.59), equation (9.40) becomes

zP̄ (1)(0, z, s) =1 + [λα(C(z)− 1)− s]Q̄(s)

+ (1− θ)V̄1(b)V̄ (1)(0, z, s) + V̄2(b)V̄
(2)(0, z, s)

+ (pz + 1− p)(1− r)B̄3(a)P̄ (3)(0, z, s)
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Using equations (9.61), (9.62) and (9.63), the above equation reduces to

P̄ (1)(0, z, s) =
1 + [λα(C(z)− 1)− s]Q̄(s)

Dr
(9.64)

where

Dr =z − (1− p+ pz)B̄1(a)B̄2(a)B̄3(a)

× [1− r + rV̄1(b)(1− θ + θV̄2(b))] (9.65)

a = s+ λα(1− C(z)) and b = s+ λβ(1− C(z)).

Substituting the value of P̄ (1)(0, z, s) from equation (9.64) into equations (9.60)

to (9.63), we get

P̄ (2)(0, z, s) = B̄1(a)
[1 + [λα(C(z)− 1)− s]Q̄(s)]

Dr
(9.66)

P̄ (3)(0, z, s) = B̄1(a)B̄2(a)
[1 + [λα(C(z)− 1)− s]Q̄(s)]

Dr
(9.67)

V̄ (1)(0, z, s) = r(1− p+ pz)B̄1(a)B̄2(a)B̄3(a)

× [1 + [λα(C(z)− 1)− s]Q̄(s)]

Dr
(9.68)

V̄ (2)(0, z, s) = θr(1− p+ pz)B̄1(a)B̄2(a)B̄3(a)V̄1(b)

× [1 + [λα(C(z)− 1)− s]Q̄(s)]

Dr
(9.69)

Using equations (9.64), (9.66) to (9.69) in (9.46), (9.52) to (9.55), we get

P̄ (1)(z, s) =
[(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)]

Dr

[1− B̄1(a)]

a
(9.70)

P̄ (2)(z, s) =
B̄1(a)[(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)]

Dr

[1− B̄2(a)]

a
(9.71)

P̄ (3)(z, s) =
B̄1(a)B̄2(a)

Dr

[1− B̄3(a)]

a

× [(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)] (9.72)
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V̄ (1)(z, s) =
r(1− p+ pz)B̄1(a)B̄2(a)B̄3(a)

Dr

× [(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)]
[1− V̄1(b)]

b
(9.73)

V̄ (2)(z, s) =
θr(1− p+ pz)B̄1(a)B̄2(a)B̄3(a)V̄1(b)

Dr

× [(1− sQ̄(s)) + λα(C(z)− 1)Q̄(s)]
[1− V̄2(b)]

b
(9.74)

Thus P̄ (1)(z, s), P̄ (2)(z, s), P̄ (3)(z, s), V̄ (1)(z, s) and V̄ (2)(z, s) are completely

determined from equations (9.70) to (9.74) which completes the proof of the

theorem.

9.6 The steady state results

In this section, we shall derive the steady state probability distribution for our

queueing model. To define the steady probabilities, we suppress the argument

t wherever it appears in the time-dependent analysis. This can be obtained

by applying the Tauberian property,

lim
s→0

sf̄(s) = lim
t→∞

f(t)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), P̄ (3)(z, s), V̄ (1)(z, s) and V̄ (2)(z, s)

completely, we have yet to determine the unknown Q which appears in the

numerators of the right hand sides of equations (9.70) to (9.74). For that

purpose, we shall use the normalizing condition

P (1)(1) + P (2)(1) + P (3)(1) + V (1)(1) + V (2)(1) +Q = 1

The steady state probabilities for an M [X]/G/1 feedback queue with three

stage heterogeneous service, server vacations with restricted admissibility are
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given by

P (1)(1) =
λαE(I)E(B1)Q

dr

P (2)(1) =
λαE(I)E(B2)Q

dr

P (3)(1) =
λαE(I)E(B3)Q

dr

V (1)(1) =
λαrE(I)E(V1)Q

dr

V (2)(1) =
λαrθE(I)E(V2)Q

dr

where

dr = 1− p− λE(I)[α(E(B1) + E(B2) + E(B3)) + rβE(V )],

and E(V ) = E(V1) + θE(V2).

P (1)(1), P (2)(1), P (3)(1), V (1)(1), V (2)(1) and Q are the steady state probabil-

ities that the server is providing first stage of service, second stage of service,

third stage of service, server under phase one vacation, phase two vacation

and idle respectively without regard to the number of customers in the queue.

Multiplying both sides of equations (9.70) to (9.74) by s, taking limit as

s→ 0, applying Tauberian property and simplifying, we obtain

P (1)(z) =
λα(C(z)− 1)[1− B̄1(f1(z))]Q

f1(z)D(z)
(9.75)

P (2)(z) =
λα(C(z)− 1)B̄1(f1(z))[1− B̄2(f1(z))]Q

f1(z)D(z)
(9.76)

P (3)(z) =
λα(C(z)− 1)B̄1(f1(z))B̄2(f1(z))[1− B̄3(f1(z))]Q

f1(z)D(z)
(9.77)

V (1)(z) =
λαr(1− p+ pz)(C(z)− 1))B̄(z)[1− V̄1(f2(z))]Q

f2(z)D(z)
(9.78)
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V (2)(z) =
λαrθ(1− p+ pz)(C(z)− 1)B̄(z)V̄1(f2(z))[1− V̄2(f2(z))]Q

f2(z)D(z)
(9.79)

where

B̄(z) = B̄1(f1(z))B̄2(f1(z))B̄3(f1(z)), f1(z) = λα(1− C(z)),

f2(z) = λβ(1− C(z)) and

D(z) = z − (1− p+ pz)B̄(z)[1− r + rV̄1(f2(z))(1− θ + θV̄2(f2(z)))]. (9.80)

Let Wq(z) denote the probability generating function of the queue size irre-

spective of the state of the system. Then adding equations (9.75) to (9.79),

we obtain

Wq(z) = P (1)(z) + P (2)(z) + P (3)(z) + V (1)(z) + V (2)(z)

Wq(z) =
λα(C(z)− 1)[1− B̄1(f1(z))]Q

f1(z)D(z)

+
λα(C(z)− 1)B̄1(f1(z))[1− B̄2(f1(z))]Q

f1(z)D(z)

+
λα(C(z)− 1)B̄1(f1(z))B̄2(f1(z))[1− B̄3(f1(z))]Q

f1(z)D(z)

+
λαr(1− p+ pz)(C(z)− 1))B̄(z)[1− V̄1(f2(z))]Q

f2(z)D(z)

+
λαrθ(1− p+ pz)(C(z)− 1)B̄(z)V̄1(f2(z))[1− V̄2(f2(z))]Q

f2(z)D(z)

(9.81)

we see that for z=1, Wq(z) is indeterminate of the form 0/0. Therefore, we

apply L’Hopital’s rule and on simplifying, we obtain

Wq(1) =
αλE(I)[E(B1) + E(B2) + E(B3) + rE(V )]

dr
Q
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where C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,

E(Bi) = −B̄′i(0), E(Vj) = −V̄ ′j (0), i = 1, 2, 3 , j = 1, 2.

