
A COLLABORATIVE FRAMEWORK FOR

DYNAMIC SERVICE INTEGRATION OF LONG TERM

COMPOSED SERVICES USING FSM

A Thesis

Submitted to Pondicherry University in partial fulfillment of the

requirements for the award of the Degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

S.TIROUMALMOUROUGHANE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PONDICHERRY ENGINEERING COLLEGE (AUTONOMOUS)

PUDUCHERRY – 605 014

INDIA

MARCH 2018

i

Dr. P.THAMBIDURAI. M.E, Ph.D., F.I.E., LMISTE., LMCSI.

Professor of Computer Science & Engineering and Principal

Perunthalaivar Kamarajar Institute of Engineering & Technology (PKIET)

(Union Territory of Puducherry Institution)

Karaikal – 609 603.

CERTIFICATE

Certified that this Thesis entitled “A COLLABORATIVE FRAMEWORK

FOR DYNAMIC SERVICE INTEGRATION OF LONG TERM COMPOSED

SERVICES USING FSM” submitted for the award of the degree of DOCTOR OF

PHILOSOPHY in COMPUTER SCIENCE AND ENGINEERING of the

Pondicherry University, Puducherry is a record of original research work done by

Mr. S. TIROUMALMOUROUGHANE during the period of study under my

supervision and the Thesis has not previously formed the basis for the award of the

candidate of any Degree, Diploma, Associateship, Fellowship or other similar titles.

This Thesis represents independent work on the part of the candidate.

Place:

(Dr. P. THAMBIDURAI)

Date: Supervisor

ii

DECLARATION

I hereby declare that the Thesis entitled “A COLLABORATIVE

FRAMEWORK FOR DYNAMIC SERVICE INTEGRATION OF LONG

TERM COMPOSED SERVICES USING FSM” submitted to the Pondicherry

University, Puducherry, India for the award of the Degree of DOCTOR OF

PHILOSOPHY in COMPUTER SCIENCE AND ENGINEERING is a record of

the original research work done by me under the supervision of Dr. P.

THAMBIDURAI, Professor of Computer Science & Engineering and Principal,

Perunthalaivar Kamarajar Institute of Engineering and Technology, Karaikal and the

work has not been submitted either in whole or in part for any other Degree / Diploma

/ Certificate or any other title by an university / Institution before.

(S.TIROUMALMOUROUGHANE)

iii

ACKNOWLEDGEMENT

With immense pleasure and deep sense of gratitude, I would like to place on

record my grateful thanks to all those who have contributed to the successful

completion of this research work. It is my pleasure to express my profound sense of

gratitude to my supervisor Dr. P. THAMBIDURAI, Professor and Principal,

Perunthalaivar Kamarajar Institute of Engineering and Technology, Karaikal for his

invaluable guidance as well as his timely advice during the period of the research

work. His consistent encouragement and personal attention are accountable for the

successful completion of this Thesis.

I am grateful to express my sincere requital to my Doctoral Committee

members Dr. N.P. GOPALAN, Professor in Department of Computer Applications,

National Institute of Technology, Trichy and Dr. M. ARAMUDHAN, Associate

Professor and Head, Department of Information Technology, Perunthalaivar

Kamarajar Institute of Engineering and Technology, Karaikal for providing valuable

comments and constructive suggestions to improve the quality of this research.

I express my sincere thanks to Dr. D. GOVINDARAJALU, former Principal,

Dr. P. DANANJAYAN, present Principal and Dr. K.VIVEKANANDAN, Dr. N.

SREENATH and Dr. D. LOGANATHAN former Heads of Departments and Dr. M.

SUGUMARAN present Head of the Department of Computer Science and

Engineering, Pondicherry Engineering College, Puducherry for their wholehearted

support and for allowing me to make use of the facilities in the college for the

research work.

With deep sense of gratitude, I wish to express my sincere thanks to Dr. V.

GOVINDASAMY, Associate Professor, Department of Information Technology,

Pondicherry Engineering College, Puducherry for the moral support and timely help

iv

rendered during the course of this research work. I also extend my sincere gratitude to

my friend Dr. M. THIRUMARAN, Assistant Professor, Department of Computer

Science and Engineering, Pondicherry Engineering College for his valuable help

throughout my research.

I express my sincere thanks to my parents Mr. S. SANTHANAM and Mrs.

A. JAYALAKSHMI and to my brothers, sisters and other well-wishers especially to

my wife Mrs. N. GEETHA and my son T. ANISH, for their love, support and

encouragement rendered during the period of the research work. Their continuous

encouragement and support throughout this research has helped in the successful

completion. Finally, I thank the Almighty, for making this a part of my destiny.

S. TIROUMALMOUROUGHANE

v

ABSTRACT

Today’s challenging circumventions are pushing organizations to spread out

their attention and to collaborate with their professional adherents to convey their

inevitabilities. The Web services are the evolving technology in the field of business

processes where the services offered by the organization are managed through the

framework called Change Management Framework (CMF). By this framework any

changes for the service offered by the organization can be added, modified or

replaced in the form of the service request presented by either the customer or other

business parties. Thus it is helpful for the organization to develop itself by satisfying

the customer requirements in an autonomous manner.

Service Integration has turned out to be a serious issue in the fulfillment of

user request. Whenever an enterprise discovers a better requisite to conventionally

interact with their professional adherents and apportion their business logics to

convey the essentialities, the features of their existing services have to be improved.

But integrating Web accommodation logics of functionally different organization

leads to exponential quandary which lets developers to grasp the whole Web service

and to determine appropriate technique to integrate the Web services. This is a

difficult and time-consuming task. Therefore, the current interest is to have an

automatic system that could investigate the Business logics and distribute the

felicitous style to integrate them. There is no regular archetypal framework to carry

out these concerns and so this Thesis proposes a framework which inspects the

Business logics independently and recommends proper structure to merge them.

As service logics are loosely coupled, integration of two or more logics might

affect many other parts of the services. Moreover, since services from different

enterprises are extracted and collaborated, accessibility issues for the required

services need to be solved. The present demand is to automate all these processes and

develop complex logics dynamically. Hence, the research focuses on a novel dynamic

schema-driven service integration mechanism using Turing Machines to automate the

task of service integration. Finite State Machine (FSM) is used to analyze the service

business logic in terms of business rules, functions and parameters and also to

evaluate the properties and dependency relation existing in the business logic.

vi

The proposed advanced model is Policy Evaluation System which examines the

service logics and discovers the policies while integrating professional policy

assessment of the services and which also examines the Policy Detection Point (PDP)

and Policy Enforcing Point (PEP) to deal more specifically with the policy. The

proposed Integration model also uses ontology for domain specific knowledge to deal

with policy, policy description and policy priority. This model integrates the required

Web services without break through Service Level Agreement (SLA). In case of policy

violation the reputation of the service is measured through (RM) Reputation

Measurement by considering malicious intentions.

The proposed service integration system accomplishes this task through disparate

agents such as Service Discovery Agent (SDA), SLA Negotiation (SN) Agent,

Dependency Analyzer (DA) Agent, Property Evaluation (PE) Agent and Service

Integration (SI) Agent. Hence, the collaborative service integration environment

automates the task of service integration through dependency analysis and property

evaluation using agents.

The developed algorithms for policy detection and violation detection are

evaluated and comparison is made to differentiate the performance of Turing Machine

and the Alternating Turing machines with the number of policies detected and violated.

The performance of the integrating services is evaluated in terms of Reputation scores,

computational time and accuracy of Reputation calculation. The results show that the

overall computational time required for the business policy violation detection,

Reputation Measurement and the integration of service which has better reputation is

5.087 seconds and the accuracy in calculating the Reputation score is an average of

86.75% which is a very high achievement when compared to service integration without

Reputation Measurement. Hence, the proposed system is well suited for automatic Web

service integration for a Change Management Framework.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE NO.

