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ABSTRACT 

Vehicular Ad-hoc Networks (VANETs) is a distributed and self-organized network that 

has evolved as a new powerful technology for enabling safe and comfortable driving. Numerous 

challenges related to VANET resources have invited potential researchers to focus on resolving 

issues that include routing, broadcasting, quality of service and security. Among the challenges, 

efficient routing in VANET is the most important issue that needs to be resolved for sending and 

receiving vital information between the vehicular nodes of the network in a timely manner. 

Routing attacks like Denial of Service attack, Black Hole attack, Wormhole attack, Sinkhole 

attack and Sybil attack drastically influence and degrade the availability factor of VANET 

resources. Distributed Denial of Service (DDoS) attack is the most crucial attack among the 

availability parameter influencing attacks in VANET that uses the group of malicious nodes to 

deny the services from a victim node. Collaboration among the neighbouring vehicles is 

important for reliable routing of packets from the source to destination. But the malicious 

activity of each neighbouring vehicle makes the task difficult and prevents the packet from 

reaching the destination node. Thus reliable neighbouring nodes of the interacting vehicular 

nodes need to be determined for mitigating the impact of DDoS attacks. The problem of finding 

the reliable neighbour in a large, dynamic, unstable topology network for routing the data is 

similar to finding the optimized path in a large network. Thus the selection of optimal neighbour 

is considered as the optimization problem which can be solved by applying various approximate 

solutions. Meta-Heuristics Stochastic Optimization algorithms are more preferable than heuristic 

approaches for their strong theoretical background, experimental confirmation and effective 

performance. Furthermore, the exploitation and the exploration levels of searching enabled by 

Meta-Heuristic Stochastic Optimization algorithms are confirmed to be quite significant.  

In this research, existing Meta-Heuristic Stochastic Optimization algorithms such as Ant 

Colony Optimization (ACO), Artificial Bee Colony (ABC) and Tabu Search (TS) are 

phenomenally improved for finding the global best solution that plays a vital role in mitigating 

DDoS attacks.  The proposed variant algorithms of ACO, ABC and TS such as Cellular 

Automata-based Improved Ant Colony Optimization Algorithm (CA-IACOA), Cellular 

Automata-based Improved Artificial Bee Colony Algorithm (CA-IABCA), Cellular      
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Automata-based Modified Artificial Bee Colony Algorithm (CA-MABCA), and Cellular 

Automata-based Modified Tabu Search Algorithm (CA-MTSA) integrate cellular automata with 

the respective meta-heuristics stochastic algorithms for improving its efficiency under DDoS 

mitigation. 

These proposed CA-IACOA, CA-IABCA, CA-MABCA, and CA-MTSA algorithms use 

vehicle’s reference velocity, reliability and trust factor for evaluating the fitness values of each 

vehicular node of the network. The quantified fitness value of vehicular nodes aids the proposed 

algorithms to compare the co-operative behaviour of vehicular nodes and choose an optimal 

node among them for mitigating DDoS nodes of the network.  

The proposed algorithms are evaluated by simulation and analytical method. Then the 

proposed and the compared benchmark algorithms are compared using evaluation metrics like 

prediction variance, average prediction variance, packet delivery ration, and end-to-end delay 

metrics for testing the significance of the proposed CA-IACOA, CA-IABCA, CA-MABCA, and 

CA-MTSA algorithms. From the result analyses, it is found that the proposed algorithms give 

better packet delivery ratio and less prediction variance compared to the existing algorithms. The 

analytical testing of the proposed algorithms with standard benchmark functions also inferred 

better rate of convergence, precision, robustness and performance in increased dimensions.  

 

 

 

 

 

 

 

 

 

 



vi 

 

TABLE OF CONTENTS 

Chapter 
No. 

Title Page 
No. 

 
 ACKNOWLEDGMENT  iii 

 ABSTRACT  iv 

 LIST OF FIGURES  x 

 LIST OF TABLES  xvi 

 LIST OF ABBREVIATIONS  xviii 

1  INTRODUCTION  1 

 1.1     Preamble  1 
           1.1.1     Vehicular ad hoc Networks 2 

           1.1.2     Impact of DDoS attacks in VANETs  8 

           1.1.3     Co-operation in VANETs 9 

           1.1.4     Role of Cellular Automata for handling DDoS 10 

           1.1.5     Categories of Cellular Automata Model 14 

 1.2     Need for the Research 16 

 1.3     Motivation of the Research 17 

 1.4     Scope of the Research  18 

 1.5     Problem Statement and Objectives  19 

           1.5.1     Problem Statement 19 

                        1.5.2      Objectives 19 

 1.6     Methodology and Approach  20 

 1.7     Organization of the Thesis 21 

 1.8     Summary  22 

2  LITERATURE SURVEY  23 

 2.1     Cellular Automata-based DDoS Mitigation Techniques  23 

 2.2     Stochastic optimizations for DDoS Mitigation 25 

   

   

   



vii 

 

Chapter 
No. 

Title Page 
No. 

 2.3     Categories of Stochastic optimizations for DDoS Mitigation 26 

 2.4     Significance of Meta-Heuristics over Heuristic  27 

 2.5     Meta-Heuristic optimization techniques for DDoS Mitigation 30 

 2.6     Artificial Bee colony inspired Cellular Automata-based DDoS 

Mitigation 
31 

      2.6.1   Improvement of Artificial Bee colony using Grenade explosion 33 

      2.6.2   Significance of Cauchy operator in Exploration 35 

 2.7     Ant colony inspired Cellular Automata-based DDoS Mitigation  38 

      2.7.1    Enhancement of Ant colony optimization search 40 

      2.7.2    Significance of mutation strategies in exploration  43 

 2.8     Tabu Search inspired Cellular Automata-based DDoS Mitigation  44 

 2.9     Extract of the Literature Survey 47 

 2.10   Summary  50 

3 MODIFIED ANT COLONY OPTIMIZATION ALGORITHM 
INSPIRED CELLULAR AUTOMATA FOR MITIGATING DDoS 
ATTACKS  

51 

 3.1     Improved Ant Colony Optimization Algorithms for Mitigation   51 

    3.1.1    Improved Movement Rules of Ants 52 

    3.1.2    Enhanced Pheromone updating rules of MACOA-CA 55 

    3.1.3    Pheromone Adaptive Adjustment Strategy for MACOA-CA 56 

    3.1.4    MACOA-CA Dynamic Evaporation Factor Strategy  58 

    3.1.5    Boundary Symmetric Mutation Scheme of MACOA-CA 59 

     3.1.6    Flow Chart of proposed MACOA-CA 60 

 3.2    Simulation Experiments and Results  63 

 3.3     Summary  74 



viii 

 

Chapter 
No. 

Title Page 
No. 

4 CELLULAR AUTOMATA BASED IMPROVED ARTIFICIAL BEE 

COLONY ALGORITHM  

75 

 4.1     Grenade Explosion-Based Artificial Bee Colony Algorithm   75 

     4.1.1    2D-Space cellular model configuration for CA-IABCA 76 

 4.1.2    Evolution rules employed for CA-IABCA 76 

     4.1.3   CA-IABCA –Improved Artificial Bee Colony Algorithm with 
Grenade Explosion and Cauchy Operator 

77 

     4.1.4  Grenade Explosion based Onlooker Bees inspired Exploitation    
Mechanism  

79 

     4.1.5    Cauchy operator based Scout Bees Exploration Phase  81 

 4.2    CA-IABCA -Simulation Experiments and Results Analysis 84 

 4.3     Modified Artificial Bee Colony Algorithm using Differential Evolution   94 

     4.3.1    2D-Space cellular model configuration for MABCA  96 

     4.3.2    Evolution rules employed for MABCA  97 

     4.3.3    Differential Evolution based Onlooker Bees inspired 
Exploitation Mechanism  

98 

     4.3.4    Integrated Chaotic and opposition-based learning inspired Scout 

Bees Exploration Phase  

99 

 4.4     MABCA-Simulation Experiments and Results Analysis 102 

 4.5     Summary  107 

5 CELLULAR AUTOMTA INSPIRED MODIFIED TABU SEARCH 

ALGORITHM  

109 

 5.1     Cellular Automata Inspired Modified Tabu Search Algorithm  109 

 5.2     Algorithm and Flow Chart of the proposed CA-MTSA 114 

 5.3     Simulation Experiments and Results Analysis  116 



ix 

 

 

Chapter 
No. 

Title Page 
No. 

 5.4     Summary  132 

6 COMPARATIVE INVESTIGATIONS OF MACOA-CA, CA-IABCA 

AND CA-MABCA THROUGH MULTIMODAL FUNCTIONS 

134 

 6.1     Performance analyses based on Quartic function 134 

 6.2     Performance analyses based on Schwefel-2.26 function 136 

 6.3     Performance analysis based on Exponential function 138 

 6.4     Performance analyses based on Sumsquare function 140 

 6.5     Performance analyses based on Rastrigin function 142 

 6.6     Performance analyses based on Ackley function 144 

 6.7     Performance analyses based on Griewank function 146 

 6.8     Performance analyses based on Shaffer function 148 

 6.9     Performance analyses of CA-MABCA  based on Sphere function 150 

 6.10   Performance analyses of CA-MABCA  based on Step function 151 

 6.11   Performance analyses of CA-MABCA  based on Schwefel-2.21 

function 

152 

 6.12   Performance analyses of CA-MABCA  based on Sumpower function 153 

 6.13   Performance analyses of CA-MABCA  based on Elliptic function 154 

 6.14   Performance analyses of CA-MABCA  based on Exponential function 155 

 6.15   Summary  156 

7 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 157 

 7.1     Conclusions  157 

 7.2     Contributions  159 

 7.3     Future Research Directions  160 

 REFERENCES  161 

 LIST OF PUBLICATIONS 173 

 VITAE 175 



x 

 

LIST OF FIGURES 

Figure 

No. 

Title Page 

No. 

1.1 Architecture on VANETs 3 

1.2 DSRC Channel 3 

1.3 Communication modes 4 

1.4 VANETs Security threats and attacks 6 

1.5 a) Denial of Service attack               8 
b) Distributed DoS attack 

1.6 One-dimensional CA 11 

1.7 Transition Function 12 

1.8 1-D Neighborhood Model  14 

1.9 2-D Neighborhood Model 15 

     1.10 Extended Moore Model 16 

2.1 Basic Heuristic algorithm workflow 27 

2.2 Basic Meta-Heuristic algorithm workflow 29 

2.3 Classification of Meta-heuristics algorithms 31 

2.4 Artificial Bee Colony Optimization algorithm 32 

2.5 Standard Cauchy Distribution curve, Cauchy (0,1) 36 

2.6 Distribution curve of Normal and Cauchy Operator 36 

2.7 Ant Colony Algorithm 40 

2.8 Tabu Search algorithm 45 

 

 



xi 

 

Figure 

No. 

Title Page 

No. 

3.1  a. Moore Model for MACOA-CA 55 

 b. Direction of transfer in MACOA-CA 

3.2 Flow Chart for MACOA-CA algorithm 61 

3.3 Experiment 1-Performance of MACOA-CA -Prediction variance (meters) 

-100 nodes  

65 

3.4 Experiment 1-Performance of  MACOA-CA -Prediction variance (meters) 

-200 nodes 

65 

3.5 Experiment 1-Performance of  MACOA-CA -Prediction variance (meters) 

-300 nodes 

66 

3.6 Experiment 2-Performance of  MACOA-CA -Prediction variance per 
second -100 nodes 

67 

3.7 Experiment 2-Performance of  MACOA-CA -Prediction variance per 
second -200 nodes 

68 

3.8 Experiment 2-Performance of  MACOA-CA -Prediction variance per 
second -300 nodes 

68 

3.9 Experiment 3-Performance of  MACOA-CA - Average Prediction variance         
-60 seconds 

69 

3.10 Experiment 3-Performance of  MACOA-CA - Average Prediction variance        
-70 seconds 

70 

3.11 Experiment 3-Performance of  MACOA-CA- Average Prediction variance        
-80 seconds 

71 

4.1 a.  Moore Model for CA-IABCA  77 
b.  Direction of transfer in CA-IABCA  

4.2 Flow chart of CA-IABCA  82 

4.3 Experiment 1-Performance of  CA-IABCA -Prediction variance (meters)  

 -100 nodes 

85 



xii 

 

Figure 

No. 

Title Page 

No. 

4.4 Experiment 1-Performance of  CA-IABCA -Prediction variance (meters)     
-200 nodes 

86 

4.5 Experiment 1-Performance of  CA-IABCA -Prediction variance (meters)      
-300 nodes 

86 

4.6 Experiment 2-Performance of CA-IABCA -Prediction variance per second  
-100 nodes   

88 

4.7 Experiment 2-Performance of CA-IABCA -Prediction variance per second  
-200 nodes   

88 

4.8 Experiment 2-Performance of CA-IABCA -Prediction variance per second  
-300 nodes   

89 

4.9 Experiment 3-Performance of CA-IABCA -Average Prediction variance      
-80 seconds 

90 

4.10 Experiment 3-Performance of CA-IABCA -Average Prediction variance      
-90 seconds 

91 

4.11 Experiment 3-Performance of CA-IABCA -Average Prediction variance      
-100 seconds 

91 

4.12 a. Moore Model for CA-MABCA  98 

b. Direction of transfer in CA-MABCA  

4.13 Flow Chart of CA-MABCA 101 

4.14 Experiment 1-Performance of CA-MABCA -Prediction variance (meters) 

-100 nodes 

103 

4.15 Experiment 1-Performance of CA-MABCA -Prediction variance (meters) 

-200 nodes 

104 

4.16 Experiment 2-Performance of CA-MABCA -Mean Prediction variance 
-90 seconds 

105 

4.17 Experiment 2-Performance of CA-MABCA -Mean Prediction variance 

-100 seconds 

106 



xiii 

 

Figure 

No. 

Title Page 

No. 

5.1 CA model for CA-MTSA  110 

5.2 Flow chart of CA-MTSA for mitigating DDoS in VANETs 116 

5.3 Experiment 1-Performance of CA-MTSA -Prediction variance (meters)-

100 nodes  

118 

5.4 Experiment 1-Performance of CA-MTSA -Prediction variance (meters)-
200 nodes 

119 

5.5 Experiment 1-Performance of CA-MTSA -Prediction variance (meters)-
300 nodes 

119 

5.6 Experiment 2-Performance of CA-MTSA -Prediction variance per second-
100 nodes 

120 

5.7 Experiment 2-Performance of CA-MTSA -Prediction variance per second-
200 nodes 

121 

5.8 Experiment 2-Performance of CA-MTSA -Prediction variance per second-
300 nodes 

122 

5.9 Experiment 3-Performance of CA-MTSA -Average Prediction variance-70 
sec 

123 

5.10 Experiment 3-Performance of CA-MTSA -Average Prediction variance-80 
sec 

124 

5.11 Experiment 3-Performance of CA-MTSA -Average Prediction variance 

-100 sec 

124 

5.12 Experiment 4-Performance of CA-MTSA  based on PDR-100 nodes 125 

5.13 Experiment 4-Performance of CA-MTSA  based on PDR-200 nodes 127 

5.14 Experiment 4-Performance of CA-MTSA  based on PDR-300 nodes 127 

5.15 Experiment 4-Performance of CA-MTSA  based on PDR-200 nodes 128 



xiv 

 

Figure 

No. 

Title Page 

No. 

5.16 Experiment 4-Performance of CA-MTSA based on PDR-300 nodes 129 

6.1 Performance of  MACOA-CA - Quartic (D=5) 135 

6.2 Performance of  MACOA-CA - Quartic (D=10) 136 

6.3 Performance of  MACOA-CA -  Schwefel-2.26 (D=5) 137 

6.4 Performance of  MACOA-CA -  Schwefel-2.26 (D=10) 138 

6.5 Performance of  MACOA-CA -Exponential (D=5) 139 

6.6 Performance of  MACOA-CA -Exponential (D=10) 140 

6.7 Performance of MACOA-CA - Sumsquare (D=5) 141 

6.8 Performance of MACOA-CA- Sumsquare (D=10) 142 

6.9  Performance of CA-IABCA -Rastrigin Function (D=5) 143 

6.10 Performance of CA-IABCA -Rastrigin Function (D=10) 144 

6.11 Performance of CA-IABCA -Ackley Function (D=5) 145 

6.12 Performance of CA-IABCA -Ackley Function (D=10) 146 

6.13 Performance of CA-IABCA -Griewank Function (D=5) 147 

6.14 Performance of CA-IABCA -Griewank Function (D=5) 148 

6.15 Performance of CA-IABCA -Shaffer Function (D=5)  149 

6.16 Performance of CA-IABCA-Shaffer Function (D=10)  150 

6.17 Performance of CA-MABCA-Sphere Function  151 

6.18 Performance of CA-MABCA-Step Function 152 

 



xv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 

No. 

Title Page 

No. 

6.19 Performance of CA-MABCA - Schwefel-2.21 Function 153 

6.20 Performance of CA-MABCA - Sumpower Function 154 

6.21 Performance of CA-MABCA - Elliptic Function 155 

6.22 Performance of CA-MABCA - Exponential Function 156 



xvi 

 

LIST OF TABLES 

Table 

No. 

Title Page 

No. 

3.1 Simulation setup for evaluating MACOA-CA 63 

3.2 Performance comparison of Prediction variance (measured in meters) for 

the proposed  MACOA-CA algorithm with existing algorithms 

72 

3.2 Performance comparison of Prediction variance (measured in seconds)  for 

the proposed  MACOA-CA algorithm with existing algorithms 

72 

3.3 Performance comparison of Average Prediction variance (measured in 

meters) for the proposed  MACOA-CA algorithm with existing algorithms 

73 

4.1 Simulation setup for evaluating  CA-IABCA 84 

4.2 Performance comparison of Average Prediction variance (measured in 

meters) of proposed  CA-IABCA algorithm with existing algorithms  

92 

4.3 Performance comparison of Prediction variance (measured in seconds) of 

proposed  CA-IABCA algorithm with existing algorithms  

93 

4.4 Performance comparison of Average Prediction variance (measured in 

meters) of proposed CA-IABCA algorithm with existing algorithms  

94 

4.5 Simulation setup for CA-MABCA 102 

4.6 Performance comparison of Average Prediction variance (measured in 

meters) of proposed CA-MABCA algorithm with existing algorithms with 

decrease in percentage 

106 

4.7 Performance comparison of Average Prediction variance (measured in 

meters) of proposed CA-MABCA algorithm with existing algorithms with 

decrease in meters 

107 



xvii 

 

 

 

 

 

 

 

 

 

 

 

Table 

No. 

Title Page 

No. 

5.1 Simulation setup for evaluating the performance of  CA-MTSA 117 

5.2 Performance comparison of Average Prediction variance (measured in 

meters) proposed  CA-MTSA algorithm with existing algorithms 

130 

5.3 Performance comparison of Prediction variance (measured in seconds) 

proposed  CA-MTSA algorithm with existing algorithms 

130 

5.4 Performance comparison of Average Prediction variance (measured in 

meters) proposed  CA-MTSA algorithm with existing algorithms 

131 

5.5 Performance comparison of PDR of proposed  CA-MTSA algorithm with 

existing algorithms 

132 

5.6 Performance comparison of End to End delay of proposed CA-MTSA 

algorithm with existing algorithms 

132 



xviii 

 

LIST OF ABBREVIATIONS 

 

VANETs Vehicular Ad hoc Networks 

DSRC Dedicated Short Range Communication 

WAVE Wireless Access in Vehicular Environment  

DoS Denial of Service 

DDoS Distributed Denial of Service 

OBU On Board Unit 

RSU Road Side Unit 

CA Cellular Automata 

1 D One Dimension 

2 D Two Dimension 

FCC Federal Communication Commission 

GSM Global System for Mobile 

UMTS Universal Mobile Telecommunications System 

Wi-Max Worldwide Interoperability for Microwave Access 

V-V Vehicle to Vehicle 

V-I Vehicle to Infrastructure 

MANET Mobile Ad-hoc Network 

AODV Ad-hoc On-Demand Distance Vector 

ACO Ant Colony OPtimization 

IACO Improved Ant Colony Optimization 

ABC Artificial Bee Colony 

IABC Improved Artificial Bee Colony  

TS Tabu Search 

GEM Grenade Explosion Method 

CO Cauchy Operator 

CA-IABCA  Improved Stochastic Optimization Algorithm Based Grenade 

Explosion Method and Cauchy Operator 



xix 

 

DE Differential Evolution 

COBL Chaotic and Opposition Based Learning 

CA-MTSA  Improved Tabu Search Based Cellular Automata 

CA-IACOA Cellular Automata based Improved Ant Colony optimization 

Algorithm 

CA-IABCA Cellular Automata based Improved Artificial Bee Colony Algorithm 

CA-MABCA  Cellular Automata based Variant Artificial Bee Colony Algorithm 

UV-CAST Urban Vehicular BroadCAST 

ZoI Zone of Interest 

PSO Particle Swarm Optimization 

CAPSO Cellular Automata based Particle Swarm Optimization 

IPCPSO Improved Probabilistic Cellular automata based Particle Swarm 

Optimization 

LDDOS Low-rate Distributed Denial of Service 

DDIACS Distributed Detection and Identification Ant Colony System 

RoC Rate of Change 

SMT Steiner Minimum Tree 

MABC Micro Artificial Bee Colony 

QoS Quality of Service 

PS-ABC Prediction and Selection based Artificial Bee Colony 

LSACA Local Search Improved Ant Colony Algorithm 

MACO Mutated ant colony optimization 

PMACO Pheromone Mutation based Ant Colony Optimization 

TSP Travelling Salesman Problem 

TSRP Tabu Search based Routing Protocol 

TSRA Tabu Search based Routing Algorithm 

VAST Volume adaptive searching technique 

RMRPTS Reliable Multi-level Routing Protocol with Tabu Search 

UOTabu Uni-Objective Tabu Search 

MOTabu Multi-Objective Tabu Search 



xx 

 

CA-ACOA Cellular Automata based Ant Colony Optimization Algorithm 

CA-PSO Cellular Automata based Particle Swarm Optimization 

CA-GA Cellular Automata based Genetic Algorithm 

SOA-ABCA Stochastic Optimization Algorithm-Artificial Bee Colony Algorithm 

SOA-PSO Stochastic Optimization Algorithm- Particle Swarm Optimization 

SOA-ACO Stochastic Optimization Algorithm- Ant Colony Optimization 

PV Probabilistic Value 

CS Candidate Solution 

OCS Old Candidate Solution 

PD Population Diversity 

  

  

 

 



1 

 

  CHAPTER 1 

INTRODUCTION 

 

Vehicular Ad-hoc Networks (VANETs) is the emerging network of Intelligent 

Transportation System (ITS), conceived to enhance comfort and safety of road travel. 

The services of VANETs are dependent on the security requirements like availability, 

authentication, privacy protection, non-repudiation and integrity. The security features 

are vulnerable to many forms of attacks and are recognizable only when the network has 

all resources available at all times to all users. Availability turns to be the most important 

requirement to be focused on serving the users on the road [1].  

 

1.1 Preamble 
 

The services in VANETs are threatened by black-hole, grey-hole, DoS and DDoS [2] 

attacks. The DDoS is a serious form of attack which deprecates the resources of a victim 

in different forms. The attack can be performed by injecting fake messages, dropping 

packets and jamming the channel by the combined malicious activity of many attackers. 

The reliable data dissemination in packet forwarding relies on the co-operation among the 

vehicular nodes. Higher degree of co-operation facilitates good performance in packet 

forwarding. 

 

The performance of packet routing is highly influenced when the vehicular nodes are 

compromised by DDoS attackers. The extent of co-operation is affected by the malicious 

activity of the attackers who prevent the packet from reaching the destination, leading to 

the neighbor unreachable problem. The case is severe under traffic management system 

and collision warning system.  

 

To tackle the problem of neighbor unreacheability the proposed research selects the 

reliable neighbor to handle DDoS attack to deliver the packets on time to the intended 

destination. To select the reliable optimal node in a large network like VANETs is an    
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NP-hard problem which can be handled by meta-heuristics stochastic optimization 

techniques. The significance of meta-heuristic stochastic optimization for optimizing 

global search space can be applied along with the benefits of Cellular Automata (CA) to 

find the best optimal (reliable) vehicle to forward packet.  

 

The Cellular Automata is a simple, abstract discrete lattice used as a model of 

complexity derived by using the behaviors and relationships of the small discrete 

components called the cell. The relevance of any system can be verified using CA. The 

CA operation is based on the neighborhood of the lattice, where the applicability of CA 

in VANETs is found. Cellular Automata based stochastic optimization algorithms can be 

formulated to mitigate the DDoS attack in VANETs in order to increase the availability 

of the network. 

 

1.1.1 Vehicular ad hoc Networks 

 

The network formed with smart vehicles as moving nodes is named as VANETs in 

which the vehicles take intelligent decisions to drive safely and smoothly on the highway. 

The application services supported in VANETs drive the attention of many researchers 

towards gaining more knowledge and improving its functionalities. The VANETs also 

gains funding from Government and private agencies to carry out many research projects 

to enhance the security and comfort of users in a vehicle. 

 

The architecture of VANETs includes major components as smart vehicles, 

Infrastructure, communication channels, and backbone network to enable communication 

inside and outside the vehicular network respectively as shown in Figure 1.1. The 

vehicles on the road communicate using DSRC (Dedicated Short Range 

Communications) and WAVE (Wireless Access in Vehicular Environment) standard. 

DSRC/WAVE [8] is the only wireless technology that has potential to fulfill the 

requirements of VANETs services. Robustness, scalability and short latency are the key 

requirements supported by these standards. The packet format, channel allocation, and 
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other rules to be followed for vehicular communication are regularized by DSRC/WAVE 

standard. 

 

 
Figure 1.1: Architecture on VANETs 

 

The frequency of communication in VANETs is regulated in US by FCC (Federal 

Communication Commission) and the band 5.850 to 5.925 GHz called DSRC band is 

allocated. The use of DSRC band is not subject to license but there are limitations in its 

use. The available 75 MHz band is divided into 7 channels of 10 MHz wide numbered 

respectively as 178,172,174,176,180,182,184. The usage characteristics of the channels 

differ as shown in the Figure 1.2.  

 

HALL 
 
 

Ch 172 
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Figure 1.2:  DSRC Channel 
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The WAVE system uses two hardware components to allow DSRC Communication: 

On-Board Unit (OBU) and Road Side Unit (RSU). These units obey the rules of WAVE 

standard to have a low latency communication in order to satisfy the time requirement of 

VANETs messages. The communication modes enabled by the devices are shown in   

Figure 1.3. 

 Vehicle to Vehicle (V-V) where an OBU transmit messages to other OBU. 

 Vehicle to Infrastructure (V-I) making an OBU communicate with the fixed 

infrastructure like GSM, UMTS or Wi-Max to make the vehicle access backbone 

network for accessing Internet. 

 Hybrid (V-V and V-I) to extend the vehicles coverage area of communication.  

 

    a.   V-V communication         b. V-I communication         c. Hybrid communication 

Figure 1.3: Communication modes 

Characteristics of VANETs: 

 High mobility: Vehicles move with different speeds and directions all the time on 

the road and make the position prediction very difficult. Compared to MANET, 

VANETs mobility is relatively high. 

 Dynamic topology: Due to high mobility VANETs topology changes frequently. 

Thus it is dynamic and unpredictable. The connections between the vehicles are 

short and routing paths also change rapidly and security is also difficult to 

maintain.  
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 Frequent disconnection: fast movement of vehicles take them go away from the 

neighbor’s radio range more often leading to interrupted connectivity. 

 Limited bandwidth: The DSRC standard provides limited bandwidth that is 

divided into 7 channels. Only 4 channels are used for data packets.  The others are 

used for control and emergency applications. 