Therefore adding Q to above equation, equating to 1 and simplifying, we

get

Q = 1− ρ (9.82)

and hence the utilization factor ρ of the system is given by

ρ =
αλE(I)[E(B1) + E(B2) + E(B3) + rE(V )]

1− p− rλE(I)(β − α)E(V )
(9.83)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (9.82) gives the probability that the server is idle. Substituting Q

from (9.82) into (9.81), we have completely and explicitly determined Wq(z),

the probability generating function of the queue size.

9.7 The mean queue size and the mean sys-

tem size

Let Lq denote the mean number of customers in the queue under the steady

state. Then

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write Wq(z) given in (9.81) as

Wq(z) =
N(z)

D(z)
Q where

N(z) =− β − B̄(z)[−β + rα(p(z − 1) + 1)

× (1− V̄1(f3(z))(1− θ + θV̄2(f3(z))))]
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and D(z) is given in equation (9.80).

N ′(z) =− [B̄′1(f1(z))f ′1(z)B̄2(f1(z))B̄3(f1(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′2(z)B̄3(f1(z))

+ B̄1(f1(z))B̄2(f1(z))B̄′3(f2(z))f ′1(z)]

× [−β + rα(p(z − 1) + 1)(1− V̄1(f2(z))(1− θ + θV̄2(f2(z))))]

− prαB̄1(f1(z))B̄2(f1(z))B̄3(f1(z))

× [1− V̄1(f2(z))(1− θ + θV̄2(f2(z)))]

+ αr(p(z − 1) + 1)[−V̄ ′1(f2(z))f ′2(z)(1− θ + θV̄2(f2(z)))

− V̄1(f3(z))θV̄ ′2(f2(z))f ′2(z)]

D′(z) =1− pB̄1(f1(z))B̄2(f1(z))B̄3(f1(z))

× [1− r + rV̄1(f2(z))(1− θ + θV2(f2(z))]

− (1− p+ pz)[1− r + rV̄1(f2(z))(1− θ + θV2(f2(z))]

× [B̄′1(f1(z))f ′1(z)B̄2(f1(z))B̄3(f1(z))

+ B̄1(f1(z))B̄′2(f1(z))f ′1(z)B̄3(f1(z))

+ B̄1(f1(z))B̄2(f1(z))B̄′3(f1(z))f ′1(z)]

− (1− p+ pz)B̄1(f1(z))B̄2(f1(z))B̄3(f1(z))

× [rV̄ ′1(f2(z))f ′2(z)(1− θ + θV̄2(f2(z)))

+ rV̄1(f2(z))θV̄ ′2(f2(z))f ′2(z)]

Then, we use

Lq =
d

dz
Wq(z)

=
1

β

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q (9.84)
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where primes and double primes in (9.84) denote first and second derivative

at z = 1 respectively. Carrying out the derivative at z = 1, we have

N ′(1) =λαβE(I)[E(B1) + E(B2) + E(B3) + rE(V )] (9.85)

N ′′(1) =λ2βα(E(I))2[α(E(B2
1) + E(B2

2) + E(B2
3))

+ βr(E(V 2
1 ) + θE(V 2

2 ))]

+ λαβE(I(I − 1))[E(B1) + E(B2) + E(B3) + rE(V )]

+ 2λ2βα(E(I))2[α(E(B1)(E(B2) + E(B3)) + E(B2)E(B3))

+ βrθE(V1)E(V2)] + 2λ2βα2r(E(I))2E(V )

× [E(B1) + E(B2) + E(B3)] + 2λrαβpE(I)E(V ) (9.86)

D′(1) =1− p− λE(I)[α(E(B1) + E(B2) + E(B3)) + rβE(V )] (9.87)

D′′(1) =− λ[2pE(I) + E(I(I − 1))[α(E(B1) + E(B2) + E(B3)) + rβE(V )]

− 2λ2βαr(E(I))2E(V )[E(B1) + E(B2) + E(B3)]− λ2(E(I))2

× [α2(E(B2
1) + E(B2

2) + E(B2
3)) + β2r(E(V 2

1 ) + θE(V 2
2 ))]

− 2λ2(E(I))2[α2(E(B1)(E(B2) + E(B3))

+ E(B2)E(B3)) + β2rθE(V1)E(V2))] (9.88)

Then if we substitute the values N ′(1), N ′′(1), D′(1), D′′(1) from equations

(9.85) to (9.88) into equation (9.84), we obtain Lq in the closed form.

Further, we find the mean system size L by using Little’s formula. Thus we

have

L = Lq + ρ (9.89)

where Lq has been found by equation (9.84) and ρ is obtained from equation

(9.83).
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9.8 Particular cases:

Case 1: If there is no feedback, no optional vacation and no restricted

admissibility, i.e, p = 0, θ = 0 and α = β = 1.

Then our model reduces to a single server M [X]/G/1 queue with three

stage heterogeneous service and Bernoulli vacation. In this case, we find the

idle probability Q, utilization factor ρ and the average queue size Lq can be

simplified to the following expressions.

Q =1− λE(I)[E(B1) + E(B2) + E(B3) + rE(V1)]

ρ =λE(I)[E(B1) + E(B2) + E(B3) + rE(V1)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where
N ′(1) =λ(E(I))[E(B1) + E(B2) + E(B3) + rE(V1)]

N ′′(1) =λ2(E(I))2[E(B2
1) + E(B2

2) + E(B2
3) + rE(V 2

1 )]

+ λE(I(I − 1))[E(B1) + E(B2) + E(B3) + rE(V1)]

+ 2λ2(E(I))2[E(B1)(E(B2) + E(B3)) + E(B2)E(B3)]

+ 2λ2r(E(I))2E(V1)[E(B1) + E(B2) + E(B3)]

D′(1) =1− λE(I)[E(B1) + E(B2) + E(B3) + rE(V1)]

D′′(1) =− λE(I(I − 1))[E(B1) + E(B2) + E(B3) + rE(V1)]

− 2λ2r(E(I))2E(V1)[E(B1) + E(B2) + E(B3)]

− λ2(E(I))2[E(B2
1) + E(B2

2) + E(B2
3) + rE(V 2

1 )]

− 2λ2(E(I))2[E(B1)(E(B2) + E(B3)) + E(B2)E(B3)]

Case 2: If there is no feedback, server has no vacation and no restricted

admissibility, no second, third stages of service and C(z) = z i.e, p = 0, r=0,

θ = 0, α = β = 1, E(B2) = 0, E(B3) = 0, E(I) = 1 and E(I(I − 1)) = 0.
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Then our model reduces to a single server M/G/1 queueing system. In

this case, we find the idle probability Q, utilization factor ρ and the average

queue size Lq can be simplified to the following expressions.

Q =1− λE(B1)

ρ =λE(B1)

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(B1)

N ′′(1) =λ2E(B2
1)

D′(1) =1− λE(B1)

D′′(1) =− λ2E(B2
1)

The above equations coincide with result given by Medhi (1982).

Case 3: If there is no optional vacation, no restricted admissibility and

no second and third stages of service i.e, θ = 0, α = β = 1, E(B2) = 0 and

E(B3) = 0.

Then our model reduces to a single server M [X]/G/1 feedback queue with

Bernoulli vacation. In this case, we find the idle probability Q, utilization

factor ρ and the average queue size Lq can be simplified to the following

expressions. we get

Q =1− λE(I)[E(B1) + rE(V1)]

ρ =λE(I)[E(B1) + rE(V1)]
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Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q

where

N ′(1) =λE(I)[E(B1) + rE(V1)]

N ′′(1) =λ2(E(I))2[(E(B2
1) + rE(V 2

1 )]

+ λE(I(I − 1))[E(B1) + rE(V1)]

+ 2λ2r(E(I))2E(V1)E(B1) + 2λrpE(I)E(V1)

D′(1) =1− λE(I)[(E(B1) + rE(V1)]

D′′(1) =− 2pλE(I) + E(I(I − 1))[E(B1) + rE(V )]

− 2λ2r(E(I))2E(V1)E(B1)− λ2(E(I))2(E(B2
1) + r(E(V 2

1 ))

The above equations coincide with result given by Madan and Al-Rawwash

(2005).