 ACKNOWLEDGEMENT iii

 ABSTRACT v

 TABLE OF CONTENTS vii

 LIST OF FIGURES xii

 LIST OF TABLES xiv

 LIST OF ALGORITHMS xv

 LIST OF ABBREVIATIONS xvi

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Motivation 1

 1.3 Web Services 2

 1.3.1 Short Term Composed Services 3

 1.3.2 Long Term Composed Services 3

 1.4 Change Management Framework 5

 1.4.1 Service Integration 6

 1.4.2 Service Level Agreement 7

 1.4.3 Business Policy 7

 1.4.4 Business Policy Features 8

 1.4.5 Challenges in Change Management Framework 9

 1.5 Malicious/Fake Services 9

 1.5.1 Malicious Behaviour 10

 1.5.2 Distributing Dishonest Opinions 10

 1.6 Finite State Machine 10

 1.6.1 Structure of FSM 10

 1.6.2 Working of Turing Machines 11

 1.6.3 Applications of Turing Machines 12

 1.6.4 Challenges in construction of Turing Machines 13

 1.7 Scope of the Research 13

 1.8 Organisation of the Thesis 14

viii

2 LITERATURE SURVEY 16

 2.1 Overview
16

 2.2
Importance of Business Policies in Web Service

Integration
16

 2.3 Methodologies for Long Term Web Service 20

 2.4 Approaches to Change Management Framework 23

 2.5 Identification of Malicious Services 27

 2.6 Web service Integration Techniques 30

 2.7 Approaches to Finite State Machine 34

 2.8 Comparative Analysis of Existing Research 36

 2.9 Limitations of Existing Research 37

 2.10 Research Objectives 39

 2.11 Summary 42

3
PROBLEM DEFINITION AND

METHODOLOGIES
43

 3.1 Overview 43

 3.2 Research Problem 43

 3.3 Overall Architecture of the system 44

 3.3.1 Analysis of User Request 45

 3.3.2 Business Policy Extraction for Requested Service 46

 3.3.3 Identification of Mismatched Business Policies 46

 3.3.4 Identification of Fake Services 46

 3.3.5 Service Integration 47

 3.4 Experimental Setup 48

 3.5 Output Metrics 49

 3.6 Summary 49

4
CONSTRUCTION OF TURING MACHINE

FOR BUSINESS POLICY VIOLATION

DETECTION

50

 4.1 Overview 50

 4.2 Turing Machine 50

ix

 4.2.1 States of Turing Machines 51

 4.2.2 Atomic Operations 51

 4.3 Construction of Turing Machine 51

 4.3.1 Architecture of Policy Detection 52

 4.3.2 Major Components for Policy Detection 53

 4.3.3 Algorithm for Business Policy Extraction 56

 4.4 Business Policy Violation Detection 58

 4.4.1 Business Policy Violation 59

 4.4.2
Algorithm for Business Policy Violation Detection

using TM
59

 4.5 Evaluation Measures 60

 4.6 Experimental Results and Discussion 61

 4.7 Summary 63

5
ALTERNATING TURING MACHINES FOR

BUSINESS POLICY VIOLATION

DETECTION

64

 5.1 Overview 64

 5.2 ATM in detecting Policy Points 64

 5.2.1 Policy Detection Point 66

 5.2.2 Policy Enforcement Point 66

 5.3
Algorithm for Business Policy Violation Detection

using ATM
67

 5.4
Comparison on the performance of ATM with

that of TM
68

 5.5 OWL Methodologies for Policy Violation Detection 69

 5.5.1 Ontology in Business Policy Violation Detection 70

 5.5.2
Architecture of Violation Detection using

Ontology
70

 5.6 Experimental Results and Discussion 73

 5.7 Summary 74

6 REPUTATION MEASUREMENT 75

 6.1 Overview 75

 6.2
Reputation Based Business Policy Violation

Detection
75

x

 6.3
Reputation Measurement against Malicious

Intentions
77

 6.3.1 Ballot Stuff Attack 78

 6.3.2 Fake ID (Sybil attack) 78

 6.3.3 Ratter’s Creditability Evaluation 79

 6.3.4 Majority Opinion by K-median Clustering 79

 6.4
Service Integration Decision to Change

Management Framework
80

 6.5 Experimental Results and Discussion 81

 6.6 Summary 84

7

COLLABORATIVE AGENTS FOR DYNAMIC

WEB SERVICE INTEGRATION

85

 7.1 Overview 85

 7.2 Dynamic Service Integration Framework 85

 7.2.1 Discovery Agent 86

 7.2.2 Evaluator Agent 87

 7.3 Property Evaluation using PE Agent 87

 7.3.1 Computability 88

 7.3.2 Completeness 88

 7.3.3 Configurability 90

 7.4 Accessibility through Negotiation Agent 92

 7.5 Dependency Checker Agent 94

 7.6 Pattern Recognition using Integration Agent 99

 7.7 Closure Properties of Integrated Services 100

 7.7.1 Union 100

 7.7.2 Composition 100

 7.7.3 Substitution 100

 7.8 Experimental Results and Discussion 101

 7.9 Summary 105

8 CASE STUDY 106

 8.1 Introduction 106

 8.2 Composite Service Integration Analogy 106

xi

 8.3 Summary 113

9 CONCLUSION AND FUTURE WORK 114

 9.1
Research Findings and level of objectives

achievement
114

 9.2 Future Research Work 116

 REFERENCES 117

 LIST OF PUBLICATIONS 125

xii

 LIST OF FIGURES

Fig. 1.1 Structure of Web Service 2

Fig. 1.2 SLA of Internet Service Provider (ISP) 7

Fig. 1.3 Life Cycle of a Business Policy 8

Fig. 1.4 Finite Control of a Turing Machine 11

Fig. 1.5 Finite Control of a Multi tape Turing Machine 12

Fig. 3.1 System Architecture 45

Fig. 4.1 Turing Machine 51

Fig. 4.2 Multi Tape Turing Machine 52

Fig. 4.3 Data Flow for Policy Violation Detection 53

Fig. 5.1 Policy Detection Points with ATM 66

Fig. 5.2 Policy Violation Detection with ATM 68

Fig. 5.3 Policy Violation Detection using Ontology 71

Fig. 5.4 Comparison graph of Policy Violation Detection 73

 using TM and ATM

Fig. 6.1 Architecture of Business Policy Detection with 76

 Reputation Measurement

Fig. 6.2 Reputation Measurement for the policy violated services 82

Fig. 6.3 Computational Time 83

Fig. 6.4 Accuracy of Reputation Measurement 84

Fig. 7.1 Dynamic Service Integration 86

Fig. 7.2 Turing Machine representation of Business Logic 96

 Credit Card Validation

Fig. 7.3 Modified Turing Machine for the extracted logic 99

Fig. 7.4 OGP of Integrated Services 100

Fig. 7.5 OGP of Composed Services 100

Fig. 7.6 OGP of Substituted Services 101

Fig. 7.7 WSDL of logic extracted from Vista Search 101

Fig. 7.8 WSDL of logic extracted from Flora Search 102

Fig. 7.9 WSDL of logic extracted after integration (Vista and Flora) 102

Fig. 7.10 Similarity Measure between given Request & Service 103

 Built after Union

xiii

Fig. 7.11 WSDL of tour service (developed by composing hotel 103

 and travel service)

Fig. 7.12 Similarity Measure between given Request & Service 104

 Built after Composition

Fig. 7.13 WSDL of authentication service (after encryption 104

 service substituted into it)

Fig. 7.14 Similarity Measure between given Request & Service 105

 Built after Substitution

Fig. 8.1 Logic Discovery Time 112

Fig. 8.2 Dependency Analysis Time 112

Fig. 8.3 Service Integration Time 112

Fig. 8.4 Service Integration Time for Composite Service Integration 113

xiv

LIST OF TABLES

Table 2.1 Contributions towards SLA violation 19

Table 2.2 Contribution towards methodology for Web service composition 22

Table 2.3 Contributions towards Change Management Process 25

Table 2.4 Contribution towards Identification of Malicious Services 29

Table 2.5 Contribution towards Web Service Integration and Composition 33

Table 2.6 Contribution towards FSM in Web services 36

Table 2.7 Comparative Analysis of Existing Research 37

Table 4.1 State Transition Table 57

Table 4.2 State Transition Table for LCS1 61

Table 4.3 State Transition Table for LCS2 62

Table 4.4 Evaluation Results of Policy Violation Detection 62

Table 5.1 Business Policy Violation with ATM and TM 69

Table 5.2 Business Policy Violation with reference Ontology 74

 and without reference Ontology

Table 6.1 Description of the service request 81

Table 6.2 Reputation Measurement for number of services 81

Table 6.3 Computational time for Policy Violation Detection, 82

 Reputation Measurement and Service Integration

Table 6.4 Accuracy for number of services 83

Table 7.1 First Order Logic Conversion 92

Table 7.2 BL Pattern for Turing Machine 97

Table 8.1 Property Evaluation results of service logics 107

Table 8.2 Performance Evaluation results of Service Integration 110

Table 8.3 Evaluation results of Composite Service Integration 111

xv

 LIST OF ALGORITHMS

Algorithm 4.1 Algorithm for Business Policy Detection 57

Algorithm 4.2 Algorithm for Business Policy Violation Detection 60

Algorithm 5.1 Algorithm for Policy Violation Detection using ATM 67

Algorithm 6.1 K-Median Clustering Algorithm 80

Algorithm 7.1 Algorithm for Computing Business Functions 91

Algorithm 7.2 Algorithm for Accessibility 93

xvi

LIST OF ABBREVIATIONS

ACRONYMS ABBREVIATIONS

AHP Analytic Hierarchy Process

ATM Alternating Turing Machine

BLIS Business Logic Integration Schema

BLPS Business Logic Property Schema

BPEL

 Business Process Execution

Language

CMF Change Management Framework

CMP Change Management Practices

eOCS Extended Online Charging Systems

EPC Evolution Packet Core

FSM Finite State Machine

KMC K-Median Clustering

LCS Long Term Composed Services

LIDS Linked Data Services

LTE Long Term Evolution

OBIEE Oracle Business Intelligence

Enterprise Edition

ONLI Ontology Based Natural Language

Interface

PCC Policy and Charging Control

PCRF Policy Control Rules Function

PDP Policy Detection Point

PEP Policy Enforcement Point

QoS Quality of Services

QoSMOS QoS Management and Optimization

of Service based system

RM Reputation Measurement

SOAP Simple Object Access Protocol

SPL Software Product Line

xvii

TM Turing Machine

UDDI

 Universal Description Discovery and

Integration

WSC Web Service Composition

WSCML

 Web Service Change Management

Language

WSDL Web Service Description Language

WSML Web Service Modeling Language

1

CHAPTER 1

 INTRODUCTION

1.1 Overview

Web Service Technology is booming technology that has gained interest for

the past few years. Single Web service is not a substantial solution for any single user

request in the current era. Service integration is anticipated to enable the endeavor to

achieve coordination development by coordinating between various associations'

applications among partners. The present market scenario does not fulfill the user

needs with integrating resources or services as a complete solution. It involves

coordinating Web service logics at useful level or business control for assorted

essential suddenly. The chapter tries to give a concise presentation of Web services,

the parts of Web services and the requirement for Web service coordination.

Importance of Business Policy is also listed. The issues of the research work, research

objectives and the contributions towards the research are also discussed in this

chapter.

1.2 Motivation

Long Term Composed Service comprises of a few self-sufficient outsourced

Web services that go about as an essentially sound single element. Business

substances, as Web services, are frequently topographically conveyed and

furthermore authoritatively free with each other. Before integrating the service to the

business process, the policy of the newest request will be verified against the existing

defined policies and if the policies are not matched at different levels, it will be

thrown to the exception handler but the incoming Web service request may be of an

efficient one coping with future facilities of the clients accessing the service from the

particular Website. This may lead to the improvement of the business and hence the

cross-checking of the request is necessary to make the system completely dynamic for

the changing environment. Also while checking the quality of the service request the

act of malicious intentions also need to be taken into consideration as this may lead to

the integration of service that is completely not necessary for the business process.

This has led to a research question of “how service composition could be atomized

completely with Reputation Measurement of composing services without Policy

2

Violations and thus the focus of research has been specific to automate the whole

system of Web service integration without policy violation and to measure the

reputation of composing services.

1.3 Web Services

Numerous organizations utilize different programming frameworks to deal

with their obligations. Programming frameworks that are diverse frequently need to

trade their information with each other for different activities. A Web service can be

considered as a strategy for correspondence that permits two distinctive programming

frameworks on various stages to trade the information over the Internet. Assorted

programming may be worked with the assistance of various programming dialects.

Accordingly, there is a requirement for a standard technique for information trade that

does not rely on a specific programming dialect. Relatively extraordinary kinds of

programming can translate XML labels. This is depicted in Figure 1.1.Web services

generally use XML files for data exchange. A Service Oriented Architecture (SOA) is

fundamentally an accumulation of a few services set up together. These services

speak with each other to trade their information to satisfy client needs. The

correspondence for the most part includes straightforward information passing or it

can likewise be at least two services organizing with each other and sharing their

information to play out some action. Along these lines there is a requirement for

methods for associating services with each other.

Figure 1.1: Structure of Web Service

Web services are self-describing and self-contained applications which are

invoked from anywhere across a distributed system. They are modular applications

3

which are published by various providers and located anywhere across the Web. A

source of data as if they come from a single source. Also, the Software-as-a-Service

(SaaS) worldview incorporates information in light of cloud that could without much

of a stretch speak with the current frameworks to guarantee that clients can get to

exact, finish, state-of-the-art information at whatever point and wherever they require

it. Infrastructure-as-a-Service (IaaS) is more adaptable, versatile and reusable way to

deal with combination where the core integration that performs incorporation

conveyed from the Web as a service are functions, for example, semantic

intercession, information movement, network, and other integration facilities.

A Web service which is composed of many Web services is always on

demand. They are the coordinated effort of self-ruling Web services that give an

esteem included administration powerfully. The autonomous Web services are

specialized in their own domain and hence provide an increased quality of service

with reduced cost to other business entities and their customers. The composed Web

services can be categorized into (i) Short Term Composed Service and (ii) Long Term

Composed Service.

1.3.1 Short Term Composed Services

The Business objectives and partnership between the Web services are

temporary and for a limited time period for a Short Term Composed Service. The

cooperation among the services is broken once the business objectives are

accomplished. A Trip Planner could be said as an example for Short Term Composed

Service. The planner could be a collaboration of Travel Service, Hotel Service and

Taxi Service. Once the planning process is complete, the partnership among the

services is dissolved.

1.3.2 Long Term Composed Services

Long Term Composed Services are services that are created by combining

various services that are available online to provide a value added service to the

customers. Many business entities are trying to advertise their functionalities now-a-

days on the Web through Web services. LCSs have turned out to be prominent and

have quickly embraced as another speculation for business related exercises. These

LCSs encourage adaptable and on-request relationship between various business

4

elements to trade their information. This basically centers on the wide application

areas of LCSs that incorporates logical registering, tourism ventures, PC enterprises,

and so on. There are several important benefits of LCSs that are summarized below:

• Utilization of Web services can extremely decrease the capital required to begin

any business. Web services are promptly accessible substances that could be

coordinated and organized. Therefore, ventures made by organizations individuals

might be reused to a more prominent degree and procure more benefit.

Provisioning of Web services additionally lessens an opportunity to showcase.

Since new Web services can be created from the effectively existing

administrations, the market intensity and notoriety will profit the LCSs that

outsource them. 

• Dynamic selection of partners of LCSs can be made that relates to individual

domains. Web services provide APIs that are machine-processable and which

could empower themselves to be summoned and arranged consequently as stated

by J. Hendler (J. Hendler 2001). Thus, the LCSs arrange an on-request and

venture driven organization together between various business elements

attempting to speak with each other's information. Another preferred standpoint of

LCS is that there is no land limit that could confine the choice of business

accomplices. Along these lines, LCSs gives a wide-coordination of business

elements from the “global village”.

• The several number of business elements have distributed their functionalities on

the Web, it will be conceivable that numerous specialist co-ops rival each other to

offer a similar sort of service with various client driven quality (Q. Yu 2008)

"Best Service" be chosen from those suppliers to frame LCSs. In this manner, the

end clients of LCSs will be profited from the open rivalry between organizations.