 Attenuations: In open air environment many noise signals can attenuate making 

messages useless. 

 Limited transmission power:  The WAVE standard limits the distance, a data can 

be transmitted, to 1000m. 

 Energy storage and computing: VANETs does not have the limit on storage and 

computing but processing the real-time information is a big challenge. 

 Hard delay constraints: The services in VANETs should have fast response time 

compared to any other QoS parameter. Delay should be very small for the 

vehicles in order to take quicker action. 

 Geographical type of communication: Compared to any other network VANETs 

data packet carries geographical information like location area of the source, 

destination and next neighbor to find the route for packet delivery. 

 Mobility modeling and predication: Even though VANETs is dynamic, frequent 

disconnected network, the mobility pattern can be predicted due to the static road 

layout. Using the mobility pattern, the future position of each vehicle can be 

predicted using which many applications are designed. 

 Various communications environments: The environment where VANETs 

operate is of two kinds: Highway with simple straight road where no obstacles 

like building or trees and city with more complex structure having many 

obstacles. The city can also be classified as rural and urban. 
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Security in VANETs 
 

A network of intelligent vehicles can promote safer and faster travel on the road but 

there is lack in the security of the network. Since each vehicle communicates through 

messages in a strange environment they rely on many security requirements like 

availability, authenticity and integrity. Due to unique characteristics of VANETs these 

security requirements are threatened by many attacks to create a security breach in 

VANETs as shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.4: VANETs Security threats and attacks 

 

Availability is the top level requirement to be ensured for supporting the functionality 

of the rest of the security features [5]. The entire network is threatened by attacking the 

availability of resources in VANETs. Thus the need arises to mitigate the causes that 

affect the performance of the network and prevent the network from functioning 

properly. The availability of VANETs services is threatened by various forms of attacks 

as in [7] given below: 

 

Classification of VANETs attacks 

Availability Non-repudiation Authenticity Confidentiality Integrity 

 Denial of Service 
 Jamming 
 Broadcast  

Tempering 
 Malware 
 Spamming 
 Black hole Attack 
 Grey hole Attack 
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 Black hole attack: The Black hole attack is a typical attack on availability of all the   

ad-hoc network types including VANETs. A Black hole node receives the packet and 

declines to take part in forwarding data to its neighbor but always declares as part of 

the network and able to participate [6]. 

 

 Grey hole attack: Variant of black hole attack is the grey hole attack which varies by 

dropping only the data packets leading to packet loss.  

 

 Spamming attack: To consume the bandwidth and promote collisions the attacker can 

induce spam messages inside the network which are difficult to control once spread. 

 

 Malware attack: Due to the update of software components of vehicles (OBU) and 

fixed infrastructure (RSU), the malware (malicious software) trespasses the network 

to create severe consequences by interrupting the network functionality. 

 

 Broadcast Tampering attack: By injecting fake security alert messages, the security 

of network is affected. 

 

 Denial of Service attack (DoS): The Denial of Service attack is the major threat to the 

availability of the network creating serious consequences. It includes family of attack 

as follows: 

 

i. Jamming attack: It is a physical layer form of causing DoS attack by jamming 

the channel with signals and lowering the Signal to Noise Ratio (SNR) of the 

receiver node.  

 

ii. Distributed Denial of Service (DDoS): The DDoS is a mutant of DoS attack 

where more than one malicious node is participating in draining the resources 

of the network. The malicious node achieves DDoS by flooding the network.  

The Figure 1.5 represents the DoS and DDoS presence in a VANETs 

environment. 
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(a)                                                                     (b) 

   Figure 1.5: a) Denial of Service attack                b) Distributed DoS attack 

 

The threats to availability have to be focused and mitigated to maintain the 

performance of the network up to the mark. 

1.1.2 Impact of DDoS attacks in VANETs 

 The Distributed Denial of Services (DDoS) is a dangerous attack which takes place in 

a distributed manner. The attack is performed by more than one attacker from different 

locations with different time slots [3]. Since multiple attackers perform attack randomly 

they are very hard to be detected and handled. It a serious form of threat to availability in 

which the users are denied access to the needed resources of the network.  

The DDoS occurs due to following two scenarios: 

 (i) Malicious behavior of the node which intentionally attacks the victim vehicle to 

deny the services and make VANETs resources or services unavailable,  

(ii) Dense traffic in VANETs makes a vehicle to unintentionally deny the services to 

neighboring vehicles. In both the cases, the legitimate user is affected from 

accessing the services of the network.  

The network performance is affected due to the following form of DDoS attack [16]:  

Computational DDoS attack, the attacker floods the network with numerous 

messages to drain the computational power of the vehicles. As more attackers perform 
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the attack more processing is done on vehicle preventing it from accessing other needed 

services. 

Memory based DDoS attack, more messages makes the memory of the vehicles to get 

filled up soon thus intended legitimate messages are dropped. 

Signature DDoS attack, any authentication scheme requires verifying the signature 

before proceeding to process the message. In the case of fake signature, the vehicle keeps 

on verifying the fake signature. 

Neighbor DDoS attack, the most important form of DDoS where neighbors do not 

cooperate to forward data because of its malicious behavior or dense VANETs. The 

cooperation among the vehicular nodes is essential to route data packet to the destination. 

The decrease in the degree of cooperation in vehicles creates a threatening environment 

where no data is forwarded resulting in a serious impact especially in the applications like 

traffic monitoring system, collision warning system, etc. 

The impact of DDoS in VANETs routing renders the safety of the user at high risk 

[15, 16]. The safety application includes various services that are to be available to all 

users at all time in order to provide users with a comfortable and safe drive on the road. 

The message if delivered out of time, dropped or modified, promotes greater impact on 

user’s lives on the road and traffic on the road becomes a bottleneck. Threats to other 

security requirements are tolerable compared to availability. Even though all services 

exist, but are unreachable to users, they are of no use in promoting these requirements 

and lead to the loss of lives, time, and cost [21]. 

1.1.3 Co-operation in VANETs 

The VANETs has no infrastructure, no centralized control but has dynamic topology 

and high-speed mobility. The communication solely depends on the V-V communication 

to transmit the messages. Co-operation between the vehicles plays a key role in 

facilitating the functioning of the VANETs services [10]. The reliable data dissemination 

in routing packets necessitates the co-operation as the potential factor from the vehicular 
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node’s perspective. The action of packet forwarding tendency is achievable only when 

co-operation among active nodes is facilitated. 

The vehicles in the network can be classified as co-operative and non-cooperative 

based on the behavior reflected by them. The packet forwarding in the network 

necessitates the presence of reliable and reachable neighbor node. The reliability and 

reachability are calculated based on the trust and reference velocity. The neighbor 

unreachability and unreliability lead to the misbehavior of the node leading to the 

message loss. 

To forward a message the vehicle has to select the neighbor node having good        

co-operative behavior [11] based on the previous velocity, position, reference velocity, 

reliability measures. On transmitting if there is no such co-operative node present, the 

availability of neighbor is affected leading to the DoS. The co-operative node becomes 

unavailable only in two scenarios: if the neighbor is a malicious node (DoS attack) or 

heavy traffic, the neighbor unknowingly drops the packet. 

The performance of packet forwarding is highly influenced when the vehicular nodes 

are compromised by DDoS attackers. The malicious behavior of attackers greatly impacts 

the extent of co-operation maintained among the vehicular nodes [13]. Lack of             

co-operation leads to catastrophic impacts especially in critical application traffic 

monitoring systems. 

For routing packets in VANETs, high degree of neighbor co-operation is needed to 

provide an uninterrupted functioning of the network. 

1.1.4 Role of Cellular Automata for handling DDoS attack 

A Cellular Automata (CA) is discrete, abstract computational system used as model 

of complexity and as more specific representation of non-linear dynamics. They are 

regarded as fully distributed systems of computation of complex systems with the local 

processing of simple components.  

The history of Cellular Automata dates back to 1940s and 1950s when John von 

Neumann, called the father of Cellular Automata, worked to generate a self-replicating 
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machine [20]. In 1970, after the discovery of Conway’s Game of Life, a two-dimensional 

CA, interest in exploring the capabilities of CA increased. Stephen Wolfram, a physicist 

performed a detailed study of one-dimensional or elementary CA.  He published              

"A New Kind of Science"  in 2002 giving the advanced and mathematical proof of CA 

that can be used in different fields of science from designing hardware of a computer to 

cryptography.  

a. Components 

CA is an infinite, regular lattice of simple finite state machines that change their 

states synchronously, according to a local update rule. The rule specifies the new state of 

each cell based on the old states of its neighbors. CA can simulate complex systems by 

the interaction of cells following easy rules [21]. 

Basic Idea:  A cellular automaton is represented by the 4-tuple (Z, S, N, f)    where:  

  Z is the finite or infinite lattice or grid of cells. 

 S is a finite set of cell states or values. 

 N is the finite number of neighborhood.  

 f is the local transition function defined by the transition table or the rule.  

Grid 

A cellular automaton designs any complex system by integrating the relationship and 

behaviour of simple components called cells. These collections of cells form a grid or 

lattice which comes in different varieties from square as shown in Figure 1.6, triangular 

to hexagonal grids. 

 

 

C1 C2 C3 C4 C5 C6 C7 C8 

 

Figure 1.6: One-dimensional CA 
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Cell 

A Cell is a basic element of CA each with its unique state updated iteratively by 

following some transition rule. The local update of each cell ends with the                   

self- organization of the entire structure of the grid.  

State 

The state of a cell represents the value of a cell at time ‘t’. The number of states of a 

cell can be from two (binary 1 and binary 0) to any number based on the application and 

the state is tied with the rule. 

Neighborhood 

The next state of the cell depends on its neighbor’s present and previous states and 

also its own present and previous states. The number of neighbor to be selected is based 

on the radius of the grid we set to get updated. CA comes in one-dimensional,              

two-dimensional and three-dimensional neighborhoods with different radii. To have more 

neighbors the radius can be increased with the increase in the dimension. 

Rules -State Transition Function 

The state transition function or local update rule determines the state of each cell in 

next iteration based on some pattern of the states specified earlier. A set of rules is 

framed for each pattern of data. The determination of next state of a cell is given in 

Figure 1.7. 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Transition Function 

State Transition 
Function 

Set of 
Rules 

 Neighbors State 

 Cell's Present State Cell's Next State 



13 

 

Features of Cellular Automata include the following, 

 They are simple and easy to be implemented.  
 

 They are able to verify the relevance of physical mechanisms. 
 

 They can include relationships and behaviors which are difficult to be formulated as 

continuum equations.  

 
 They reflect the intrinsic individuality of cells. 

 
 Discrete dynamical system simulator. 

 Simulation results are much more intuitive as they are visually well represented. 

Cellular Automata in VANETs 

The method of modeling a complex system to find the solution makes Cellular 

Automata suitable for modeling the VANETs system for identifying the vehicular nodes 

for routing packet. The use of features like neighborhood and state in CA [20], makes it 

applicable for identifying the availability of vehicular nodes for ensuring connectivity 

under DDoS attack. CA in VANETs transforms the information pertaining to the 

designed cells, cellular spaces and cellular neighbors of each traffic to the vehicles, road, 

and neighbors respectively. 

The vehicle in a cell can be updated by the rules framed by cellular automata in 

selecting the best neighbor for forwarding the packet. Based on the framed rules, current 

information pertaining to the node availability is made to be known to the neighboring 

nodes. The quantification for the availability of each cell not only depends on the current 

state of the cell but also on the state information of the neighboring nodes. 

The state transition rules in cellular automata can be modified by redefining the rules 

to suit the application needs [21]. For handling DDoS attack, the rules can be modified to 

find the best neighbor with the highest degree of cooperation. For better connectivity, 

cellular automata find the best vehicle to route the packet by avoiding the DDoS 

compromised vehicles.  
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From the local transition, each cell gets self-organized and picks the best node leading 

to the global organization of the vehicles. All vehicles work in a distributed, cooperative 

way by following the rules framed. Thus the best result of cellular automata comes from 

the quality of the transition rule [23] which can be improvised to achieve the best 

solution. 

1.1.5 Categories of Cellular Automata Model 

a.   One-dimensional Neighborhood(1-D) 

Since in 1D there are no shapes, the definition of the neighborhood is usually 

very simple as shown in Figure 1.8. It is also called Radial neighborhood since the 

neighborhood in 1D is described by its radius, r, meaning the number of cells left 

and right from the central cell that are used for the neighborhood [24]. The output 

cell is positioned at the center.  

 

  

1 2 3 4 5 6 7 8 

 

Figure 1.8: 1-D Neighborhood Model 

b.Two-dimensional Neighborhood(2D)  

The 2D CA exhibits the same characteristics of 1D CA with increased number 

of neighbors and generates good output since all or more surrounding neighbor’s 

states are used. The models of 2D cellular automata are formed by complicated 

neighborhood with cell space arranged in triangle, square or hexagonal grid.  

The commonly used models of CA, Von Neumann model, Moore model and 

Margolus model as shown in Figure 1.9, follow square model [22]. From the 

Figure 1.9, the black cell at the center and the grey cell are its neighbors. The 

Margolus model differs from the other two by the way the cells are handled where 

r r 
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a cell block with size 2 x 2 is dealt together and each cell handled separately for 

rule update respectively. 
 

 
a) Von Neumann Model 

     

     

     

     

     

 
b) Moore Model 

     

     

     

     

     

 
c) Margolus Model 

 

    

 

 

   

     

     

     

Figure 1.9: 2-D Neighborhood Model 

 
Moore Model 

 In Cellular Automata, the Moore neighborhood is formed by a central cell 

and eight cells surrounding it making a square lattice. The center cell focuses on 

all direction cells for deciding the next move of the dynamic system. The 

neighborhood is named after Edward F. Moore, explorer of cellular automata 

theory. 

 The dimension of Moore model can be extended based on the range r as 

(2r+1)2.   The Moore model with its feature of focusing all 8 cells surrounding it 

makes it suitable for optimal route selection. Since from all directions, the focus is 

set, it does not fall into local optima and gives a better solution when compared 

with other models.  The Moore model size can be extended by increasing the 

radius as shown in Figure 1.10. 
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a) Range, r =1      b) Range, r=2 

Figure 1.10: Extended Moore Model 

 

Moore Model is structured as a square grid (usually 3×3 cells) with the output 

cell in the center. The neighbor cells are described by the directions on the grid as 

indicated N={NW,N,NE,W,C,E,SW,S,SE}. 

  

Formal definition  

Formally the Moore neighborhood is the set of neighbors of coordinates. 

N={{-1,-1},{0,-1},{1,-1},{-1,0},{0,0},{+1,0},{-1,+1},{0,+1},{1,+1}}  

1.2 Need for the Research 

VANET is an emerging technology in which ITS (Intelligent Transportation System) 

has found its advancements in the recent years due to the tremendous growth in hardware 

and software utilization in ad-hoc networks. The vulnerabilities in VANETs make it 

prone to a number of security breaches that degrade its purpose and performance. 

Further, DDoS attack in VANET is a serious threat to the network as it exploits the 

resources of the network to a maximum level. In spite of numerous research works 

carried out in VANETs security, there is a huge research gap existing in the mitigation of 

DDoS attack in VANETs. Thus there is a need for the research to facilitate maximum 

degree of security in VANET by ensuring complete availability of all services whenever 

required. This way of ensuring availability of services opens a new way to enhance the 

availability of each vehicle to their corresponding neighborhood vehicle and confirms 

reliable forwarding of the data packets. The need concentrates on the applicability of 
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meta-heuristics in VANETs for estimating the best feasible vehicle in forwarding data 

that avoids maximum impact from DDoS compromised node. It also explores the need 

for utilizing cellular automata as the key entity for incorporating meta-heuristics 

techniques that are proved to be optimal in finding global optimal solution under 

increased performance. Besides the comprehensive set of solutions that could handle the 

impacts of DDoS attacks, the role, of meta-heuristic algorithms like tabu search, ant 

colony algorithm, and artificial bee colony algorithms in mitigating DDoS attacks, needs 

to be investigated. Hence, this research needs to focus on the design of an efficient and 

effective meta-heuristic optimization based DDoS mitigation mechanism for facilitating 

maximum co-operation and network lifetime. 

 
1.3 Motivation of the research 

In VANET, reliable routing of packets necessitates maximum co-operation as the 

essential factor from the vehicular node’s perspective. The action of packet forwarding 

potential is always met only when the co-operation among active mobile nodes is 

facilitated. The performance of packet forwarding is highly influenced when the 

vehicular nodes are compromised by DDoS attackers. This malicious intent of attackers 

greatly impacts the extent of co-operation maintained between the vehicular nodes 

leading to catastrophic impacts especially in critical applications like traffic monitoring 

systems. A number of significant approaches were contributed for handling DDoS 

compromised nodes using heuristic approaches but meta-heuristic stochastic optimization 

algorithms are identified to be highly suitable for most of the dynamic applications for 

enhancing feasible solutions that could exist in a specific domain. The rules of defining 

cellular automata also play a significant role to determine the trustworthy neighborhood 

nodes that aid in reliable dissemination of data in the network. The meta-heuristic 

stochastic optimization techniques like tabu search, ant colony algorithm, artificial bee 

colony algorithms provide an effective way for reliable mitigation of DDoS compromised 

nodes as they embed maximum degree of exploitation and exploration which leads to 

improved accuracy in detection. Hence, mitigation mechanisms based on tabu search, ant 

colony algorithm, and artificial bee colony algorithms that appropriately determine DDoS 
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attacks through maximum degree of exploration and exploitation incorporated in the 

transition rules of cellular automata need to be formulated. 

1.4 Scope of the research 

The major potential of VANET in rendering support to the users for driving 

conveniently on the road, is made possible only through reliable communication among 

the vehicles. The dynamic nature of VANET makes the vehicle to vehicle 

communication more effective in terms of multi-hop communication. But the open air 

medium usage in VANET makes it vulnerable to many serious threats leading to 

performance degradation in message delivery. There are numerous attacks that can be 

performed in different layers to pull down the efficiency of VANETs. Among all other 

security features, availability requirement is the more predominant and has to be present 

consistently for the conventional working of VANETs services. The research work 

focuses on reviewing the attacks on availability in network layer and work against the 

DDoS attack, the most dangerous form of attack, to enhance the availability. The scope 

of the research is handling DDoS attack in network layer to route packets to the 

destination using vehicle to vehicle communication with no interference from 

infrastructure unit. The DDoS attack on neighbor cooperation and reach ability is focused 

by selecting the best cooperative vehicle for forwarding the data packets. The neighbor 

reliability, reach ability and trust information are applied to select the neighbor node. The 

neighborhood is formed by using Moore model of Cellular Automata which applies rule 

to update the neighbors. Stochastic Meta-heuristics optimization algorithms are applied to 

frame the rules for Cellular Automata model to find the neighbor. The stochastic 

algorithms like Ant Colony optimization (ACO), Artificial Bee Colony (ABC) algorithm 

and Tabu Search algorithms are enhanced to find the optimal neighbor. Thus             

meta-heuristic techniques inspired mitigation approaches are found to offer better scope 

for reliable identification of DDoS attacks in VANET. 
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1.5 Problem Statement and Objectives 

1.5.1 Problem Statement 

The core aim of this research work is to design and implement four kinds of stochastic 

optimization techniques through cellular automata for mitigating DDoS attacks in 

VANETs in order to facilitate maximum degree of co-operation among the vehicular 

nodes. This aim defines and facilitates the scope in deriving the benefits of stochastic 

optimization for optimizing global search space and enabling significant degree of 

exploitation and exploration of the search space.   This aim also provides the option of 

investigating the proposed stochastic optimization-based mitigation schemes using the 

proven multi-model benchmark functions for understanding the context of their superior 

performance. 

1.5.2 Objectives 

The core objectives of this research are: 

 To formulate and deploy an enhanced version of ant colony optimization (ACO) 

algorithm called Cellular Automata-based Improved Ant Colony Optimization 

Algorithm (MACOA-CA) for updating rules in order to enable dynamic adaptive 

adjustment of pheromones to mitigate DDoS compromised vehicular nodes. 

 To design and implement a Cellular Automata-based Modified Artificial Bee 

Colony Algorithm (MABCA) using an enhanced version of ABCA that uses two 

Differential Evolution (DE) based search strategies in the onlooker bee phase and 

an integrated Chaotic and Opposition-Based Learning in the scout bee phase for 

optimally selecting a vehicular node for replacing DDoS compromised vehicular 

node.  

 To propose and incorporate an Improved Stochastic Optimization algorithm based 

Cellular Automata that integrates Grenade explosion technique and Cauchy 

Operator with Artificial Bee Colony Algorithm (CA-IABCA) for mitigating 

DDoS attacks using the benefits of grenade explosion in the onlooker bee phase 

and Cauchy operator in the scout bee’s phase.  
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 To contribute an Improved Tabu Search based Cellular Automaton (CA-MTSA) 

Inspired Algorithm for quantifying the availability of each vehicular node 

attributed towards effective data forwarding based on its past velocity, past 

reliability factor, local optimal state, global optimal state and neighbor's best state 

for mitigation DDoS compromised nodes. 

 To measure the performance of the proposed stochastic optimization algorithm by 

the evaluation parameters like prediction variance, average prediction variance, 

Packet Delivery Ratio and End to End delay by varying number of nodes and 

prediction interval and finally to investigate the superiority of the proposed 

algorithms by employing multi-modal bench mark functions.  

1.6 Methodology and Approach 

The problem of finding the reliable neighbor in a large, dynamic, instable topology 

network for routing the data is similar to finding the optimized path in a large network. 

Thus the selection of optimal neighbor is considered as the optimization problem which 

can be solved by applying various approximate solutions. The widely used approximate 

techniques are Meta heuristics and stochastic optimization algorithms [26, 27]. Among 

the available algorithms, ACO, ABC, and TS are found to be efficient in finding the 

global best solution [28] based on some enhancement made in standard algorithms to suit 

the applications. 

The approach for finding the best neighbor using the above-stated algorithms requires 

the following information of the vehicle. The vehicle’s reference velocity, reliability and 

trust factor are measured by applying any one of the Meta heuristics algorithms. The 

fitness values and their probability of being selected are calculated and finally, the 

vehicle with higher probability is selected as the next forwarding node.  

The neighborhood plays a key role in VANETs to route packets. Thus in this research 

work, the cellular automata Moore model is applied. The benefits of Moore model allow 

the vehicles to select limited neighbors of closer reference velocity. The cellular automata 

combined with Meta heuristics enhance the efficiency of both the techniques. The 
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transition rule of CA is optimized by proposed stochastic algorithms and these standard 

algorithms are improved in terms of parallel execution. 

The proposed algorithms are evaluated by simulation and analytical methods. The 

simulation is evaluated by measuring the prediction variance, average prediction 

variance, packet delivery ration, and end-to-end delay metrics and compared with the 

existing algorithms. The analytical testing was done by testing the proposed algorithms 

with standard benchmark functions to test the rate of convergence, precision, robustness 

and general performance in increased dimensions.   

1.7 Organization of the Thesis 

The outline of this thesis is organized as follows:  

Chapter 1 introduces the background of VANETs, and then illustrates the impact of 

DDoS with brief introduction about the Cellular Automata, motivations, problem 

statements, research objectives and main contributions of this thesis.  

Chapter 2 presents the literature survey. In this chapter, we review all attacks on 

availability of VANETs and then give a detailed view of DDoS attack and mitigation 

works carried out by other researchers. This chapter also gives the literature survey of 

different versions of Ant Colony Optimization, Artificial Bee Colony algorithm and Tabu 

search algorithms to solve the optimization problems.   

 Chapter 3 describes the methodology of the proposed Modified Ant Colony 

Optimization Algorithm inspired Cellular Automata (MACOA-CA). The proposed 

algorithm uses dynamic pheromone updating and evaporation strategies for mitigating 

DDoS attack in VANETs by using the global optimal solution found by IACOA. The 

chapter gives the detailed algorithm steps and flowchart with the simulation and 

experimental analysis.   

Chapter 4 explains the technique of the proposed Cellular Automata based Improved 

ABC algorithm (CA-IABCA) by applying Grenade Explosion and Cauchy operator. The 

algorithm increases stochastic nature to avoid DDoS attack in VANETs for finding global 

optimal solution with the elaborate algorithm steps and flowchart with the simulation and 
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experimental analysis. This chapter also describes the methodology of the proposed 

Cellular Automata based Modified ABC algorithm(CA-MABCA) for handling DDoS 

attack in VANETs by involving Differential Evolution and chaotic system to find the 

global optimal solution. The proposed algorithm is explained using the flow chart and 

algorithm with the simulation and experimental analysis.   

Chapter 5 explains the design of proposed scheme of Cellular Automata Inspired 

Modified Tabu Search Algorithm to select the best neighbor based on reliable factor. The 

vehicle movement is traced in Cellular Automata Moore model for selecting the best one. 

The proposed algorithm is explained using the flow chart and algorithm with the 

simulation and experimental analysis.   

 In Chapter 6 the proposed algorithms are compared with benchmark multimodal 

functions to explore its efficiency. 

 Finally, the Chapter 7 concludes the dissertation and offers some directions for future 

works. 

1.8 Summary 

In this chapter brief introduction about the VANETs along with its standard, 

communication modes, components, architecture, routing protocols and security issues 

are discussed. Next section focus on explaining the security breaches at the network layer 

and categorized different types of attacks practiced. The DDoS attack, a severe form of 

attack, was then briefed with its impact in VANETs services. The applicability of cellular 

automata in handling DDoS is also explored along with different categories of CA 

models. In the next succeeding sections, need and scope of the research work along with 

motivation has been stated. Finally, the methodology and approaches applied for 

handling the problem was discussed. 
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Chapter 2 

Literature Survey 
 

The Distributed Denial of Service (DDoS) is a major form of attack in VANETs 

caused by injecting fake messages to prevent the legitimate users from getting the 

VANETs services. The cooperation among the neighboring nodes is necessary for 

forwarding data packets to reach the destination on time. The selection of the reliable 

neighbor vehicle for data forwarding in large, dynamic and high threat prone VANETs is 

a NP-hard problem. Meta-heuristics optimization techniques are suitable for handling 

such NP-hard problems to come up with a feasible solution. The Cellular Automata 

Neighborhood models follow the neighborhood strategy to solve a problem. This chapter 

gives the survey of ACO, ABC and TS meta-heuristics stochastic optimization techniques 

applied to find the best feasible solution. The chapter also elaborates the work from the 

literature regarding the Cellular Automata models for mitigating DDoS attack in 

VANETs.  

 
2.1 Cellular Automata-based DDoS Mitigation Techniques  

 

Cellular Automata is a discrete dynamical system of grid in which each cell is in 

predetermined states. The neighborhood is formed for each cell based on the transition 

rules framed for the application. Each cell updates its cell based on the transition function 

in each discrete time step in a synchronous manner. 

 

Cellular Automata is applied to model the mobility of vehicles [29] for UV-CAST in 

VANETs to disseminate messages. The mobility of vehicles is framed by 

interconnections including traffic lights, cycle duration for traffic dynamics and vehicle 

interspaces. The vehicles following the motion pattern of the CA model gives congestion 

free traffic and warning messages are disseminated properly with reduced message 

delivery latency [30]. Cellular Automata is used to form a car society [31] to cluster the 

interest users based on Zone of Interest (ZOI) for mobicast communication. 
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The dynamic urban growth is modeled using cellular automata model in [32] whose 

transition rules are improved by particle swarm optimization. The similarity of self-

organization and bottom up feature of PSO (Particle Swarm Optimization) and CA made 

the hybridization of these two techniques possible. The PSO parameters and objective 

functions modeled the urban growth which is driven by CA as transition function. The 

CA Moore model is best suited for searching the best neighbor since the model focuses 

all the surrounding neighbor cells to change the state of center cell. 