Case 4: If service and vacation times follows exponential distribution for

case 1.

Then our model reduces to a single server M [X]/M/1 queue, three stage

heterogeneous service with Bernoulli vacation. Here, the exponential service

rates are µ1, µ2, µ3 > 0 and the exponential vacation rate is γ1 > 0, we have

Q =1− ρ

ρ =
λE(I)

µ1µ2µ3γ1
[µ3γ1(µ2 + µ1) + µ1µ2(γ1 + rµ3)]

Lq =

[
D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

]
Q
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where

N ′(1) =λE(I)[µ3γ1(µ2 + µ1) + µ1µ2(γ1 + rµ3)]

N ′′(1) =2λ2(E(I))2[µ2
3γ

2
1(µ2

2 + µ2
1) + µ2

1µ
2
2(µ

2
3 + rγ21)]

+ λE(I(I − 1))µ1µ2µ3γ1[µ3γ1(µ2 + µ1) + µ1µ2(γ1 + rµ3)]

+ 2λ2(E(I))2µ1µ2µ3γ
2
1 [µ1 + µ2 + µ3]

+ 2λ2rµ1µ2µ3γ1(E(I))2[µ3(µ1 + µ2) + µ1µ2]

D′(1) =µ1µ2µ3γ1 − λE(I)[µ3γ1(µ2 + µ1) + µ1µ2(γ1 + rµ3)]

D′′(1) =− λE(I(I − 1))γ1µ1µ2µ3[µ3γ1(µ2 + µ1) + µ1µ2(γ1 + rµ3)]

− 2λ2rγ1µ1µ2µ3(E(I))2[µ2µ3 + µ1µ3 + µ1µ2]

− 2λ2(E(I))2[µ2
3γ

2
1(µ2

2 + µ2
1) + µ2

1µ
2
2(γ

2
1 + rµ2

3)]

− 2λ2(E(I))2γ21µ1µ2µ3[µ1 + µ2 + µ3]

9.9 Numerical results

For the purpose of a numerical result, we use the case 4. In Table 9.1, we

choose the following arbitrary values: µ1 = 2, µ2 = 3, µ3= 4, γ = 3, r = 0.6,

E(I)=0.3 and E(I(I − 1)) = 0.04 while λ varies from 0.1 to 1.0 such that the

stability condition is satisfied.

The Table 9.1 gives computed values of the idle time, the utilization factor,

the mean queue size and mean system size of our queueing model.

It clearly shows that as long as increasing the arrival rate, the server’s idle

time decreases while the utilization factor, the mean queue size and the mean

system size of our queueing model are all increases.

In Table 9.2, we choose the following values: µ1 = 3, µ2 = 4 , µ3 = 2,

E(I)=0.3, E(I(I − 1))= 0.04, λ = 3 and r = 0.6 while γ varies from 1 to 10

such that the stability condition is satisfied.
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Table 9.1: Computed values of various queue characteristics

λ Q ρ Lq L

0.1 0.961500 0.038500 0.003700 0.042200
0.2 0.923000 0.077000 0.009852 0.086852
0.3 0.884500 0.115500 0.018771 0.134271
0.4 0.846000 0.154000 0.031832 0.184832
0.5 0.807500 0.192500 0.046477 0.238977
0.6 0.769000 0.231000 0.066241 0.297241
0.7 0.730500 0.269500 0.090769 0.360269
0.8 0.692000 0.308000 0.120850 0.428850
0.9 0.653500 0.346500 0.157460 0.503960
1.0 0.615000 0.385000 0.201818 0.586818

Table 9.2: Computed values of various queue characteristics

γ Q ρ Lq L

1 0.050000 0.950000 3.285000 4.235000
2 0.200000 0.800000 2.550000 3.350000
3 0.250000 0.750000 1.765000 2.515000
4 0.275000 0.725000 1.493523 2.218523
5 0.290000 0.710000 1.357717 2.067717
6 0.300000 0.700000 1.276667 1.976667
7 0.307143 0.692857 1.222959 1.915816
8 0.312500 0.687500 1.184813 1.872313
9 0.316667 0.683333 1.156345 1.839678
10 0.320000 0.680000 1.134300 1.814300

The Table 9.2 gives computed values of the idle time, the utilization factor,

the mean queue size and mean system size of our queueing model.

It clearly shows that as long as increasing the vacation rate, the server’s

idle time increases while the utilization factor, the mean queue size and the

mean system size of our queueing model are all decreases.
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CHAPTER

TEN

M [X]/G/1 FEEDBACK RETRIAL QUEUE WITH

STARTING FAILURE AND BERNOULLI VACATION

10.1 Introduction

Retrial queues have been widely used to model many problems in telephone

switching systems, telecommunication networks and computers competing

to gain service from a central processor unit. Most of the papers on retrial

queues have considered the system without feedback. A more practical retrial

queue with feedback occurs in many practical situations: for example, multiple

access telecommunication systems, where messages turned out as errors are

sent again, can be modeled as retrial queue with feedback. A remarkable

and unavoidable phenomenon in the service facility of a queuing system is

its breakdown. Kulkarni and Choi (1990) have analysed the M/G/1 retrial

queue with server subjected to repairs and breakdowns. Aissani and Artalejo

(1998), Artalejo (1999) and Artalejo and Gomez-Corral (2008) have considered

a retrial queue in which immediately after a service completion the server

searches for customer from the orbit or remains idle.

A part of this chapter is published with entitled
Transient analysis of batch arrival feedback retrial queue with starting failure and Bernoulli
vacation – Mathematical Theory and Modelling, 3(8):60–67, 2013.
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One of the most important characteristic in the service facility of a queueing

system is its starting failures. An arriving customer who finds the server idle

must turn on the server. If the server is started successfully the customer gets

the service immediately. Otherwise the down for the server begins and the

customer must join the orbit. The server is assumed to be reliable during

service. Such systems with starting failures have been studied as queueing

models by Yang and Li (1994), Krishna Kumar et al. (2002b), Mokaddis et al.

(2007), Ke and Chang (2009) and Sumitha and Udaya Chandrika (2012).

In this chapter, we consider M [X]/G/1 feedback retrial queue, subject to

starting failures and Bernoulli vacation. The customers arrive to the system

in batches of variable size, but served one by one on a first come - first served

basis. We assume that there is no waiting space and therefore if an arriving

customer finds the server busy or down, the customer leaves the service area

and enters a group of blocked customers called orbit in accordance with an

FCFS discipline. That is, only the customer at the head of the orbit queue is

allowed for access to the server where the arrival follows Poisson. As soon as

the completion of service, if the customer is dissatisfied with his service, he

can immediately join the retrial group as a feedback customer for receiving the

same service with probability p or to leave the system forever with probability

q(= 1− p). The successful commencement of service for a new customer who

finds the server idle and sees no other customer in the orbit with probability δ

and is α for all other new and returning customers. After the completion of

each service, the server either goes for a vacation with probability β or may

wait for serving the next customer with probability 1−β. Repair times, service

times and vacation times are assumed to be generally (arbitrary) distributed.