The lifetime of the long term composed service (usually known as LCS) is

more when compared to Short Term Composed Service. They have the open ended

life time. They have long term business goals and commitments. Until an external

event occurs, the partnership among the components of the composed service remains

stable. Many value-added services can be provided by these kinds of composed

services for the cross organization collaboration. Such collaborative services are

adaptive in nature in the dynamic environment. According to the frequent occurrences

of changes, the adjustment has to be done.

5

Different stages are associated with the life cycle of LCS. It begins from

beginning to its end. There are four stages in the lifecycle: planning, composition,

orchestration, and dissolution. The main stage is the planning phase where an abstract

level of description is done. This stage is activated when the proprietor of the LCS

finds a requirement for another business goal to be accomplished (Reid et al. 1996).

The composition stage is the stage that spotlights on coordinating the chosen Web

services (Medjahed et al. 2003). After integration, the chosen Web services are

organized to give the esteem included service as required by the clients. The

dissolution stage happens when the proprietor of the LCS chooses that the

orchestrated services have to no longer be integrated with each other and they need to

be dissolved.

1.4 Change Management Framework

The advantage of LCSs can be fully realized only when they help to improve

their compliance to the dynamic environment, i.e., when they are ready for the

changes during their lifetime. Since the Web service infrastructure is dynamic in

nature, changes should be treated as the rule and should be managed in a structured

and systematic way (Khoshafian 2006). Changes are usually introduced when a new

market interest arises and when there are new business regulations. There may also be

a need to upgrade the technologies and the need could arise. A requirement is always

associated with such changes to focus on the modification of a LCS. The change

might respect the usefulness that it gives, the way it plays out its functions, the

composition to which they are made out of, and the execution it conveys. Once the

requirement for a change happens, the LCS needs to rapidly control itself to satisfy

the prerequisite presented by the change. The modifications must be performed in a

dynamic and a programmed way. A LCS can expand the market premiums it pulls in

thusly. It can likewise streamline the way it outsources its usefulness. This prompts

support of its aggressiveness among its companions. Changes in a LCS are for the

most part categorized into top-down changes and bottom up changes. Top-down

changes are those that are started by the proprietor of the LCS and Bottom-up changes

are those that are started by the service providers.

Top-down changes

These changes are typically raised as the consequence of business approaches,

business controls, or laws. The LCS outsources its usefulness from services in the

6

travel domain to offer a total travel package can be taken for instance situation for top

down changes. Contingent upon the market report, the LCS may require that the

administration be extended with new business needs by including another nearby

movement benefit that may incorporate cabin, directing and so on.

Bottom-up changes

These changes are raised as the aftereffect of a bug, an exception, or a shift in

a Web service space. This is experienced when these services are being used. Web

services now and then change their functionalities freely without the authorization of

the LCS that uses their highlights. For instance, a taxi booking service may wind up

inaccessible because of a system disappointment. Another case could be an aircraft

reservation service supplier may change the usefulness of the service to its clients by

including another activity for checking a flight status, or a movement service.

Supplier may choose to expand the desirable charge of the service.

The Thesis focuses on the changes that are triggered by the owners of the

services i.e., top-down changes. These changes could incorporate an arrangement of

progress initiators, which can be business strategies, changes in business directions

(or laws), and the LCS's proprietor necessities.

1.4.1 Service Integration

Service integration has been adapted as a major tool that allows the endeavor

to reach its maturity to integrate between various organizations’ applications among

companions. The present market asks for as a rule is satisfied by incorporating

solicitations or services as an element. There are three key challenges at this level of

Integration. First, the Degree of coupling among them should be maintained whenever

a business partner wants to keep a tie up or merging with others. Second, the need for

business logics be positioned properly and should be maintained properly when

integrating. Third, the recovered logics should be integrated strongly as

interoperability issues are reached. It is indeed a difficult task for the developers to

recognize the whole services and detect a best way for integration of the services. So

it is required to build up an automated framework to incorporate the Web services

progressively as changes emerge. The goal of the proposed work is to make the

service integration process automated which enables organizations to easily exchange

their service logic added dynamically and accurately with their profitable network

partners by considering the service policies and Service Level Agreement (SLA).

7

1.4.2 Service Level Agreement (SLA)

A Service Level Agreement (SLA) is a kind of understanding that is made

between a service supplier and the end-customer; this describes the level of service

that the customer foresees from a service supplier. The motivation behind SLAs is

yield based which implies their motivation is especially to describe what the customer

will get. SLAs don't describe how the service itself is given or passed on. Figure 1.2

illustrates how the SLA of Internet Service Provider (ISP) will provide their customer

through a basic example of the services that it will provide.

 Figure 1.2: SLA of Internet Service Provider (ISP)

1.4.3 Business Policy

Business Policy characterizes the extent of an association inside which the

choices can be made by the individuals and the undertakings that can be done. It

allows the lower level management to take decisions for certain problems without

consulting the top level management all the time. They are the rules created by

association to represent their exercises. They characterize the constraints of the

choices that could be made and the goals that should be achieved by the organization.

While developing services, the developers also frame the policy of the organization

and the resource they hold. Once the policies are framed, care is taken in order to not

violate the policies at any point of time.

8

1.4.4 Business Policy Features

Business policies framed by an enterprise should hold the following features:

➢ Policy ought to be particular and unequivocal. It ought to be sure and

particular for an undertaking; if not the usage will wind up troublesome.

➢ Policy must be free from confusions. It ought to keep away from

utilization of languages and meanings. There ought to be no false

impressions in the policy.

➢ Policy must be sufficiently uniform for the subordinates to tail it.

➢ Policy ought to be proper for the satisfaction of the hierarchical objective.

➢ Policy ought to be straightforward and effectively comprehended by all in

the association

➢ Policy ought to be far reaching to make utilization of it in a wide range.

➢ Policy ought to be adaptable in activity/application.

➢ Policy ought to be steady so no vulnerabilities happen while settling on

choices with its rules.

Figure 1.3 illustrates the life cycle of a business policy framed for an

organization. The policy development is first initiated to develop new advancement of

organizations. Then they are properly developed using any of the policy specification

language and then they are sent for the approval and communicated with people in the

concern. The implementation phase is then done and the policies are deployed to make

decisions. Reviewer reviews the policies periodically to monitor the alterations done

and that the organization runs based on the framed policy. The proposed system tries

to detect these policies while integrating various services and checks that there are no

policy violations being made while integrating the services provided by various

service providers.

Figure 1.3: Life Cycle of a Business Policy

9

1.4.5 Challenges in Change Management Framework

The genuine research issue in Change Management in LCSs is not quite the

same as the ones in work process frameworks. This is a direct result of the distinction

in settings and suppositions that are discussed:

➢ LCSs need to guarantee the empowering of adaptable cooperation between

various business elements. They are fit for adjusting to the dynamic condition in a

fitting way. The change of the cooperation is relied upon to be visit by this nature

and needs a methodical help. Though, the association between various substances

of work process frameworks is generally inside an association. The condition that

the frameworks cooperate with is moderately "static". Changes on the portrayal

are dealt with as "exemptions" and for the most part performed physically.

➢ LCSs for the most part contract out their functionalities from free service

providers. No focal control component is available that could be utilized by a LCS

to screen and oversee changes. With regards to substances in work process

frameworks, they are inside an association. This empowers a brought together

way to deal with screen and deal with the changes.

1.5 Malicious / Fake Services

Web services give cross-stage and language independent access to information

and applications over the Internet. Web services follow some significant standards

such as SOAP, UDDI, and WSDL. With the assistance of these standards, the Web

services can progressively connect with each other. In this manner, they can execute

complex business shapes. Such interoperability drives a creating example to make

complex and esteem included Web services by fusing the present ones. Two issues

must be steered to enable Web service combination in the midst of a couple of free

Web service applications and service providers. A versatile Web service disclosure

methodology is basic for customers to pick the Web services that can ensure their

necessities and Quality of-service (QoS) essentials. Furthermore, an appropriate care

to perceive that the services being incorporated isn't a phony one. Thus notoriety

service component is important to separate service providers in view of their notoriety

in giving reliable Web service.

10

1.5.1 Malicious Behaviour

Among quite a lot of threats that can occur in Web service integration; the

main kind of danger is the least complex type of risk which is the Malicious Services.

These threats are frequently seen inside Web service integration situations. Noxious

service providers consistently advance that they would give services that match

customers' favorable position. They get distinctive services into the integration

structure while genuine solicitations can't be reacted. The secured services may not be

unsafe, but rather at times, they could infuse viruses or Trojan horses that are

equipped for overwhelming basic harm to the end client.

1.5.2 Distributing Dishonest Opinions

As the service show allows its clients to contribute their transaction

experiences with a service provider and create proposals, some malicious clients may

exploit this trademark. They give the wrong impression about less educated looks into

think about false data about different providers. Moreover, it might lead clients to

pick less mindful providers, perhaps malicious ones, and get undesirable services

which might be injurious. The other variety of such misconduct is boosting

inconsistent providers' reputation unreasonably, potentially as a piece of conspiracy,

to trap purchasers into unquestioning deceitful providers. For this situation, it is

conceivable that purchasers confront brutal issues in utilizing such fake services.

1.6 Finite State Machine

Finite State machines are crude however more intense and helpful

computational model for equipment and certain sorts of programming. Finite state

machines can also be called as Finite State Automata.

1.6.1 Structure of FSM

A well known form of Finite State Machine is the Turing Machine. Turing

machine consists of state controller with a versatile read/compose head and an

unbounded stockpiling tape. The input for a Turing Machine is a set of symbols and

those symbols that are written by the tape could be the output as shown in Figure 1.4.

There are several applications of Turing machines which include simple form of

pattern matching and for modeling several sequential logic circuits and many device

controllers.

11

Figure 1.4: Finite Control of a Turing Machine

1.6.2 Working of Turing Machines

Turing machines can be simulated in variety of types based on the tapes in the

Turing machine and the heads in it. By these varieties they are classified as follows:

a. One dimensional tape TM

b. Two dimensional Tape TM

c. Multi Tape TM

d. Multi Head TM

For the proposed work, a Multi-tape and multi-head Turing machines are

simulated. Multi-tape Turing Machines have multiple tapes in which each tape is

accessed with a separate tape head. Each tape head is capable of moving

independently of the other heads. The input symbols are at tape 1 initially and the

other tapes are kept blank. The machine then reads consecutive symbols under its

heads and the TM prints a symbol on each tape and moves its heads further as

depicted in Figure 1.5.

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B,

ä, q0, F) where,

• Q – ser of finite set states

• X – alphabet tape

• B - blank symbol

• ä - relation between states and symbols where

δ: Q × X
k
 → Q × (X × {Left_shift, Right_shift, No_shift })

k
 Where there is k number

of tapes.

12

• q0 - initial state

• F - set of final states



Figure1.5: Finite Control of a multi- tape Turing Machine

For the research work, a multi-tape Turing Machine has been constructed that

could detect the business policies of different services framed by different service

providers and to detect the policy violations while integrating the services.

1.6.3 Applications of Turing Machines

A large number of practical applications are available for Turing Machines.

Some important applications are as follows:

Check Decidability

On the off chance that a Turing Machine can't take care of an issue in

countable time, at that point it can be reasoned that it can't be solved utilizing any

algorithm. The issue is so not decidable. If there should arise an occurrence of a

choice issue if the TM ends in countable time for all finite length inputs, at that point

the problem is solvable in countable time.

13

Classify Problem

TM helps in the grouping of decidable problem into classes of Polynomial

Hierarchy. In the event that it is discovered that the problem is decidable, at that point

the objective turns into the subject of how effectively we can comprehend it. The

productivity can be ascertained in number of steps, additional space and length of the

code/size of the FSM.

Design and Implement Algorithm for Practical Machines

TM transmits the possibility of an algorithm in other constant machines. After

the effective finish of issue characterization and decidability, the pragmatic gadgets

and PCs can be utilized to outline and execute an algorithm.