The Tourist navigation system is modeled using cellular automata to avoid congestion 

in the tour path. The authors proposed an adaptive recommendation mechanism in [33] 

where each group is modeled as a cell of cellular automata and the transition rules are 

framed to decrease the wait time and congestion and increase scalability. 

 In [34] the mobile routing is optimized by applying hexagonal cellular grid to find 

the shortest path to the destination along and also satisfy with the QoS like delay, 

bandwidth and energy of the MANET. 

A hybrid integrated approach called CANPSO [35] was proposed for improving the 

complexity in identifying the best neighbor for confident packet delivery. This approach 

was the first innovation that introduced the concept of combining Cellular Automata idea 

with meta-heuristic algorithms like PSO, Tabu search, and stochastic optimization 

techniques.  

Cellular Automata based Particle Swarm Optimization (CAPSO) [36] is an 

optimization algorithm that considers each and every individual node of the entire 

topology as a typical grid of two-dimensional grid cellular automata. In CAPSO, the 

update rule of each and every individual cell depends on its current state and the present 

status of the neighbor estimated based on the status of the optimal cell. The update rules 

are based on re-estimation techniques that possess the capability of determining the best 

neighbors of the network topology.  

 Improved Probabilistic Cellular automata based Particle Swarm Optimization 

(IPCPSO) [37] was proposed for judging and handling the degree of prematurity and 
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deviation that exists between the possible feasible updates of the vehicular nodes. 

IPCPSO also employs the concept of group interactive policy that avoids the limitation of 

local minimum. 

Mishra, S et al. [38] proposed a Learning Automata based DDoS detection based on 

the modifications of the existing Optimized Link State Routing protocol. Authors weaved 

the concept of learning automata and reliable routing assistance for effective and less 

overhead induce mechanism for detection. Authors proved that the proposed cellular 

automata assisted scheme is more predominant than the learning supervising schemes of 

the literature. 

Aghababa, M, et al. [39] proved that cellular automata are mainly designed for 

specific functions and they do not possess a standard programming paradigm. The update 

rules of cellular automata are formulated in an ad hoc manner or propounded through 

genetic algorithms like searching approaches. They identified that the proposed evolution 

rules formulated through genetic algorithm when integrated with cellular automata 

performs in an effective and efficient way. 

2.2 Stochastic Optimizations for DDoS Mitigation 

The optimization problem solving technique with randomness introduced to 

maximize or minimize the objective function is referred to as Stochastic Optimization. 

The benefit of stochastic optimization technique is that it enhances the global search 

ability with fast convergence rate. 

In [40] the stochastic optimization algorithms such as Genetic Algorithm, Simulated 

Annealing and Iterative Improvement algorithms are applied to optimize the              

flow-jamming attack, a form of DoS attack, in wireless sensor networks. The authors 

redefined the mathematical model for the flow-jamming attack to optimize the attack. 

To maximize the coverage area of the network [41], a new stochastic algorithm such 

as ABC is adopted to optimize the dynamic deployment of stationary and mobile sensor 

nodes. The result proved that ABC is superior in deploying the nodes in sensor network 

when compared to others.  To defend against DDoS in server [42] the behavior matrix is 
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constructed to depict the user’s behavior and a puzzle controller constructs a covariance 

matrix from the user behavior matrix. The entropy measure of the covariance matrix is 

compared with the threshold to detect DDoS. 

Another stochastic optimization technique called Particle Swarm Optimization  

(SOA-PSO) [43] was propounded for resolving the issue of DDoS attacks. It is also prone 

to get trapped into local minimum similar to that of other stochastic optimization 

approaches of Ant Colony Optimization and Genetic algorithms. SOA-PSO was 

proposed to improve the search domain and enhance the exploration speed. Authors 

through simulation proved that the convergence value of SOA-PSO is effective and 

quantifiable. SOA-PSO is analyzed with multimodal functions like Rosenbrock and 

Rastrigin and it was found that it optimizes the solution at a faster rate. 

2.3 Categories of Stochastic optimizations for DDoS Mitigation 

The optimization problems can be solved by using the approximate methods to find 

the near feasible solution with insufficient resources, data and knowledge. The 

approximate methods with the randomness injected allow the method to escape from 

local optimum and approach a global optimum. The randomization included in heuristics 

approaches leads to stochastic optimization algorithms among which few are listed below 

 Swarm algorithms 

o Artificial Bee Colony Optimization 

o Ant Colony Optimization 

o Particle Swarm Optimization 

o Cuckoo Search 

o Flocking and Schooling in birds and fishes 

 Evolutionary algorithms 

o Genetic Algorithms  

o  Evolution Strategies 
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2.4 Significance of Meta-Heuristics over Heuristic  

Heuristic is a set of rules applied to solve a problem with the knowledge discovered 

in earlier phase using a heuristic function not guaranteed to be optimal or perfect but 

produce satisfactory solution in less time [44]. The process carried out by heuristic 

approach in constructing the solution for optimization problems is depicted in Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1: Basic Heuristic algorithm workflow 

The problem with heuristics approach is  

i. Local optima problem: 

 The heuristics technique makes use of greedy approaches to solve any 

problem. So often they get stuck in local optima problem and fails to produce 

global optimal solution. 

ii. Specific Heuristics: 

The optimization solution produced by heuristics is specific and problem 

dependent taking more factors of the problem specified to them giving variations 

in performance for different applications. 

iii. Deterministic: 

The heuristic function flow is such that the next iteration path can be easily 

predicted.  

iv. No global solution: 

The heuristic approaches are able to exploit only the local best solution found 

so far and unable to explore the whole global search space. 
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Meta-heuristic is an advancement of heuristic approach which is used to guide and 

modify the operations of heuristic and to improve the quality of the solution produced. It 

is also called master iterative process which gives good direction for the heuristic 

algorithm [45] applied in the inner iteration and leads the solution in the right path.    

Meta-heuristics allows tackling large-size problem instances by delivering satisfactory 

solution in reasonable time. There is no guarantee to find global optimal solutions or even 

bounded solutions. 

 

In designing a meta-heuristic, two contradictory criteria must be taken into account: 

exploration of the search space (diversification) and exploitation of the best solutions 

found (intensification) [46]. It is an approximate way of problem solving adopting 

randomness in heuristics to improve the solution for obtaining global best solution [47]. 

The meta-heuristic differs from heuristics mainly in improving the solution produced by 

heuristic methods. The random functions are applied to explore new search areas for 

intensifying the search in the new search space [48].  

The flow of any meta-heuristics algorithm follows the steps as shown in Figure 2.2 to 

improve the solution by searching the entire global search space and produce global best 

solution for large complex optimization problem [49]. 

Properties of Meta-heuristics algorithms 

 Meta-heuristics are strategies that “guide” the search process. 

 The goal is to efficiently explore the search space in order to find near optimal 

solutions.  

 Techniques which constitute meta-heuristic algorithms range from simple local 

search procedures to complex learning processes.  

 Meta-heuristic algorithms are approximate and usually non-deterministic. 

 They may incorporate mechanisms to avoid getting trapped in confined areas of 

the search space. 

 The basic concepts of meta-heuristics permit an abstract level description. 

 Meta-heuristics are not problem-specific.  
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 Meta-heuristics may make use of domain-specific knowledge in the form of 

heuristics that are controlled by the upper level strategy.  

 Today’s more advanced meta-heuristics use search experience (embodied in some 

form of memory) to guide the search. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Basic Meta-Heuristic algorithm workflow 

Meta-heuristics can be applied to solve the following types of problems which cannot 

be solved using heuristic approaches 

1. P class problems with very large instances. 

2. P class with hard real time constrains. 

3. NP class with moderate or difficult structures of the input instances. 

4. Optimization problems with time consuming objective functions or constraints. 

5. No analytical models of optimization problems that cannot be solved in an 

exhaustive manner. 

6. Problems with uncertainty and robust optimization. 
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Advantages of Meta-heuristic optimization 

i. Solve large complex problems: Meta-heuristics has the capability to solve large 

complex problems with limited information, resources and constrained time limit. 

ii. Obtain global best solution: The exploitation and exploration criterion of meta-

heuristic makes it possible to find the global solution. 

iii. Applicable for General problem-independent problems: Meta-heuristics is applied 

to solve any problem since it does not focus on the features of any specific 

problem. 

iv. Non deterministic: Due to randomness in the methodology applied                 

meta-heuristics, is stochastic in nature and solves problems with uncertainty. 

2.5 Meta-Heuristic optimization techniques for DDoS Mitigation 

As discussed in section 2.4 the optimization problems can be solved by heuristics 

and meta-heuristics algorithm by searching the search space thoroughly to find the 

feasible near optimal solution. Several of meta-heuristics based search techniques are 

discovered by the researchers which are classified as shown in Figure 2.3. 

Initially, Chen. H et al. [50] proposed a scheme that addressed the issue of solving 

a significant kind of DDoS attack called Low Rate DDoS attack using an ant colony 

framework called DDIACS. Authors used three phases that include information rules 

framed through heuristics, multi-agent algorithm for DDoS detection and forward search 

process. Authors proposed DDIACS in a reactive manner such that it could handle and 

comply with the recently emerging software defined network. DDIACS is capable of 

effectively monitoring and managing the network traffic and infrastructure. This 

framework also possesses the benefits of fast convergence and flexibility but fails in 

dealing with congestion. 

 

 



31 

 

 

 

 

       

 

 

       

 

 

 

 

 

 

    

Figure 2.3: Classification of Meta-heuristics algorithms 

 

Vangili, A et al. [51] propounded a bio-inspired approach like Ant Colony 

Optimization for modifying the operations of AODV routing protocol for detecting 

malicious behavior in ad hoc networks. This novel scheme incorporates the computation 

of pheromone value through forward ratio in each and every node.  

2.6 Artificial Bee colony inspired Cellular Automata-based DDoS Mitigation  

The Artificial Bee Colony optimization algorithm is a population based stochastic 

algorithm that uses behavior of honey bees for solving optimization problems. In ABC 

system, artificial bees fly around in a multidimensional search space. Some bees 

(employed and onlooker bees) choose food sources depending on their own experience 

and that of their nest mates, and adjust their positions. Some (scouts) fly and choose the 

food sources randomly without using experience. If the nectar amount of a new source is 

higher than that of the previous one in their memory, they memorize the new position and 

forget the previous one. Thus, ABC system combines local search methods carried out by 
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employed and onlooker bees with global search methods managed by onlookers and 

scouts attempting to balance exploration and exploitation process. 

The colony of artificial bees consists of three kinds of bees: employed bees, onlooker 

bees and scouts. The first half of the colony consists of the artificial employed bees and 

the second includes the onlookers. 

The complete working flow of the standard ABC optimization algorithm is shown 

in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 2.4: Artificial Bee Colony Optimization algorithm 

• Employed bee phase: each employed bee exploits a single food source and 
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• Onlooker bee phase: the onlookers tend to choose the best food sources to 

further exploit, based on information communicated by the employed bees through their 

dances. Therefore, good food sources attract more onlooker bees compared to bad ones. 

• Scout bee phase: When a food source is considered exhausted, it will be 

abandoned and its employed bee will be converted to a scout that will randomly chose a 

new food source to replace the old one. 

 

2.6.1 Improvement of Artificial Bee colony  

The authors in [52] proposed an improved ABC algorithm to improve exploration 

performance by introducing the Rate of Change (RoC) concept using slope to modify the 

limit in the scout bee phase to improve the exploration. The RoC in the performance 

graph is tested over benchmark functions and colony size parameter and produced good 

improvement in the algorithm exploration.  

The ABC algorithm performance degrades because they are poor at exploitation and 

in [53] the authors proposed a technique to handle the problem. The standard ABC is 

improved by modifying the onlooker bee phase to concentrate the search based on 

previous best solution. The scout bee phase is improved by computing the distance 

between the best and worst solution, to avoid generating worst solutions. 

The exploitation of the solution from a search area is improved in [54] using Grenade 

explosion in onlooker bee phase where the searching depth is increased. To balance the 

exploitation with exploration the authors applied Cauchy operator in scout bee phase. The 

experiment results proved that performance increased by applying the modifications.  

In [55] the exploitation is improved by applying Differential Evolution (DE) in 

onlooker bee phase and the employee bee phase equation is improved to balance the 

exploration. Other techniques [56] applied the meta-heuristic Simulated Annealing to 

improve exploration and self-adaptive perturbation rate to have good exploitation. 

The optimal route for data delivery in VANETs [57] is achieved by adopting ABC 

algorithm for sending data packets using clustering. The author uses two types of packets, 
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scout packet to discover route and forager to forward data.  The QoS constrained 

multicast routing problem is handled in [58] for efficient and reliable communication in 

multicast routing. The routing problem is transformed to SMT problem and proposed 

MABC algorithm applies micro-population along with variation in formula for onlooker 

and employee bee phase based on QoS parameters reducing the computation time.   

The drawback of standard ABC is slow convergence which is handled by [59] 

modifying the initializing phase to generate random solutions and the search equation of 

the scout bee phase is modified by applying mutation operator. In [60] the authors also 

proposed new phases in ABC algorithm before employee phase to select the best local 

solution. The search equation of the onlooker and employee bee phase is modified to 

have good global optimal solution and convergence. 

 

The initial population plays a major role in convergence of the algorithm, so the 

authors in [61] focused on initialization phase. The initial population selection, if made 

random, achieves good convergence. The randomness is achieved by applying 

opposition-based learning and chaotic systems. The mutation operator of DE is used in 

the search equation to have good exploration. Same technique is followed in [62] using 

DE/best/1 version of mutation operator along with the parameter tuning to reduce 

computation time and enhance convergence speed.  

In [63] the initial population is arranged in an orthogonal array for better scattering of 

feasible solutions and new search rule is introduced with DE/rand/2 and De/best/2 to 

enhance exploration and convergence respectively. In [64] initial population is improved 

by chaotic systems and opposition based learning and search equation is modified using 

DE/rand/1 and DE/best/2 along with tuning the probability parameter. 

The balance between the level of exploration and exploitation must be maintained to 

have better solution. The work in [65] focuses on Cognitive learning factor in onlooker 

bee and employed bee phase. The proposed technique also focused on control parameter, 

limit and target food number to balance the exploitation and exploration level of the 

standard ABC algorithm. The authors in [66] proposed two algorithms I-ABC and       
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PS-ABC by modifying the search process in onlooker and employed bee phase to 

increase the efficiency of the ABC algorithm.  

Through test results the authors found that by improving the bee phases the efficiency 

can be improved. In [67] chaotic systems and opposition based learning applied for 

initialization process and adaptive tent chaotic maps along with tournament selection are 

introduced for searching. In [68] ABC is applied in image processing to cluster two 

binary vectors based on similarity measure and the difference between the best and worst 

vectors is selected to avoid generating poor solutions.  

2.6.2 Significance of Cauchy Operator in Exploration 

To avoid getting into local optima and stagnation problem these algorithms must 

have good exploration level. To enhance the exploration, randomness is introduced in 

these algorithms which plays the major role of exploration. Many researchers applied the 

continuous probability distribution function as random number generators and achieved 

good results. 

The stochastic meta-heuristics optimization algorithms are based on the randomness 

in their process which can be derived from the distribution statistics. The distribution 

comes in two types: continuous and discrete distribution. The continuous distribution is 

good for random number generations. There are different types of continuous probability 

distribution such as normal, exponential, binomial, Cauchy and Rayleigh. 

 

Cauchy or Lorentz distribution 

The Cauchy distribution is a continuous probability distribution defined for the range 

−∞ < ݔ < ∞   , given by equation 2.1. The Cauchy distribution has no mean, standard 

deviation or higher moments with mode and median equal. It is the distribution of the 

ratio of two independent normally distributed Gaussian random variables. 

(ݔ)݂      = ଵ
గ

. ଵ
ଵା௫మ                                (2.1)   
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The Cauchy distribution is defined by two parameters: a, location of the center (peak) 

parameter and b, scaling parameter. The fat-tail symmetric Cauchy distribution is shown 

in Figure 2.5. 

 
Figure 2.5: Standard Cauchy Distribution curve, Cauchy (0,1) 

 

Comparison of Normal and Cauchy distribution 
 

 

Figure 2.6: Distribution curve of Normal and Cauchy Operator 

From the Figure 2.6 the distribution curve of the Cauchy distribution reveals that the 

curve does not reach zero at any moment and has a wider search space than the Gaussian 

distribution which reaches zero on both the ends after -3 and 3. 
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 The tail of the Cauchy distribution is fat making the variance to be infinite for 

exploring larger search space. 

 The tail of the Gaussian distribution ends with zero making the variance to be 

finite resulting in small search space. 

Advantages of Cauchy distribution 

 Bell shaped symmetric curve as Gaussian curve but it is the ration of two 

Gaussian curves having longer jumps. 

 Flat-tailed at both ends suits it to the real risky models. 

 Coverage of large search space leading to global solution. 

 Fast convergence to best feasible solution. 

 

In Cauchy distribution, because of the fat tail, the random number generated is 

unexpected and are scattered around the entire search space when compared to the 

Gaussian distribution. So, the Cauchy distribution can be applied as random number 

generator to explore wider search space to find the best solution.  

 

Many research works have been carried out in improving the evolution strategy and it 

is found that having good distribution of searching the problem space leads to better 

solution. The proposed works in [69], [70] and [71] enhanced the performance of 

standard Evolution strategy with Gaussian distribution for exploring new solution spaces. 

At that time of their work Gaussian mutation is the only choice to produce different     

off-springs of the current best solution. 

 

In 1987, Szu and Hartley [75] first applied Cauchy distribution as mutation operator 

to develop fast simulated annealing with self-adaptation and successively in [72-74] 

many new mutation operators with Cauchy distribution came into origin. All the work 

revealed that Cauchy mutation has higher probability of longer jumps. The evolution 

strategy with Cauchy mutation can escape from local optima problem very quickly when 

compared to Gaussian mutation, having smaller jumps with predictable probability [76]. 
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The authors in [77] proposed Cauchy mutation operator, an efficient search operator 

for enhancing the global search. The property of the Cauchy operator with wider search 

space and higher probability of longer jumps enables the optimization algorithm to find 

the best solution. 

 

The global and local search efficiency is improved by incorporating two mutation 

operators for each criterion [78]. To explore the new region of search, Cauchy operator is 

applied to ensure search in the farther region and prevent local optima problem in early 

stage. After finding the new search space the optimal solution is searched within that 

region using Gaussian operator to intensify the search in the local region to obtain the 

better solution.  

 

The performance of the PSO searching capability is enhanced by adopting Bayesian 

technique that uses the probability density function over the weight space and calculate 

the optimal inertia weight vector. The Bayesian uses the Gaussian distribution to exploit 

the local space, but suffers from local optimum problem. Since Cauchy has increased 

probability of longer jumps the authors used Cauchy operators in [79] to enhance the 

exploration. 

 

To improve the result of biogeography optimization problem the mutation strategy 

by Chaos and Cauchy distribution is applied in [80]. In the initial stage chaos search is 

applied for random search in large space to avoid local optimum problem, and in later 

stages uses Cauchy operator to obtain good convergence precision. 

 

2.7 Ant colony inspired Cellular Automata-based DDoS Mitigation  

ACO (Ant Colony Optimization), popular swarm intelligence with stochastic nature 

meta-heuristic algorithm, takes the inspiration from the foraging behavior of the ant for 

solving optimization problems. The ants secrete pheromone using which they exhibit 

foraging behavior. It was first introduced by Marco Dorigo in 1992 to solve the travelling 

salesman problem. The benefits of ACO made it very popular in research field and has 

experienced huge growth, standing as an important nature-inspired stochastic            
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meta-heuristic for NP-hard problems [81]. The artificial ACO makes use of forward ant 

and backward ant agents which are used to find the path. The node searching for 

destination uses forward ant agent to find the destination, and once found, backward ant 

agent is used to traverse the path again from destination. 

Pheromone 

The pheromone is a chemical substance secreted by the ants to have many followers 

on the same path. The path with higher pheromone content has the higher probability of 

being selected for next iteration. The pheromone content gets evaporated as time 

increases, making the path useless. This makes the evaporation rate the important factor 

in exploitation feature of ACO. If more pheromone is updated on the path, exploration 

becomes very poor and the algorithm falls into convergence at a faster rate leaving the 

best solutions. Thus the pheromone updation and evaporation rate are the main criteria 

that highly influence the exploration and exploitation of the ACO which when improved 

results in high performance.  

The characteristics of ACO include robust, positive feedback, distributed computing 

and easy fusing with other algorithms making ACO simpler and efficient in searching 

optimal solutions. It can also be integrated with other optimization algorithms like PSO, 

GA to improve its global searching capability. ACO can also be improved by modifying 

the pheromone updating procedure, which plays the key role in ACO. The steps in ACO 

are depicted in Figure 2.7 with the following phases, 

 Initialization phase: Initialize the control parameters like pheromone value, 

evaporation rate. 

Selecting initial solution phase: Randomly or strategically selects the initial solutions 

from the available solutions. 

Pheromone update rule phase:  The updation rule for pheromone is framed to exploit 

the path selected.  

Evaporation Rule phase:  The pheromone evaporation rule depends on the frequency 

of ants traversing the path. 



40 

 

Last two phases are repeated for each iteration, and at end of each iteration the 

probability of selecting the path is calculated to follow the path for next iteration.  

 

 

 

 

 

 

 

 

 

Figure 2.7: Ant Colony Algorithm 

2.7.1 Enhancement of Ant colony optimization search 

The problem of stagnation in ant colony is dealt in [82] by improving the standard 

ACO algorithm in five stages, Dynamic movement probability rule, Improved updating 

rules of pheromone, Adaptive adjustment of pheromone value, Dynamic Evaporation 

strategy and Boundary Mutation strategy. The Dynamic evaporation strategy helps in 

avoiding the algorithm to converge quickly and mutation helps in good exploration. In 

LSACA [83] the authors improved ACO by modifying the transition rule with 

pheromone density and heuristic information. The probability movement of ants follows 

the formula with information inspiration factor and expect information factor. LSACA 

uses 2-Opt technique to improve the solutions generated, in order to reduce the time. 

To increase the efficiency and global optimal solution finding capability the chaotic 

signals are introduced into the dynamic movement of ants in [84]. The chaotic signal is 
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generated using Tent Chaotic Map, a one-dimensional chaotic map which produces more 

auto-correlated, large number of sequences in a faster rate.  

In [85] the pheromone evaporation rate is varied to improve the global searching 

ability and to prevent from converging to local optimum early. The pheromone deposit 

for every iteration is restricted based on max-min strategy to avoid stagnation in ACO. 

For scheduling the jog in parallel machines, in [86] ACO is improved in pheromone 

update rule with elite strategy and max-min ant systems to have good exploration. The 

objective function is set to minimize the weighted value of make-span and early due date.  

Mobile Agent Routing problem is solved in [87] by using IACO (Improved ACO) to 

find the correct path to the destination. The ACO is improved by introducing genetic 

operators in global pheromone updating rule. The genetic operator, mutation, is applied 

in the global pheromone updating rule to escape from local optima problem, (i.e.), to 

have good exploration. In [88] Acoustic (sound) indicator is used to improve the ACO 

algorithm exploration feature. The sound strength is to decide on exploitation or 

exploration by measuring the relatedness of ants against a threshold. The relatedness 

between ants is found from difference between the sound created by ants, given in 

equation 2.2. 

Relatedness =     distance mean-number of cluster   
            (2.2) 

                    SD of Distance 
           

The pheromone value of the highly undesirable links is lowered, so that they are 

avoided from processing during finding the solution. Mostly cross links are avoided 

during the algorithm in the assumption that they will not lead to an optimum solution. So 

the [89] made use of this concept to escape from stagnation problem. The Pheromone 

evaluation function is based on average pheromone value of all ants in edges.  

In [90] the author proposed multiple interacting ant colonies whose pheromone value 

is updated by the exploration factor, which is based on the parameter q0 whose value is 

different for each colony of ants for different levels of exploration. Because of multiple 

ant colonies, stagnation problem is reduced with good exploration. In [91] the author 

reduces Stagnation by using dynamic candidate strategy list and adaptive heuristic 
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parameter updation. The dynamic candidate list strategy is a sorted data structure based 

on increasing distance to store the closed cities to be visited. Entropy is the heuristic 

information adapted in this work to reduce stagnation.  

 

To improve the global optimal solution, the concept of back tracing and 

diversification is adopted in [92].  Initially the agents are allowed to move and find the 

local and global optimal solution for ‘N’ number of iterations. After ‘N’ iteration if the 

global solution remains the same the back-tracing is applied by re-setting the initial 

position of agents to the end of current global best solution.  Diversification is performed 

by reinitializing the pheromone value of all the edges to improve the global best solution 

of ACO. 

 

The initial pheromone value also plays an important role in finding best solution. To 

solve TSP, the authors in [93] improved ACO in terms of, Initial pheromone value, 

pheromone updating rule and evaporation strategy. The edges are assigned pheromone 

value based on their length, so that shortest length has more pheromone compared to 

larger one. The pheromone transition rules are based on max-min strategy and length of 

the global optimum path. To get the best path from the tour it is necessary to enhance the 

selection probability of the path. The weight factor [94] is added to the selection 

probability based on the number of neighbors around and supervisory mechanism is 

included to refine the quality of the solution produced in the previous stage. 

 

The multi-population strategy is applied in [95] where ants are divided into scout, 

search and worker ant. Scout ant is used to find the optimal path, search ant helps in 

exploiting the path and worker ant is used to analyze the found path and update the 

pheromone value. The chaotic and min-max strategy is applied to improve the global 

optimum value.  

An improved ACO algorithm in [96] used quantum vectors for pheromone 

representation, dynamic pheromone updating strategy using quantum to control 

evaporation factor, quantum rotation gate and quantum mutation for diversification to 

enhance the search ability of traditional ACO algorithm.  
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To enhance search ability and to increase convergence speed, [97] includes            

non-uniform distribution of initial pheromone, heuristic strategy with direction 

information. Coverage and updating rule by Rowlett wheel method and evaporation 

coefficient is adjusted.  

In [98] MACO improves the performance of ACO in TSP problem by enlarging the 

searching space to escape from local optimum. To have a good convergence rate the 

mutation technique is introduced to the ACO algorithm with the same computational 

complexity. The mutation is applied at the end of each iteration of ACO algorithm and 

finds the next solution space by exchanging any of the previous best solutions.  

Sabet et al. [99] presented an enhancement in ant colony optimization process which 

is referred as PMACO algorithms. This algorithm improves the number of pheromone in 

the critical paths which in turn enhances the exploitation of the optimal solution. 

Experimental result proves that the PMACO algorithms are more efficient than all other 

enhancements in ant colony optimization algorithm.  

 

2.7.2 Significance of mutation strategies in exploration  

Generally, mutation refers to the act of producing diversity in the population of 

evolutionary algorithms. There are numerous mutation operators to produce the diversity 

in the population. This mutation can be applied in stochastic meta-heuristic optimization 

algorithms to improve the exploration feature of those algorithms. The performance of 

the stochastic algorithms is based on the exploitation and exploration measure of the 

algorithms in searching the global solution.  

 

The excessive exploration makes the algorithm to jump to entire search space with 

higher probability and makes the convergence to be slow and excessive exploitation 

makes the algorithm to suffer from local optimum problem [100]. Thus there must be 

good trade-off between the exploration and exploitation features in any meta-heuristics 

algorithms. Much research work has been carried out focusing on this problem and it is 
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found that the mutation operation applied to any standard algorithm gives better 

performance with same computational complexity. 

 

Oliveto et al [101] modified the mutation strategy to have a good balance between the 

exploration and exploitation by introducing rank based fitness of the population and 

mutating each bit by the probability of the mutation. This increased the search space and 

resulted in fast convergence to the best solution. 