Here we derive time dependent probability generating functions in terms

of Laplace transforms. We also derive the average orbit size, system size and

average waiting time in the queue, the system. Some particular cases and
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numerical results are also discussed.

The rest of the chapter is organized as follows. Model description is given

in section 10.2. Definitions and equations governing the system are given in

section 10.3 and 10.4 respectively. The time dependent solution have been

obtained in section 10.5. Corresponding steady state results have been derived

explicitly in section 10.6. Average orbit size, system size and average waiting

time are computed in section 10.7. Particular cases and numerical results are

discussed in section 10.8 and 10.9 respectively.

10.2 Model description

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a compound

Poisson process and they are provided one by one service on a first come

- first served basis. Let λcidt (i = 1, 2, . . .) be the first order probability

that a batch of i customers arrives at the system during a short interval

of time (t, t + dt], where 0 ≤ ci ≤ 1,
∞∑
i=1

ci = 1 and λ > 0 is the arrival

rate of batches.

b) We assume that there is no waiting space and therefore if an arriving

customer finds the server busy or down, the customer leaves the service

area and enters a group of blocked customers called “orbit” in accordance

with an FCFS discipline. That is, only the customer at the head of the

orbit queue is allowed for access to the server.

c) As soon as the completion of service, if the customer is dissatisfied with his

service, he can immediately join the retrial group as a feedback customer

for receiving the same service with probability p or to leave the system

forever with probability q(= 1− p). The successful commencement of

237



service for a new customer who finds the server idle and sees no other

customer in the orbit with probability δ and is α for all other new and

returning customers. From this description, it is clear that at any service

completion, the server becomes free and in such a case, a possible new

(primary) arrival and the one (if any) at the head of the orbit, compete

for service.

d) The retrial time follows a general (arbitrary) distribution with distribution

function A(s) and density function a(s). Let r(x)dx be the conditional

probability density of retrial completion during the interval (x, x+ dx],

given that the elapsed retrial time is x, so that

r(x) =
a(x)

1− A(x)

and therefore,

a(s) = r(s)e
−

s∫
0

r(x)dx

e) The service follows a general (arbitrary) distribution with distribution

function B(x) and density function b(x). Let µ(x)dx be the conditional

probability density of service completion during the interval (x, x+ dx],

given that the elapsed service time is x, so that

µ(x) =
b(x)

1−B(x)

and therefore,

b(t) = µ(t)e
−

t∫
0

µ(x)dx
.

f) The duration of repairs follows a general (arbitrary) distribution with

distribution function F (x) and density function f(x). Let η(x)dx be the
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conditional probability density of repairs completion during the interval

(x, x+ dx], given that the elapsed repair time is x, so that

η(x) =
f(x)

1− F (x)

and therefore,

f(t) = η(t)e
−

t∫
0

η(x)dx

g) At the completion of each service the server may take a vacation with

probability β or waits for the next customer with 1− β.

h) The server’s vacation time follows a general (arbitrary) distribution with

distribution function V (t) and density function v(t). Let γ(x)dx be the

conditional probability density of vacation completion during the interval

(x, x+ dx], given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1− V (x)
,

and therefore,

v(t) = γ(t)e
−

t∫
0

γ(x)dx

h) Various stochastic processes involved in the system are assumed to be

independent of each other.

10.3 Definitions

We define

Pn(x, t) = Probability that at time t, the server is idle and there are n

(n > 0) customers in the orbit and the elapsed retrial time is x. Consequently
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Pn(t) =
∞∫
0

Pn(x, t)dx denotes the probability that at time t there are n cus-

tomers in the orbit and the server is under idle irrespective of the value of

x.

Qn(x, t) = Probability that at time t, the server is busy and there are n

(n ≥ 0) customers in the orbit and the elapsed service time is x. Consequently

Qn(t) =
∞∫
0

Qn(x, t)dx denotes the probability that at time t there are n

customers in the orbit and the server is under service irrespective of the value

of x.

Rn(x, t)= Probability that at time t, there are n (n > 0) customers in the

orbit and the server is inactive due to system repair and waiting for repairs to

start with elapsed repair time x. Consequently Rn(t) =
∞∫
0

Rn(x, t)dx denotes

the probability that at time t there are n customers in the orbit and the server

is under repair irrespective of the value of x.

Vn(x, t) = Probability that at time t, the server is under vacation with

elapsed vacation time is x and there are n (n ≥ 0) customers in the orbit.

Consequently Vn(t) =
∞∫
0

Vn(x, t)dx denotes the probability that at time t there

are n customers in the orbit and the server is under vacation irrespective of

the value of x.

P0(t) = Probability that at time t, there are no customers in the orbit and

the server is idle but available in the system.

10.4 Equations governing the system

The model is then, governed by the following set of differential-difference

equations:

d

dt
P0(t) = −λP0(t)+(1−β)q

∫ ∞
0

Q0(x, t)µ(x)dx+

∫ ∞
0

V0(x, t)γ(x)dx (10.1)
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∂

∂x
Pn(x, t) +

∂

∂t
Pn(x, t) + [λ+ r(x)]Pn(x, t) =0, n ≥ 1 (10.2)

∂

∂x
Q0(x, t) +

∂

∂t
Q0(x, t) + [λ+ µ(x)]Q0(x, t) =0 (10.3)

∂

∂x
Qn(x, t) +

∂

∂t
Qn(x, t) + [λ+ µ(x)]Qn(x, t) =λ

n∑
k=1

ckQn−k(x, t),

n ≥ 1 (10.4)

∂

∂x
R1(x, t) +

∂

∂t
R1(x, t) + [λ+ η(x)]R1(x, t) =0 (10.5)

∂

∂x
Rn(x, t) +

∂

∂t
Rn(x, t) + [λ+ η(x)]Rn(x, t) =λ

n∑
k=1

ckRn−k(x, t),

n ≥ 2 (10.6)

∂

∂x
V0(x, t) +

∂

∂t
V0(x, t) + [λ+ γ(x)]V0(x, t) =0 (10.7)

∂

∂x
Vn(x, t) +

∂

∂t
Vn(x, t) + [λ+ γ(x)]Vn(x, t) =λ

n∑
k=1

ckVn−k(x, t),

n ≥ 1 (10.8)

The above set of equations are to be solved subject to the following boundary

conditions:

Pn(0, t) = (1− β)q

∫ ∞
0

Qn(x, t)µ(x)dx+ (1− β)p

∫ ∞
0

Qn−1(x, t)µ(x)dx

+

∫ ∞
0

Rn(x, t)η(x)dx+

∫ ∞
0

Vn(x, t)γ(x)dx, n ≥ 1 (10.9)

Q0(0, t) = δλc1P0(t) + α

∫ ∞
0

P1(x, t)r(x)dx (10.10)

Qn(0, t) = αλ

∫ ∞
0

n∑
k=1

ckPn−k+1(x, t)dx+ α

∫ ∞
0

Pn+1(x, t)r(x)dx

+ δλcn+1P0(t), n ≥ 1 (10.11)

R1(0, t) = δ̄λP0(t) + ᾱ

∫ ∞
0

P1(x, t)r(x)dx (10.12)

Rn(0, t) = ᾱλ

∫ ∞
0

Pn−1(x, t)dx+ ᾱ

∫ ∞
0

Pn(x, t)r(x)dx, n ≥ 2 (10.13)
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Vn(0, t) = β

∫ ∞
0

Qn(x, t)µ(x)dx, n ≥ 0 (10.14)

We assume that initially there are no customers in the system and the server

is idle. So the initial conditions are

Vn(0) = Rn(0) = 0, n ≥ 0, Qn(0) = 0 and

P0(0) = 1, Pn(0) = 0 for n ≥ 1. (10.15)

10.5 Generating functions of the queue length:

The time-dependent solution

Now we shall find the transient solution for the above set of differential-

difference equations.