1.6.4 Challenges in Construction of Turing Machine

All mathematical yet not just mathematical languages have restricted

expressiveness. This data achieves a few essential choices. For any language, there

dependably exist certain problems that can't be spoken to utilizing it. The Second

actuality is that there dependably exist problems identifying with inquiries regarding

the matter of these problems can be planned in a language however the language is

excessively feeble, making it impossible to express the coveted answer. Indeed, even

the exactness of the appropriate response that is gotten is deficient for the few viable

needs. Next is at any given moment of time for each current problem there exist a

finite number of languages that can be utilized to assault the problem. Finally, the

most effective language among them characterizes computational breaking points for

the problem that exist both for physical and nonexistent Turing machines. In both the

cases a maximal finite or a maximal infinite number of emphases are considered.

1.7 Scope of the research

Several challenges arise when trying to compose the long term composed

services. The system extracts the Policies from the already existing Long Term

Composed Services (LCSs). These services may have different policies at a different

level of abstraction by constructing two multi-tape Turing Machines. Then the system

tries to detect the Policy Violations that occur in the services of the two LCSs at

various levels such as Rule level, Function level, Parameter level and Dependency

level using the Multi-Tape Turing Machines. A state transition table is drawn to note

the violated policies. When a change request arises, policy violation is detected and

14

the measurement of the reputation of services through RM is done by considering

malicious intentions. This phase is operated only if a policy violation is detected.

Reputation measurement is done for Ballot Stuff Attack and Sybil attack.

To Handle Multiple Change Request dynamically and to completely automate

the system a multi-agent environment is created. OWL Methodologies are adopted to

handle-domain specific change request emerging from the users of such LCSs.

1.8 Organisation of the Thesis

The objective of this thesis is to develop a collaborative framework for

dynamic service integration by policy violation detection of integrating services

without fake services and to automate the whole system by using Finite State

Machine. The rest of the chapters are organized as follows:

Chapter 2 presents the literature survey regarding the need for Web Service

Integration and the tools and techniques for Web services integration. It also gives a

brief overview of Change Management Framework. This chapter also summarizes the

Business policies that exist and the need to consider Business Policies while

integrating the Web services.

Chapter 3 presents an overall idea of the proposed work. Besides the research

objectives, challenges in developing the system are also briefed. This chapter also

discusses the Experimental Setup to develop the proposed system and the evaluation

metrics used to evaluate the performance of the proposed work.

Chapter 4 deals with the construction of Turing Machines. The advantage of

using Turing machines for Web service integration is summarized in this chapter. The

results proved that policies detected via Turing machines are more accurate and less

prone to error.

Chapter 5 briefly discusses the construction of Alternating Turing Machine to

handle multiple change requests coming into the system. ATM is employed to detect

the policy points with acceptance and rejection status and then the policy detection

points are obtained in terms of Business, Function, and Parameter. Domain specific

knowledge is also given to the system using Ontology. A comparison is also made to

15

show that the accuracy of Web service integration is more powerful when ATM is

employed.

The Reputation Measurement System is introduced in chapter 6 to calculate

the malicious and fake services advertised by some service providers. The system

works by considering the malicious intentions such as ballot-stuffing attack and fake

identities which are intentionally performed to credit the service by giving inaccurate

credit labels. The results show that the computational time increases if the Reputation

Measurement is done prior to Web service integration.

In chapter 7, a collaborative framework for dynamic Web service integration

is introduced. The main functionality of this framework is to perform Dependency

analysis between the integrating services. A new Turing machine is constructed to

perform pattern matching of the patterns that are extracted from the integrating

services. Similarity measure is likewise furnished alongside Output Generative Power

(OGP). Similarity measure gives the quantity of administration requests dealt with

properly when integration with no exceptions.

A case study of Travel Agency LCS (Composite Web Service) is made in

Chapter 8 to prove the efficiency of the research. A Travel LCS is composed with

other LCSs, namely, the Hotel service and the Vehicle Service. Results prove that the

integrated services are free from business policy violations.

Chapter 9 concludes the thesis by highlighting the findings that assisted to

accomplish the objectives. A summary of research contribution and the scope for

future improvement are also incorporated in this chapter.



16

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

An exhaustive literature has been collected relating to the proposed work and

the literature has been thoroughly evaluated and reviewed critically. The review

includes the challenges in Change Management Framework. It has been identified

that whenever a need for change management occurs, a thorough care for policies

framed by different service providers should be given. Proper study has been made

for the methodologies adopted to understand the business policies and the techniques

for identifying the business policy violations and the need for dynamic Web service

integration. The research challenges from the extract of the literature review have

been presented at the end of this chapter.

2.2 Importance of Business Policies in Web Service Integration

Whenever there is a need for change in the already existing Web services,

there arises a need to integrate Web services that could be given as a value-added

service to the customers. Every service provider and the services provided by them

have its own business policies framed during development. The term ‘business

policy’ refers to the process and procedures of an organization. It is important for a

business owner to carefully deal with the business policies which forms the specific

methods for running the day-to-day activities of an organization. Policies are defined

with care and policies are specific for a specific business. When Web services are

considered, business policies should be dealt very carefully. These business policies

are framed in the Services Level Agreement (SLA). A clear study is made to

understand the importance of business policies and the effects of business policy

volitions in Web service integration.

It is essential for service providers to keep track of the SLA violations to be

detected properly to enhance the business process and customer satisfaction. Philipp

Leitner (Philipp Leitner et al. 2010) proposed an approach for predicting the Service

Level Agreement (SLA) at runtime. The measured facts i.e., the QoS parameters and

their values are taken as inputs for the proposed system. The model also uses a

machine-learning regression technique for SLA violation detection.

17

Service integration and composition system should be able to detect even the

Web service failures and performance degradations due to SLA violations. A solution

for dynamic policy violation was proposed by Adina (Adina Mosicat et al. 2011). A

runtime monitoring system for degradation detection, diagnostics and repair of service

composition was developed. The solution uses a lightweight monitoring technique

that is compatible with any standard.

QoS parameters are usually included in the Service Level Agreements of each

service. These parameters may also be useful for detecting the policy violations of the

composing services. A general monitoring system and reference model for analysis

was proposed by C. Muller (C. Muller et al. 2012) that could notify the clients with

the violations and the causes for violations in an easy-to-understand manner. Li (Li et

al. 2012) had exhibited a dynamic policy and charging control (PCC) system. This

structure controls and upgrade network utilization and to give network data measure

assets to their supporter. It additionally works as per the client's continuous profile

and membership data of the client and to stay away from or limit administrator's

network congestion. It likewise helps in optimizing the administrator's current and

potential network speculation. The creators predicated the key estimation of

streamlining that depended on the concurrent skill of the rating and charging

capacities on knowledge benefit streams and the endorser account profile and

lifecycle.

SLA compliance is most important for the providers because the violation of

the policies in those SLA could lead to customer dissatisfaction. Therefore a system

that could predict the violations in prior was proposed by Philippe (Philippe Leitner et

al. 2013). This system allows the operators to take timely remedial actions. The

system is also designed to detect violations before they occur. Instance-level

prediction and forecasting are the two techniques proposed by the authors. An

incremental SLA violation recognition framework with time affect investigation was

proposed by Azlan Ismail (Azlan Ismail et al. 2013) to automatically produce an

effect locale in light of negative time affect condition. In light of the assessments

made by the analysts, the approach could diminish the measure of service change

inside significant recuperation execution time.

18

A Petri Net-Based Model proposed by Yanhua Du (Yanhua Du et al. 2014)

addressed the issue of detection of temporal violations in a holistic manner. The

proposed work not only compares the Web services by adding a prediction net to

predict message mismatch but also checks the compatibility of the composing

services using a modular-timed state graph.

The traditional model of service composition tries to improve customer

satisfaction by improving the QoS parameters. But mere improving the QoS

parameters alone does not lead to an improved service composition. Therefore an On-

Demand strategy for quality improvement is proposed by Quanwang Wu (Quanwang

Wu et al. 2014). A service broker is introduced in the strategy. The third party broker

collects the services from the service providers and follows the SLA of each service

and picks up the best services for composition.

A SLA of an association incorporates an arrangement of terms that guarantee

to ensure that it must satisfy amid the provisioning of administration to the clients and

keeping in mind that utilization of the services. The violation of such certifications

will prompt use of potential punishments. Therefore it is important to give surety that

the Sevice Level Agreement meets its expectations. Marcos Palacios (Marcos

Palacios et al. 2015) have proposed a practical approach to test SLA-aware SBAs.

This approach identified the test requirements that represented the situations that are

most appropriate to be tested. To address this issue, the authors have defined an

evaluation technique that is a four values logic which evaluated both the individual

guarantee terms and the logical relationships between them.

Table 2.1 represents the detailed summary of the various research works

addressing business policies and the importance of business policy violation

detection. Different aspects have been addressed by the researches as shown in the

Table.

From Table 2.1, it is evident that research contributions have described

various techniques to identify the Business Policies and to further keep track of the

business policy violations for proper Web service composition and integration.

Further the literature has been narrowed to identify the various aspects to be

considered to meet the need for a change in business process and to integrate the Web

services without policy violations.

19

Table 2.1: Contributions towards SLA violation (Business policy violation)

Researchers Contributions Addressed Aspects

Philipp Leitner et al.

2010.

The model uses a machine

learning regression technique for

SLA violation detection.

Business Policy Detection, Dynamic

Integration.

Adina Mosicat et al.

2011.

A runtime monitoring system for

degradation detection,

diagnostics and repair of service

composition was developed.

Service Composition, Policy

Violation Monitoring.

C.Muller et al. 2012. Developed a system that notifies

the clients with the violations

and the causes for violations in

an easy to understand manner.

Policy Detection, Violation

Detection.

Li et al. 2012. A dynamic policy control and

charging control (PCC) system

that controls and upgrade

organize utilization. It

additionally gave arrange data

measure belonging to supporters.

Dynamic Policy Violation

Detection, Dynamic Integration.

Philippe Leitner et al.

2013.

This system allows the operators

to take timely remedial actions

when a policy violation is

detected.

Policy Detection, Completely

Automated.

Azlan Ismail et al.

2013.

Based on the evaluations made

by the researchers, the approach

could reduce the amount of

service change within

considerable recovery execution

time.

Static Policy Violation Detection.

Yanhua Du et al. 2014. Looks at the Web services by

adding an expectation net to

anticipate message confound and

furthermore checks the

similarity of the composing

services utilizing a measured

planned state chart.

Service composition, Static Policy

Detection.

Quanwang Wu et al.

2014.

A service broker is introduced to

check the compatibility of SLA

of each service and pick up the

best services for composition.

Completely Automated, Business

Policy Detection, Dynamic

Integration.

 Marcos Palacios et al.

2015.

Four-esteemed logic that permits

assessing both the individual

assurance terms and their logical

connections.

Business Logic, Dynamic

Composition.

20

2.3 Methodologies for Long Term Web Service Composition

Semantic Web and Web Services are the developing advancements for the

future age Web applications. Ontology is characterized as the building squares of

numerous Web applications. The Ontology Web Language for Services (OWL-S) is a

most helpful arrangement of mark-up language that is built for depicting the

properties and capacities of Web services in a reasonable and PC interpretable way.

OWL-S depends on Ontologies of items and the concepts identified with a domain

that is characterized utilizing the Ontology Web Language (OWL). The main

objective of Web service is to provide a distributed computation by automatic

discovery, composition and execution of service. But these technologies do not

include explicit description of the functionalities about the domain. Hence ontology

provides a better solution for this problem.

The retrieval of specific Web service can be done by Web Service Modeling

Ontology (WSMO) where the ontologies are formed to organize the services so that

Web service matching is performed through the reasoning approach Pierluigi

(Pierluigi et al. 2009). Keeping in mind the end goal to join information from various

APIs and information sources, we require a paste code that is regularly not shared to

all and can't be reused. (Sebastian Speiser et al. 2011) have proposed Linked Data

Services (LIDS), a general, formalized way to deal with coordinate information

furnishing services with Linked Data. This is exceptionally a famous system for

information distributing that encourages information integration and permits

decentralized information distributing. The creators have introduced interchanges for

benefit get to interfaces that work on Linked Data standards, and have proposed

theoretical paltry administration portrayal framework. Creators have created

calculations that make utilization of LIDS portrayals to make interfaces automatically

amongst services and existing informational indexes. Jun (Jun Shen et al. 2010)

developed an algorithm to perform a fine grained match of the service profiles at all

levels of service composition.