 

Xiang, Wan-li et al [102] solved the pre-convergence problem of Differential 

Evolution by combining different mutation strategies of DE/current/1/bin and 

DE/pbest/1/bin to accelerate standard DE. 

 

A new mutation operator is applied [103] in ACO algorithm to prevent the premature 

convergence and local optimum problem by checking the diversity value. If the value is 

less than the threshold (0.5) then the mutation operator is applied by randomly selecting 

an ant with low probability. The selected ant is mutated by exchanging any two bits of 

ant and the new fitness value is calculated. 

 

2.8 Tabu Search inspired Cellular Automata-based DDoS Mitigation  

 

Tabu search is meta-heuristic optimization technique which adopts adaptive memory 

programming [104] to solve optimization problem by maximizing or minimizing the cost 

function of application. It is a neighborhood search method which employs “intelligent” 

search and flexible memory technique which starts finding solution from a single point 

and moves towards the best solution [105]. If it is stuck with the local optimal location, it 

moves backward to select the aspiration criteria for exploring new regions of solution 

space. 

 

The working flow of the Tabu search optimization algorithm is depicted in the    

Figure 2.8.  
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Figure 2.8: Tabu Search algorithm 

Tabu search is based on introducing flexible memory structures in conjunction with 

strategic restrictions and aspiration levels as a means for exploiting search spaces. 

Memory structures [106], 

o Short term -list of solutions recently considered 

o Intermediate term- Intensification rules to search local space 

o Long term- diversification rules to search new region 

 

Tabu Search is applied to find the least cost multicast routing in MANET [107] by 

optimizing the QoS parameters bandwidth and end-to-end delay constraints. The 

addressing issue of the multicast routing is maintained in short term memory and long 

term memory is used to improve the efficiency of the algorithm. The algorithm aims to 

find the low cost multicasting tree with bandwidth-delay constraints. In [108] TSRA, TS 

based algorithm with a new move and neighborhood search method which integrate 

energy consumption and hop counts into routing choice. Tabu search is used to optimize 

the routing quality, energy consumption, and cost of routing. It is needed to achieve the 

tradeoff between route hops, location of nodes and energy consumption. 
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To determine an optimal path for the nodes in MANET Tabu search algorithm 

proposed in [109] carries out two neighborhood generating operations in order to 

determine an optimal path and minimize neighbor search time. VAST from [110] also 

uses Tabu Search to find an optimal path from source and destination in dense MANET. 

Both algorithms when compared to other techniques give minimum routing cost and less 

algorithm execution time. The paper [111] proposes a Tabu Search based optimization to 

use scarce radio network effectively by designing an effective channel assignment 

algorithm to reduce channel conflict. 

 

In large VANETs environment routing problem is an NP hard, [112] Combined 

Nearest Neighbor Search with Tabu Search to give optimized solution of finding route to 

destination. The solution works in two stages, Stage 1: Nearest Neighbor Search is used 

to construct initial routes and Stage 2: Tabu Search is utilized to optimize the intra-route 

and the inter-route. 

 

The major problem in VANETs is stable routing and their tendency to get trapped in 

local optimum due to dynamic topology changes. To maintain route in such environment 

RMRPTS: a Reliable Multi-level Routing Protocol [113] based on clustering with Tabu 

Search in VANETs is proposed. The protocol works by establishing Reliable routing 

between Cluster members using Fuzzy approach and Cluster heads to destination using 

Tabu search. In [114] and [115] the solutions are provided for vehicle routing problem to 

search neighbor based on Tabu Search. The proposal gave a new neighborhood 

generation procedure which considers the scattering pattern of the vehicles. 

 

Wireless sensor Network with energy constrained nodes focus on energy saving 

during routing of messages. In [116] authors used Tabu search to optimize the routing 

quality, energy consumption, and cost of routing. The objective function is based on the 

tradeoff between route hops, location of nodes and energy consumption. 

 

For enabling smoother driving on the road the vehicles on the road should not get into 

congestion considered as local optimum. To optimize the selection of combination of 
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parameters of VANETs to control congestion in the network, [117] used Tabu Search 

algorithm UOTabu (Uni-Objective Tabu Search). The proposed algorithm uses only one 

objective function, delay. 

 

Similarly, to escape from the local optimum, meta-heuristics optimization algorithm 

is applied in [118] for optimizing the selection of combination of parameters of VANETs 

to control congestion in the network, by applying Tabu Search algorithm MOTabu 

(Multi-Objective Tabu Search).  The MOTabu uses two objective functions, delay and 

jitter. To optimize the geographic routing protocol in VANETs it uses Tabu Search to 

search path and Simulated Annealing to decrease the randomness in forwarding. 

 

The geographic routing protocol of VANETs uses the position information of the 

vehicles to route the messages. To optimize the geographic routing protocol in VANET 

the researchers mixed the Tabu search technique with simulated Annealing in [119]. The 

Tabu search is used to discover the path by optimizing the objective function and 

Simulated Annealing to decrease the randomness in forwarding. 
  

2.9 Extract of the Literature Survey 

The cooperation among neighbors plays a major role in routing of VANET messages 

which are prone to many security breaches like black-hole attack, grey-hole attack, 

spamware, DoS, DDoS, etc,. These attacks make use of network resources inefficiently 

and prevent the legitimate users from accessing the resources. From the literature, DDoS 

is identified as more hazardous form of attack which must be prevented from happening. 

To enhance the performance of VANETs services the availability of neighbor should be 

maintained to the maximum degree. 

From the literature, the parallel synchronous update of cells of CA model and strong 

dependency between the neighboring cells can predict the next state of the system 

accurately. This cooperation among the cells gives the adaptability of Cellular Automata 

in finding the next cooperative neighbor from the VANETs to forward message to the 

destination successfully. 
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The performance of cellular automata is dependent on the transition rules used to 

update the cell state. The transition rule can be optimized to enhance the effectiveness of 

CA model. From the survey it is inferred that integrating CA model with any            

meta-heuristics improves the searching behavior of the optimization algorithms. 

Initially the optimization problems are solved by employing the heuristic approaches 

but it suffers from local optimum problem leading to pre-mature convergence to a local 

solution. The local optimum problem is solved by introducing a heuristic over the 

existing heuristics. From the survey it is inferred that the meta-heuristics optimization 

technique is applied to solve NP hard problems. The uncertainty plays a key role in 

solving the optimization problems; any heuristics with randomness introduced give 

stochastic meta-heuristic optimization algorithm.    

 

The meta-heuristic stochastic optimization algorithms are utilized for the following 

reasons i) It is suitable for resolving any issues that could be derived in a finite 

dimensional space for identifying an optimal solution, ii) They are experimentally proved 

and confirmed to be highly suitable for approximation of solution than the heuristic 

stochastic optimization algorithms in most real time complex environments, iii) They 

possess a maximum search potential that make them highly suitable for applicability in 

VANETs and iv) They are proved to exhibit an higher level of precision when enhanced 

and integrated for maximizing the exploration extent.  

 Various meta-heuristics stochastic optimization algorithm used to solve large 

combinatorial problems are Genetic Algorithm, Evolutionary programming, Ant Colony 

Optimization, Artificial Bee Colony, Simulated Annealing, Tabu Search, Differential 

Evolution , etc,.  

From review it is found that the stochastic optimization algorithms should have a 

good balance between the exploration and exploitation such that they do not suffer from 

stagnation, local optimum problem, and pre-mature convergence. The problem of ABC 

algorithm is that it is poor in exploitation and frequently converge to bad solution. To 
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enhance the algorithm, the randomness is introduced in the standard ABC algorithm to 

reach best solution.  

For random number generation it is inferred from the literature that the probability 

distribution functions can be applied. The main two distributions are mostly applied in 

literature for generating random numbers; Gaussian distribution generates Gaussian 

numbers or Gaussian operator, Cauchy distribution generating Cauchy numbers or 

Cauchy operators. From the distribution curve it is inferred that Cauchy operator is 

suitable for exploring new search space since it has wider search space, higher probability 

of longer jumps. 

Similarly, from literature it is grasped that to prevent ACO from stagnation problem 

the exploration phase is improved by applying mutation operator, making the pheromone 

updation and evaporation rule dynamic with probability estimation. The mutation 

technique like exchange mutation is applied with other heuristic approach integrated. 

Finally, it is concluded that the exploration can be improved by using probability 

distribution operators and mutation operators. 

To have a balance between the exploration and exploitation the different optimization 

techniques are integrated with ABC. From the literature it is inferred that the 

improvement in different bee phases can be applied to enhance the efficiency of the 

algorithm. For local optimization onlooker bee phase can be integrated with different 

optimization techniques like Grenade Explosion Method, Differential Evolution and 

ACO. For global optimization scout bee phase can be enhanced using random number 

generation systems like Chaotic system with opposition based learning, Cauchy operator 

etc., to achieve near optimal solution. 

Tabu search, a trajectory based optimization meta-heuristics handles local optimum 

by aspiration criteria resulting in increased computation time. From the survey it is 

revealed that, integrating cellular automata and Tabu search increases the global 

searching capability of the Tabu search in reasonable time with good prediction accuracy. 

Finally, the literature survey revealed that integrating the cellular automata with the 

improved stochastic optimization algorithms gives good prediction of the reliable 
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neighbor for forwarding packets in VANETs. The DDoS can be prevented by selecting 

the best neighbor from the above mentioned technique. 

2.10 Summary  

This chapter presents and discusses different approaches for handling DDoS attack in 

VANETs. The detailed review of Cellular Automata, Stochastic Optimization algorithms 

are initially focused and in next sections the Artificial Bee colony algorithm, Ant Colony 

algorithm and Tabu search meta-heuristic stochastic optimization are explained in brief 

with their approaches to handle DDoS by incorporating Cellular Automata. These 

sections also focus on different improvements applied to the standard algorithms to 

increase their efficiency and performance by enhancing the exploration and exploitation 

phase. 
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 CHAPTER 3 

MODIFIED ANT COLONY OPTIMIZATION ALGORITHM 
INSPIRED CELLULAR AUTOMATA FOR MITIGATING DDoS 

ATTACKS 
 
 

The Ant Colony Optimization algorithm is a meta-heuristic stochastic optimization 

technique inspired by collective behavior of decentralized, self- organized systems of ants 

using a unique feature called pheromone traits. ACO helps in finding the best local 

optimal solution since it is good in exploitation. The standard ACO algorithm on 

improvement in pheromone updating rule and its intensity constant, explores the global 

space efficiently to find the global best optimal solution with fast convergence rate. To 

further improve the rate of finding the optimal node, the improved ACO algorithm can be 

integrated with Cellular Automata Neighborhood model. The CA model promotes the 

efficient strategy for selecting the neighbor nodes in less time with low complexity. 

 
3.1 Improved Ant Colony Optimization Algorithms for DDoS Mitigation   
 

In Vehicular Ad hoc NETworks (VANETs), reliable data dissemination between 

vehicular nodes necessitates the maximum degree of collaboration as they play a 

significant role in ensuring the core objective of communication. But the malicious action 

of vehicular nodes may disrupt the established degree of co-operation as they lead to poor 

performance in spite of high resource utilization. The malicious activity of vehicular 

nodes like DDoS attack must be detected and resolved in a potential way by identifying 

optimal nodes and optimal paths.  

 

To identify the optimal path with optimal nodes ACO has been used in many domains 

like WSN [120], MANET [121] and [122] with improved performance. The only 

problem found while applying ACO is that after some duration all nodes follow the same 

path leading to traffic in bandwidth [123]. This stagnation problem is reduced by many 

research works by modifying the rule for pheromone updation and evaporation based on 

length of the path, pheromone decay rate and stability of the path. Modeling the 
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neighborhood using Cellular Automata increases the speed of convergence and eliminates 

stagnation problem by always selecting best neighbor for every iteration. To prevent the 

search from falling into local optimum point and to enhance the convergence speed, 

global searching potential, an enhanced version of ant colony optimization (ACO) 

algorithm called Modified Ant Colony Optimization Algorithm Inspired Cellular 

Automata (MACOA-CA) is propounded. 

The Modified Ant Colony Optimization Algorithm Inspired Cellular Automata is 

proposed for eliminating the concept of stagnation that exists in the traditional Ant 

Colony-based Optimization Algorithm (ACOA). MACOA-CA used for mitigation 

assures an effective and efficient global search space for identifying and replacing the 

DDoS compromised node with optimally elected vehicular node. The traditional         

CA-ACO algorithm for DDoS mitigation is improved in the following dimensions viz., 

  i)  The movements of ants are modified based on dynamic movement probability 

rule,     

 ii) The pheromone updating rules are improved based on pheromone intensity   

constant, 

 iii) A pheromone adaptive adjustment strategy is incorporated for modifying the 

non-uniform distribution of pheromone to uniform distribution of pheromone 

and  

iv)  Dynamic evaporation factor strategy is used for increasing the search potential   

that in turn enhances the rate of convergence to a considerable level. 

3.1.1 Improved Movement Rules of Ants 

Naturally, Ants have the potential in searching and analyzing the quality of their food 

sources through optimal shortest paths that are identified by their intelligence in an 

iterative manner. Inspired by the intelligence of ants, Improved Ant Colony Optimization 

(IACO) Algorithm which is an enhanced version of Ant Colony Optimization (ACO) 

propounded by Marco Dorigo is used in MACOA-CA for searching the optimal vehicular 
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nodes. MACOA-CA could aid in selecting the shortest path and alternative vehicular 

nodes for resolving issues that arise due to the influence of DDoS attacks during data 

dissemination. Since the principle of stagnation is the primitive limitation of ACO 

optimization process, MACOA-CA uses dynamic movement probability rule. The rule 

integrates the benefits of random and deterministic selection for overcoming the 

limitation of ACO and for improving the global selection strategy. This improvement in     

MACOA-CA is facilitated by formulating dynamic movement probability rule in which 

the paths that are maximum and minimum visited by the ant agents are used for 

modification of pheromones. This modification is mainly due to the evolutionary 

changing process of ACO. 

 

Thus the transition rules for each search with probability ' k
ijP ' is computed based on 

number of ant agents 'm' , present iteration' pI ', maximum heuristic function ' max ' and 

total number of iterations used for performing global search ‘ ),( jiQ c ’ through equation 

3.1 and 3.2 as  
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If the number of ant agents in MACOA-CA are continuously increased then the value 

of ‘ ijx ’ is periodically decreased. In this context, the iteration of search approaches a 

suboptimal solution even when the value of pheromone is gradually improved. When the 

optimal nodes and the paths are identified, the exploration may lead to premature 

convergence due to the use of excessive amount of pheromone. But, MACOA-CA tackles 

it by depressing the level of pheromone based on the degree of exploration required.  

The cellular automata model space used in MACOA-CA is facilitated with four 

points such as source vehicle point, destination vehicle point, intermediate router node 

points and free space that follows Moore model. The distance between the source vehicle 
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point and destination vehicle point is considered ‘L’ and the intermediate router nodes 

can move around a width of ‘L/2’. Thus the space is represented by equation 3.3.  

   maxmax Y,y,X,xy)(x,S 0,....0,.../                   (3.3) 

      The position of each vehicle pertains to a point (x, y), when S (x, y) = 1, the collision 

of vehicles is possible and S (x, y) = 0 represents the collision free space of the cellular 

automata.
 

The cellular automata model employed in MACOA-CA consists of cells and cellular 

spaces for discretizing time and space in the search space. The time and space are 

discretized for analyzing and describing the dynamic behavior of vehicular nodes in the 

2D space as shown in Figure 3.1a and Figure 3.1b. Each and every cell employed in the 

lattice grid space exhibits finite number of discrete states and the behavioral states are 

updated based on the newly innovated local space rule. This complex dynamically 

changing behavioral state process identification is modeled into a discrete interactive 

process. The Cellular Automata Moore model used in MACOA-CA is represented using 

a 4-tuple ),,,( cccdA RNSLC   

Where 

AC : Moore model based cellular automata. 

dL : Cellular space with ‘d’ positive dimension used in the Moore model (d=2 in 
MACOA-CA). 

cS : Possible state space of cellular automata (0, 1). 

cN : Neighbors of each individual cellular cell defined based on Moore model 

represented through S= },....,.....,,{ ,21 nr nnnn .where ‘S’ and ‘r’ denotes the spatial 

vector that incorporates ‘n’ feasible cellular states and direction of the ant colony 

respectively. In MACOA-CA, ]8,1[r  and ]1,0[rs which infers that the 

transition will decide to choose any direction, else if 1rs , the ant colony 

optimization is not possible. 

cR : Rule for cellular transition or cellular state transformation function. 
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The Moore cellular automata neighborhood model is used in the proposed work since 

each focuses on all the surrounding neighbors in eight directions (North, North-East, 

East, South, South-East, North-West, South- West and West). The MACOA algorithm 

finds the probability of selecting a node as next forwarding node among the eight 

surrounding neighbors by applying equation 3.1. 
 

1 2 3 

4  5 

6 7 8 

 

1 2 3 

4  5 

6 7 8 

Figure 3.1a: Moore Model for  

MACOA-CA 

Figure 3.1b: Direction of transfer in  

MACOA-CA 

 

3.1.2 Enhanced Pheromone updation rules of MACOA-CA 

The pheromone rules for MACOA-CA are enhanced by updating the residual 

pheromone after each iterative search as the heuristic factor of search should not be 

integrated with the estimated residual pheromone data elucidated. Hence the pheromone 

rules for MACOA-CA are improved using equation 3.4, 3.5, 3.6 and 3.7.  

c
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QR  (The path (i, j) traversed by each ant agent in specific iterations)     (3.6) 

c

c
ij L

QR 
  (The path (i, j) is the identified optimal solution)                           (3.7) 

Where, ‘ Q ’-Pheromone intensity constant 
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              ‘ )( tR ij ’     - Pheromone value at time ‘t’ 

              ‘ )1( tR ij ’ - Pheromone value at time‘t+1’ 

               ‘  ’            - Evaporation factor rate 

 

The pheromone updation for iteration is constant and it depends on three parameters as 

follows, 

a. Pheromone evaporation or decay rate. 

b. Previous pheromone deposit value. 

c. Optimal pheromone deposit value up to ith iteration. 

 

These parameters help ACO to improve its efficiency by exploring new route to the 

destination. Variance in pheromone deposit value increases the probability of other 

alternate good routes to be selected resulting in no stagnation in local optimum location. 

This increases possibility of more or all feasible routes to be selected for forwarding the 

messages to the destination in reasonable time in both dense and sparse environments. 

   

In MACOA-CA with the cellular automata rules optimized by the improved ACO 

pheromone updation, each vehicle’s neighbor information such as trust and reference 

velocity are updated using the equation 3.4. Since the VANETs environment is dynamic 

the routes change from time to time so we apply the improved ACO to predict the next 

best neighbor for packet forwarding. 

3.1.3 Pheromone Adaptive Adjustment Strategy for MACOA-CA 

In the traditional ACO algorithm, fixed level of pheromone is used for updating the 

pheromone-based search strategy. This kind of strategy ignores several characteristics of 

distribution that pertains to the identified solution of each iteration and hence it is 

susceptible to the process of stagnation and slow convergence. The stagnation makes 

ACO to fall into a local optima in the premature stage of searching that prevents the 

algorithm from identifying the optimal vehicular nodes for handling DDoS attacks. 

Therefore, a Pheromone Adaptive Adjustment Strategy for MACOA-CA is incorporated 
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to convert the non-uniform distribution to a relative uniform pheromone distribution that 

resolves the trade-off that exists between the deviation in search expansion and the 

exploration of an optimal solution for attaining the local optimum solution. 

 

 In this Pheromone Adaptive Adjustment Strategy of MACOA-CA, the influential 

function referred to as pheromone intensity constant '  ' is replaced by a real dynamic 

ranging variable function ' )( tV ' based on adjusting pheromone represented through 

equation 3.8 as   

         
k

k
tij L

tVR )()(
)(
           (3.8) 

The aforementioned real dynamic ranging variable function ‘ )( tV ’ defined in   

MACOA-CA is portrayed from equation 3.9 to equation 3.11 as follows  

     11 ,)( ThtVtV             (3.9) 

       22 ,)( ThtVtV              (3.10) 

     33 Tht,V=V(t)                (3.11) 

 

Where, 1V , 2V and 3V  refer to three levels of tolerance pertaining to dynamic 

pheromone intensity. 1Th , 2Th , 3Th  represent the number of vehicular nodes in a 

particular cell.  

 

The replacement of real dynamic ranging variable function is mainly to sustain the 

balance that exists between exploitation and exploration keys of dynamic searching of ant 

agents. The real dynamic ranging variable aids in maintaining the evocation function to a 

constant level under the influence of pheromone evaporation. It also checks whether the 

optimal quality solution is constant over a period of time under searching and it also 

seems to prevent the search to suddenly fall into a critical point of convergence. Then the 

Pheromone Adaptive Adjustment Strategy plays a vital role in decreasing the level of 

information used for searching the critical point convergence. Once the critical point 

convergence is found, the number of optimal paths is discriminated from worst paths 
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based on the positive feedback scheme used by the classical ACO. But in MACOA-CA, 

considerable amount of negative feedback pheromone is used in the search for 

minimizing the deviation in pheromone of each and every optimal path solution 

identified. This Pheromone Adaptive Adjustment Strategy step also aids in expanding the 

possibility of global search. 

 

The pheromone updation is made adaptive based on the dynamic situation in the 

network. The pheromone updation value is varied based on the number of vehicles in the 

surroundings, when the traffic is more or dense the updation value is V1, during medium 

traffic the updation value is V2 and if traffic is less the updation value is V3. Thus the 

updation value is made adaptive and adjustable to the traffic in the network to enhance 

the exploration level of the algorithm in finding the best neighbor. 

 

3.1.4 MACOA-CA Dynamic Evaporation Factor Strategy  
 
In MACOA-CA, the evaporation factor ' ' of the pheromone cannot be a constant as 

it directly represents the convergence speed and global searching ability of the algorithm. 

Generally, the Evaporation Factor of ACO in the least unexplored region and paths 

converges to 0. This property of evaporation factor convergence greatly minimizes the 

global searching potential of the implemented algorithm. In reverse, if pheromone used is 

high, it also affects the global searching potential of ACO.  

The idea of initializing the pheromone’s value remains a critical issue that needs to be 

dynamically resolved as it is the core mechanism of controlling and synchronizing the 

rate of release and evaporation. Dynamic Evaporation Factor Strategy in MACOA-CA is 

necessary for setting the value of pheromone for improving the global exploring skill of 

the deployed algorithm. The utilized Dynamic Evaporation Factor Strategy in     

MACOA-CA is capable of improving the global search potential and further induces the 

rate of convergence to a significant level. This strategy uses the idea of incorporating 

maximum value to the dynamic evaporation factor at the initial state for improving the 

rate of searching potential. Even when the evaporation factor is initially high, they 

gradually decay and start to converge into an optimal solution. To study the decay rate of 
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evaporation factor, three decay models, scale decay model, line decay model and curve 

decay model, can be used. In MACOA-CA, Dynamic Evaporation Factor is estimated 

based on curve decay model through equation 3.12 as 

1
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where ‘  ’ , ‘ T ’, ‘ t ’, ‘ maxR ’, ‘ minR ’ refers to the evaporation rate of pheromone, 

maximum number of iterations used for identifying optimal nodes and optimal paths, 

minimum number of iterations used for identifying optimal nodes and optimal paths, 

upper and lower threshold of pheromone value respectively.  

 

In MACOA-CA, curve delay model is mainly used for investigating the decay rate of 

evaporation factor as it is the predominant model that can discriminate the deviation that 

exists between the evaporation and release rate of pheromone in a significant way. 

3.1.5 Boundary Symmetric Mutation Scheme of MACOA-CA  

Statistical theory infers that most of the distribution will tend to be normal or will 

meet normal distribution based on the increasing number of vehicular nodes used in the 

cellular automata model. The co-ordinates of each vehicular node are initially sorted 

based on the co-ordinates of vehicular nodes in the cellular automata model. When the 

number of nodes in the cellular co-ordinate is small, the global search is carried based 

upon the idea of centrotaxis. In CA model the selected optimal nodes for handling DDoS 

will be concentrated in the center and the optimal nodes for routing are also elected with 

respect to the same phenomenon.  

In MACOA-CA approach, initially the ant agents are made to explore the possibilities 

starting from the boundary towards the center of the employed Moore-based cellular 

automata. After each and every incremental time, the search is performed from the center 

towards the boundary. Thus ant agents in MACOA-CA are made to obey the trajectory 

model of boundary-center-boundary during the exploration of identifying the optimal 

nodes and optimal paths for mitigating DDoS attacks.  
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The trajectory model is used to overcome the perplexing paths that might arise during 

the exploration in the center area and further, a number of overlapping paths with critical 

limitations may arise in the boundary paths. The mutation strategy adopted here is to 

select the node which occurs in the intersection of the path from boundary to center and 

center to boundary. The intersecting node is identified as being in close related velocity 

with the other nodes in the network. Furthermore, effective mutation strategy is 

integrated with MACOA-CA for estimating the quantification of mutation degree along 

the boundary paths. This boundary symmetric mutation strategy not only enhances the 

mutation efficiency but also helps to achieve better quality exploration results.  

 

In MACOA-CA algorithm, the idea of probabilistic quartile is used to mutate nearly 

one-third from the initial and end of the paths explored. Thus mutation in the boundary 

happens only in the interior part of the limits and does not happen exterior to the 

exploration area. Hence, Cellular Automata-based Improved Ant Colony-based 

Optimization Algorithm combines improved dynamic transition rules of ant agents, 

enhanced update rules of pheromone, pheromone’s adjustment strategy of pheromone 

and dynamic evaporation factor strategy with boundary symmetric mutation for speeding 

the rate of search. 

3.1.6 Flow Chart of proposed MACOA-CA  

The steps of MACOA-CA used in improving the search quality for identifying 

optimal nodes for handling DDoS attacks and finding optimal quality path solutions are 

depicted in Figure 3.2. 
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Figure 3.2: Flow Chart for MACOA-CA algorithm 
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Algorithm 3.1: MACOA-CA (Modified Ant Colony Optimization Algorithm Inspired Cellular 

Automata) 

Step 1: Set the parameters. 

Step 2: Find the fitness function of each vehicular nodes. 

Step 3: Deploy the vehicles and ants in Moore model and update their position. 

Step 4: When the cache list is not empty, select the vehicular nodes by the selection 

probability. 

 

 

Step 5: After the ant agents have been identified the optimal paths and optimal node, the 

path length is calculated and updated in the cache list. 

Step 6: The current optimal node and path are saved and the global optimal path are 

updated in each iteration. 

Step 7: Update the pheromone according to the updating rules of pheromone. 

 

Step 8: Set the iteration control by periodic increments of 1 based on pheromone 

adaptive adjustment, Dynamic evaporation factor and Boundary symmetric 

mutation scheme. 

Step 9: The iteration control is processed until t<Tmax go to step (4). 

Step 10: Otherwise, MACOA-CA is terminated and the identified optimal node and path 

are used for mitigation DDoS attack. 
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3.2 Simulation Experiments and Results  
 

The performance investigation of MACOA-CA with CA-ACOA, CA-GA and       

CA-PSO is evaluated based on ns-2 simulator and SUMO traffic simulator is used for 

generating vehicular mobility traces. Initially, evaluation parameters such as prediction 

variance (meters), prediction variance (seconds) and average prediction variance are used 

for investigating the performance of MACOA-CA. In this performance analysis, the 

experiments are carried out either by varying the number of nodes or by varying the 

prediction interval. The comparative analysis of MACOA-CA is based on the 

experiments discussed below. In the first three experiments, the performance of 

MACOA-CA with CA-ACOA, CA-GA and CA-PSO is analyzed through evaluation 

factors such as variance (meters), prediction variance (seconds) and average prediction 

variance obtained by varying the prediction interval and vehicular nodes.  