Theorem: The system of differential difference equations to describe an

M [X]/G/1 feedback retrial queue with Starting Failure and Bernoulli vacation

are given by equations (10.1) to (10.14) with initial conditions (10.15) and

the generating functions of transient solution are given by equation (10.62) to

(10.65).

Proof : We define the probability generating functions,

P (x, z, t) =
∞∑
n=1

znPn(x, t); P (z, t) =
∞∑
n=1

znPn(t)

Q(x, z, t) =
∞∑
n=0

znQn(x, t); Q(z, t) =
∞∑
n=0

znQn(t)

R(x, z, t) =
∞∑
n=1

znRn(x, t); R(z, t) =
∞∑
n=1

znRn(t)
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V (x, z, t) =
∞∑
n=0

znVn(x, t);V (z, t) =
∞∑
n=0

znVn(t), C(z) =
∞∑
n=1

cnz
n (10.16)

which are convergent inside the circle given by | z | ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∞∫
0

e−stf(t)dt, <(s) > 0. (10.17)

Taking the Laplace transform of equations (10.1) to (10.14) and using (10.15),

we obtain

(s+λ)P̄0(s) = 1 + (1−β)q

∫ ∞
0

Q̄0(x, s)µ(x)dx+

∫ ∞
0

V̄0(x, s)γ(x)dx (10.18)

∂

∂x
P̄n(x, s) + [s+ λ+ r(x)]P̄n(x, s) =0, n ≥ 1 (10.19)

∂

∂x
Q̄0(x, s) + [s+ λ+ µ(x)]Q̄0(x, s) =0 (10.20)

∂

∂x
Q̄n(x, s) + [s+ λ+ µ(x)]Q̄n(x, s) =λ

n∑
k=1

ckQ̄n−k(x, s), n ≥ 1 (10.21)

∂

∂x
R̄1(x, s) + [s+ λ+ η(x)]R̄1(x, s) =0 (10.22)

∂

∂x
R̄n(x, s) + [s+ λ+ η(x)]R̄n(x, s) =λ

n∑
k=1

ckR̄n−k(x, s), n ≥ 2 (10.23)

∂

∂x
V̄0(x, s) + [s+ λ+ γ(x)]V̄0(x, s) =0 (10.24)

∂

∂x
V̄n(x, s) + [s+ λ+ γ(x)]V̄n(x, s) =λ

n∑
k=1

ckV̄n−k(x, s), n ≥ 0 (10.25)

P̄n(0, s) = q(1− β)

∫ ∞
0

Q̄n(x, s)µ(x)dx+ p(1− β)

∫ ∞
0

Q̄n−1(x, s)µ(x)dx

+

∫ ∞
0

R̄n(x, s)η(x)dx+

∫ ∞
0

V̄n(x, s)γ(x)dx, n ≥ 0 (10.26)
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Q̄0(0, s) = δλc1P̄0(s) + α

∫ ∞
0

P̄1(x, s)r(x)dx (10.27)

Q̄n(0, s) = αλ

∫ ∞
0

n∑
k=1

ckP̄n−k+1(x, s)dx

+ α

∫ ∞
0

P̄n+1(x, s)r(x)dx+ δλcn+1P̄0(s), n ≥ 1 (10.28)

R̄1(0, s) = δ̄λP̄0(s) + ᾱ

∫ ∞
0

P̄1(x, s)r(x)dx, (10.29)

R̄n(0, s) = ᾱλ

∫ ∞
0

P̄n−1(x, s)dx+ ᾱ

∫ ∞
0

P̄n(x, s)r(x)dx, n ≥ 2 (10.30)

V̄n(0, s) = β

∫ ∞
0

Q̄n(x, s)µ(x)dx, n ≥ 0 (10.31)

Now multiplying equations (10.19) to (10.31) by zn and summing over n, using

the generating functions defined in (10.16), we get

∂

∂x
P̄ (x, z, s) + [s+ λ+ r(x)]P̄ (x, z, s) = 0 (10.32)

∂

∂x
Q̄(x, z, s) + [s+ λ− λC(z) + µ(x)]Q̄(x, z, s) = 0 (10.33)

∂

∂x
R̄(x, z, s) + [s+ λ− λC(z) + η(x)]R̄(x, z, s) = 0 (10.34)

∂

∂x
V̄ (x, z, s) + [s+ λ− λC(z) + γ(x)]V̄ (x, z, s) = 0 (10.35)

P̄ (0, z, s) =(q + pz)(1− β)

∫ ∞
0

Q̄(x, z, s)µ(x)dx

+

∫ ∞
0

R̄(x, z, s)η(x)dx+

∫ ∞
0

V̄ (x, z, s)γ(x)dx

− q(1− β)

∫ ∞
0

Q̄0(x, s)µ(x)dx

−
∫ ∞
0

V̄0(x, s)γ(x)dx (10.36)

zQ̄(0, z, s) =δλC(z)P̄0(s) + α

∫ ∞
0

P̄ (x, z, s)r(x)dx

+ αλC(z)

∫ ∞
0

P̄ (x, z, s)dx (10.37)
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R̄(0, z, s) =λzδ̄P̄0(s) + ᾱλz

∫ ∞
0

P̄ (x, z, s)dx

+ ᾱ

∫ ∞
0

P̄ (x, z, s)r(x)dx, (10.38)

V̄ (0, z, s) =β

∫ ∞
0

Q̄(x, z, s)µ(x)dx, (10.39)

Using equation (10.18) in (10.36), we get

P̄ (0, z, s) = [1− (s+ λ)P̄0(s)] + (q + pz)(1− β)

∫ ∞
0

Q̄(x, z, s)µ(x)dx

+

∫ ∞
0

R̄(x, z, s)η(x)dx+

∫ ∞
0

V̄ (x, z, s)γ(x)dx (10.40)

Integrating equation (10.32) between 0 and x, we get

P̄ (x, z, s) = P̄ (0, z, s)e
−[s+λ]x−

x∫
0

r(t)dt
(10.41)

where P̄ (0, z, s) is given by equation (10.40).