An ontology-based framework proposed by Kehagias (Kehagias et al. 2010) is

a system which works to collect content from various Web services about their

functionalities. It is a service alignment tool which enables the service providers to

map their services according to the present domain ontology. Ontologies can also be a

helpful tool to judge the overall composition of Web services. Freddy (Freddy et al.

21

2011) showed specific interest in combining semantic and non-functional criteria such

as QoS to evaluate the composed services. The system measures the semantic quality

with a QoS metric to rank and optimize the Web service composition.

An important component of Web service composition is discovery of relevant

services the user requires. A system proposed by Paulraj (Paulraj et al. 2012) uses an

algorithm to perform a fine grained match of the service profiles at all levels of

service composition. It is a framework for business processes integration, which can

be applied to Web services defined in OWL-S. Information contained in the service

profile is sufficient for composite semantic Web services discovery. The authors have

also proposed a solution for composite semantic Web services composition. An

integrated system called PORSCE II was proposed by Ouransa (Ouransa et al. 2013)

which performs automatic Web service composition with the help of AI techniques.

The system provides an improved composite service by obtaining the semantic

description obtained by a domain-independent planning system.

To advance the process of integration, Somluck (Somluck L-Ongsri et al.

2015) proposed that it is important to improve the quality of demonstrating

formalisms and to ensure that these varieties of extra communicative formalisms

continue to be semantically complete. The authors state that theoretical demonstrating

procedures would work semantically better-off if with the help of intelligence to

prompt the semantics of a requester on concrete presentation scenarios. Here the

author have examined that the incorporation of ontologies into theoretical

demonstrating methodologies would work better by giving the OntoER model,

OntoORM and OntoUML class diagram.

The service oriented architecture is an independent and standardized self

describing unit made of several services. A new architecture was proposed by Son

(Son et al. 2014) for building an automation system adapting SOA paradigm with

device profiles for the Web services. In this system, context information is collected,

processed and sent to the composition engine to coordinate with appropriate devices

and its adaptable services in order to give a more value- added service based on the

context, composition plan and pre-defined policy rules.

Table 2.2 represents the detailed summary about the various research works

carried out by the researchers to address the issue of Web service integration with

domain knowledge.

22

Table 2.2: Contributions towards Methodology for Web service composition

Researchers Contributions Addressed Aspects

Pierluigi et al. 2009. Web Service Modeling

Ontology (WSMO) where

the ontologies are formed to

organize the services.

Domain Knowledge, Service

Integration.

Kehagias et al. 2010. Service alignment tool which

enables the service providers

to map their services

according to the present

domain ontology

Ontology, Service

Alignment.

Freddy et al. 2011.

Semantic and non-functional

criteria such as QoS to

evaluate the composed

services.

Service Composition,

Semantic Knowledge.

Sebastian Speiser et al. 2011. Formalized approach for

integrating data-providing

services with Linked Data.

Service Integration, Linked

Data Knowledge.

Jun Shen et al. 2010. Algorithm to perform a fine

grained match of the service

profiles at all levels of

service composition.

Service Composition,

Dynamic Integration.

Paulraj et al. 2012. Proposed a business process

integration framework which

is applied to Web services

that are defined in OWL-S.

Web Ontology, Dynamic

Integration.

Ouransa et al. 2013. Automatic Web service

composition by AI

techniques.

Completely Automated,

Business Policy Detection,

Dynamic Integration.

Somluck L-Ongsri et al.

2015.

The procedures of

consolidating ontologies into

hypothetical approachs,

giving the OntoER model,

OntoORM and OntoUML

class chart.

Domain Knowledge, OWL

Methodologies.

Son et al. 2014. Automation system adapting

SOA paradigm with device

profiles for the Web services.

Partially automated service

Integration.

23

Table 2.2 summarizes the different aspects in which the ontology is used for

Web service composition. Several research contributions have been made to enhance

the degree of Web service integration with domain knowledge. Further the literature

has been narrowed to identify the various aspects to be considered to meet the need

for a change in business process and to enhance the process of integration in an

effective manner.

2.4 Approaches to Change Management Framework

Change Management is the caretaker of one’s controlled environment. It is

stimulated to protect everything that could impact services. An optimized change

management process usually results in a fewer problems and also does a huge

improvement on processing the responses to requests for services. In today’s

competitive environment, it is very important to easily and appropriately handle the

changes. The balance between flexibility and stability should always be maintained

by the business people. Therefore, it is necessary for the IT organizations to make

use of the best practices for the entire, end-to-end, change management life cycle.

The IT organizations that hold the closely controlled approach to Change

Management will only be able to move their operational alertness essential for

service fineness.

“A novel engineering for Change Management Framework” proposed by

Wen-Hsiung Wu (Wu et al. 2012) supported Configuration Management II (CMII)

standards and industrial applications. The framework considered the accumulation of

full-track or quick track procedures to fathom the basic item common sense or quality

issues among a particular exchange. The adequacy of the change management

framework proposed was through the utilization of the framework for a situation

investigation of a genuine Taiwan motorcycle maker. At long last they displayed an

execution assessment plot in view of the consequences of that framework and

furthermore talked about the cost of its social control tips and suggestions.

Matthias Weske (Matthias Weske et al. 2012) remarked that all communities

associated with the business need a typical comprehension of the disparate parts of

business process management. A complete business process life cycle is detailed in

this work. It starts from the modeling phase to the process performance phase. The

significance of change and considering every single diverse partner included is

24

additionally included here. Beginning with an introduction of general establishments

and deliberation models, the work clarifies the ideas like process orchestrations and

movements. The process properties and information conditions were also addressed

here. As a final point, traditional and advanced business process management

architecture was dealt that covers the imperative angles, for example, work process

management frameworks, benefit situated designs, and information driven

methodologies. The standards like SOAP, WSDL and BEPL are also brought into

picture to fit the proposed framework.

A framework for effectively managing changes in Long-term Composed

Services (LCSs) was presented by Xumin Liu (Xumin Liu et al. 2010). As it is normal

that LCSs outsource their handiness from self-overseeing other Web service

providers, there is a need to pick the best Web service substitutions when changes are

provoked at the LCS level. Along these lines a framework has been proposed where

managing changes in LCSs is modeled as a twofold service question change process.

In the principle organize; reputation is used as a trust framework. In the second stage,

the important necessities are addressed furthermore confine the game plan of

reputable Web services.

A framework for change management was proposed by Salman Akram

(Salman Akram et al. 2010) which maintained taxonomy for change. A bottom-up

approach for change management with a combination of ordinary petri nets and

reconfigurable petri nets were developed. To address the change management issues

in Long Term Composed Services(LCSs), a system called Evolution of long term

composed services (Ev-LCS) was proposed by Xumin Liu (Xumin Liu et al. 2013)

which tended to a dynamic cooperation between independent Web services that by

large give an esteem included service. A prototype system was simulated to

demonstrate the effectiveness of the system.

A Web Service Change Management Language (SCML) to manage the top-

down changes in LCSs was developed by Xumin Liu (Xumin Liu et al. 2014). In light

of the scientific categorization, an arrangement of progress administrators was

characterized that could determine distinctive sorts of changes formally. Aminesh

(Aminesh Chathurvedi 2014) performed a regression test for the services that are

25

composed for Long term Composition. An automated system was developed to

manage the changes that arise in a dynamic environment. Trust is an important

property in the process of composition of various services. A Trust Analysis model

was developed by Shanshan Qui (Shanshan Qui et al. 2012) to analyze the trust of

operations performed on composite services. Hayes (J. Hayes et al. 2014) in his

research gave a clear idea of the theory and the practices to be followed in handling

change management process. His complete study gives the tools that can automate the

whole system.

Programming frameworks are turning into a vital module of businesses in the

aggressive world today. The change usually arise when a development of new

features to be incorporated in the existing software. A Software Requirement Change

Management framework proposed by Arif Ali Khan (Arif Ali Khan et al. 2012) gives

a clear picture of the change management done for geographically distributed

software systems. Table 2.1 represents the detailed summary about the various

research works addressing change management process.

A mindful versatile Web service arrangement system is introduced by Zhiying

(Zhiying Cao et al. 2015). In this system, BPEL was utilized as an instrument to

portray Web service arrangement process. Setting services were characterized to

support setting mindfulness Agent innovation was taken as a helping apparatus to

empower setting service to effectively see and process settings of Web service and

Web service creation for an entire change administration.

Table 2.3 depicts the contributions of researchers on the process of Change

Management Framework and the mechanisms adapted for managing such change.

The Table also describes the different aspects that are addressed by the researchers.

Table 2.3: Contributions towards Change Management process

Researchers Contributions Addressed Aspects

Wu et al. 2012. This structure considered the

collection of full-track or quick

track procedures to unravel the

basic item common sense or

quality issues in a particular

exchange.

Structured Change

Management.

Matthias Weske et al.

2012.

A complete business process life

cycle starting from modeling

phase to process enactment phase

is detailed in this work.

Completely Automated system,

Business Process.

Xumin Liu et al. 2010. A system has been proposed

where overseeing changes in

Domain Knowledge, Dynamic

Integration.

26

LCSs is demonstrated as a double

service query enhancement

process.

Salman Akram et al.

2010.

A bottom-up approach for change

management with a combination

of ordinary petrinets and

reconfigurable petrinets.

Service Integration on errors

and Exception.

Xumin Liu et al. 2013.

Dynamic coordinated effort was

started between self-ruling Web

services that could on the whole

give an esteem added service to

its clients.

Dynamic Service Integration,

Completely Automated.

Xumin Liu et al. 2014. A Web Service Change

Management Language (SCML)

was proposed to deal with the

top-down changes in LCSs.

Dynamic Service Integration,

Top-Down approach.

Aminesh Chathurvedi

et al. 2014.

Gives an insight on the

computation of changes and an

algorithm for construction of

reduced regression test suite for

AWSCM.

Static Service Integration.

Shanshan Qui et al.

2012

A Trust Impact Analysis display is

proposed to investigate the crash

of two sorts of improvement

activity performed on composite

services.

Trust Model, Service

Composition, Composite

Services.

J.Hayes et al. 2014. Gives the need and techniques to

address change management

process. Also talks about the

reflection of change management

process in organizational

practices.

Top-Down Service Integration.

Arif Ali Khan et al.

2012.

A Framework is proposed for

programming prerequisite change

administration (RCM) in

geologically circulated

programming frameworks. It

depicts the correspondence

dangers required amid RMC and

Global Software Development

(GSD).

Completely Automated, Domain

Knowledge.

Zhiying Cao et al. 2015. BPEL is utilized to clarify Web

service piece strategy and a sort of

extraordinary Web service called

the setting service.

Web service Integration.

From Table 2.3, it is clear that research contributions have described various

frameworks for change management in Long Term Composed Service composition.

Further, the literature has been narrowed to identify the various aspects to be

considered to meet the need for a change in business process.

27

2.5 Identification of Malicious Services

Web services that develop different associations and figuring stages are

generally made to make new service-situated applications all the more intensely. In

any case, some Web services may act vindictively. The crucial necessity is to

guarantee a productive system in prescribing solid services for clients. The

suggestions of Web service are useful for clients when at least two Web services have

the comparable activity however unique speed, throughput performance, etc. Hence,

the different Web service with similar functionality can be rated by using user

feedbacks. The reliability of the cumulative result of the feedback for commercial

benefit can be degraded by malicious feedback ratings. Malicious users can produce a

numerous malicious feedback ratings to threaten the reputation system of Web

services.

Distributed computing has taken a new paradigm with the advent of Web

services and Web service composition. Web services are used in a wide range of

business integration process. In today’s business competition an adequate security

should be provided to the Web service for Web services composition. A complete

survey has been made by Sumitha.T (Sumitha.T et al. 2011). The research focuses on

some important vulnerabilities and attacks on Web services and Web service

composition. Reputation is a method of trust mechanism followed for Web services to

measure its trust worthiness. This is usually calculated by using the feedback rating

by the users. A novel reputation measurement method is proposed by Wang (Wang et

al. 2011) that employs two phases in the process of reputation measurement. In the

first phase, the malicious ratings are detected by cumulative sum method. In the

second phase, Pearson correlation coefficient method is used for rating adjustment.