 

The simulation setup used for comparative performance analysis of MACOA-CA 

with CA-ACOA, CA-GA and CA-PSO are detailed in Table 3.1. 

 
Table 3.1: Simulation setup for evaluating MACOA-CA 

Parameters Value 

Number of vehicular nodes  100, 200, 300 

Range of transmission  600m 

Threshold speed 40-60 m/sec 

Acceleration of vehicular node 1.2 m/s2 

Retardation of vehicular node 6.5 m/s2 

Simulation time  600s 

Prediction interval  10-140 s 

MAC protocol IEEE 802.11p 

Refresh interval time  50s 
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Experiment 1-Performance analysis of MACOA-CA based on prediction variance 
(meters) by varying prediction interval 
 
Prediction variance in meters 
 

 The performance metric prediction variance is the difference between the predicted 

position of a vehicle and subsequent actual position that the vehicle reaches at any 

instant. 

In experiment 1, the prediction variance is measured in meters by varying the 

prediction interval by 10, 20, and up to 100 seconds. The predicted position of the 

neighbor is measured against each interval and plotted. In experiment 1, the performance 

investigation of MACOA-CA over existing cellular automata based DDoS mitigation 

approaches like CA-ACOA, CA-GA and CA-PSO are investigated. 

Figure 3.3 portrays the performance of MACOA-CA in terms of prediction variance 

(meters) obtained by varying the prediction interval (seconds) with respect to 100 

vehicular nodes. Results make it clear that the prediction variance for MACOA-CA,    

CA-ACOA, CA-GA and CA-PSO increases phenomenally when prediction interval is 

varied from 10 to 100 seconds. But, MACOA-CA is able to dynamically decrease the 

variation especially when the prediction interval increases. MACOA-CA is found to 

exhibit a decrease in prediction variance to a maximum level of 16% than the compared 

baseline approaches.  

Figure 3.4 portrays the performance of MACOA-CA in terms of prediction variance 

(meters) obtained by varying the prediction interval (seconds) with respect to 200 

vehicular nodes. From the graph it is clear that the prediction variance of MACOA-CA 

also increases gradually as CA-ACOA, CA-GA and CA-PSO increases when prediction 

interval is varied from 10 to 100 seconds under the influence of 200 nodes. But, 

MACOA-CA shows a small percentage increase in variance when compared to other 

existing algorithms. MACOA-CA is found to exhibit a decrease in prediction variance to 

a maximum level of 19% than the compared baseline approaches.  
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Figure 3.3 -Experiment 1-Performance of MACOA-CA-Prediction variance (meters)-100  

nodes  

 
 Figure 3.4 -Experiment 1-Performance of MACOA-CA -Prediction variance 

(meters)-200 nodes  
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Figure 3.5 - Experiment 1-Performance of MACOA-CA- Prediction variance (meters)-300 

nodes 

The performance of MACOA-CA in terms of prediction variance (meters) obtained 

by varying the prediction interval (seconds) with respect to 300 vehicular nodes is 

portrayed in Figure 3.5.  For 300 vehicles the prediction variance has a remarkable 

increase as the prediction interval increases similar to the other algorithms like            

CA-ACOA, CA-GA and CA-PSO. But, MACOA-CA has a meagre increase in prediction 

variance under 300 nodes compared to existing algorithms. From the graph it is inferred 

that MACOA-CA is found to exhibit a decrease in prediction variance to a maximum 

level of 23% than the compared existing approaches.  

Experiment 2- Performance analysis of MACOA-CA based on prediction variance 
by varying number of nodes 

Prediction Variance in seconds 

The second performance metric prediction variance in seconds is the prediction 

accuracy of a node in predicting its position for every unit time interval. 
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In experiment 2, the performance analysis of MACOA-CA, CA-ACOA, CA-GA and 

CA-PSO is carried out in terms of prediction variance per second by varying the number 

of vehicular nodes from 100 to 300 based on varying prediction interval. 

 
Figure 3.6- Experiment 2-Performance of MACOA-CA-Prediction variance per second-100 

nodes 

Figure 3.6 describes the performance of MACOA-CA, CA-ACOA, CA-GA and        

CA-PSO based on prediction variance in seconds evaluated by varying the prediction 

interval. It is found that the prediction variance per second for MACOA-CA, CA-ACOA, 

CA-GA and CA-PSO is considerably decreasing when the prediction interval is 

increased. But MACOA-CA is able to increase the dimension of searching and prevents it 

from being trapped into local minimum. Hence MACOA-CA decreases the prediction 

variance in seconds than CA-ACOA, CA-GA and CA-PSO to a considerable level of 

21%, 23% and 26% under the influence of 100 nodes. 

The graph in Figure 3.7 depicts the performance of MACOA-CA, CA-ACOA,      

CA-GA and CA-PSO based on prediction variance in seconds evaluated by varying the 

prediction interval with 200 nodes. It is found that the prediction variance per second at 

start up stage is more for MACOA-CA, CA-ACOA, CA-GA and CA-PSO but is 

considerably decreases as the interval time increases. The MACOA-CA decreases the 
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prediction variance in seconds than CA-ACOA by 15%, CA-GA by 17% and CA-PSO  

by 20% . 

 
Figure 3.7 - Experiment 2-Performance of MACOA-CA-Prediction variance per second-200  nodes 

 
Figure 3.8: Experiment 2-Performance of MACOA-CA- Prediction variance per second-300 

nodes 
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The prediction variance in seconds for 300 nodes is shown in Figure 3.8 for 

MACOA-CA, CA-ACOA, CA-GA and CA-PSO by varying the prediction interval. 

When compared to the baseline approaches MACOA-CA has lower prediction variance 

in seconds due to its balanced exploration and exploitation level. For 300 nodes,     

MACOA-CA decreases the prediction variance in seconds than CA-ACOA, CA-GA and 

CA-PSO to a remarkable level of 11%, 14% and 18% respectively. 

Experiment 3- Performance analysis of MACOA-CA based on prediction variance 
by varying number of nodes  

Average Prediction Variance 

The third performance metric average prediction variance is defined as the prediction 

accuracy of the vehicle over a 'n' number of consecutive prediction. It is calculated by 

measuring the prediction variance of the vehicles of some n prediction and taking its 

average.  

In experiment 3, the performance of MACOA-CA, CA-ACOA, CA-GA and CA-PSO 

is investigated in terms of prediction variance (meters) by varying the number of 

vehicular nodes.  

 
Figure 3.9 - Experiment 3-Performance of MACOA-CA- Average Prediction variance-60 seconds  
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Figure 3.9 portrays the relationship that infers the optimal average prediction 

accuracy facilitated by MACOA-CA, CA-ACOA, CA-GA and CA-PSO when vehicular 

nodes are significantly varied. This investigation is initially with an accuracy level of 

60sec as it is considered the minimum optimal value for accuracy prediction in  

MACOA-CA, CA-ACOA, CA-GA and CA-PSO mechanism. The average prediction 

variance of MACOA-CA shows a meagre variation of approximately 56-60m with 

varying number of vehicular nodes, whereas CA-ACOA, CA-ACOA, CA-GA exhibits a 

deviation of  69-74m, 80-84m and 91-97m respectively. 

 

Figure 3.10 - Experiment 3-Performance of MACOA-CA- Average Prediction variance-

70seconds  

Similarly, the average prediction variance is measured for 70 seconds by varying the 

number nodes and the result is depicted in Figure 3.10. The graph shows that as the 

number of nodes increases the average prediction interval increases for MACOA-CA, 

CA-ACOA, CA-GA and CA-PSO. But, MACOA-CA due to its better optimization level 

shows small percentage increase compared to other existing works. The average 

prediction variance of MACOA-CA shows a meagre variation of approximately 52-55m 
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with varying number of vehicular nodes, whereas CA-ACOA, CA-GA and CA-PSO 

exhibits a deviation of 59-64m, 67-73m and 77-80m respectively. 

 

Figure 3.11 - Experiment 3-Performance of MACOA-CA- Average Prediction variance - 

80 seconds  

In addition, Figure 3.11 also portrays the relationship that infers the optimal average 

prediction accuracy facilitated by MACOA-CA, CA-ACOA, CA-GA and CA-PSO when 

vehicular nodes are significantly varied under an accuracy level of 80sec. For 80 seconds 

the average prediction variance of MACOA-CA has a gradual increase with minimum 

percentage level. The average prediction variance of MACOA-CA shows a meagre 

variation of approximately 50-53m with varying number of vehicular nodes, whereas 

CA-ACOA, CA-GA and CA-PSO exhibits a deviation of 57-64m, 68-73m and 78-89m 

respectively. 

 

The result analysis of the experiment conducted for the performance metrics 

prediction variance (seconds), prediction variance (meters) and average prediction 

variance is listed below. 
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Table 3.2 Performance comparison of Prediction variance (measured in meters) proposed 
MACOA-CA algorithm with existing algorithms 

Algorithm 
No. of vehicles 

100 200 300 

CA-ACOA vs MACOA-CA 13 20 29 

CA-GA vs MACOA-CA 15 11 24 

CA-PSO vs MACOA-CA 20 21        32 

 

Table 3.2 gives the comparison of prediction variance of proposed algorithm with 

other baseline approaches with the decrease in percentage. For 100 vehicles the decrease 

in prediction variance is between 13-20 % when compared to the CA-ACOA, CA-GA, 

CA-PSO algorithms. For 200 vehicles the decrease in prediction variance is between    

11-21% when compared to the CA-ACOA, CA-GA, CA-PSO algorithms. For 300 

vehicles the decrease in prediction variance is between 24-32 % when compared to the 

CA-ACOA, CA-GA, CA-PSO algorithms. Due to dynamism and adaptive adjustment 

strategy MACOA-CA algorithm results in better prediction of the neighboring vehicles 

for forwarding the packet to the destination with no increase in complexity and running 

time. 

Table 3.3 Performance comparison of Prediction variance (measured in seconds) 
proposed MACOA-CA algorithm with existing algorithms 

Algorithm 
No. of vehicles 

100 200 300 

CA-ACOA vs MACOA-CA 4 5 6 

CA-GA vs MACOA-CA 7 9 6 

CA-PSO vs MACOA-CA 8 7 6.5  
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Table 3.3 gives the comparison of prediction variance in seconds of the proposed 

algorithm with other baseline approaches with the decrease in percentage. For 100 

vehicles the decrease in prediction variance is between 4-8 % when compared to the   

CA-ACOA, CA-GA, CA-PSO algorithms. For 200 vehicles the decrease in prediction 

variance is between 5-7 % when compared to the CA-ACOA, CA-GA, CA-PSO 

algorithms. For 300 vehicles the decrease in prediction variance is between 6-6.5 % when 

compared to the CA-ACOA, CA-GA, CA-PSO algorithms. Due to dynamism and 

adaptive adjustment strategy MACOA-CA algorithm results in better prediction of the 

neighboring vehicles for forwarding the packet to the destination with no increase in 

complexity and running time. 

Table 3.4 gives the comparison of average prediction variance of the proposed 

algorithm with other baseline approaches. The experiment was conducted by varying the 

number of nodes from 50 to 350 and measuring the average prediction variance for each 

group. 

 

Table 3.4 Performance comparison of Average Prediction variance (measured in meters) 
proposed MACOA-CA algorithm with existing algorithms 

 

Algorithm  
Accuracy interval level(in meters) 

60s  70s  80s  

CA-ACOA  58-89  59-89  68-85  

CA-GA  64-84  64-84  63-84  

CA-PSO  65-77  68-61  63-81  

IACOA(Proposed Work)  57-76  58-78  62-80  

 

The result from the table 3.4 reveals that for prediction interval of 60s the proposed 

algorithm has average prediction variance from 57-76m which is less when compared to 

all other existing algorithms. Similarly, the average prediction variance is measured by 

varying the number of vehicles with different prediction intervals of 70s and 80s and is 
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found that the proposed algorithm has less average prediction variance among all existing 

algorithms. 

3.3 Summary  
 

In this chapter MACOA-CA with improved dynamic evaporation rule and adaptive 

pheromone update rule is proposed to achieve better exploration and exploitation for 

removing the stagnation problem. The proposed work successfully mitigates the DDoS 

by selecting the reliable node from the CA Moore model using improved ACO algorithm 

for forwarding the packet to the destination. The simulation clearly shows that the 

prediction variance and delay is decreased with improved PDR by applying the  

MACOA-CA algorithm for data routing. The result analysis also reveals that the 

proposed algorithm MACOA-CA has better prediction over the existing algorithms with 

no increase in complexity and running time. 
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CHAPTER 4 

CELLULAR AUTOMATA BASED IMPROVED ARTIFICIAL BEE 
COLONY A0LGORITHM (CA-IABCA) 

 
The Artificial Bee Colony algorithm based on the intelligent foraging behavior of the 

honey bee swarm with its good exploration, helps in finding the optimal solutions for 

optimization problem within a reasonable time. The neighbor vehicle with good degree of 

cooperation can be obtained by applying ABC algorithm with better exploitation and 

exploration level. The performance of the algorithm can further be improved by adopting 

good randomness in scout bee phase and introducing other meta-heuristics algorithms in 

onlooker bee phase. The improved ABC algorithm can be integrated with simple, abstract 

CA neighborhood model for reducing the complexity of the algorithm. 

4.1 Grenade Explosion-Based Artificial Bee Colony Algorithm   

The optimization techniques are considered to be the most efficient way of solving 

the problems with high dimensionality, lack of resource and no analytical model to solve 

them in reasonable time [124]. The artificial bee colony algorithm starts with the random 

set of population agent to explore the problem space for finding the best optimal solution. 

Then in next succeeding iterations part of the near optimal solutions are relocated based 

on some logical function to hope that they move towards the global optimal point [125].  

The grenade, a small bomb designed for short range use explodes shrapnel when 

thrown by hand. The shrapnel is capable of destructing the object it is hitting, and the 

region with high damage is selected for next grenade explosion since it is assumed that 

the region has worthy objects. This property of grenade explosion is applied in GEM 

optimization technique to find the global solution [126]. The GEM has the property to 

converge to the exact location of the global optimum [127] in reasonable time. Thus 

GEM has the property of fast convergence, reliable and efficient in finding the global 

optimum solution compared to other optimization algorithms. 
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4.1.1 2D-Space cellular model configuration for CA-IABCA  

The cellular automata model space used in CA-IABCA is facilitated with four points 

such as source vehicle point, destination vehicle point, intermediate router node points 

and free space that follows Moore model. The distance between the source vehicle point 

and destination vehicle point is considered as ‘L’ and the intermediate router nodes can 

move around a width of L/2.Thus the space is represented using equation 4.1. 

},....,0{},,...,0{/),{( maxmax YyXxyxS              (4.1) 

The position of each vehicle pertains to a point (x, y), when S(x, y) =1, the collision 

of vehicles are possible and if S(x, y) =0 represents the collision free space of the cellular 

automata. 

4.1.2 Evolution rules employed for CA-IABCA  
 

The cellular automata model employed in CA-IABCA consists of cells and cellular 

spaces for discretizing time and space in the search space. The time and space are 

discretized for analyzing and describing the dynamic behavior of vehicular nodes in the 

2D space as shown in Figure 4.1a and Figure 4.1b. Each and every cell employed in the 

lattice grid space exhibits finite number of discrete states and the behavioral states are 

updated based on the newly innovated local space rule. This complex dynamically 

changing complex behavioral state process identification is modeled into a discrete 

interactive process.  

The Cellular Automata Moore model used in CA-IABCA is represented using a 4-tuple
),,,( cccdA RNSLC  , 

 Where,  

AC : Moore model based cellular automata. 

dL  : Cellular space with 'd' positive dimension used in the Moore model (d=2 in         
CA-IABCA). 

cS : Possible state space of cellular automata (0, 1). 
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cN : Neighbors of each individual cellular cell defined based on Moore model represented 

through S= },....,.....,,{ ,21 nr nnnn .where ‘S’ and ‘r’ denotes the spatial vector that 

incorporates ‘n’ feasible cellular states and direction of the artificial bee colony 

respectively. In CA-IABCA, ]8,1[r  and ]1,0[rs which infers that the transition 

will decide to choose any direction, else if 1rs , the artificial bee colony 

optimization is not possible. 

cR : Rule for cellular transition or cellular state transformation function Primitive 
Artificial Bee Colony Algorithm is employed for estimating the transition 
probability. 
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Figure 4.1a: Moore Model for CA-IABCA Figure 4.1b: Direction of transfer in  

CA-IABCA 

4.1.3 CA-IABCA–Cellular Automata based Improved Artificial Bee Colony 

Algorithm with Grenade Explosion and Cauchy Operator 

In general, a honey bee colony is efficient and effective enough in identifying the 

high quality food sources through natural perspectives. Therefore, CA-IABCA optimizes 

the problem of mitigating DDoS compromised vehicular nodes through the incorporation 

of concept derived from the intelligent honey bee foraging behavior. Similar to the role of 

three types of bees in ABCA, the proposed CA-IABCA detects DDoS attacks by 

accomplishing three phases such as employed bee phase, onlooker bee phase and scout 

bee phase. In the employed bee phase, the position of vehicular nodes in the cellular 

automata with its information on trustworthiness is gathered and shared. Then in the 

onlooker bee phase, the vehicular nodes with optimal probability are identified based on 
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the information collected in the employed bee phase through the estimation of fitness 

value and further the search dimension is exploited. Finally, in the scout bee phase, the 

vehicular nodes which are found trustworthy are clustered near the intermediate routers. 

The trustworthy nodes are elected as the forwarding node when the intermediate nodes 

are identified as DDoS compromised. This clustering of nodes is performed for a 

predetermined number of iterations and threshold. 

Initially, ‘n’ number of solution vectors that represents the set of vehicular nodes for 

mitigation is identified randomly. Each solution vector iON   is a D-dimensional solution 

vector and },....,,{ 21 iDiii ONONONON  represents the ‘ith’ solution of the mitigation 

problem. The solution vectors of the problem get updated iteratively based on the search 

processes carried out by the employer bee phase, onlooker bee phase and scout bee phase 

with a Maximum Iteration Number (MIN). Each solution chooses the vehicular node for 

mitigation only when it satisfies the fitness function defined through equations 4.2 and 

4.3.  

0)(,
)(1

1)( 


 i
i

i ONf
ONf

ONfit
     

(4.2) 

0),(),(.1)(  iii ONfONfabsONfit    (4.3) 

Where f(ONi ) is the objective function value of solution ONi. 

Further, the probability of selecting a solution by the onlooker bee is presented by 
equation 4.4.  
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                                    (4.4) 

After selecting a solution, the neighborhood nodes of the chosen vehicular nodes are 

explored by dynamically changing a parameter (In CA-IABCA, Reference velocity is 

used). Then the candidate solution of identified solution ijON is determined through 

equation 4.5. 

)( kjijijijij ONONONN                            (4.5) 
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Where ‘k’ is randomly chosen based on the number of identified solutions. Indices ‘i’ and 

‘j’ represent the randomly chosen dimension that ranges between -1 and +1. TS and ij

represent the total number of search solution and weight-age factor of fitness 

respectively. After the estimation of candidate solution, greedy selection mechanism is 

applied to determine whether to estimate a new candidate solution or to retain the old 

candidate solution. 

If the optimal solution is iON , the scout bee phase produces a new solution from the 

identified optimal solution through equation 4.6. 

))(1,0( minmaxmin jjjij ONONrandONON       (4.6) 

Where jONmin and jONmax are the minimum and maximum thresholds of the candidate 

solution  ONij respectively.    

4.1.4 Grenade Explosion based Onlooker Bees inspired Exploitation Mechanism  

In ABCA, initially the onlooker bee elects an optimal vehicular node in the 

cellular automata model for mitigation based on the estimation of fitness value based 

probability P (ONij) for each node. This estimation of probability for each node (ONij) 

iteratively exploits the neighboring cells of cellular space dL  for determining the most 

optimal vehicular node at the end of each and every iteration through exploitation factor

)( ijpE . This )( ijpE  is identified from ONij by changing a single parameter that satisfies 

the condition )()( . ijpijijp EONE  . This modification in )( ijpE
 from ONij is achieved 

from the randomly selected position of the newly chosen expected optimal vehicular node 

kjON .The parameter ‘j’ is considered as the significant deviation parameter since it 

identifies the deviation between the actual position of optimal vehicular node and 

randomly chosen position of optimal vehicular node achieved through ABCA. 

Furthermore, the choice of parameter ‘j’ cannot always ensure ABCA in identifying high 

reliable positions of optimal vehicular nodes for mitigation and even they are prone to the 

problem of slow convergence and caught into the problem of local optimum in searching 
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operation. This limitation of deviation parameter ‘j’ motivates the necessity of using 

Grenade Explosion Mechanism (GEM) proposed.  

The GEM utilizes a class of traditional benchmark functions and few randomly 

generated multimodal functions for detecting the optimal regions that have the maximum 

probability of holding most optimal vehicular nodes of mitigation. They also possess the 

capacity of converging the search solution to a global minimum. Hence GEM is 

incorporated into the onlooker bee phase of CA-IABCA. 

In this improved onlooker bee phase of CA-IABCA, GEM aids in selecting an 

effective search dimension rather than a random dimension chosen by the traditional 

ABCA. GEM helps in moving towards the identification of an optimal position of 

vehicular nodes that has the maximum probability of being elected as the key node for 

mitigating DDoS compromised nodes. After the estimation of search dimension ( )( nGSP ), 

the fitness of each solution is determined by generating a number of grenades ( nG ) that 

are initialized at random locations with n
Gn

SP ]1,1[)(  . In CA-IABCA, grenade refers to 

the subdivided area of the search dimension with a specific radius of exploration. 

Generate a position area '
kX for identifying optimal vehicular nodes around the kth 

grenade through equation 4.7. 

}))(({ )(
'

ge
f

rmrmkk LUDUDsignXX         (4.7) 

Where  rmUD   and geL  refer to the uniformly distributed random number and length of 

influence of each grenade k=1, 2,….., nG with a constant f= )
log

log
.(,1max{

expR
L
R

n ge

s

}. 

 

Evaluate the distance between '
kX  and radius of exploration expR and if '

kX is found 

at least expR distance apart from the position of grenades, '
kX  is selected. Then compute 

the fitness value of the vehicular nodes within the grenade region existing around the 
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selected '
kX . Further reduce expR  for increasing the potential of global investigation and 

length of grenade Lge influence through equations 4.8 and 4.9. 
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exp )()(                                 (4.9) 

Where, ‘m’ is iteratively varied from a higher threshold value to a lower threshold value. 

Hence global exploration of optimal vehicular nodes is completely achieved in the 

onlooker bee’s phase of CA-IABCA.  

4.1.5 Cauchy operator based Scout Bees Exploration Phase  

Similar to the use of GEM in onlooker bee phase, Cauchy Operator (CO) is 

mainly used for ensuring the possibility of the search to be executed in the global region 

and to prevent the search being trapped into local optimum. Further, the probability of 

generating random number which is deviating from the origin is greater in Cauchy than 

the Gaussian distribution. Cauchy distribution ensures wider search space than the 

Gaussian distribution employed through random numbers [128]. Thus Cauchy operator is 

employed in the scout bee phase of CA-IABCA using equation 4.10. 

      )1,0('' CauchyXX kk                         (4.10) 

Where Cauchy (0,1) refers to the standard Cauchy distribution with center ‘0’ and scaling 
parameter 1 as defined through equation 4.11. 

      )1(
1)1,0( 2

ijON
Cauchy



                 (4.11)

 

In the next section, the flow chart (Figure 4.2) and steps involved in the implementation 

of CA-IABCA are portrayed. 
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Figure 4.2: Flow chart of CA-IABCA 
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Algorithm 4.1: CA-IABCA (Cellular Automata based Improved Artificial Bee 
Colony Algorithm) 
 
 
 Step 1. Initialize the control parameters value:  D, Threshold limit, MIN. 
 
 Step 2. Initialize the number of vehicular nodes and the position of vehicles with 
              Fitness value probability using. 
 

 

                                                                             

 Step 3. Estimate the fitness function of each solution using.  

  

 Step 4. Set Iteration=1. 

 Step 5. Repeat until packet is forwarded. 

 Step 6. Compute the probabilistic value of each feasible solution. 

 Step 7. Identify and evaluate the computed probabilistic value of each feasible solution  
            using each iteration of onlooker bee phase in all search dimensions and determine  
            the exploitation factor using. 
 
 

 

 

 Step 8. Identify the optimal candidate solution using                                                  

           and apply the process of greedy selection during the onlooker bees phase. 

 Step 9. If exists, identify and replace the old feasible solution using newly generated 
             solution using                                              through Cauchy operator in the scout 
             bee phase.   
 
 Step 10. Else retain the old feasible solution as optimal solution. 

 Step 11. Update the best optimal solution that has been achieved in this iteration. 

 Step 12. iteration = iteration + 1. 

 Step 13. Until iteration = MIN. 
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4.2 CA-IABCA-Simulation Experiments and Results Analysis 

The comparative performance investigation of CA-IABCA with SOA-ABCA, 

SOA-ACO and SOA-PSO is evaluated using ns-2 simulator. SUMO traffic simulator is 

used for generating vehicular mobility traces. Initially, evaluation parameters such as 

prediction variance (meters), prediction variance (seconds) and average prediction 

variance are used for investigating the performance of CA-IABCA. In this performance 

analysis, the experiments are carried out either by varying the number of nodes or by 

varying the prediction interval. The comparative analysis of CA-IABCA is based on five 

experiments discussed below. In the first three experiments, the performance of          

CA-IABCA with SOA-ABCA, SOA-ACO and SOA-PSO is analyzed through prediction 

variance (meters), prediction variance (seconds) and average prediction variance obtained 

by varying the prediction interval and vehicular nodes.  

The simulation setup used for comparative performance analysis of CA-IABCA 

with SOA-ABCA, SOA-ACO and SOA-PSO are detailed in Table 4.1. 

Table 4.1: Simulation setup for evaluating CA-IABCA 

Parameters Value 

Number of vehicular nodes  100,200,300 

Range of transmission  500m 

Threshold speed 20-60 m/sec 

Acceleration of vehicular node 1.2 m/s2 

Retardation of vehicular node 6.5 m/s2 

Simulation time  600s 

Prediction interval  10-140 s 

MAC protocol IEEE 802.11p 

Refresh interval time  30s 
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Experiment 1-Performance analysis of CA-IABCA based on prediction variance 
(meters) by varying prediction interval 

In experiment 1, the comparative performance of CA-IABCA over the existing 

cellular automata based DDoS mitigation approaches like SOA-ABCA, SOA-ACO and 

SOA-PSO are investigated. 

 

           Figure 4.3 -Experiment 1-Performance of CA-IABCA-Prediction variance (meters)-

100 nodes  

Figure 4.3 portrays the performance of CA-IABCA in terms of prediction variance 

(meters) obtained by varying the prediction interval (seconds) with respect to 100 

vehicular nodes. The results make it clear that the prediction variance for CA-IABCA, 

SOA-ABCA, SOA-ACO and SOA-PSO increases phenomenally when prediction 

interval is increased 10 seconds for each iteration up to 100 seconds. But, CA-IABCA is 

able to dynamically decrease the variation especially when the prediction interval 

increases. CA-IABCA is found to exhibit a decrease in prediction variance to a maximum 

level of 10% than the compared baseline approaches.  
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Figure 4.4 -Experiment 1-Performance of CA-IABCA -Prediction variance (meters)-

200 nodes  

 
Figure 4.5 - Experiment 1-Performance of CA-IABCA-Prediction variance (meters)-

300 nodes 
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The prediction variance for 200 nodes is depicted in Figure 4.4 measured by varying 

the prediction interval in each iteration. For each iteration the results show that the 

prediction variance for CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO increases 

remarkably when prediction interval is varied from 10 to 100 seconds under the influence 

of 200 nodes. But, CA-IABCA is able to dynamically decrease the variation in less 

percentage even when the number of nodes are increased by 200 especially when the 

prediction interval increases. CA-IABCA is found to exhibit a decrease in prediction 

variance to a maximum of 13% than the compared baseline approaches.  