Again integrating equation (10.41) by parts with respect to x, yields

P̄ (z, s) = P̄ (0, z, s)

[
1− Ā(s+ λ)

s+ λ

]
(10.42)

where

Ā(s+ λ) =

∞∫
0

e−[s+λ]xdA(x)

is the Laplace-Stieltjes transform of the retrial time A(x). Now multiplying

both sides of equation (10.41) by r(x) and integrating over x, we obtain

∞∫
0

P̄ (x, z, s)r(x)dx = P̄ (0, z, s)Ā(s+ λ) (10.43)
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Similarly, on integrating equations (10.33) to (10.35) from 0 to x, we get

Q̄(x, z, s) = Q̄(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

µ(t)dt
(10.44)

R̄(x, z, s) = R̄(0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

η(t)dt
(10.45)

V̄ (x, z, s) = V̄ (0, z, s)e
−[s+λ−λC(z)]x−

x∫
0

γ(t)dt
(10.46)

where Q̄(0, z, s), R̄(0, z, s) and V̄ (0, z, s) are given by equations (10.37) to

(10.39). Again integrating equations (10.44) to (10.46) by parts with respect

to x, yields

Q̄(z, s) = Q̄(0, z, s)

[
1− B̄(s+ λ− λC(z))

s+ λ− λC(z)

]
(10.47)

R̄(z, s) = R̄(0, z, s)

[
1− F̄ (s+ λ− λC(z))

s+ λ− λC(z)

]
(10.48)

V̄ (z, s) = V̄ (0, z, s)

[
1− V̄ (s+ λ− λC(z))

s+ λ− λC(z)

]
(10.49)

where

B̄(s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdB(x)

F̄ (s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdF (x)

V̄ (s+ λ− λC(z)) =

∫ ∞
0

e−[s+λ−λC(z)]xdV (x)

are the Laplace-Stieltjes transform of the service time B(x), repair time F (x)

and vacation time V (x) respectively.

Now multiplying both sides of equations (10.44) to (10.46) by µ(x), η(x)

and γ(x) and integrating over x, we obtain

∞∫
0

Q̄(x, z, s)µ(x)dx = Q̄(0, z, s)B̄[s+ λ− λC(z)] (10.50)
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∞∫
0

R̄(x, z, s)η(x)dx = R̄(0, z, s)F̄ [s+ λ− λC(z)] (10.51)

∞∫
0

V̄ (x, z, s)γ(x)dx = V̄ (0, z, s)V̄ [s+ λ− λC(z)] (10.52)

Using equation (10.50) in (10.39), we can write as

V̄ (0, z, s) = βQ̄(0, z, s)B̄(s+ λ− λC(z)) (10.53)

Using equation (10.43) in (10.37) and (10.38), we get

zQ̄(0, z, s) =δλC(z)P̄0(s) +
α

s+ λ
[(s+ λ)Ā(s+ λ)

+ λC(z)(1− Ā(s+ λ))]P̄ (0, z, s) (10.54)

R̄(0, z, s) =zλδ̄P̄0(s) +
ᾱ

s+ λ
[λz(1− Ā(s+ λ))

+ (s+ λ)Ā(s+ λ)]P̄ (0, z, s) (10.55)

Using equations (10.50) to (10.52) in (10.40), we get

P̄ (0, z, s) =[1− (s+ λ)P̄0(s)] + F̄ (a)R̄(0, z, s)

+ (q + pz)(1− β)B̄(a)Q̄(0, z, s)

+ V̄ (a)V̄ (0, z, s)

Using equations (10.53), (10.54), (10.55) in the above equation, we get

P̄ (0, z, s) =
Nr

Dr
(10.56)
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where

Nr =P̄0(s)[δλC(z)B̄(a)((q + pz)(1− β) + βV̄ (a))

+ λz2δ̄F̄ (a)] + z[1− sP̄0(s)]− zλP̄0(s) (10.57)

Dr =z − αB̄(a)[(q + pz)(1− β) + βV̄ (a)][Ā(s+ λ)

+ λC(z)
(1− Ā(s+ λ))

s+ λ
]

− ᾱzF̄ (a)[λz
(1− Ā(s+ λ))

s+ λ
+ Ā(s+ λ)] (10.58)

and a = s+ λ− λC(z).

Substituting the value of P̄ (0, z, s) from equation (10.56) into equations

(10.54) and (10.55), we get

R̄(0, z, s) =λzδ̄P̄0(s) +
ᾱ

s+ λ
[λz(1− Ā(s+ λ)) + (s+ λ)Ā(s+ λ)]

Nr

Dr

(10.59)

Q̄(0, z, s) =
α

s+ λ
[(s+ λ)Ā(s+ λ) + λC(z)(1− Ā(s+ λ))]

Nr

Dr

+
δλC(z)

z
P̄0(s) (10.60)

Using equation (10.60) in (10.53), we get

V̄ (0, z, s) =
αβB̄(a)

z(s+ λ)
[(s+ λ)Ā(s+ λ) + λC(z)(1− Ā(s+ λ))]

Nr

Dr

+ βB̄(a)
δλC(z)

z
P̄0(s) (10.61)

Substituting equations (10.56), (10.59), (10.60), (10.61) in (10.42),

(10.47), (10.48) and (10.49), we get

P̄ (z, s) =

[
1− Ā(s+ λ)

s+ λ

]
Nr

Dr
(10.62)
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Q̄(z, s) =

[
1− B̄(a)

a

]
[
δλC(z)

z
P̄0(s)

+
α

z(s+ λ)
((s+ λ)Ā(s+ λ) + λC(z)(1− Ā(s+ λ)))

Nr

Dr
] (10.63)

R̄(z, s) =

[
1− F̄ (a)

a

]
[λzδ̄P̄0(s)

+
ᾱ

s+ λ
(λz(1− Ā(s+ λ)) + (s+ λ)Ā(s+ λ))

Nr

Dr
] (10.64)

V̄ (z, s) =

[
1− V̄ (a)

a

]
βB̄(a)[

δλC(z)

z
P̄0(s)

+
α

z(s+ λ)
((s+ λ)Ā(s+ λ) + λC(z)(1− Ā(s+ λ)))

Nr

Dr
] (10.65)

where Nr and Dr are given by (10.57) and (10.58). P̄ (z, s), Q̄(z, s), R̄(z, s)

and V̄ (z, s) are completely determined from equations (10.62) to (10.65).

10.6 The steady state results

In this section, we shall derive the steady state probability distribution for our

queueing model. These probabilities are obtained by suppressing the argument

t wherever it appears in the time-dependent analysis. This can be obtained

by applying the Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t)

In order to determine P̄ (z, s), Q̄(z, s), R̄(z, s) and V̄ (z, s) completely, we

have yet to determine the unknown P0 which appears in the numerators of the

right hand sides of equations (10.62) to (10.65). For that purpose, we shall

use the normalizing condition

P (1) +Q(1) +R(1) + V (1) + P0 = 1
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The steady state probabilities for an M [X]/G/1 feedback retrial queue with

starting failure and Bernoulli vacation are given by

P (1) =
(1− Ā(λ)

λ

D′1
D′2

P0

Q(1) =λδE(B)P0 + αE(B)
D′1
D′2

P0

R(1) =λδ̄E(F )P0 + ᾱE(F )
D′1
D′2

P0

V (1) =λδβE(V )P0 + βαE(V )
D′1
D′2

P0

where P (1), Q(1), R(1), V (1) are the steady state probabilities that the server

idle, server busy, server under repair and server under vacation respectively

without regard to the number of customers in the orbit and P0 is the probability

that the server is idle and there are no customers in the orbit.

Multiplying both sides of equations (10.62) to (10.65) by s, taking limit as

s→ 0, applying Tauberian property and simplifying, we obtain

P (z) =

[
1− Ā(λ)

λ

]
D1

D2

P0 (10.66)

Q(z) =[
λδC(z)

z
+
α

z
(C(z)(1− Ā(λ))

+ Ā(λ))
D1

D2

]

[
1− B̄(a1)

a1

]
P0 (10.67)

R(z) =[λzδ̄Q+ ᾱ(z(1− Ā(λ)) + Ā(λ))
D1

D2

]

[
1− F̄ (a1)

a1

]
P0 (10.68)

V (z) =[
λδC(z)

z
+
α

z
C(z)(1− Ā(λ))

+ Ā(λ))
D1

D2

]βB̄(a1)

[
1− V̄ (a1)

a1

]
P0 (10.69)

where
D1 =λδC(z)B̄(a1)[(q + pz)(1− β) + βV̄ (a1)]

+ z2λδ̄F̄ (a1)− zλ, (10.70)

250



D2 =z − αB̄(a1)[Ā(λ) + C(z)(1− Ā(λ))][(q + pz)(1− β)

+ βV̄ (a1)]− zᾱF̄ (a1)[z(1− Ā(λ)) + Ā(λ)], (10.71)

and a1 = λ− λC(z).