Experimental results show the efficiency of the system.

Selection of useful and accurate Web services for composition is a bottleneck

for every researcher in the field of Web service integration and composition. The Web

services can be selected based on the peer experience of the user. A system developed

by Zakiria (Zakiria et al. 2012) uses three components that could aid proper discovery

of accurate service. A composer, executer and monitor help in finding the relation

between user and the Web services and execute the process of composition. A

prototype was developed to show the efficiency of the system.

28

QoS value prediction is an important research area for Web service

composition. Selection of proper services and trustworthy services are always needed.

Weiwei (Weiwei et al. 2013) proposed QoS-mindful esteem forecast approach that

ascertains the notoriety of the client in view of their commitment esteem. Then the

process of rating is done to find the untrusted services. The work proposed by Szu-

Yin (Szu-Yin et al. 2014) is a dependable two stage Web service revelation

component in view of QoS and community oriented separating which finds the most

appropriate Web service. The system also solves the problem of incorrect QoS

information by identifying the QoS parameter provided by the Web services.

User preferences are the key factors for finding the top k data services that

could be composed to form a value added services. A new user-preference model

using fuzzy sets was developed by Karun Benouaret (Karun Benouaret et al. 2014).

The system matches the fuzzy constraints for the relevant services to those of the user

query. The matching degree of the service set is then ranked based on fuzzification of

parent domain name method. The authors have also introduced a new method for

increasing the diversity of returned top K compositions with high score. The profit

organizations which are using the service platform for their business growth will

gather information about the users from the social Websites but there exist two risks

as the privacy of the users and the fake identities Katharina (Katharina Krombholz et

al. 2014).

Another versatile separating method was proposed by Ing-Ray (Ing-Ray Chen

et al. 2015) to decide the most ideal approach to consolidate coordinate trust and

circuitous trust progressively. This limited joining time and trust estimation

inclination within the sight of noxious hubs that perform artful service and agreement

assaults. For adaptability, the creators exhibited a plan that utilized a limit restricted

hub that keeps trust data of a subset of hubs that are of intrigue and the framework

performs least calculation to refresh trust.

Table 2.4 summarizes the different contributions of the researchers on the

identification of Fake identities given by the services to decrease the functionality of

the long-term composition that is required for a change request.

29

Table 2.4 Contributions towards Identification of Malicious Services

Researchers Contributions Addressed Aspects

 Sumitha. T et al. 2011. Spotlights on some

imperative mischievous

activities and assaults on

Web services amid Web

service organization.

Reputation mechanism

 Wang et al. 2011. A novel reputation

measurement method with

two techniques; cumulative

sum method and Pearson

correlation coefficient

method.

Completely Automated,

Domain Knowledge,

Malicious Services

Zakiria et al. 2012. A composer, executer and

monitor help in finding the

relation between user and the

Web services.

Web service Integration

Weiwei et al. 2013. A new QoS aware approach

of value prediction that

calculates the reputation of

the user based on their

contribution value.

QoS prediction, Web Service

Integration

Szu-Yin et al. 2014. A two stage Trustworthy

Web service disclosure

component that depends on

QoS and communitarian

sifting procedure to find the

most reasonable Web

service.

Completely Automated,

Domain Knowledge,

Dynamic Integration

Karun Benouaret et al.

2014

A new user preference model

using fuzzy sets.

Fuzzy Sets for Trust

Management

Katharina Krombholz et

al. 2015.

Identified that there exists

two risks as the privacy of

the users and the fake

identities for composing

services.

Risk Identification, Service

Composition

Ing-Ray Chen et al. 2015. To combine direct trust and

indirect trust dynamically a

Filtering technique that could

minimize convergence time

to determine trust inference

prejudice in the presence of

malicious nodes.

Dynamic Detection, Malicious

Nodes

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ing-Ray%20Chen.QT.&newsearch=true

30

From table 2.4, it is revealed that many researchers have contributed on the

process of Identification of Malicious Services during change management in Long

Term Composed Service composition. Further the literature has been narrowed down

to identify various aspects to be considered to meet the need for integrating different

Web services to form a value added service.

2.6 Web Service Integration Techniques

Web services are applications that are accessible over the Internet to give

some sort of service that are either automatic or educational that are identified with

different applications. Web services are diverse shape Web applications somehow

like; they for the most part include application-to-application correspondence.

Likewise they are not planned to be gotten to by means of a Web browser. In a Web

service situation, customer applications can be composed in any dialect that backings

HTTP and SOAP. To transmit a message, a remote method call is activated to a Web

service, which processes on the message and returns a reaction back to the customer.

UIs are not made for Web services, it is for the most part up to the customer to

process info and show yield.

Eleni (Eleni Stroulia et al. 2013) proposed an Intelligent-Agent Architecture

for Flexible Service Integration on the Web. They for the most part gave the particular

dialect of the mix workflow and the intelligent astute agents that translate this dialect

at run time. The determination dialect utilized here is XML. They are additionally

actualizing the incorporation design through construction dialect. Assignment agents

and the wrapper agents are created, where errand agents build up the workflow for the

combination process and the wrapper agents go about as the delegate between the

undertaking agents and the current Web applications which comprise of the services

to be incorporated. They exchange the composition related info and yield to http

solicitations to the service side applications.

Web Service Technology and Service Oriented Architecture have gained

attention in recent years. When there arises a need for a new service request, the

change management framework does the task of integrating several Web services that

suit the user needs. Integration and composition are the key factors of change

management framework. Several researches have been carried out for efficient Web

service integration and composition. An A* algorithm was proposed by Mier (Mier et

31

al. 2012) to take care of the issue of semantic info and yield message structure

coordinating for Web service piece. The calculation is utilized to locate the

insignificant piece that fulfills the client ask. A dynamic optimization technique is

used to improve the performance of the search process.

Web service composition is an NP hard problem and one of the challenging

issues in Web service paradigm. A new combined Web service composition and

integration model was developed by Hassan (Hassan et al. 2012). Both Static and

Semantic Web service composition techniques were proposed by the authors. The

orchestration approach and the choreographic approach were discussed in detail.

A Service invocation mechanism which is event-driven was proposed by the

authors. A comparative analysis between all the proposed models is also done.

A dynamic Web service composition framework based on OWL-S and HTN

was proposed by Tang (Tang et al. 2013). The authors proposed a service integration

algorithm based on K-Means algorithm. A two stage service model is done. The HTN

planning approach is based on the service type of the service instance. A

representative state transformation approach was proposed by Hussain (Hussain et al.

2013) that uses a Uniform Resource Identifier (URI) and hyper links for service

access. An idea of RESTful service was developed by integrating Web service that

can satisfy the end user requirements. Most of the Web service composition methods

include semantic contents. Alex (Alex alevski et al. 2015) introduced the concept of

an extended logistics enterprise and to explore the software engineering issues

underlying the development of such complex systems.

Tristan (Tristan Glatard et al. 2008) proposed dynamic service coordination in

matrix foundation with the assistance of service wrapper which has a workflow motor

which performs mix utilizing 3 service systems - association, piece and substitution of

services. Despite the fact that methodologies have been viewed as, still system

similarity check (i.e. regardless of whether association or piece or lessening should be

possible on the asked for rationales) isn't made on rationales which may prompt

disgraceful incorporated rationale. Lu Liu (Lu Liu et al. 2012) outlined a service

joining framework by incorporating lower level services to shape the capacities. New

engineering is proposed for service joining where developments of abilities are

32

considered; as customers may change their prerequisites much of the time yet

scientific models were not utilized for automation.

Jiachen (Jiachen Hou et al. 2016) proposed another work process

administration framework to meet the necessities of dynamic business changes

utilizing service joining. The Analytic Hierarchy Process (AHP) approach makes a

reasonable depiction of the issue, supports group basic leadership and aides in

organizing which ventures asked for service logics can be separated. Thus the work

concentrates only till the discovery level. An intelligent multi agent system was

developed by Eleni (Eleni Stroulia et al. 2013) for coordinating Web construct

application services based with respect to an extensible incorporation particular

language. To interpret and execute integration specifications defined in the language,

a reflective intelligent agent was applied.

Thirumaran (Thirumaran et al. 2015) had proposed a framework for change

collision analysis for the Long term composed services with the following features.

The framework made the business people implement by themselves to implement the

changes by means of their analysts. The cost of the framework was reduced by

eliminating the need for the IT developers once after the services relating to the

application was developed and delivered by them. After ensuring the efficient

incorporation of the changes, finite state automata was used by them to verify the

compatibilities made during the runtime, change assessment, and probabilistic cell

machine was utilized to affect examination and expectation. They demonstrated that

the learning picked up by the experts over the service logics and the consolidations of

changes were expanded by methods for the likelihood measures and in addition the

episode coordinating.

Table 2.5 illustrates the contribution of the researchers as to various tools and

techniques used for Web services composition and integration. The researchers have

addressed the various aspects of Web service composition when a change request

arises.

33

Table 2.5 Contributions towards Web Service Integration and Composition

Researchers Contributions Addressed Aspects

Mier et al. 2012. A dynamic optimization technique

is used to improve the performance

of the search process.

Completely Automated, Domain

Knowledge.

Hassan et al. 2012. Both Static and Semantic Web

Service Composition techniques

were proposed.

Domain Knowledge, Web Service

Composition.

Tang et al. 2013. OWL-S and HTN Planning - A

dynamic Web service composition

framework.

OWL Methodologies.

Hussain et al. 2013. An idea of RESTful service was

developed by integrating Web

service that can satisfy the end user

requirements.

Dynamic Web Service Integration.

Alex Talevski et al.

2015.

Made a case study on the concept

of an extended logistics enterprise.

Also made a study to explore the

software engineering issues that are

fundamental in the development of

such complex systems.

Concept understanding, OWL.

Tristan Glatard et

al. 2008.

Dynamic service reconciliation in

network framework with the

assistance of service wrapper which

has a work process motor which

performs incorporation utilizing 3

service systems - association,

organization and diminishment of

services.

Dynamic Service Integration.

Lu Liu et al. 2012. Planned a service coordination

framework by incorporating lower

level services to shape the

capacities.

Dynamic Web Service

Composition.

Jiachen Hou et al.

2016.

New work process administration

framework to meet the necessities

of dynamic business changes

utilizing service mix with Analytic

Hierarchy Process (AHP) approach.

Domain Knowledge, Malicious

Services, Dynamic Integration.

Eleni Stroulia et al.

2013.

An extensible integration-

specification language that is used

for integrating Web based

application services.

Domain Knowledge, Dynamic

Integration.

Thirumaran et al.

2015.

The cost of the framework was

reduced by eliminating the need for

the IT developers once after the

services relating to the application

was developed and delivered by

them.

Business Policy Detection.

Ying Huang et al.

2015.

Knowledge Agent Architecture for

adaptable Service Integration on
the Web.

Business Policy Detection, Domain

Knowledge, Dynamic Integration.

34

Table 2.5 shows that many researchers have taken place to bring a value-

added service by integrating several services in the Change Management Framework.

Even though most of the Web services are built using SOAP and WSDL, the scaling

of those services would be difficult with the absence of certain degree of automation.

The retrieval of specific Web service can be done by Web service Modeling Ontology

(WSMO) where the Ontologies are formed to organize the services so that Web

service matching is performed through the reasoning approach. The services offered

by the organization through the specific Web portal can be added or replaced without

the need to change the entire implementation of the developed system.

2.7 Approaches to Finite State Machine

State Machines (FSMs) are mathematical formalism for depicting forms with

a limited number of conceivable states and successive state advances. Finite state

machines are used for various applications in many fields. Whenever there are state

transitions involved in the system, finite machines come into picture. Many research

works have been carried out to show the importance of Finite Stare Machines.

Deepak (Deepak Chenthat et al. 2010) have proposed FSM-based modeling scheme

for Web service specifications. The authors have shown employments of FSM (Finite

State Machine) based models being developed of Web services and furthermore have

built up an instrument HUMSAT to show service particular in FSM and to produce

executable codes in BPEL and WSDL.