For 300 nodes the prediction variance graph is shown in Figure 4.5 portraying the 

performance of CA-IABCA by varying the prediction interval (seconds). The prediction 

variance for CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO increases considerably 

in each iteration when prediction interval is varied from 10 to 100 seconds under the 

influence of 300 vehicular nodes. The CA-IABCA gives the better performance in terms 

of prediction variance against the existing algorithms by having minimum increase 

percentage. CA-IABCA is found to exhibit a decrease in prediction variance to a 

maximum of 15% than the compared baseline approaches.  

Experiment 2- Performance analysis of CA-IABCA based on prediction variance by 
varying number of nodes 

In experiment 2, the performance analysis of CA-IABCA, SOA-ABCA, SOA-ACO 

and SOA-PSO is carried out in terms of prediction variance per second by varying the 

number of vehicular nodes from 100 to 300 based on varying prediction interval. 

Figure 4.6 describes the performance of CA-IABCA, SOA-ABCA, SOA-ACO and 

SOA-PSO based on prediction variance in seconds evaluated by varying the prediction 

interval. It is found that the prediction variance per second for CA-IABCA, SOA-ABCA, 

SOA-ACO and SOA-PSO is considerably decreased when the prediction interval is 

increased. But CA-IABCA is able to increase the dimension of searching and prevents it 

from being trapped into local minimum. Hence CA-IABCA decreases the prediction 

variance in seconds than SOA-ABCA, SOA-ACO and SOA-PSO to a considerable level 

of 13%, 16% and 19% under the influence of 100 nodes. 
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Figure 4.6 - Experiment 2-Performance of CA-IABCA-Prediction variance per second-100 
nodes    

  

Figure 4.7 - Experiment 2-Performance of CA-IABCA-Prediction variance per second-200 
nodes 
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Figure 4.7 describes the performance of CA-IABCA, SOA-ABCA, SOA-ACO 

and SOA-PSO based on prediction variance in seconds evaluated by varying the 

prediction interval with 200 nodes. It is found that the prediction variance per second for 

CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO is decreases phenomenally 

decreasing not only with respect to prediction interval but also based on number of nodes. 

The performance of the CA-IABCA decreases in prediction variance in seconds than 

SOA-ABCA by 12%, SOA-ACO by 14% and SOA-PSO by 17% due to its good 

convergence. 

 

Figure 4.8 - Experiment 2-Performance of CA-IABCA-Prediction variance per second-300 
nodes 

Similarly, for 300 vehicular nodes the prediction variance is measured and shown 

in graph as in Figure 4.8 varying the prediction interval by 10s for each iteration. Each 

iteration shows that there is a gradual decrease in prediction variance as the interval 

increases. It is found that the prediction variance per second for CA-IABCA,            

SOA-ABCA, SOA-ACO and SOA-PSO is highly decreased when the number of nodes is 

increased to 300. But CA-IABCA decreases the prediction variance in seconds than 

SOA-ABCA by 8%, SOA-ACO by 10% and SOA-PSO by 13%. 
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Experiment 3- Performance analysis of CA-IABCA based on prediction variance by 
varying number of nodes 

In experiment 3, the performance of CA-IABCA, SOA-ABCA, SOA-ACO and 

SOA-PSO is investigated in terms of prediction variance (meters) by varying the number 

of vehicular nodes from 100 to 300 with fixed accuracy interval of 80s, 90s and 100s 

respectively. 

 

Figure 4.9 - Experiment 3-Performance of CA-IABCA-Average Prediction variance-
80seconds  

Figure 4.9 portrays the relationship that infers the optimal average prediction 

accuracy facilitated by CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO when 

vehicular nodes are significantly varied. This investigation is initially with an accuracy 

level of 80sec as it is considered as the minimum optimal value for accuracy prediction in 

CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO mechanism.  

 The average prediction variance of CA-IABCA shows a meager variation of 

approximately 52-57m with varying number of vehicular nodes, whereas SOA-ABCA, 

SOA-ABCA, SOA-ACO exhibits a deviation of 65-73m, 79-82m and 93-98m 

respectively. 
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Figure 4.10 - Experiment 3-Performance of CA-IABCA-Average Prediction variance-

90seconds  

 

             Figure 4.11 - Experiment 3-Performance of    CA-IABCA--Average Prediction 
variance-100 seconds  

Similarly, Figure 4.10 also portrays the relationship that infers the optimal average 

prediction accuracy facilitated by CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO 
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when vehicular nodes are significantly varied with an accuracy level of 90 sec as it is 

considered as the minimum optimal value for accuracy prediction. The average prediction 

variance of CA-IABCA shows a meager variation of approximately 56-60m with varying 

number of vehicular nodes, whereas SOA-ABCA, SOA-ABCA, SOA-ACO exhibits a 

deviation of 68-76m, 82-87m and 98-103m respectively.  

In addition, Figure 4.11 also portrays the relationship that infers the optimal average 

prediction accuracy facilitated by CA-IABCA, SOA-ABCA, SOA-ACO and SOA-PSO 

when vehicular nodes are significantly varied under an accuracy level of 100sec. The 

average prediction variance of CA-IABCA shows a meagre variation of approximately 

63-67m with varying number of vehicular nodes, whereas SOA-ABCA, SOA-ABCA, 

SOA-ACO exhibits a deviation of 73-78m, 86-90m and 96-104m respectively.  

The result analysis of the experiment conducted with the performance metrics 

prediction variance (seconds), prediction variance (meters) and average prediction 

variance is given in the following table 4.2. The table 4.2 compares the proposed 

algorithm with each of the existing algorithms. Table 4.2 gives the comparison of 

prediction variance of proposed algorithm with other baseline approaches with the 

decrease in percentage. 

 
Table 4.2 Performance comparison of Average Prediction variance (measured in meters) of 

proposed CA-IABCA algorithm with existing algorithms with decrease in percentage 
 

Algorithm 
No. of vehicles 

100 200 300 

SOA-ABCA vs CA-IABCA 19 35 50 

SOA-ACO vs CA-IABCA 35 42 50 

SOA-PSO vs CA-IABCA 41 48 55 

 
 

For 100 vehicles the decrease in prediction variance is between 19-41 % when 

compared to the SOA-ABCA, SOA-ACO and SOA-PSO algorithms. For 200 vehicles 

the decrease in prediction variance is between 35-48 % when compared to the           
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SOA-ABCA, SOA-ACO and SOA-PSO algorithms. For 300 vehicles the decrease in 

prediction variance is between 50-55 % when compared to the SOA-ABCA, SOA-ACO 

and SOA-PSO algorithms. Integrating the features of Cellular Automata and improved 

ABC algorithm with Grenade Explosion and Cauchy Operator results in improved global 

search solution of finding the best neighbor to forward data. 

Table 4.3 Performance comparison of Prediction variance (measured in seconds) of 
proposed CA-IABCA algorithm with existing algorithms with decrease in percentage 

Algorithm No. of vehicles 

100 200 300 

SOA-ABCA vs CA-IABCA 13 12 8 

SOA-ACO vs CA-IABCA 16 14 10 

SOA-PSO vs CA-IABCA 19 17 13 

 

Table 4.3 gives the comparison of delays incurred by proposed algorithm with other 

baseline approaches with the decrease in percentage. For 100 vehicles the decrease in 

prediction variance is between 13-19 % when compared to the SOA-ABCA, SOA-ACO 

and SOA-PSO algorithms. For 200 vehicles the decrease in prediction variance is 

between 12-14 % when compared to the SOA-ABCA, SOA-ACO and SOA-PSO 

algorithms. For 300 vehicles the decrease in prediction variance is between 8-13 % when 

compared to the SOA-ABCA, SOA-ACO and SOA-PSO algorithms. From the analysis it 

is revealed that CA-IABCA decreases in prediction delay when compared to other 

existing algorithms. 
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Table 4.4 Performance comparison of Average Prediction variance (measured in meters) of 
proposed CA-IABCA algorithm with existing algorithms with decrease in meters 

 

Algorithm 
Accuracy interval level 

80s 90s 100s 

SOA-ABCA 65-73 68-76 73-78 

SOA-ACO 79-82 82-87 86-90 

SOA-PSO 93-98 98-103 96-104 

CA-IABCA 

(Proposed Work) 
52-57 56-60 63-67 

 
 

Table 4.4 gives the comparison of average prediction variance of proposed algorithm 

with other baseline approaches. The experiment conducted by varying the number of 

nodes from 50 to 300 and measuring the average prediction variance for each group. The 

result from the Table 4.4 reveals that for prediction interval of 80s the proposed 

algorithm has average prediction variance from 52-57m which is less when compared to 

all other existing algorithms. Similarly, the average prediction variance is measured by 

varying the number of vehicles with different prediction intervals of 90s and 100s which 

resulted in average prediction variance of 56-60m and 63-67m respectively and is found 

that the proposed algorithm has less average prediction variance among all existing 

algorithms. 

4. 3 Modified Artificial Bee Colony Algorithm using Differential Evolution   
 

In the virtue of nature, the honey bee colony is potential enough in determining the 

optimal food sources from the feasible number of food sources available to them. This 

potential of honey bee colonies foraging behavior is made used in Artificial Bee Colony 

Algorithm (ABCA) for optimizing any real time situations. It searches and estimates 

optimal search solution from the existing list of feasible candidate solutions [129].  

Modified Artificial Bee Colony Algorithm (MABCA) is an enhanced version of ABCA 

in which two significant modifications are carried out on the initial population estimation 
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step and adaptable search strategies implementation phase. MABCA is used for 

identifying an optimal vehicular node for mitigation when a specific vehicular node under 

data dissemination is found to be DDoS compromised node. Similar to ABCA, MABCA 

uses three kinds of bee phases, employer bee phase, onlooker bee phase and scout bee 

phase for establishing optimal candidate solutions in the event of DDoS attacks of 

vehicular node. In the employer bee phase, location, reputation, relative velocity and 

mobility rate of vehicular nodes are collected and updated from the two-dimensional 

cellular automata. After data gathering, a series of evolutionary operations such as 

mutation, crossover and selection are employed with two different ABCA differential 

evolution-based mutation strategies. These strategies are incorporated in the mutation 

step of onlooker bee phase for computing the exploitation probability. Then, an effective 

initialization scheme that integrates opposition-based learning and chaotic systems are 

used in the scout bee phase. The initialization scheme is used for discovering the optimal 

vehicular node to play the role of a forwarding node until a predetermined number of 

iterations and threshold when the intermediate node is identified as DDoS compromised. 

In MABCA, the number of cells in two dimensional cellular grid constitutes the 

number of employer bee agents and thus there is only one employer bee agent for each 

two dimensional cellular automata. The number of vehicular nodes in each cell represents 

the candidate solution of CA-MABCA problem and choosing an optimal node from the 

available number of candidate solutions is computed through the fitness function. In    

CA-MABCA, the onlooker bee agent identifies a candidate solution of optimal vehicular 

node based on the probabilistic value ‘ iPV ’related to the cells of the cellular automata 

using equation 4.12. 




 ON

i
i

i
i

Fitness

Fitness
PV

1

                 (4.12) 

Where ‘Fitnessi’ and ‘ONi’ represents the fitness function of each candidate solution and 

optimal nodes that could be elected for mitigating DDoS compromised nodes. To 

determine the candidate solution },....,,{ 21 iDiii CSCSCSCS  from the old candidate 
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solution },....,,{ 21 iDiii OCSOCSOCSOCS  of each iteration from the D-dimensional 

solution vector using equation 4.13. 

)( kjijijijij OCSOCSOCSCS              (4.13) 

Where ‘k’, ‘i’ and ‘j’ are randomly chosen based on the number of quantified 

candidate solution and randomly chosen dimension that lies in the range of -1 and +1. 

CA-MABCA uses the technique of greedy selection to decide whether new candidate 

solution has been computed or the existing candidate solution has to be retained. 

If the existing candidate solution is retained, the scout bee agent produces a new 

optimal solution from the computed optimal candidate solution using equation 4.14. 

))(1,0( minmaxmin jjjij OCSOCSrandOCSOCS   (4.14) 

Where jOCS min and jOCS max are the minimum and maximum thresholds of the 

candidate solutions. The candidate solution vectors get iteratively updated through the 

incorporation of employee bee phase, onlooker bee phase and scout bee phase agent 

within the Lowest Minimum Threshold Time (LMIN_THRESHOLD) [130]. The 

candidate solution is said to be a feasible solution under election only when it satisfies the 

fitness function given by equation 4.15 and 4.16.  
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1)( 


 ONsf
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ONFitness
       

(4.15) 

0),(),(.1)(  ONsfONsfabsONFitness   (4.16) 

Where s f(ON) is the objective function value of solution 'ON'. 

4.3.1 2D-Space cellular model configuration for CA-MABCA 
 

The cellular automata model space used in CA-IABCA is facilitated with four points 

such as source vehicle point, destination vehicle point, intermediate router node points 

and free space that follows Moore model. The distance between the source vehicle point 
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and destination vehicle point is considered as ‘L’ and the intermediate router nodes can 

move around a width of ‘L/2’.Thus the space ‘S’ is given by the equation 4.17. 

 

},....,0{},,...,0{/),{( maxmax YyXxyxS              (4.17) 

The position of each vehicle pertains to a point (x, y), when S(x, y) =1, the collision of 

vehicles is possible and S(x,y) =0 represents the collision free space of the cellular 

automata. 

4.3.2 Evolution rules employed for CA-MABCA 
 

The cellular automata model employed in CA-MABCA consists of cells and cellular 

spaces for discretizing time and space in the search space. The time and space are 

discretized for analyzing and describing the dynamic behavior of vehicular nodes in the 

2D space as shown in Figure 4.12a and Figure 4.12b. Each and every cell employed in 

the lattice grid space exhibits finite number of discrete states and the behavioral states are 

updated based on the newly innovated local space rule. This complex dynamically 

changing complex behavioral state process identification is modeled into a discrete 

interactive process.  

The Cellular Automata Moore model used in CA-MABCA is represented using a            
4-tuple ),,,( cccdA RNSLC  , where,  

AC : Moore model based cellular automata. 

dL  : Cellular space with ‘d’ positive dimension used in the Moore model (d=2 in          
CA-MABCA). 

cS : Possible state space of cellular automata (0, 1). 

cN : Neighbors of each individual cellular cell defined based on Moore model represented 

through S= },....,.....,,{ ,21 nr nnnn .where ‘S’ and ‘r’ denote the spatial vector that 

incorporates ‘n’ feasible cellular states and direction of the artificial bee colony 

respectively. In CA-MABCA, ]8,1[r  and ]1,0[rs which infers that the transition 
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will decide to choose any direction, else if 1rs , the artificial bee colony 

optimization is not possible. 

cR : Rule for cellular transition or cellular state transformation function Primitive 
Artificial Bee Colony Algorithm is employed for estimating the transition 
probability. 

 

1 2 3 

4  5 

6 7 8 

 

 

1 

 

2 3 

 

4 

  

5 

6 7 8 

 

Figure 4.12a : Moore Model for  

CA-MABCA 

 

 

Figure 4.12b : Direction of transfer in  

CA-MABCA 

 

4.3.3 Differential Evolution based Onlooker Bees inspired Exploitation Mechanism  

In CA-MABCA, a series of operation such as mutation, crossover and selection are 

performed in the Onlooker Bee Exploitation Bee phase. For accomplishing this bee 

phase, Differential Evolution (DE) techniques are found to be highly applicable and 

suitable. In this approach, two variants of DE [131] used in this CA-MABCA are given 

by equations 4.18 and 4.19. 

)( ,2,1, jnjnijjbestij OCSOCSOCSCS              (4.18) and  

 )()( ,4,3,2,1, jnjnijjnjnijjbestij OCSOCSOCSOCSOCSCS        (4.19) 

Where 'n1','n2', 'n3' and 'n4' are randomly chosen mutual exclusive integers that range 

from 1,2,…,ON and is entirely distinct from the base indices 'i '. 'OCSbest' presents the 

best optimal candidate solution determined from the feasible candidate solutions of the 

search domain and ' ϖi,j ' is the randomly generated integers that ranges from -1 to +1. It 
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is also inferred that the improvised search solution represented through equation 4.18 and 

4.19 is capable for enhancing the exploitation degree of CA-MABCA to a significant 

level. 

4.3.4 Integrated Chaotic and opposition-based learning inspired Scout Bees 

Exploration Phase  

In the Scout bee phase, population initialization plays a significant role as they 

influence the quality and convergence rate of the final optimal solution that is being 

identified. Random initialization is used mostly in this phase if the information about 

population initialization referred to as candidate solutions is not completely available. In 

CA-MABCA, Integrated Chaotic and Opposition-based Learning inspired Scout Bees 

Exploration Phase is incorporated as it possesses the properties of irregularity, ergodicity 

and randomity for generating candidate solutions in addition to the features of random 

initialization. This Integrated Chaotic and opposition-based learning process uses 

sinusoidal iteration as expressed in equation 4.20.  

 )1,0()(),)(sin()( 1  kkk ICSICSICS              (4.20)  

Where 'k' and ‘K’ represent the iteration counter and maximum count of preset 

chaotic iterations (K=250 for CA-MABCA). Further the optimal solutions from the 

existing candidate solutions can be rapidly achieved through the use of a parameter called 

Population Diversity (PD) quantified using equation 4.21. 
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Thus the degree of exploration is assured in the scout bee phase of CA-MABCA. 

The algorithms step that form the foundation of implementing CA-MABCA are detailed 

Figure 4.13. 
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Algorithm 4.2: MABCA (Modified Artificial Bee Colony Algorithm) 
 

Step 1: Initialize the Vehicles in 2D Moore Model CA along with its reference velocity, 

reliability factor. 

Step 2: Compute the fitness function based on reliability and reference mobility. 

Step 3: Loop 1. 

Step 4: Select the initial solution using the probability function. 

 

 

 

Step 5: Apply two variants of Differential Evolution to select the candidate solution in 

Onlooker bee phase. 

 

   

   
 
 
Step 6: Apply chaotic and opposition-based machine learning to replace the old solution 

if the new one exists in scout bee phase by. 

 

 

 

Step 7: Update the solutions for each round. 

Step 8: End. 
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Figure 4.13: Flow Chart of MABCA 
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4.4 MABCA-Simulation Experiments and Results Analysis 

The performance of CA-MABCA is analyzed with CA-ABCA and CA-ACO through 

ns-simulator that incorporates the SUMO traffic simulator for initiating vehicular traces. 

Two performance metrics namely prediction variance (meters) and mean prediction 

variance are utilized for investigating the performance of CA-MABCA. This 

performance investigation is achieved through three experiments in which the first two 

experiments are performed based on prediction variance (meters) and mean prediction 

variance. The performance is analyzed by varying the prediction interval and number of 

vehicular nodes respectively.  

The simulation setup used for analyzing the potentiality of CA-MABCA over        

CA-ABCA and CA-ACO is portrayed in Table 4.5. 

Table4.5: Simulation setup for CA-MABCA 

 

Parameters Value 

Number of vehicular nodes 100,200 

Range of transmission 400m 

Threshold speed 30-50 m/sec 

Acceleration of vehicular node 1.4 m/s2 

Retardation of vehicular node 6.2 m/s2 

Simulation time 400s 

Prediction interval 10-120 s 

MAC protocol IEEE 802.11p 

Refresh interval time 20s 
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Experiment 1-Performance evaluation CA-MABCA based on prediction variance 

(meters) 

In experiment 1, performance of CA-MABCA is compared with CA-ABCA and     

CA-ACO based DDoS mitigation schemes by varying the prediction interval (in sec) with 

respect to prediction variance (meters). 

 

Figure 4.14 -Experiment 1-Performance of CA-MABCA-Prediction variance (meters)-100 

nodes  

Figure 4.14 highlights the performance of CA-MABCA evaluated based on 

prediction variance (meters) by varying the prediction interval (seconds) in steps with 

number of vehicular nodes set to 50. The results confirm that the prediction variance of                 

CA-MABCA, CA-ABCA and CA-ACO seem to get systematically increased when there 

is a corresponding increase in the prediction interval. CA-MABCA is found to potentially 

sustain the deviation even when there is a proportional increase in the prediction interval. 

CA-MABCA is found to be potent in maintaining the decrease in prediction variance of 

about 16% than the baseline approaches used for investigation. 
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Figure 4.15 -Experiment 1-Performance of CA-MABCA-Prediction variance (meters)-200 

nodes  

Figure 4.15 depicts the performance of CA-MABCA evaluated in terms of prediction 

variance (meters) with corresponding variation in the prediction interval (seconds) under 

the impact of 100 vehicular nodes. Results confirm that the prediction variance for       

CA-MABCA, CA-ABCA and CA-ACO is found to systematically increase with increase 

in the prediction interval under the impact of 100 nodes. CA-MABCA is found to be 

potent in dynamically reducing the degree of variation and thus minimizes prediction 

variance to a maximum extent of 12% than the baseline approaches.  

 

Experiment 2- Performance evaluation CA-MABCA based on mean prediction 

variance (meters) 

In experiment 2, the performance of CA-MABCA is analyzed with CA-ABCA and      

CA-ACO based on mean prediction variance (meters) with accuracy interval of 90s and 

100s respectively. 

Figure 4.16 represents the relation between Mean prediction accuracy of                   

CA-MABCA, CA-ABCA and CA-ACO achieved by varying the number of vehicular 



105 

 

nodes from 10 to 80. This analysis is initially performed with an accuracy level set to 

90sec as it is considered as the lower threshold value for accuracy prediction in              

CA-MABCA, CA-ABCA and CA-ACO. CA-MABCA exhibits only a slight variation of 

approximately 48-53m, but CA-ABCA and CA-ACO exhibits a deviation of 56-63m and 

65-73 m respectively.  

 

Figure 4.16 - Experiment 2-Performance of CA-MABCA-Mean Prediction variance-

90seconds  

Similarly, Figure 4.17 depicts the relation between Mean prediction accuracy of       

CA-MABCA, CA-ABCA and CA-ACO under an accuracy level of 100sec since it is 

identified as upper threshold value for accuracy prediction. The mean prediction variance 

of CA-MABCA confirms a deviation of about 51-56, but CA-ABCA and CA-ACO 

exhibit a deviation of 61-65m and 69-75 m respectively. 
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Figure 4.17 - Experiment 2-Performance of CA-MABCA-Mean Prediction variance-

100seconds  

The result analysis of the experiment conducted for the performance metrics 

prediction variance (seconds), prediction variance (meters) and average prediction 

variance is given in the following table. The table compares the proposed algorithm with 

each of the existing algorithms. 

 

Table 4.6 Performance comparison of Average Prediction variance (measured in meters) of 
proposed MABCA algorithm with existing algorithms with decrease in percentage 

 
 

Algorithm 
No. of Vehicles 

100 200 

CA-ACO vs CA-MABCA 11 23 

CA-ABCA vs CA-MABCA 15 18 

 

Table 4.6 gives the comparison of prediction variance of proposed algorithm with 

other baseline approaches with the decrease in percentage. For 100 vehicles the decrease 



107 

 

in prediction variance is between 11-15 % when compared to the CA-ACO and            

CA-ABCA algorithms. For 200 vehicles the decrease in prediction variance is between 

23-18 % when compared to the CA-ACO and CA-ABCA algorithms. The ABC 

algorithm with improved exploration and exploitation level using DE integrated with CA, 

results in better prediction of neighboring nodes. 

Table 4.7 Performance comparison of Average Prediction variance (measured in meters) of 
proposed MABCA algorithm with existing algorithms with decrease in meters 

 
 

Algorithm 
Prediction Interval 

90s           100s 

CA-ACO 64-94            67-95 

CA-ABCA 60-89           63-93 

MABCA 
(Proposed Work) 

49-79           53-84 

 

Table 4.7 gives the comparison of average prediction variance of proposed algorithm 

with other baseline approaches. The experiment was conducted by varying the number of 

nodes from 10 to 80 and measuring the average prediction variance for each group. The 

result from the table4.7 reveals that for prediction interval of 90s the proposed algorithm 

has average prediction variance from 49-79m which is less when compared to all other 

existing algorithms. Similarly, the average prediction variance is measured by varying the 

number of vehicles with different prediction intervals of 100s which resulted in average 

prediction variance of 53-84 and it was found that the proposed algorithm has less 

average prediction variance among all existing algorithms. 

4.5 Summary  
 

In this chapter CA-IABCA is proposed and investigated for resolving the issue of 

mitigating DDoS attacks as they are potential in exploiting and exploring the search 

dimension for facilitating reliable packet delivery in VANETs. CA-IABCA uses the 

benefits of grenade explosion in the onlooker bee phase of ABCA for fine tuning the 
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exploitation level of search and it uses Cauchy operator in the scout bee phase for 

selecting the optimal vehicular node for optimal replacement of DDoS compromised 

nodes. CA-IABCA ensures a genuine and precise search dimension that improves the 

extent of mitigation of attackers of the network to a maximum level. It is also identified 

that the precision in mitigation facilitated by CA-IABCA considerably increases as the 

size of exploitation enabled by grenade explosion mechanism increases gradually. The 

comparative investigation through simulation infers that CA-IABCA is capable of 

reducing the prediction variance and delay. The prediction variance is reduced to a 

maximum extent of 15% and delay to 18% even when the number of vehicular nodes is 

increased. 

 

The same algorithm is modified by replacing the GEM with DE and Cauchy operator 

by chaotic system with Opposition Based Learning and the result showed that the 

algorithm fine-tuned the level of exploration to defend against DDoS attacks in VANETs. 

The simulation results of CA-MABCA confirm a predominant reduction in prediction 

variance and mean prediction variance of about 16% and 18% respectively. 
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CHAPTER 5 

 

CELLULAR AUTOMTA INSPIRED MODIFIED TABU SEARCH 

ALGORITHM  
 

The integration of Cellular Automata with any of the meta-heuristic algorithms 

results in determining the best optimal state of the node under reliable communication 

[132-134]. The idea of integrating the meta-heuristics algorithm with cellular automata 

can be applied to handle DDoS attack in VANETs by improving global search ability. 

The update rule of each and every cell depends on its current state and the present status 

of the neighbor estimated based on the status of the optimal cell. The update rules are 

based on re-estimation techniques that possess the capability of determining best 

neighbors of the network topology. The updating rule can be improved by applying Tabu 

Search algorithm. 

In the proposed work, a Cellular Automata Inspired Modified Tabu Search Algorithm 
(CA-MTSA) is an attempt to integrate Cellular automata with the benefits of            

Meta-heuristic algorithms like the baseline Tabu Search. This Tabu Search Algorithm 

utilizes the benefits of an improved Tabu-list that updates the rules for identifying 

vehicular nodes based on five vital parameters viz., past velocity, past reliability factor, 

local optimal state, global optimal state and neighbor’s best state.  
 

5.1 CELLULAR AUTOMTA INSPIRED MODIFIED TABU SEARCH 

ALGORITHM  (CA-MTSA)  

 

An improved Tabu search algorithm based on Cellular Automata is proposed for 

identifying the availability of vehicular nodes for ensuring connectivity under DDoS 

attack. This approach integrates the information pertaining to the designed cells, cellular 

spaces and cellular neighbors of each traffic model achieved through cellular automata by 

incorporating an improved Tabu-list. In CA-MTSA, the Tabu search algorithm is mainly 

combined with CA for enriching the ability of local and global search. In Tabu search 
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algorithm, the current connectivity updates of each cell in the traffic model is updated to 

their neighboring cells. Each cell is closely associated in CA with some certain framed 

rules. Based on the framed rules, current information pertaining to the node availability is 

made known to the neighboring nodes. In the proposed work, the quantification for the 

availability of each cell depends not only on the current state of the cell but also on the 

state information of the neighboring nodes. In CA-MTSA, the improved Tabu-list is 

considered highly efficient as it bases the decision of mitigating DDoS attacks. It gathers 

five factors that relate to the availability quantification of vehicular nodes under 

communication since the traditional cellular automata based mitigation schemes utilize 

only three parameters like previous velocity, position, and mobility speed. The           

two-dimensional cellular grid structure used in the proposed work is given in Figure 5.1. 