Let Wq(z) denote the probability generating function for the number of

customers in the orbit. Then adding equations (10.66) to (10.69), we obtain

Wq(z) = P (z) +Q(z) +R(z) + V (z)

Wq(z) =

[
1− Ā(λ)

λ

]
D1

D2

P0

+[
λδC(z)

z
+
α

z
(C(z)(1− Ā(λ)) + Ā(λ))

D1

D2

]P0

[
1− B̄(a1)

a1

]
+[λzδ̄P0 + ᾱ(z(1− Ā(λ)) + Ā(λ))

D1

D2

]

[
1− F̄ (a1)

a1

]
P0

+[
λδC(z)

z
+
α

z
(C(z)(1− Ā(λ)) + Ā(λ))

D1

D2

]βB̄(a1)

×
[

1− V̄ (a1)

a1

]
P0 (10.72)

we see that for z=1, Wq(1) is indeterminate of the form 0/0. Therefore, we

apply L’Hopital’s rule and on simplifying, we get

Wq(1) =
D′1
λD′2

[1− Ā(λ) + λ(αE(B) + ᾱE(F ) + βαE(V ))]P0

+ λ(δE(B) + δ̄E(F ) + δβE(V ))P0 (10.73)

where

C(1)= 1, C ′(1) = E(I) is mean batch size of the arriving customers,
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E(V ) = −V̄ ′(0) is mean vacation time, E(B) = −B̄′(0) is mean busy time

and E(F ) = −F̄ ′(0) is mean repair time.

Therefore adding P0 to the above equation, equating to 1 and simplifying,

we get

P0 =
D′2λ

D′2λ+D′1(1− Ā(λ) + λ(αE(B) + ᾱE(F ) + βαE(V ))) +D′2λM
(10.74)

where

M = λδE(B) + λδ̄E(F ) + λβδE(V )

D′1 =λδE(I)(1 + λE(B)) + δλ[p(1− β) + λβE(I)E(V )]

+ λδ̄(1 + λE(F )E(I))− λδ (10.75)

D′2 =1− λE(I)(αE(B) + ᾱE(F ))− (1− Ā(λ))(αE(I) + ᾱ)

− α[p(1− β) + λβE(I)E(V )]− ᾱ (10.76)

and hence the utilization factor ρ of the system is given by

ρ = 1− P0 (10.77)

where ρ < 1 is the stability condition under which the steady state exists.

Equation (10.74) gives the probability that the server is idle.

Substituting P0 from (10.74) into (10.72), we have completely and explic-

itly determined Wq(z), the probability generating function of the number of

customers in the orbit.
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10.7 The average orbit size and average wait-

ing time

Let Lq denote the average number of customers in the orbit under the steady

state. Then

Lq =
d

dz
Wq(z) at z = 1

since this formula gives 0/0 form, then we write Wq(z) given in (10.72) as

Wq(z) =
N1(z)

D1(z)
P0 +

N2(z)

D2(z)
P0 where

N1(z) =D1(D3 + λαD4D5 + λᾱD6D7)

N2(z) =λδC(z)D5 + zλδ̄D6

D1(z) =λza1D2

D2(z) =z(λ− λC(z))

D3 =za1[1− Ā(λ)]

D4 =Ā(λ) + C(z)(1− Ā(λ))

D5 =1− (1− β)B̄(a1)− βB̄(a1)V̄ (a1)

D6 =z[1− F̄ (a1)]

D7 =z[1− Ā(λ)] + Ā(λ)

D8 =(q + pz)(1− β) + βV̄ (a1)

Lq = lim
z→1

d

dz
Wq(z)

=

[
D′′1(1)N ′′′1 (1)−N ′′1 (1)D′′′1 (1)

3(D′′1(1))2

]
Q

+

[
D′2(1)N ′′2 (1)−N ′2(1)D′′2(1)

2(D′2(1))2

]
Q (10.78)
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where primes, double primes and triple primes in (10.78) denote first, second

and third derivative at z = 1 respectively. Carrying out derivative at z = 1,

we have

N ′′1 (1) =− 2λE(I)D′1[1− Ā(λ) + λ(α(E(B) + βE(V )) + ᾱE(F ))]

N ′′′1 (1) =− 3λE(I)D′′1 [1− Ā(λ) + λ(α(E(B) + βE(V )) + ᾱE(F ))]

+ 3D′1[−λ(2E(I) + E(I(I − 1)))(1− Ā(λ) + λE(F )ᾱ)

− λ2α(E(B) + βE(V ))(2(E(I)2)(1− Ā(λ))

+ E(I(I − 1)))− λ2α(E(I)2)(E(B2) + βE(V 2) + 2λE(B)E(V )β)

− λ2ᾱE(I)(λE(F 2)E(I) + 2E(F )(1− Ā(λ)))]

D′′1(1) =− 2λ2E(I)[α− λE(I)(αE(B) + ᾱE(F ))

− (1− Ā(λ))(αE(I) + ᾱ)− α(p(1− β) + λβE(V )E(I))]

D′′′1 (1) =− 3λ2D′2[2E(I) + E(I(I − 1))]− 3λ2E(I)D′′2

N ′2(1) =− λ2E(I)[δ(E(B) + βE(V )) + δ̄E(F )]

N ′′2 (1) =− λ3(E(I)2)[δ(E(B2) + βE(V 2)) + δ̄E(F 2)]

− 2λ2E(I)2δ[E(B) + βE(V ) + λβE(B)E(V )]

− 4λ2E(I)δ̄E(F )− λ2E(I(I − 1))[δ(E(B) + βE(V )) + δ̄E(F )]

D′2(1) =− λE(I)

D′′2(1) =− λ[2E(I) + E(I(I − 1))]

D′′1 = δλE(I(I − 1)) + 2λ2(E(I))2δE(B)

+ 2δλE(I)[p(1− β) + λβE(V )E(I)](1 + λE(B))

+ λ2(E(I))2[δλ(E(B2) + βE(V 2)) + λδ̄E(F 2)]

+ λE(I(I − 1))[δλ(E(B) + βE(V )) + λδ̄E(F )]

+ 2λδ̄ + 4λ2δ̄E(F )E(I)

D′′2 =− λ2(E(I))2[α(E(B2) + βE(V 2)) + ᾱE(F 2)]
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− λE(I(I − 1))[α(E(B) + βE(V )) + ᾱE(F )]

− (1− Ā(λ))[2λE(I)(αE(B)E(I) + ᾱE(F )) + αE(I(I − 1)) + 2ᾱ]

− 2E(I)[p(1− β) + λβE(V )E(I)][λαE(B) + 1− Ā(λ)]

− 2λᾱE(F )E(I)

where E(B2), E(V 2) and E(F 2) are the second moment of service time, vaca-

tion time and the repair time respectively. E(I(I − 1)) is the second factorial

moment of the batch size of arriving customers.