Sung (Sung-Shik et al. 2012) have introduced a compositional development of

Web Services, utilizing Reo and Constraint Automata as the principle "stick" fixings.

Reo is a graphical and exogenous coordination language in view of channels. Creators

have proposed a structure that, taking as information the behavioral portrayal of

services (as Constraint Automata), their WSDL interfaces, and the depiction of their

collaboration in Reo, produces all the essential Java code to arrange the services one

after the other.

A standout amongst the most well known coordination languages for Web

services synthesis is Web Services Business Process Execution Language (WS-

BPEL). Despite the fact that the taking an interest free service may work accurately, a

few unexpected issues might happen amid execution of composite Web service. It is

normally hard to distinguish such blames and spread on it. Ching (Ching-Seh Wu et

35

al. 2013) display a method of Model-Based Testing (MBT) to improve testing of

cooperations among the Web services. The method joins Extended Finite State

Machine (EFSM) and UML grouping outline to create a test display, called EFSM-

SeTM. Creators have additionally characterized different scope criteria to produce

legitimate test ways from EFSM-SeTM demonstrate for a superior test scope of every

single conceivable situation.

Examination of the consistence of a business procedure execution as for an

arrangement of controls is a huge issue in a few settings. To defeat this confinement

(Riccardo De Masellis et al. 2014) have introduced a novel checking approach that

tracks floods of process occasions (that maybe convey information) and confirms

whether the procedure execution is passive with an arrangement of information

mindful business requirements. These imperatives not just allude to the transient

development of occasions, yet additionally to the fleeting advancement of

information. The system depends on the formal detail of business imperatives as far

as first-arrange direct fleeting logic rules. On process, these rules are converted into

limited state automata for powerfully thinking on incomplete and advancing

execution follows.

Another approach for Web service show that isolates service practices into

operational and control practices has been proposed by (Quan Z.Sheng at al. 2014).

The association of operational and control practices at runtime is activated by

conversational messages. The creators have proposed a mechanized service

confirmation approach in light of emblematic model checking utilizing FSM. The

proposed approach extricates the checking properties utilizing fleeting logic recipes

and from control practices. These recipes consequently confirm the properties in

operational practices utilizing the NuSMV display checker. The approach introduced

in this work has been executed utilizing various best in class innovations.

Table 2.6 gives the contributions of several researchers on the use of Finite

State Machines for Web services. The use of FSM in many aspects shows that it plays

an important role in making any system an automated one.

36

Table 2.6 Contributions towards FSM in Web Services

Researchers Contributions Addressed Aspects

Deepak Chenthat et

al. 2010.

FSM-based modeling scheme for

Web service specifications.

Completely Automated.

Sung-Shik et

al.2012.

A system that takes as info, the

behavioral depiction of services

(as Constraint Automata), their

WSDL interfaces, and the

portrayal of their cooperation.

Web Service Integration,

Completely Automated.

Ching-Seh Wu et al.

2013.

A strategy of Model-Based

Testing (MBT) to improve

testing of associations among the

Web services.

Testing Tools, Web Service

Integration, Completely

Automated.

Riccardo De

Masellis et al.2014.

Formal particular of business

limitations as far as first-arrange

straight transient logic rules.

Formal Representation.

Quan Z.Sheng et al.

2014.

An approach that concentrates

the checking properties, as

worldly logic equations, from

control practices, and naturally

confirms the properties.

Formal Specifications.

Table 2.6 shows that contributions have been made by several researchers to

use the Finite State Machine for the purpose of Automation. We extend the research

to automate the process of Business Policy Extraction using FSM.

2.8 Comparative Analysis of Existing Research

The following section briefs the comparative analysis of the research works

carried out by the researchers towards the Web service integration with policy

detection and identification of fake identities of the Web services.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ching-Seh%20Wu.QT.&newsearch=true
https://dl.acm.org/author_page.cfm?id=81486655029&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81486655029&coll=DL&dl=ACM&trk=0
https://www.sciencedirect.com/science/article/pii/S0020025512006093#!

37

Table 2.7 Comparative Analysis of Existing Research

Contributors

Aspects of Research in terms of Automation and Domain

Knowledge with Policy Detection

Completely

Automated

Business

Policy

Detection

Domain

Knowledge

Identification of

Malicious

Services

Dynamic

Integration

Xumin Liu et al. 2010

✓

✓

Arif Ali Khan et al.

2010

✓

✓

Philipp Leitner et al.

2010

✓

✓

Philippe Leitner et al.

2013

✓

✓

Quanwang Wu et al.

2014

✓

✓

✓

Ouransa et al. 2013

✓

✓

✓

Wang et al. 2011

✓

✓

✓

Szu-Yin et al. 2014

✓

✓

✓

Mier et al. 2012

✓

✓

Jiachen Hou et al. 2016

✓

✓

✓

Eleni Stroulia et al. 2013

✓

✓

Ying Huang et al. 2015

✓

✓

✓

2.9 Limitations of Existing Research

Organizations utilize different specialized strategies to share the data and

assets between the heterogeneous frameworks. Among the different techniques

available, the Web Services are the most ordinarily utilized framework to share

38

administrations which are more adaptable and a successful answer for the

undertaking community oriented business frameworks. Administration

reconciliation is the procedure to empower the associations to advance

incorporation development between various endeavors. Additionally an

undertaking joint effort framework stage takes the general supervision on all data

accomplishments. The collaboration process is responsible for the registration of

different enterprise resources and also for checking the database present in the

system, information sharing and exchanging data by releasing certain information.

The present market situation isn't with incorporating applications or Web service

overall yet to soak to pull out fundamental bit of logic from the whole service. This

develops an entire administration by coordinating these uncovered logics.

Incorporation at this level has numerous difficulties. Expected logic to determine

the service integration request for must be situated between the edgy services of

different accomplices.

Found service logic must be separated and examined with its needy parts,

and after that it must be incorporated in a legitimate mode. In addition, openness

level to use the found logic must be confirmed before going into the incorporation

procedure. In spite of the fact that interest for dynamic service coordination

develops high and furthermore has numerous focal points, for example, business

benefit mechanization, reusability, business readiness, and so on, these issues

make it minor.

In the related works, different approaches were provided for service

integration and its workflow. The greater part of the proposed thoughts utilized

pattern level integration or code level integration and one of them incorporated the

different coordination methods like union, composition and substitution. The typical

form of coordinating administrations happens thusly – the service demands are

acquired, the required construction are extricated and they are consolidated

powerfully utilizing a particular method lastly gave as a support of the end-client.

The real issue here is the point at which a piece of a construction or code is

extricated from a whole administration they are not finished and limited. They will

be interconnected to different parts of the code through capacity calls. At the point

when these kinds of deficient services are coordinated, the combination will end in a

39

contradictory stage. Consequently, another system has been proposed for benefit

joining of business logic with the interoperable objectives, for example,

Computability, Completeness and Configurability and alongside it to diminish the

time and cost for integration.

The construction is driven inside a numerical model, investigating the stream

of business logic by examining its parts like capacities and parameters. Mostly for

benefit joining, the elements if the business logic needs to interestingly examined, this

procedure of breaking down is called as property assessment. The property

assessment is finished utilizing the Finite State Machine in this way expanding the

level of automation. Limited state machine is by and large utilized for taking care of

dialect calculability hypothesis. It has its own particular essential end functionalities

meaning a specific demand as 'reasonable' or 'unsolvable' called as decidability. This

decidability of limited state machine is here utilized for breaking down completeness,

finiteness, and traceability and configurability properties of rationales and furthermore

for the early expectation of treatment of administration demands.

From the survey, the following limitations are identified in the existing research:

➢ Extraction of Policy and Policy violation detection are not automated.

➢ Handling multiple requests is a complex and time consuming task.

➢ Domain Specific Knowledge for integration should be improved.

➢ Malicious Service labels may cause fake identities of services which may lead to

integration conflicts.

➢ The service integration system is not automated.

2.10 Research Objectives

Service integration has been developed to allow the enterprise to reach

integration maturity by integrating the organizations’ applications among their

companions. Though service integration is useful and popular, the present market

need does not get fulfilled with incorporating solicitations or services as a whole

substance. It involves incorporating Web service logics at useful level or business run

for fluctuated need quickly.

Several important challenges are available that should be faced at the level of

Integration.

40

First and foremost is the amount of loosely coupled system that should be

maintained mainly when the business partners want to tie up with others or merge

their functionality with others.

Secondly lays the requisite logic that must to be positioned properly and have

to be taken out from the entire service.

Third and the most essential thing is that the recouped logic must be

coordinated capably as the interoperability issues don't emerge. This is a troublesome

undertaking that expects engineers to comprehend the entire services and recognize a

superior route for combination. In this way it is required to devise a mechanized

framework to incorporate the Web services powerfully.

Change management with respect to LCSs comes up with a set of research

issues. An LCS tries to outsource its functionality from different independent service

providers. In order to monitor and manage these service providers, there are no central

control mechanisms. And so, the challenge of administrating the changes lies in

providing an end-to-end framework that could manage the service providers in a top-

down change manner that could reacts to the change in an effective way. The

summary of the major research issues in managing changes in LCSs are as follows.

Change model

To understand and process the Changes, they have to be first captured and

identified. Changes may vary from each other as far as their inspirations, necessities,

and practices, and so on, which normally triggers a need to separate changes where

distinctive procedures can be sent. Conventional approaches of related to top-down

changes are temporary and informal. Those techniques involve exhaustive human

interventions. Hence, change ought to be demonstrated formally with the end goal

that it is justifiable and process capable by machines.

Change reaction

Top-down changes are always connected to a new requirement on an LCS.

These changes may necessitate the LCS to put in new features. They may also be

triggered to improve privacy protection of services. On responding to such a change,

an LCS should change the services that it outsources. The way that the outsourced

administrations coordinate with each other may likewise be changed. It would present

41

a high cost if the procedure is performed physically. Computerizing the procedure of

progress requires the data about the outsourced administrations and their joint effort

be comprehended by machines. Only on proper understanding of the required change,

modification on an LCS can be performed to fulfill the requirements that can fulfill

user need by the change.

Semantics support

The process of automation of change management can be improved with the

help of software agents that can understand the problems they are dealing with. They

follow several approaches to do the process of automation. In particular, they need to

have adequate knowledge about LCSs and the services outsourced by them. In

databases, the automation of data queries and updates relies on meta-data (i.e., data

types and data schema). A meta-information similar to that of databases is also

required to make available a semantic support for the process of change management.

Several analyses should be done in order to meet the challenges in the

research. The important analyses are:

Request Analysis

The request for new service integration may be encountered previously and by

analyzing its previous incidence on comparing with the service ID and the decision

for its integration can be made with less effort and time.

Domain Analysis

If the request is a new one and not been encountered previously, then, it is

analyzed to which domain it belongs to such as travel, airlines etc., and then

categorized to the corresponding domain and the corresponding policy control is

generated for that service.

Business logic Analysis

In this phase only the business logic of the request is analyzed such that it

copes with the existing logic of the business and this can be accomplished by policy

detection and the level of policy violation of the respective service. The detection of

policy points is performed with the help of the ATM and this is explained in detail in

the following section.

42

In order to make the complete process of service integration dynamic and

automatic one, the proposed system should meet the following objectives:

➢ To Extract the Policies from the already existing Long Term Composed Services

(LCSs). These services may have different policies at a different level of

abstraction. These differences in Business Policies are to be detected by

constructing two Multi-Tape Turing Machines.

➢ To detect the Policy Violations that occur in the services of the two LCSs at

various levels such as Rule level, Function level, Parameter level and Dependency

level using the Multi-Tape Turing Machines. This Business Policy Violation

detection has to be done for multiple change requests arising at a time. To detect

policies of multiple services for multiple change requests, Alternating Turing

Machines (ATM) are constructed. 

➢ To Adopt OWL Methodologies to handle domain specific change request

emerging from the users of such LCSs.

➢ To measure the reputation of services through RM by considering malicious

intentions. This phase is operated if a policy violation is detected. Reputation

Measurement is done for Ballot Stuff Attack and Sybil Attack.