 

 

 

 

 

 

 Figure 5.1: CA model for CA-MTSA 

In this cellular automata inspired continuous co-ordinate space, the search is 

considered to be ‘M’ dimensional with an initial number of ‘N’ nodes. The availability of 

each node ‘i’ depends on its past velocity, past reliability factor, local optimal state, 

global optimal state and neighbor’s best state. First, the past position and velocity of each 

node in time ‘t’ is given by 
T

iMpipipipip PPPPP ),....,,,( )()3()2()1()(  and 
T

iMviviviviv PPPPP ),....,,,( )()3()2()1()(  respectively. The fitness value of each node in time 

‘t+1’ based on positional and velocity is achieved through fitness function                      

fit (node (i)) =fit (node ((Pp (i)), (Pv (i))). The past velocity of each node of a constituent 

cell is updated using reference mobility rate ‘r’ that scales between 0 and 1.  

C1 C2 C3 

C4 C5 C6 
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1 2 3 

4  5 
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Reference mobility rate refers to the relative velocity of each node defined in terms of 

its change in position varying with respect to time when compared to their neighboring 

nodes represented using equation 5.1. 

HM

HMpreeovel

N
NrD

r
))1(()1( )( 

 
               (5.1) 

Where, )( eovelD  , prer , HMN depicts the difference between the observed and 

expected relative velocity, past reference mobility rate and number of hello packets used 

for updating this essential reference mobility rate respectively. The reference mobility 

rate is maximum when the velocity of the router node is nearly equal to its neighboring 

node within a cell. Each and every node of the cellular automation stores and sends the 

updates to their neighboring nodes through hello messages. The node with minimum 

reference mobility rate is considered for choosing the optimal node of the grid. Reference 

mobility rate ‘r’ can be used for both identifying the local optimal node within a cell and 

global optimal node within the entire grid. The value of ‘r’ is reset to zero at each time at 

refresh interval to accurately identify and reflect the availability of the nearest node for 

rapid forwarding of data packets.  

Secondly, past reliability factor of each node present in each constituent cell is 

updated based on the computation of trust factor that follows Gwet’s kappa. This Gwet’s 

kappa based trust or reliability factor quantifies the degree to which a vehicular node may 

rely upon its neighboring nodes for packet forwarding. This reliability factor depends on 

two important parameters namely ‘p’ and e(β) that portrays the overall percent agreement 

and chance agreement probability of vehicular nodes classified based on two behaviours 

viz., co-operative and DDoS compromised. Thus the quantified Gwet’s kappa reliability 

factor is computation through using equation 5.2. 

          )(1
)()(




e
eptR i 




                             
(5.2) 

Where, n
dcp 

 and )1(2)( qqe  in which ‘c’ and ‘d’ refers to the number of nodes 

identified as co-operative and DDoS compromised with chance agreement ‘q’ from the 
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entire ‘n’ nodes of the grid. The chance agreement refers to the average between the 

number of times a node is rated as reliable or unreliable. 

Thirdly, the local optimal state (los) of each node belonging to each 

corresponding cell follows conditional probability that gets updated based on the Bayes 

probability. Given the number of nodes present in a cell, the host nodes of the cell can be 

classified into co-operative and DDoS compromised based on P (Cc) and P (Cd) through 

prior knowledge. The Bayes theorem based conditional probability that quantifies the 

local neighbor search for identifying the reliable path between the source and destination 

vehicle of the network can be represented using P (Tx /Cc) and P (Tx /Cd) respectively. 

Thus the Bayes theorem based conditional probability that identifies a vehicular router 

node Tx of a cell as co-operative ( )( losA i ) and DDoS compromised is given by 

equations 5.3, 5.4 and 5.5. 

     )/()()/()(
)/()(

)/(
dxdcxc

cxc
xC CTPCPCTPCP

CTPCP
TCP


        (5.3)           and 

 

P(CC /T x )=
P(Cd )P(T x /Cd )

P(C c) P(T x/C c )+P(Cd )P (T x/Cd )             (5.4) 

 

Where 1)()(  dc CPCP                                          (5.5) 

 

Similarly, the global optimal state (gos) of each node belonging to the entire grid also 

follows conditional probability that can be updated by computing Dempster-Shafer 

Evidence Probability. This Dempster-Shafer Evidence Probability is a general form of 

Bayes probability that is highly suitable for identifying the global best node of the 

considered dimensional grid. This probability computed for estimating the global optimal 

node depends on three important assignments that relate to the probability of total belief 

mass, belief and plausibility. In this context, if m (Cc), bel (Cc) and pl (Cc) represents the 

total belief mass, belief and plausibility probabilities of co-operative node and m (Cd), bel 

(Cd) and pl(Cd) represents the total belief mass, belief and plausibility probabilities of 
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DDoS compromised node. The aforementioned probabilities for co-operative and DDoS 

are combined together to form a combinational evidence probability M (Cc) and M (Cd). 

Then the Dempster-Shafer Evidence Probability for identifying the best optimal router 

node (Tx) of the entire grid is given by equation 5.6. 

k

CMCM
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Where the normalization factor    
)().( d

dc
c CMCMk 




  

Further, the global best node is re-analyzed based on convolutive x-averaging 

method that even improves the normalization factor of Dempster-Shafer Evidence 

Probability using equation 5.7.  
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                (5.7) 

Finally, the neighbor’s best state identification is achieved in each cell or intra-

cell by integrating three elucidated parameters ))(),(),(( gosAlosAtR iii  based on 

method of exponential moving average using equation 5.8. 

)()()()( gosAlosAtRbestN iiii                 (5.8) 

Where the sum of weights for the elucidated normalized factors is given by 
equation 5.9.   

                     α+β+γ= 1                                               (5.9) 

Hence the complete information of each cell in CA-MTSA is updated based on 

the availability function given by equation 5.10. 

))(),(),(),(,(()( bestNgosAlosAtRrftA iiiii      (5.10) 

In addition, the fitness function of CA-MTSA that lies between 0 and 1 is 

iteratively identified for updating the Tabu-list for improving the effectiveness of search 

using the aforementioned availability function based on equation 5.11. 
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               ))(()1( tAfitnesstFit I                                      (5.11) 

The objective function Fit(t+1) must be maximized to identify a node as highly reliable 

and available for the forwarding packet. Based on the threshold fitness value (0.6), 

availability is accurately identified periodically and decision on choosing neighboring 

nodes for efficient packet delivery is facilitated. Thus CA-MTSA handles DDoS attacks 

by integrating the benefits of Tabu search and cellular automata.  

5.2 Algorithm and Flow Chart of the proposed CA-MTSA 

The following algorithm 5.1 and Figure 5.2 depicts a Cellular automata based 

Improved Tabu Search Algorithm for DDoS mitigation. 

Algorithm 5.1. - Cellular automata based Improved Tabu Search Algorithm for 
DDoS mitigation.  

Step 1: Start. 

Step 2: Initialize the Vehicles in 2D Moore Model CA. 

Step 3: Initialize the position and Velocity of the vehicles within the range (Pmin,Pmax) and 
(Vmin, Vmax)  respectively.  

Step 4: Compute fitness value using fit (node (i))=fit(node((Pp(i)), (Pv(i)) and best fit 
vehicle by Bestfit(i). 

Step 5: Loop1: Till Termination Condition. 

Step 6: Loop2: No. of Neighbors. 

Step 7: Find reliability of vehicle by Gwet's kappa reliability factor. 

 

Step 8: Find Best Reliable Neighbor and update Tabu list. 

Step 9: End Loop2. 

Step 10: Loop3: No. of Neighbors. 

Step 11: Find the local best neighbor by Bayes theorem  based conditional probability .  
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Step 12: Find Best local Neighbor and update Tabu list. 

Step 13: End Loop3. 

Step 14: Loop4:No. of Neighbors. 

Step 15: Find Best Reliable global using Dempster-Shafer Evidence Probability by. 

 

 

Step 16: Find Best Reliable global Neighbor and update Tabu list. 

Step 17: End Loop4. 

Step 18: Loop5:No. of Neighbors. 

Step 19: For each cell in the cellular grid find the best neighbor cell through.  

 

Step 20: End Loop5. 

Step 21: For each neighbor node in the cell check availability function through.  

 

 

Step 22: Find the fitness of each vehicle. 

Step 23: If Fit (Vi <0.6) then Vi is DDoS Compromised, Search next reliable neighbor. 

Step 24: Else, Forward message. 

Step 25: End. 

 

The detailed flow of the CA-MTSA algorithm is depicted in Figure 5.2 to find the 

availability of neighbor vehicles for providing unbreakable services at all time. 

 

 

k

CMCM
gosA ndc

dc

i 







1

)()(
)(

)()()()( gosAlosAtRbestN iiii  

))(),(),(),(,(()( bestNgosAlosAtRrftA iiiii 



116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Flow chart of CA-MTSA for mitigating DDoS in VANETs 

5.3 Simulation Experiments and Results Analysis  

The performance of CA-MTSA is evaluated using ns-2 simulator. SUMO traffic 

simulator is used for generating vehicular mobility traces. Evaluation parameters viz. 
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packet delivery ratio, end-to-end message delay, prediction variance (meters) and 

prediction variance (seconds) are used for investigating the performance of CA-MTSA. 

In this performance analysis, the experiments are carried out either by varying the 

number of nodes or by varying the prediction interval. The comparative analysis of      

CA-MTSA is carried out with CAPSO and IPCPSO based on five experiments discussed 

below. The simulation setup used for experimental analysis is detailed in Table 5.1. 

Table 5.1: Simulation setup for evaluating the performance of CA-MTSA 

Parameters Value 

Number of vehicular nodes  100,200,300 

Range of transmission  400m 

Threshold speed 10-40 m/sec 

Acceleration of vehicular node 1.0 m/s2 

Retardation of vehicular node 4.5 m/s2 

Simulation time  600s 

Prediction interval  10-140 s 

MAC protocol IEEE 802.11p 

Refresh interval time  20s 

Experiment 1-Performance analysis of CA-MTSA based on prediction variance 
(meters) by varying prediction interval 

In experiment 1, the comparative performance of CA-MTSA over the existing 

cellular automata based DDoS mitigation approaches like CAPSO and IPCPSO is 

investigated. 

The prediction variance for 100 vehicular nodes is depicted in Figure 5.3 describing 

the performance of CA-MTSA. The performance is evaluated in terms of prediction 

variance (meters) obtained by varying the prediction interval (seconds) with respect to 

100 vehicular nodes. The proposed algorithm produced better results when compared to 

the existing approaches to solve DDoS problem. From the graph it is clear that the 

prediction variance for CA-MTSA, CAPSO and IPCPSO increases gradually when 

prediction interval is varied from 10 to 100 seconds. But, CA-MTSA is able to 
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dynamically decrease the variation especially when the prediction interval increases.  

CA-MTSA is found to exhibit a decrease in prediction variance to a maximum level of 

23% than the compared baseline approaches.  

 
Figure 5.3 -Experiment 1-Performance of CA-MTSA-Prediction variance (meters)-

100 nodes  

Figure 5.4 portrays the performance of CA-MTSA in terms of prediction variance 

(meters) obtained by varying the prediction interval (seconds) with respect to 200 

vehicular nodes. Results make it clear that the prediction variance for CA-MTSA, 

CAPSO and IPCPSO also increases phenomenally when prediction interval is varied 

from 10 to 100 seconds under the influence of 200 nodes. But, CA-MTSA is able to 

dynamically decrease the variation even when the number of nodes is increased by 200 

especially when the prediction interval increases. CA-MTSA is found to exhibit a 

decrease in prediction variance to a maximum level of 20% than the compared baseline 

approaches. 



119 

 

 
Figure 5.4-Experiment 1-Performance of CA-MTSA-Prediction variance (meters)-200 

nodes  

   
 

Figure 5.5 - Experiment 1-Performance of CA-MTSA-Prediction variance (meters)-300 

nodes 
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Similarly, Figure 5.5 portrays the performance of CA-MTSA in terms of prediction 

variance (meters) obtained by varying the prediction interval (seconds) with respect to 

300 vehicular nodes. The prediction variance increases as prediction interval increases 

due to the fast movement of the vehicles. The results make it clear that the prediction 

variance for CA-MTSA, CAPSO and IPCPSO also increases phenomenally when 

prediction interval is varied from 10 to 100 seconds under the influence of 300 vehicular 

nodes. But, CA-MTSA is able to dynamically decrease the variation even when the 

number of nodes is increased by 200 especially when the prediction interval increases. 

The proposed CA-MTSA is found to produce a decrease in prediction variance to a 

maximum level of 17% than the compared baseline approaches.  

Experiment 2- Performance analysis of CA-MTSA based on prediction variance by 

varying number of nodes 

In experiment 2, the performance analysis of CA-MTSA, CAPSO and IPCPSO is 

carried out in terms of prediction variance per second by varying the number of vehicular 

nodes from 100 to 300 based on varying prediction interval. 

  
Figure 5.6 - Experiment 2-Performance of CA-MTSA-Prediction variance per second-

100 nodes 
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Figure 5.6 describes the performance of CA-MTSA, CAPSO and IPCPSO based on 

prediction variance in seconds evaluated by varying the prediction interval. It is found 

that the prediction variance per second for CA-MTSACAPSO and IPCPSO is 

considerably decreased when the prediction interval is increased. But CA-MTSA is able 

to update dynamically than CAPSO and IPCPSO as it uses an improved tabu list for 

updating information at a rapid rate. Hence CA-MTSA decreases the prediction variance 

in seconds than CAPSO by 16% and IPCPSO by 19% under the influence of 100 nodes. 

The performance of CA-MTSA, CAPSO and IPCPSO based on prediction variance in 

seconds evaluated by varying the prediction interval with 200 nodes is depicted in    

Figure 5.7. It is found that the prediction variance per second for CA-MTSA, CAPSO 

and IPCPSO for every iteration is considerably decreasing. The variance deceases for 200 

nodes since the availability of vehicles is more in situation of DDoS mitigation call.  The 

CA-MTSA decreases the prediction variance in seconds than CAPSO by 13% and 

IPCPSO by 15%. 

 
Figure 5.7 - Experiment 2-Performance of CA-MTSA-Prediction variance per second-

200 nodes 
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Figure 5.8 - Experiment 2-Performance of CA-MTSA-Prediction variance per second-300 

nodes  

Similarly, Figure 5.8 shows the performance of CA-MTSA, CAPSO and IPCPSO 

based on prediction variance in seconds evaluated by varying the prediction interval with 

300 nodes. The variance reaches 0 for the prediction interval of 80, 90and 100 since there 

are more vehicles available with optimal path learning capability. From the graph it is 

found that the prediction variance per second for CA-MTSA, CAPSO and IPCPSO is 

highly decreasing when the number of nodes is increased to 300. But CA-MTSA 

decreases the prediction variance in seconds than CAPSO and IPCPSO to a considerable 

level of 6% and 10% respectively. 

Experiment 3- Performance analysis of CA-MTSA based on prediction variance by 
varying number of nodes 

In experiment 3, the performance analysis of CA-MTSA, CAPSO and IPCPSO is 

carried out in terms of prediction variance (meters) by varying the number of vehicular 

nodes from 100 to 300 with fixed accuracy intervals of 70s, 80s and 100s respectively. 
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Figure 5.9 - Experiment 3-Performance of CA-MTSA-Average Prediction variance-70 sec 

Figure 5.9 represents the relationship of deviation that exists between average 

prediction accuracy and varying number of vehicular nodes. Initially, this relationship is 

analyzed with an accuracy level of 70sec as it is considered the minimum optimal value 

for accuracy prediction for CA-MTSA, CAPSO and IPCPSO. In CA-MTSA mechanism, 

the average prediction variance of CA-MTSA shows a meager variation of approximately 

42-48m with varying number of vehicular nodes, whereas for CAPSO, the deviation is 

58-88 and for IPCPSO, it is found to be 98-117m. This least deviation in CA-MTSA is 

mainly due to the incorporation of ITS, that aids in stable and accurate prediction. 

The average prediction variance against the number of vehicular nodes is measured 

by setting the accuracy level as 80 seconds as a minimum optimal value for accuracy 

prediction. The graph in Figure 5.10 represents this relationship of deviation that exists 

between average prediction accuracy and varying number of vehicular nodes. In         

CA-MTSA mechanism, the average prediction variance of CA-MTSA shows a meager 

variation of approximately 42-48m with varying number of vehicular nodes, whereas for 

CAPSO, the deviation is 58-88 and for IPCPSO, it is found to be 98-117m. This least 
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deviation in CA-MTSA is mainly due to the good prediction capability of the algorithm 

to result in stable and accurate prediction. 

 
Figure 5.10 - Experiment 3-Performance of CA-MTSA-Average Prediction variance-80 sec 

 
Figure 5.11 - Experiment 3-Performance of CA-MTSA-Average Prediction variance-100 sec 
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Similarly, the average prediction variance of the CA-MTSA is measured against the 

number of vehicular nodes by setting the accuracy prediction interval as 100 seconds as 

shown in Figure 5.11. The relationship that exists between average prediction accuracy 

and number of vehicular nodes shows that the average prediction variance for accuracy 

interval of 100 seconds has improvement. From the graph it is inferred that CA-MTSA 

promoted better prediction than CAPSO and IPCPSO. In CA-MTSA mechanism, the 

average prediction variance of CA-MTSA shows a meager variation of approximately 

48-53m with varying number of vehicular nodes, whereas for CAPSO, the deviation is 

62-87 and for IPCPSO, it is found to be 88-119m.This least deviation in CA-MTSA even 

when the number of vehicular nodes is increased is mainly due to the incorporation of 

ITS that aids in stable and accurate prediction. 

Experiment 4-Performance analysis of CA-MTSA based on PDR by varying the 
prediction interval 

In experiment 4, the performance analysis of CA-MTSA, CAPSO and IPCPSO is 

carried out in terms of packet delivery ratio by varying the number of vehicular nodes 

from 100 to 300 under the influence of varying prediction interval. 

 
Figure 5.12 - Experiment 4-Performance of CA-MTSA based on PDR-100 nodes 
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Figure 5.12 represents the deviation in packet delivery ratio evaluated by varying the 

prediction interval with 100 vehicular nodes. Traditionally, the packet delivery ratio 

decreases as the prediction interval increases due to the consumption of higher message 

overhead. It is noticed that the PDR of CA-MTSA, CAPSO and IPCPSO decreases 

proportionally with the increase in the prediction interval as the amount of traffic 

introduced into the network increases. The PDR of CA-MTSA is comparatively higher 

and ranges from 92%-62% in contrast to the range of PDR for CAPSO and IPCPSO that 

lies between 84% to 53% and 78% to 42% respectively. It is inferred that this increase in 

PDR is mainly due to the use of improved Tabu search algorithm which reduces packet 

overhead than CAPSO and IPCPSO. 

Likewise, Figure 5.13 depicts the deviation in packet delivery ratio evaluated by 

varying the prediction interval with 200 vehicular nodes. It is noticed that the PDR of 

CA-MTSA, CAPSO and IPCPSO decreases with increase in the number of vehicular 

nodes as the amount of traffic introduced into the network increases proportionally with 

respect to increased vehicular nodes. However, the PDR of CA-MTSA is comparatively 

higher and is capable of sustaining its range from 84% to 52% in contrast to the range of 

PDR for CAPSO and IPCPSO that lies between 77% to 43% and 68% to 34% 

respectively. Hence it is proved that CA-MTSA is more potential than CAPSO and 

IPCPSO in increasing the PDR as it dynamically updates the improved Tabu search list 

which policies packet overhead to a maximum degree even when the number of nodes 

increases.  

Similarly, Figure 5.14 shows packet delivery ratio evaluated by varying the prediction 

interval with 300 vehicular nodes. It is noticed that the PDR of CA-MTSA, CAPSO and 

IPCPSO decreases as the prediction interval increases due to the dense traffic in the 

network. However, the PDR of CA-MTSA is comparatively higher and is potential in 

withstanding its range from 74% to 43% in contrast to the range of PDR for CAPSO and 

IPCPSO that lies between 68% to 34% and 57% to 28% respectively.  
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Figure 5.13 - Experiment 4-Performance of CA-MTSA based on PDR-200 nodes 

 

Figure 5.14 - Experiment 4-Performance of CA-MTSA based on PDR-300 nodes 

 

Prediction Interval(sec) 
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Experiment 5-Performance analysis of CA-MTSA based on End-to-End message 
delay by varying the prediction interval 

In experiment-5, the performance analysis of CA-MTSA, CAPSO, and IPCPSO is 

carried out in terms of End-to-End message delay by varying the number of vehicular 

nodes from 100 to 300 under the influence of varying prediction interval. 

In Figure 5.15, the performance of CA-MTSA, CAPSO and IPCPSO evaluated 

based on end-to-end latency by varying the prediction interval with 200 vehicular nodes 

is portrayed. The results infer that the latency increases linearly when the prediction 

interval increases but CA-MTSA incurs a lower End-to-End message delay than CAPSO 

and IPCPSO. This improvement in performance of CA-MTSA is due to the periodic 

updating of prediction accuracy factor that aids in reducing End-to-End message delay. 

CA-MTSA is found to decrease the End-to-End message delay by 21% and 26% greater 

than CAPSO and IPCPSO. 

 
Figure 5.15 - Experiment 4-Performance of CA-MTSA based on End-to-End delay -200 

nodes 
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Figure 5.16 - Experiment 4-Performance of CA-MTSA based on End-to-End delay-300 

nodes 

In Figure 5.16, the performance of CA-MTSA, CAPSO, and IPCPSO evaluated based 

on end-to-end latency by varying the prediction interval with 300 vehicular nodes is 

portrayed. The results infer that the latency increases linearly when the prediction interval 

increases but CA-MTSA incurs a lower End-to-End message delay than CAPSO and 

IPCPSO even when the nodes are increased. But CA-MTSA improvises its performance 

by periodically updating prediction accuracy information that significantly reduces    

End-to-End message delay. CA-MTSA is found to decrease the End-to-End message 

delay by 18% and 23% greater than CAPSO and IPCPSO under the influence of 300 

nodes. 

The result analysis of the experiment conducted for the performance metrics 

prediction variance (seconds), prediction variance (meters) and average prediction 

variance are given in the following table. The table compares the proposed algorithm 

with each of the existing algorithms. 
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Table 5.2 Performance comparison of Average Prediction variance (measured in meters) 
proposed CA-MTSA algorithm with existing algorithms 

 

Algorithm 
No. of vehicles 

100 200 300 

IPCPSO vs CA-MTSA 19 35 28 

CAPSO vs CA-MTSA 14 28 22 

Table 5.2 gives the comparison of prediction variance of proposed algorithm with 

other baseline approaches with the decrease in percentage. For 100 vehicles the decrease 

in prediction variance is between 14% to 19 % when compared to the CAPSO, IPCPSO 

algorithms. For 200 vehicles the decrease in prediction variance is between 28-35% when 

compared to the CAPSO, IPCPSO algorithms. For 300 vehicles the decrease in prediction 

variance is between 22% to 28% when compared to the CAPSO, IPCPSO algorithms. By 

integrating the features of Cellular Automata and Tabu Search the CA-MTSA algorithm 

results in better prediction of the best neighboring node of each cell in the entire grid 

under local search or global search. 

Table 5.3 Performance comparison of Prediction variance (measured in seconds) 
proposed CA-MTSA algorithm with existing algorithms 

Algorithm 
No. of vehicles 

100 200 300 

IPCPSO vs CA-MTSA 5 10 9 

CAPSO vs CA-MTSA 3 2 3 

 

Table 5.3 gives the comparison of delays incurred by proposed algorithm with other 

baseline approaches with the decrease in percentage. For 100 vehicles the decrease in 

prediction variance is between 3% to 5% when compared to the CAPSO, IPCPSO 
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algorithms. For 200 vehicles the decrease in prediction variance is between 2% to 10% 

when compared to the CAPSO, IPCPSO algorithms. For 300 vehicles the decrease in 

prediction variance is between 3% to 9% when compared to the CAPSO, IPCPSO 

algorithms. From the analysis it is revealed that CA-MTSA decreases in prediction delay 

when compared to other existing algorithms. 

 
Table 5.4 Performance comparison of Average Prediction variance (measured in meters) 

proposed CA-MTSA algorithm with existing algorithms 
 
 

Algorithm  
Prediction interval 

100 200 300 

IPCPSO 98-117 100-118 88-119 

CAPSO 58-88 68-92 62-87 

CA-MTSA 42-51 48-60 48-51 
 

Table 5.4 gives the comparison of average prediction variance of proposed algorithm 

with other baseline approaches. The experiment was conducted by varying the number of 

nodes from 50 to 300 and measuring the average prediction variance for each group.  

The result from the Table 5.4 reveals that for prediction interval of 70s the proposed 

algorithm has average prediction variance from 42-51m which is less when compared to 

all other existing algorithms. Similarly, the average prediction variance is measured by 

varying the number of vehicles with different prediction intervals of 80s and 100s which 

resulted in average prediction variance of 48-60 and 48-51 respectively and was found 

that the proposed algorithm has less average prediction variance among all existing 

algorithms. 
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Table 5.5 Performance comparison of PDR of proposed CA-MTSA algorithm with existing 
algorithms 

 

Algorithm 
No. of vehicles 

100  200  300  

IPCPSO vs CA-MTSA 13  21  25  

CAPSO vs CA-MTSA 7  8  10  

 
 

Table 5.5 compares the PDR of CA-MTSA with existing algorithms with the increase 

percentage of proposed algorithm with IPCPSO and CAPSO. By varying the density of 

nodes from 100 to 300 the PDR is measured and found to have 20% increase in PDR than 

IPCPSO and 8% increase in PDR than CAPSO. 
 

Table 5.6 Performance comparison of End to End delay of proposed CA-MTSA algorithm 
with existing algorithms 

 
 

Algorithm 
No. of vehicles  

200  300  

IPCPSO vs CA-MTSA 65  75  

CAPSO vs CA-MTSA 36  63  

 
Table 5.6 gives the analysis of End to End delay of CA-MTSA with existing 

algorithms. By varying the density of nodes from 200 to 300, the End to End delay is 

measured and found to have decrease in percentage by 70% than IPCPSO and 50% than 

CAPSO. 

 

5.4 Summary  

In this chapter CA-MTSA integrates the Tabu Search and Cellular Automata to 

improve the global searching ability of the algorithm to search for the optimal neighbor 

for data forwarding. The proposed work successfully mitigates the DDoS by selecting the 

reliable node from the CA Moore model. The availability of each node for effective data 

forwarding depends on its past velocity, past reliability factor, local optimal state, global 
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optimal state and neighbor’s best state. Simulation results prove that CA-MTSA is 

significant compared to the considered baseline techniques in terms of robustness, local 

search capability, global search capability and its efficiency in identifying reliable routing 

path under DDoS attack. Results also prove that CA-MTSA is effective in terms of 

packet delivery rate by 23% and prediction accuracy by 27% even when the number of 

vehicular nodes is increased.  
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CHAPTER 6  

 

COMPARATIVE INVESTIGATIONS OF MACOA-CA, CA-IABCA, 

CA-MABCA THROUGH MULTIMODAL FUNCTIONS 
 

 To validate and compare the optimization algorithms test problems are required 

with different characteristics and constraints. These test functions are called as the bench 

mark functions with properties like continuous, differentiable, scalable, multimodal, 

scalable, non-scalable, etc. The optimization algorithms can be tested against these 

benchmarks for measuring the efficiency and reliability of the algorithm against the 

existing algorithms. In literature many benchmark functions are available which can be 

chosen based on their properties and algorithm capability. The function with more than 

one local optimum is called multi modal function which refers to the most difficult class 

of problems to be solved. The proposed algorithms such as MACOA-CA, CA-IABCA, 

MABCA and CA-MTSA are validated based on selected benchmark multimodal 

functions to measure their performance. 