Then if we substitute the values N ′′1 (1), N ′′′1 (1), D′′1(1), D′′′1 (1), N ′2(1), N ′′2 (1),

D′2(1), D′′2(1) in (10.78), we obtain Lq in the closed form.

Further, we find the mean system size L by using Little’s formula. Thus

we have

L = Lq + ρ (10.79)

where Lq has been found by equation (10.78) and ρ is obtained from equation

(10.77).

Let Wq and W denote the mean waiting time in the orbit and in the system

respectively. Then by using Little’s formula, we obtain

Wq =
Lq
λ

W =
L

λ

where Lq and L have been found in equations (10.78) and (10.79).

10.8 Particular cases

Case 1: When the server has no vacation and C(z) = z i.e, β=0, E(I)= 1

and E(I(I − 1))=0, then our model reduces to a single server M/G/1 retrial
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feedback queue with starting failure. In this case, the idle probability P0,

utilization factor ρ and the average queue size Lq can be simplified to the

following expressions.

P0 =1− ρ

ρ =
α(λE(B) + p) + ᾱ(1 + λE(F ))

Ā(λ)

Lq =

[
D′′1(1)N ′′′1 (1)−N ′′1 (1)D′′′1 (1)

3(D′′1(1))2

]
P0

+

[
D′2(1)N ′′2 (1)−N ′2(1)D′′2(1)

2(D′2(1))2

]
P0

where

N ′′1 (1) =− 2λ(λδ(1 + λE(B)) + δλp+ λδ̄(1 + λE(F ))

− λδ)[1− Ā(λ) + λαE(B) + λᾱE(F )]

N ′′′1 (1) =− 3λ(2λ2δE(B) + 2δλp(1 + λE(B))

+ λ2[δλE(B2) + λδ̄E(F 2)]

+ 2λδ̄ + 4λ2δ̄E(F ))[1− Ā(λ) + λ(αE(B) + ᾱE(F ))]

+ 3(λδ(1 + λE(B)) + δλp+ λδ̄(1 + λE(F ))− λδ)

× [−2λ(1− Ā(λ) + λE(F )ᾱ)

− 2λ2αE(B)(1− Ā(λ))− λ2αE(B2)

− λ2ᾱ(λE(F 2) + 2E(F )(1− Ā(λ)))]

D′′1(1) =− 2λ2[α− λ(αE(B) + ᾱE(F ))− (1− Ā(λ))− αp]

D′′′1 (1) =− 6λ2(1− λ(αE(B) + ᾱE(F ))− (1− Ā(λ))− pα− ᾱ)

− 3λ2(−λ2[αE(B2) + ᾱE(F 2)]

− (1− Ā(λ))[2λ(αE(B) + ᾱE(F )) + 2ᾱ]

− 2p[λαE(B) + 1− Ā(λ)]− 2λᾱE(F ))
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N ′2(1) =− λ2[δE(B) + δ̄E(F )]

N ′′2 (1) =− λ3[δE(B2) + δ̄E(F 2)]− 2λ2δE(B)− 4λ2δ̄E(F )

D′2(1) =− λ

D′′2(1) =− 2λ

The above results coincide with the results of Krishna Kumar et al. (2002b).

Case 2: When the server has no vacation, no feedback, no starting failure

and C(z) = z i.e, β=0, α = δ = q = 1, E(I)= 1 and E(I(I − 1))=0, then

our model reduces to a single server M/G/1 retrial queue. In this case, the

idle probability P0, utilization factor ρ and the average queue size Lq can be

simplified to the following expressions.

P0 =1− ρ

ρ =
λE(B)

Ā(λ)

Lq =

[
D′′1(1)N ′′′1 (1)−N ′′1 (1)D′′′1 (1)

3(D′′1(1))2

]
P0

+

[
D′2(1)N ′′2 (1)−N ′2(1)D′′2(1)

2(D′2(1))2

]
P0

where

N ′′1 (1) =− 2λ2E(B)[1− Ā(λ) + λE(B)]

N ′′′1 (1) =− 3λ(2λ2E(B) + λ3E(B2))[1− Ā(λ) + λE(B)] + 3λ2E(B))

× [−2λ(1− Ā(λ))− 2λ2E(B)(1− Ā(λ))− λ2E(B2)]

D′′1(1) =− 2λ2[λE(B)− Ā(λ)]

D′′′1 (1) =− 6λ3(λE(B)− Ā(λ))

− 3λ2(−λ2E(B2)− 2(1− Ā(λ))λE(B))
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N ′2(1) =− λ2E(B)

N ′′2 (1) =− λ3E(B2)− 2λ2E(B)

D′2(1) = − λ

D′′2(1) = − 2λ

The above results coincide with the results of Gomez-Corral (1999).

10.9 Numerical results

To numerically illustrate the results obtained in this work, we consider that

the retrial times, service times and repair times are exponentially distributed

with rates η, µ and r. We study different performance measures under different

values of the parameters. All the values were chosen so that the stability

condition is satisfied. We base our numerical example on the result found in

case 2.

In Table 10.1, we choose the following values: µ = 4, η= 3 and r = 2

while λ varies from 0.1 to 1.0 such that the stability condition is satisfied.

It clearly shows as long as increasing the arrival rate, the server’s idle time

decreases while the utilization factor, the mean orbit size, system size and the

mean waiting time in the orbit and the system of our queueing model are all

increases.

In Table 10.2, we choose the following arbitrary values: λ = 0.2, η= 8,

r = 11 and µ varies from 1 to 10 such that the stability condition is satisfied.

It clearly shows as long as increasing the service rate, the server’s idle

time increases while the utilization factor, average queue size, system size and

average waiting time in the orbit and the system of our queueing model are

all decreases.
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Table 10.1: Computed values of various queue characteristics

λ P0 ρ Lq L Wq W

0.1 0.973750 0.026250 0.002105 0.028355 0.021053 0.283553
0.2 0.945000 0.055000 0.008751 0.063751 0.043755 0.318755
0.3 0.913750 0.086250 0.020523 0.106773 0.068411 0.355911
0.4 0.880000 0.120000 0.038164 0.158164 0.095409 0.395409
0.5 0.843750 0.156250 0.062627 0.218877 0.125253 0.437753
0.6 0.805000 0.195000 0.095161 0.290161 0.158602 0.483602
0.7 0.763750 0.236250 0.137430 0.373680 0.196328 0.533828
0.8 0.720000 0.280000 0.191689 0.471689 0.239611 0.589611
0.9 0.673750 0.326250 0.261065 0.587315 0.290072 0.652572
1.0 0.625000 0.375000 0.350000 0.725000 0.350000 0.725000

Table 10.2: Computed values of various queue characteristics

µ P0 ρ Lq L Wq W

1 0.796360 0.203640 0.088290 0.291926 0.441448 1.459630
2 0.898180 0.101820 0.017430 0.119251 0.087165 0.596256
3 0.932120 0.067880 0.007360 0.075241 0.036810 0.376204
4 0.949090 0.050910 0.004150 0.055058 0.020745 0.275290
5 0.959270 0.040730 0.002720 0.043444 0.013585 0.217222
6 0.966060 0.033940 0.001950 0.035889 0.009746 0.179443
7 0.970910 0.029090 0.001490 0.030577 0.007431 0.152855
8 0.974550 0.025450 0.001180 0.026638 0.005915 0.133188
9 0.977370 0.022630 0.000970 0.023599 0.004863 0.117994
10 0.997964 0.020360 0.000820 0.021183 0.004098 0.105916
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