6.1 Performance analyses based on Quartic function 

The importance of MACOA-CA over CA-ACOA, CA-GA and CA-PSO is estimated 

based on the benchmark multi-modal function Quartic with search dimension D=5 and 

D=10 respectively.  

Performance analysis of MACOA-CA with search dimension (D=5) 
 

In experiment, the comparative performance of MACOA-CA over CA-ACOA,       

CA-GA and CA-PSO is investigated with respect to the benchmark functions Quartic 

with search dimension D=5 by varying the number of search iterations that pertain to the 

average rate of function values. 

From Figure 6.1, it is found that MACOA-CA initially provides a unique level of 

performance with Quartic. MACOA-CA confirms a more systematic growth than       

CA-ACOA due to permissible global search facility made possible by it.  
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Figure 6.1 - Performance of MACOA-CA- Quartic (D=5) 

From the graph in Figure 6.1 MACOA-CA attains its convergence after 50th iteration 

and meets the mean global optimum for Quartic after 285 iterations.  

Performance analysis of MACOA-CA with search dimension (D=10) 

The comparative performance of MACOA-CA over CA-ACOA, CA-GA and        

CA-PSO is investigated with respect to Quartic function with search dimension D=10 by 

varying the number of search iterations which pertain to the average rate of function 

values. 

From 6.2 it is found that MACOA-CA initially provides a unique level of 

performance with Quartic benchmark multi-modal functions. Initially the MACOA-CA 

results in higher value and after 50th iteration it starts to converge and attains the mean 

global optimum for Quartic after 295 iterations. 
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Figure 6.2 - Performance of MACOA-CA- Quartic (D=10) 

6.2 Performance analyses based on Schwefel-2.26 function 

The importance of MACOA-CA over CA-ACOA, CA-GA and CA-PSO is estimated 

based on the benchmark multi-modal function Schwefel-2.26 with search dimension D=5 

and D=10 respectively.  

Performance analysis of MACOA-CA with search dimension (D=5) 

In experiment, the comparative performance of MACOA-CA over CA-ACOA,      

CA-GA and CA-PSO is investigated with respect to the benchmark function      

Schwefel-2.26 with search dimension D=5 by varying the number of search iterations 

that pertains to the average rate of function values. 

It is found that MACOA-CA initially provides a unique level of performance with 

Schwefel-2.26 shown in Figure 6.3. MACOA-CA confirms a more systematic growth than 

CA-ACOA due to permissible global search facility. The MACOA-CA provides better 

convergence degree than CA-ACOA, CA-GA and CA-PSO and it attains the global point 

after 275 iterations using Schwefel-2.26.  
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Figure 6.3 -Performance of MACOA-CA- Schwefel-2.26 (D=5) 

The proposed algorithm MACOA-CA attains the mean global optimum for  

Schwefel-2.26 after 290 iterations. Hence MACOA-CA is potent in its performance 

during the investigation with Schwefel-2.26 function as it reaches the optimal point of 

convergence at a more rapid rate of 21% than the compared Quartic, Exponential and 

Sumsquare functions. 

Performance analysis of MACOA-CA with search dimension (D=10) 

The comparative performance of MACOA-CA over CA-ACOA, CA-GA and        

CA-PSO is investigated with respect to Schwefel-2.26 function with search dimension 

D=10 by varying the number of search iterations which pertains to the average rate of 

function values. 

The MACOA-CA initially provides a unique level of performance with        

Schwefel-2.26 benchmark multi-modal functions as shown in Figure 6.4. MACOA-CA 

provides better convergence degree than CA-ACOA, CA-GA and CA-PSO, and it attains 

global optimal point after 285 iterations using Schwefel-2.26. 
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Figure 6.4 - Performance of MACOA-CA- Schwefel-2.26 (D=10) 

Similarly, MACOA-CA attains the mean global optimum for Schwefel-2.26 after 298 

iterations. Hence MACOA-CA is potent in its performance during the investigation with 

Schwefel-2.26 function as it reaches the optimal point of convergence at a more rapid 

rate of 17% than the compared Quartic, Exponential and Sumsquare functions even when 

the search dimensions are increased. 

6.3 Performance analysis based on Exponential function 

The importance of MACOA-CA over CA-ACOA, CA-GA and CA-PSO is estimated 

based on the benchmark multi-modal function Schwefel-2.26 with search dimension D=5 

and D=10 respectively.  

Performance analysis of MACOA-CA with search dimension (D=5) 

In experiment, the comparative performance of MACOA-CA over CA-ACOA,     

CA-GA and CA-PSO is investigated with respect to the benchmark function Exponential 

with search dimension D=5 by varying the number of search iterations that pertain to the 

average rate of function values. 
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The Figure 6.5, shows that MACOA-CA initially provides a unique level of 

performance with Exponential. MACOA-CA confirms a more systematic growth than 

CA-ACOA due to permissible global search facility made possible by it. 

 

Figure 6.5 - Performance of MACOA-CA- Exponential (D=5) 

The investigation of MACOA-CA reveals that the algorithm has a faster convergence 

rate compared to other existing algorithms. The MACOA-CA attains the mean global 

optimum for Exponential after 298 iterations. 

Performance analysis of MACOA-CA with search dimension (D=10) 

The comparative performance of MACOA-CA over CA-ACOA, CA-GA and        

CA-PSO is investigated with respect to Exponential function with search dimension 

D=10 by varying the number of search iterations which pertain to the average rate of 

function values. 

It is found that MACOA-CA initially provides a unique level of performance with 

Exponential benchmark multi-modal functions from the Figure 6.6. 
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Figure 6.6 - Performance of MACOA-CA -Exponential (D=10) 

The MACOA-CA attains the mean global optimum for Exponential after 305 

iterations. The graph reveals that the proposed algorithm has a faster convergence rate 

than the CA-PSO, CA-GA and CA-ACOA algorithms. 

6.4 Performance analyses based on Sumsquare function 

The importance of MACOA-CA over CA-ACOA, CA-GA and CA-PSO is estimated 

based on the benchmark multi-modal function Sumsquare with search dimension D=5 

and D=10 respectively.  

Performance analysis of MACOA-CA with search dimension (D=5) 

In experiment, the comparative performance of MACOA-CA over CA-ACOA, CA-

GA and CA-PSO is investigated with respect to the benchmark function Sumsquare with 

search dimension D=5 by varying the number of search iterations that pertain to the 

average rate of function values. 

 Figure 6.7, proves that MACOA-CA initially provides a unique level of performance 

with Sumsquare. MACOA-CA confirms a more systematic growth than CA-ACOA due 

to permissible global search facility. 
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Figure 6.7 - Performance of MACOA-CA- Sumsquare (D=5) 

The MACOA-CA attains the mean global optimum for Sumsquare after 285 

iterations with the faster convergence rate. 

Performance analysis of MACOA-CA with search dimension (D=10) 

The comparative performance of MACOA-CA over CA-ACOA, CA-GA and        

CA-PSO is investigated with respect to Sumsquare function with search dimension D=10 

by varying the number of search iterations which pertain to the average rate of function 

values. 

Figure 6.8 shows that MACOA-CA initially provides a unique level of performance 

with Sumsquare benchmark multi-modal functions. Figure 6.8 depicts that MACOA-CA 

compared to the existing algorithms attains the best result. The MACOA-CA attains the 

mean global optimum for Sumsquare after 285 iterations. 
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Figure 6.8 - Experiment 5-Performance of MACOA-CA- Sumsquare (D=10) 

6.5 Performance analyses based on Rastrigin function 

The importance of CA-IABCA over SOA-ABCA, SOA-ACO and SOA-PSO is 

estimated based on the benchmark multi-modal function Rastrigin with search dimension 

D=5 and D=10 respectively.  

Performance analysis of CA-IABCA with search dimension (D=5) 

In experiment, the comparative performance of MACOA-CA over SOA-ABCA, 

SOA-ACO and SOA-PSO is investigated with respect to the benchmark function 

Rastrigin with search dimension D=5 by varying the number of search iterations that 

pertain to the average rate of function values. 

 It is observed that CA-IABCA exhibits a similar level of performance to             

SOA-ABCA when evaluated with Rastrigin function as shown in Figure 6.9. CA-IABCA 

also exhibits a gradual fluctuation than SOA-ABCA due to wider feasible search 

solutions. In addition, the CA-IABCA provides better convergence degree than        

SOA-ABCA, SOA-ACO and SOA-PSO. It is also interesting to realize that CA-IABCA 

attains the mean global optimum for Rastrigin function after 275 iterations.  
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Figure 6.9 - Performance of CA-IABCA-Rastrigin Function (D=5) 

Performance analysis of CA-IABCA with search dimension (D=10) 
 

In the experiment, the performance analysis of CA-IABCA, SOA-ABCA, SOA-ACO 

and SOA-PSO is carried out in terms of four benchmark functions such as Rastrigin 

function with search dimension D=10 by varying the number of iterations of search with 

respect to mean of function values. 

Figure 6.10, shows that CA-IABCA exhibits a similar level of performance to     

SOA-ABCA when evaluated with Rastrigin function even when ‘D’ is increased to 10.  

CA-IABCA also exhibits a gradual fluctuation than SOA-ABCA and it is capable of 

ensuring wider search solutions. In addition, CA-IABCA provides better convergence 

degree than SOA-ABCA, SOA-ACO and SOA-PSO. It is also interesting to realize that 

that CA-IABCA attains the mean global optimum for Rastrigin function after 255 

iterations.  
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Figure 6.10 - Performance of CA-IABCA-Rastrigin Function (D=10) 

6.6 Performance analyses based on Ackley function 

The importance of CA-IABCA over SOA-ABCA, SOA-ACO and SOA-PSO is 

estimated based on the benchmark multi-modal function Ackley with search dimension 

D=5 and D=10 respectively.  

Performance analysis of CA-IABCA with search dimension (D=5) 
 

In the experiment, the comparative performance of MACOA-CA over SOA-ABCA, 

SOA-ACO and SOA-PSO is investigated with respect to the benchmark function Ackley 

with search dimension D=5 by varying the number of search iterations that pertain to the 

average rate of function values. 

 In Figure 6.11, it is observed that CA-IABCA exhibits a similar level of performance 

to SOA-ABCA when evaluated with Ackley function. CA-IABCA also exhibits a gradual 

fluctuation than SOA-ABCA due to wider search solutions. In addition, the CA-IABCA 

provides better convergence degree than SOA-ABCA, SOA-ACO and SOA-PSO. It is 

also interesting to realize that that CA-IABCA attains the mean global optimum for 

Ackley function after 285 iterations.  
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Figure 6.11 - Performance of CA-IABCA-Ackley Function (D=5) 

Performance analysis of CA-IABCA with search dimension (D=10) 
 

In the experiment, the performance analysis of CA-IABCA, SOA-ABCA,           

SOA-ACO and SOA-PSO is carried out in terms of four benchmark functions such as 

Ackley function with search dimension D=10 by varying the number of iterations of 

search with respect to mean of function values. 

 Figures 6.12, shows that CA-IABCA exhibits a similar level of performance to  

SOA-ABCA when evaluated with Ackley function even when ‘D’ is increased to 10.  

CA-IABCA also exhibits a less gradual fluctuation than SOA-ABCA and it is capable of 

ensuring wider search solutions. In addition, CA-IABCA provides better convergence 

degree than SOA-ABCA, SOA-ACO and SOA-PSO. It is also interesting to realize that 

CA-IABCA attains the mean global optimum for Ackley function after 258 iterations.  
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Figure 6.12 –Performance of CA-IABCA-Ackley Function (D=10) 

6.7 Performance analyses based on Griewank function 

The importance of CA-IABCA over SOA-ABCA, SOA-ACO and SOA-PSO is 

estimated based on the benchmark multi-modal function Griewank with search dimension 

D=5 and D=10 respectively.  

 

Performance analysis of CA-IABCA with search dimension (D=5) 
 

In experiment, the comparative performance of MACOA-CA over SOA-ABCA,     

SOA-ACO and SOA-PSO is investigated with respect to the benchmark function 

Griewank with search dimension D=5 by varying the number of search iterations that 

pertain to the average rate of function values. 

Figure 6.13, shows that CA-IABCA exhibits a similar level of performance to     

SOA-ABCA when evaluated with Griewank function. CA-IABCA also exhibits a less 

gradual fluctuation than SOA-ABCA due to wider search solutions. In addition, the    

CA-IABCA provides better convergence degree than SOA-ABCA, SOA-ACO and   

SOA-PSO. It is also interesting to realize that that CA-IABCA attains the mean global 

optimum for Griewank function after 280 iterations. 
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Figure 6.13 - Performance of CA-IABCA-Griewank Function (D=5) 

Performance analysis of CA-IABCA with search dimension (D=10) 
 

In experiment, the performance analysis of CA-IABCA, SOA-ABCA, SOA-ACO and 

SOA-PSO is carried out in terms of four benchmark functions such as Griewank function 

with search dimension D=10 by varying the number of iterations of search with respect to 

mean of function values. 

Figure 6.14, shows that CA-IABCA exhibits a similar level of performance to    

SOA-ABCA when evaluated with Griewank function even when ‘D’ is increased to 10.    

CA-IABCA also exhibits a gradual fluctuation than SOA-ABCA and it is capable of 

ensuring wider search solutions. In addition, CA-IABCA provides better convergence 

degree than SOA-ABCA, SOA-ACO and SOA-PSO. It is also interesting to realize that 

that CA-IABCA attains the mean global optimum for Griewank function after 260 

iterations.  
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Figure 6.14 - Performance of CA-IABCA-Griewank Function (D=10) 

6.8 Performance analyses based on Shaffer function 

The importance of CA-IABCA over SOA-ABCA, SOA-ACO and SOA-PSO is 

estimated based on the benchmark multi-modal function Shaffer with search dimension 

D=5 and D=10 respectively.  

Performance analysis of CA-IABCA with search dimension (D=5) 
 

In experiment, the comparative performance of MACOA-CA over SOA-ABCA,    

SOA-ACO and SOA-PSO is investigated with respect to the benchmark function Shaffer 

with search dimension D=5 by varying the number of search iterations that pertains to the 

average rate of function values. 

 Figure 6.15, shows that CA-IABCA exhibits a similar level of performance to   

SOA-ABCA when evaluated with Shaffer function. CA-IABCA also exhibits a less 

gradual fluctuation than SOA-ABCA due to wider search solutions made. In addition, the 

CA-IABCA provides better convergence degree than SOA-ABCA, SOA-ACO and   
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SOA-PSO. It is also interesting to realize that that CA-IABCA attains the mean global 

optimum for Shaffer function after 270 iterations. 

 
Figure 6.15 - Performance of CA-IABCA-Shaffer Function (D=5)  

Performance analysis of CA-IABCA with search dimension (D=10) 
 

In experiment, the performance analysis of CA-IABCA, SOA-ABCA, SOA-ACO and 

SOA-PSO is carried out in terms of four benchmark functions such as Shaffer function 

with search dimension D=10 by varying the number of iterations of search with respect to 

mean of function values 

 Figures 6.16, shows that CA-IABCA exhibits a similar level of performance to  

SOA-ABCA when evaluated with Shaffer function even when ‘D’ is increased to 10.  

CA-IABCA also exhibits a less gradual fluctuation than SOA-ABCA and it is capable of 

ensuring wider search solutions. In addition, CA-IABCA provides better convergence 

degree than SOA-ABCA, SOA-ACO and SOA-PSO. It is also interesting to realize that 

CA-IABCA attains the mean global optimum for Shaffer function after 252 iterations.  
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Figure 6.16 - Experiment -Performance of CA-IABCA-Shaffer Function (D=10) 

 

6.9 Performance analyses of CA-MABCA based on Sphere function 

In the experiment, the superior performance of CA-MABCA and its potentiality is 

analyzed based on multi-modal benchmark function namely Sphere under the search 

dimension of D=20 by varying the number of iterations of search with respect to average 

function values. 

 Figure 6.17 shows that CA-MABCA confirm almost a similar kind of performance to 

CA-ABCA and CA-ACO during its evaluation facilitated with Sphere multi-modal 

function. But CA-MABCA is seen to exhibit better performance in a gradual manner than 

CA-ABCA and CA-ACO as it uses the benefits of chaotic system and opposition-based 

learning for steepening the optimal convergence rate of finding optimal solution.        

CA-MABCA is found to facilitate a better convergence rate after 280 iterations than    

CA-ABCA and CA-ACO. 
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Figure 6.17 - Performance of CA-MABCA-Sphere Function  

6.10 Performance analyses of CA-MABCA based on Step function 

In the experiment, the superior performance of CA-MABCA and its potentiality is 

analyzed based on multi-modal benchmark function namely Step under the search 

dimension of D=20 by varying the number of iterations of search with respect to average 

function values.  

Figure 6.18 shows that CA-MABCA confirm almost a similar kind of performance to 

CA-ABCA and CA-ACO during its evaluation facilitated with Step multi-modal 

function. But CA-MABCA is seen to exhibit better performance than CA-ABCA and 

CA-ACO in a gradual manner as it uses the benefits of chaotic system and        

opposition-based learning for steepening the optimal convergence rate of finding optimal 

solution. CA-MABCA is found to facilitate a better convergence rate after 280 iterations 

than CA-ABCA and CA-ACO. 

 



152 

 

 

Figure 6.18 - Performance of CA-MABCA-Step Function 

6.11 Performance analyses of CA-MABCA based on Schwefel-2.21 function 

In the experiment, the superior performance of CA-MABCA and its potentiality is 

analyzed based on multi-modal benchmark function namely Schwefel-2.21 under the 

search dimension of D=20 by varying the number of iterations of search with respect to 

average function values.  

Figure 6.19 shows that CA-MABCA confirm almost a similar kind of performance to 

CA-ABCA and CA-ACO during its evaluation facilitated with Schwefel-2.21          

multi-modal function. But CA-MABCA is seem to exhibit better performance in a 

gradual manner than CA-ABCA and CA-ACO as it uses the benefits of chaotic system 

and opposition-based learning for steepening the optimal convergence rate of finding 

optimal solution. CA-MABCA is found to facilitate a better convergence rate after 280 

iterations than CA-ABCA and CA-ACO. 
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Figure 6.19 - Performance of CA-MABCA- Schwefel-2.21 Function 

6.12 Performance analyses of CA-MABCA based on Sumpower function 

In the experiment, the superior performance of CA-MABCA and its potentiality is 

analyzed based on multi-modal benchmark function namely Sumpower under the search 

dimension of D=20 by varying the number of iterations of search with respect to average 

function values.  

Figure 6.20 shows that CA-MABCA confirm almost a similar kind of performance to 

CA-ABCA and CA-ACO during its evaluation facilitated with Sumpower multi-modal 

function. But CA-MABCA is seen to exhibit better performance in a gradual manner than 

CA-ABCA and CA-ACO as it uses the benefits of chaotic system and opposition-based 

learning for steepening the optimal convergence rate of finding optimal solution.        

CA-MABCA is found to facilitate a better convergence rate after 280 iterations than   

CA-ABCA and CA-ACO. 
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Figure 6.20 - Performance of CA-MABCA- Sumpower Function 

6.13 Performance analyses of CA-MABCA based on Elliptic function 

In the experiment, the superior performance of CA-MABCA and its potentiality is 

analyzed based on multi-modal benchmark function namely Elliptic under the search 

dimension of D=20 by varying the number of iterations of search with respect to average 

function values.  

Figure 6.21 shows that CA-MABCA confirm almost a similar kind of performance to 

CA-ABCA and CA-ACO during its evaluation facilitated with Elliptic multi-modal 

function. But CA-MABCA is seen to exhibit better performance in a gradual manner than 

CA-ABCA and CA-ACO as it uses the benefits of chaotic system and opposition-based 

learning for steepening the optimal convergence rate of finding optimal solution.        

CA-MABCA is found to facilitate a better convergence rate after 280 iterations than   

CA-ABCA and CA-ACO. 
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Figure 6.21 - Performance of CA-MABCA- Elliptic Function 

6.14 Performance analyses of CA-MABCA based on Exponential function 

In the experiment, the superior performance of CA-MABCA and its potentiality is 

analyzed based on multi-modal benchmark function namely Exponential under the search 

dimension of D=20 by varying the number of iterations of search with respect to average 

function values.  

Figure 6.22 shows that CA-MABCA confirm almost a similar kind of performance to 

CA-ABCA and CA-ACO during its evaluation facilitated with Exponential multi-modal 

function. But CA-MABCA is seen to exhibit better performance in a gradual manner than 

CA-ABCA and CA-ACO as it uses the benefits of chaotic system and opposition-based 

learning for steepening the optimal convergence rate of finding optimal solution.        

CA-MABCA is found to facilitate a better convergence rate after 280 iterations than   

CA-ABCA and CA-ACO. 

It is confirmed that CA-MABCA under elliptic function analysis performs better in 

terms of average multi-modal functions at 270 iterations in comparison to the Sphere, 

Step, Schwefel-2.21, Sumpower and Exponential functions. Thus CA-MABCA is 
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predominant in its performance as it achieves global point of optimization at a rapid 

convergence rate of 21% with elliptic function than the compared multi-modal functions. 

 

Figure 6.22 - Performance of CA-MABCA- Exponential Function 

6.15 Summary  

The proposed algorithms such as MACOA-CA, CA-IABCA and MABCA are 

validated based on selected benchmark multimodal functions to measure their 

performance in terms of efficiency and reliability of the algorithm. The proposed 

MACOA-CA is validated based on the multimodal functions Quartic, Schwefel-2.26, 

Exponential and Sumsquare functions and is found that MACOA-CA reaches the optimal 

rate of convergence at a faster rate than the other existing algorithms due to the enhanced 

global searching capability of the algorithm. The CA-IABCA algorithm performance is 

checked based on the multimodal functions Rastrigin, Ackley, Griewank and Shaffer and 

is found that the algorithm has better convergence rate than the existing algorithms. 

Similarly, MABCA is also validated against the multimodal functions and results have 

shown better performance compared to the existing algorithms. 
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Chapter 7  

 

Conclusions and Future Research Directions 

 
This chapter concludes the thesis with the research contributions and summary of the 

work carried out. It highlights the effectiveness and performance of the improved     

meta-heuristics algorithm integrated with Cellular Automata proposed for preventing 

DDoS attack by ensuring the neighbor availability in VANETs. This chapter also gives 

an idea about the future research directions that can be carried out to enhance the 

neighbor availability in VANETs. 

 

7.1 Conclusion 

In VANETs the cooperation among the neighbors is needed for proper vehicle 

communication to enable safe driving on the road. The neighbor availability is the main 

security requirement in VANETs for sustained operation of VANET services in ITS. 

Many attacks threaten the availability of VANETs resources; DDoS attack is a severe 

form of attack that threatens the availability of the network in a drastic way. From the 

survey carried out it reveals that DDoS attacks are difficult to be avoided. Many works 

focused on detecting the DDoS attack or induced other form of DDoS attack affecting the 

performance of the entire VANETs system.  

The proposed works focus on enhancing the availability of the vehicular nodes for    

V-V communication to prevent DDoS attack due to neighbor unreachability. This thesis 

details the four improved meta-heuristics approaches based on Cellular Automata to 

avoid DDoS attack in VANETs by finding reachable and available neighbor. 

The proposed algorithms aim to enhance the availability of the neighboring nodes in 

VANETs for continuous communication among the vehicular nodes. The availability of 

the nodes is found by applying the ACA, ABC, TS meta-heuristics algorithms since they 

have the good tendency of finding the global solution for large problems in a reasonable 

time. Combining the unique features of the algorithms with fast manipulation tendency of 
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the CA, the meta-heuristics algorithms find the neighbor nodes in short duration with 

good prediction accuracy. Based on this concept four algorithms were proposed. They 

are:- 

 MACOA-CA improved by dynamic evaporation rule and adaptive pheromone 

update rule achieves better exploration and exploitation. The exploration of ant 

colony algorithm was improved by adapting dynamic and adaptive pheromone 

rule for evaporation and updation successively. CA had been integrated with this 

improved ACA to give the global solution in less duration. 

 CA-IABCA improved by using Grenade Explosion method in onlooker bee phase 

for exploitation and Cauchy Operator in scout bee Phase for exploration gives 

good solution. The improved ABC algorithm along with the CA neighboring 

model executes the algorithm in a fast manner to find the best neighbor for data 

dissemination. 

 MABCA improves DDoS handling techniques by applying Differential Evolution 

on onlooker bee phase and Chaotic learning strategy in scout bee phase. The good 

random strategy of the algorithm enhances the searching capability and gives 

good solution. 

 CA-MTSA improves TS by Gwet’s kappa reliability factor and Bayes conditional 

probability to handle DDoS. The reliable and reference factor of the vehicles are 

used to find the good neighbor from the CA neighbor model.  

From the result analysis it is found that the proposed algorithms based on meta-

heuristics and CA achieved the following result in finding the availability of the neighbor 

vehicles when compared to the existing algorithms. 

a) less prediction delay,  

b) less prediction variance and  

c) less average prediction delay and variance. 

Testing the proposed algorithms against the Benchmark functions also proved that the 

performance of the improved algorithms is good. 
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7.2 Contributions  

The research work is carried out to enhance the availability of the vehicular node in 

VANETs for enabling undisrupted data dissemination services to the vehicles on the 

road. The contributions of the research works are briefed as follows.  

 The research paves a path for identifying the significance of meta-heuristic 

optimization techniques for mitigating DDoS attacks in VANET where 

emergency data dissemination remains an indispensable part. 

 The MACOA-CA helps in predicting the cooperative vehicular nodes for 

forwarding the data packets successfully with the increased percentage of 15% in 

a faster rate. The algorithm is applicable in dense environment to help the vehicles 

escape from DDoS attack. 

 For handling the DDoS in highway environment the proposed algorithms          

CA-IABCA and MABCA are applicable with their improved exploration level at 

a faster rate. The prediction variance produced by these algorithms is at an 

increased percentage of up to 16% for highway scenario. 

 The CA-MTSA enhanced the degree of cooperation of the vehicles to a 

considerable level by 12% . The proposed algorithm paves the path to identify the 

compromised node in a simple and efficient way. 

 The research enables the formulation of a generic framework that alternatively 

and suitably employs any one of the proposed meta-heuristic optimization 

techniques for DDoS mitigation for improving the rapidity and effectiveness of 

detection rate. 

 The research also emphasizes on how far the detection rate of DDoS attacks can 

be improved for providing seamless service to the potential users and needy under 

the context of VANETs. 

 The research also portrays the potential of each multi-modal benchmark function 

over the other for proving the possibility of best fit enabled by each of the 

proposed mitigation techniques.  
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7.3 Future Research Directions  

The future possibilities of this research work can be extended in the below mentioned 

ways. They are:  

a) Binary Modified artificial bee and multi-parameter inspired Modified bee colony 

optimization scheme inspired may be formulated to mitigate the DDoS attack for 

enhancing the availability of the vehicles in VANET.  

b) A generic framework may be formulated for handling DDoS attack which alternately 

chooses any one of the proposed meta-heuristics inspired mitigation mechanisms based 

on the input parameters and constraints imposed on mitigation. 

c) The proposed schemes are being planned to be deployed in other types of cellular 

model which are equally potent to Moore model in order to analyze the performance for 

understanding their constraint, superiority and context of application with their 

suitability. 
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