➢ To handle Multiple Change Request dynamically and completely automatic. In

order to fulfill this objective, a multi-agent system is designed.

2.11 Summary

This chapter presents a thorough study of theoretical foundations for dynamic

service integration which help us understand that the enterprises need to give their

business logics in a more complex and secured route to their accomplices. Beside

performing mix, avocation for not performing joining is similarly found. The

nonattendance of potential is seen in the property appraisal, through which the

specialist co-ops can begin taking a shot at tackling those issues for better coordinated

effort of their services. A complete study has been made to identify the issues in the

existing researches on Web service integration for a new long-term integrated service.

On proper analysis of the issues, the challenges that lie ahead of this research are

identified. The following chapters demonstrate further research that constitutes

automatic Web service integration without policy violations and explain its aspects.

43

CHAPTER 3

PROBLEM DEFINITION AND METHODOLOGIES

3.1 Overview

This chapter gives an overall idea of the proposed work. The challenges in the

Change Management Framework have been studied and to completely automate the

system of integrating the already composed long-term composed services, the Finite

State Machine has been constructed to accomplish the task of integrating the services

to a value added service without violating the business policy rules framed by the

service providers. The ATMs (Alternating Turing Machines) are employed to perform

the task of detecting the policies dynamically when a request for change is

encountered. The objectives of the research are formulated here. Hotel and Travel

services are taken as datasets and composing these services is accomplished and the

results are produced.

3.2 Research Problem

Whenever there is a change request for a new LCS, the proposed system

tries to overcome the following research problem:

➢ Construction of Turing Machine for Policy Detection

Business policy plays a major role in the process of service integration. Hence a

careful model is to be developed to take care of the business policy. An automated

system is also required since the process of service integration is dynamic in nature.

Therefore, multi-tape Turing machines are developed to detect the business policies

of different services. A Framework which uncovered the necessities as business rules

and concentrates the required logics in runtime through business logic supervisor

must be created.

➢ Matching the policies between the two LCSs

Service Integration is a process of making two or more different services of

different service providers to collaborate with each other and share their data in order

to provide the customer with the best service they need. While collaborating with

each other, the policy decisions of the services being integrated should be considered.

44

Hence an automatic Business policy detection and matching of policies with each

other is done with the help of a newly constructed Turing Machine.

➢ Handling Domain Specific change request using Ontology

 Web service Ontology comprises of an arrangement of service concepts. A service

concept characterizes a sort of Web benefits inside a space. It catches the normal

highlights of Web services. A Web service concept can be seen as a dynamic one,

which can be instantiated by solid Web services. Using the service concepts of the

Ontology, Web service functionalities are defined in a way that is clear and

unambiguous to software agents.

➢ Reputation measurement against Malicious Attack

 It has been found from the study of Web services that the service provided by

some service providers does not fulfill the user requirement but still their credit scores

are shown high. Because of their fake identity, owners who want a change tend to

make use of those services and end up with an improper integration. In order to avoid

these kinds of problems we have come up with a solution by making use of

Reputation Measurement against malicious attacks to find out the fake identities with

the help of user credits.

➢ Multi-Agent Architecture for collaborative service integration

 Web service Integration is a complex process which involves various complex

interfaces to locate the required service. It requires a strong authentication and access

control mechanism that could be used and utilized by the partner’s logic at business

logic schema level. Also the service level agreement negotiation process should be

carried out in an effective manner. To handle such various important tasks, several

agents might be applied. Hence multi-agent architecture is developed for collaborative

service integration.

3.3 Overall Architecture of the system

As listed in the above section, there are several objectives to be achieved in

order to give a complete solution to dynamic Web service integration without any

policy violation and identification of fake services. The overall architecture of the

proposed system is as shown in Figure 3.1. The whole process of service integration

has three folds. Initially the incoming user requests are to be analyzed. After a

thorough analysis, the services that are to be composed to form a value-added service

45

are then identified and the business policies of those services are matched for policy

violations. After this process, the fake services are identified and the reputation is

measured.

Figure 3.1: System Architecture

3.3.1 Analysis of User Request

Service discovery is typically considered as an inquiry looking for a service

and consequently discovering a service from the database that matches the parameters

introduce in the question. Questions are the client asks for that emerges for a change.

To make a last arrangement, the established arranging diagram calculation utilizes a

retrogressive pursuit which is the most tedious piece of the current systems. Rather

than enhancing the retrogressive inquiry, endeavors are placed into evacuating the

excess Web services amid the foundation of Web service disclosure. It is still ensured

that no less than one arrangement will be kept after we evacuate these excess Web

services. Once a user request arrives, the system first analyses the request and checks

to see if the request can be fulfilled by the services available in the service repository.

If a single service is capable of fulfilling the request, it is given to the user. Or else, if

there is a need to integrate the available services to give a value added service to the

customer, then the next module progresses.

46

3.3.2 Business Policy Extraction for Requested Services

Web Services Policy (WS-Policy) Framework provides a general purpose

model for Web service applications. It also defines the comparing language structure

to depict and impart the arrangements of a Web Service with other Web services. WS-

Policy is characterized as an arrangement of builds that is utilized and stretched out

by other Web Services details to depict an extensive variety of service necessities,

inclinations, and abilities. These policies are therefore used at the time of composition

of Web services. The two commonly used parameters in policy definition are:

WS-Policy Assertions specifies a set of frequent assertions of message policy that are

specified within that policy.

WS-Policy Attachment determines three particular extra components for utilizing

policy articulations. This is finished with existing XML Web Service advancements.

Specifically, they characterize how to connect policy articulations with WSDL write

definitions and elements of UDDI. They additionally characterize how to associate

usage particular policy with the entire or a piece of a WSDL port write when they are

uncovered from a particular execution.

3.3.3 Identification of Mismatched Business Policies

The crucial objective is to identify the policies during the integration as well

as the violations of the business policy appraisal of the services during the process of

service integration. The CMF automates these changes directly without any need for

sanction from the analyst. Policies of integrating services are extracted and checked

for violation using FSM and the results are checked for Reputation Measurement and

fake identities.

3.3.4 Identification of Fake Services

The impact of the uncertain and malicious service nodes on the Web service

composition (WSC) presentation is usually a serious issue in the Internet. And so the

problems of services selection for Web service composition cannot be completely

solved in the perspective of performance. A trust model with reputation computing

should be built through interactive services composition submitted by the parties, and

then a complete reputation evaluation model should be formed. The communication

47

between two service entities might be either direct or indirect. After these processes

of communication are completed, the services are given to the integration module for

integration. An exception handler handles the exceptions raised in the system.

3.3.5 Service Integration

Service integration is the final process of the proposed methodology. Several

Agents are deployed to perform the process of integration. At every level the property

evaluator agent and the pattern matching agent are used to check the properties of the

integrating services and to create a new value-added service.

The functionality of the system is illustrated with an example.

Consider a Long Term Composed Service (LCS) that offers services for a

Tour Package. This LCS consists of Airline Service, Hotel Booking Service, Taxi

Service and Payment Service. Suppose a user requests for a service for tour package

with Airline service, Hotel service and a Car Rental service instead of Taxi Service,

there arises a need for change. This new user request is first analyzed to see if any

such LCS is available in the repository to offer such service with car Rental instead of

Taxi service. If such a service is available, it is fetched from the repository and the

user request is fulfilled. Otherwise, the existing Taxi service has to be removed from

the Tour Package LCS and the Car Rental service is added to the LCS. To do this the

policies of the composing services have to be checked for policy violation. For

example consider that in the existing Tour package LCS, there exists a Business

Policy for Payment Mode. This policy says that the payment should be only through

Credit Cards. In such a case the composing service ie., the Car Rental service should

also have the same Payment Mode Policy. Only then may these services be

composed. In order to accomplish this task, we employ Turing Machine. The Turing

Machine automatically detects the policies of the composing services and checks

whether any violation occurs or not. In our case, the Turing Machine checks whether

both the Car Rental Service and the existing Tour Package LCS have the same

Payment Mode policy. If so, the Car Rental Service is chosen for composition with

the Tour Package LCS. To speed up the process and to handle multiple requests at a

given time, Alternating Turing Machines are employed.

48

Once the Car Rental Service is chosen for composition, it has to be analyzed

for Fake identity. Services may sometime be malicious and it may cause serious

effects on performance when they are composed with other services. To increase the

usage of a service, there are possibilities that the credit rates of those services may be

purposely increased by attackers. Hence to avoid such malicious activities, the service

chosen for composition i.e., the Reputation of Car Rental Service is measured. This is

done by two methodologies in our system namely i) Rater’s Creditability Evaluation

and ii) Majority Opinion by K- Median Clustering. As a result of these approaches,

the reputation of the Car Rental Service is measured. The measurement values decide

whether the service is a reliable one or not. If the Car Rental Service is a reliable one,

then it is sent to the integration module where it is composed with the existing Tour

Package LCS.

In the integration module, several agents play a vital role in composing the

Car Rental Service to that of the Tour Package LCS. The property Evaluation Agent

checks the important properties like completeness, computability and configurability

of the composing services. The SLA Negotiation Agent takes care of the Service

Level Agreements of the composing services. The Dependency Analyzer Agent

analyses the dependency that exists among the composing services. In the example,

users do not necessarily need to provide the information for each service when they

are combined into a single service. The input of some services can be derived from

other services by the dependency relationship. Finally the services are integrated

using the Service Integration Agent to give a value-added service to the user.

3.4 Experimental Setup

The proposed business policy violation detection with Reputation

Measurement is implemented in the framework of Visual Studio by means of

DOTNET and the implementation details, results obtained with the proposed

methodology and its efficiency when compared with other existing works are

presented. The experimental results are given both in a tabulated form and

analytically through comparison graphs. The proposed business policy violation

detection in the CMF based on the reputation of each of the Web services is

implemented using DOTNET in the framework of Visual Studio.

49

3.5 Output Metrics

 To assess the proposed Web Service Integration Framework, the accompanying

measurements are utilized: Precision and Recall are figured with the assistance of the

policy data.

Precision:

 Precision is a metric used to figure the recouped strategies that are considerable.

That is the quantities of proper arrangements that have been returned by the structure

to satisfy the client ask for from the quantity of strategies that are recovered. The

equation for precision is given as,

() / ()

() No of policy enforcing point handled

() No of PDP (Policy Detection Point) detected.

P tp tp fp

tp

tp fp

 



 

Recall:

 Recall is the part of related approaches that are recovered. Recall is communicated

by the proportion of Number of significant polices returned by the structure and the

aggregate number of polices for the specific services. The equation for recall is given

as,
() / ()

() Total no of mandatory policies

R tp tp fn

tp fn

 

 

to evaluate the process of identification of fake services

3.6 Summary

An overall functionality of the system being developed is summarized in this

chapter. The challenges that arise in developing the system are focused clearly. An

experimental setup is done to check if the proposed system fulfills the objectives of

the research. The datasets are chosen so that it is suitable for the proposed model. To

evaluate the results produced by the proposed model, suitable evaluation metrics,

namely, Precision and Recall are used.

50

CHAPTER 4

CONSTRUCTION OF TURING MACHINE FOR BUSINESS POLICY

VIOLATION DETECTION

4.1 Overview

Policy is a XML document that depicts numerous restrictions for substituting,

consolidating and composing the Web service logic to achieve interoperability

objective line. After the business approaches are separated from the SLA, it will be

given as a contribution to policy evaluator. The policies are present in the rules and

functions of the business logic also given as an input to the policy evaluator. Then

policies are compared with one another and then the result is sent to the policy

evaluator. Module I aim to construct an FSM (Finite State Machine) to detect the

policies of the composing services. An algorithm is designed to accomplish the task

of finding the Policy detection points in each service that is to be integrated. Several

evaluation metrics are used to check the performance of the algorithm.

4.2 Turing Machine

A Turing Machine is a unique computing device that consists of a scanner

otherwise called as the read/write head along with a tape passing through it. The tape

is divided into several squares. Each of these squares bears a single symbol either '0'

or '1'. This tape is the machine's general purpose storage medium that serves as a

medium for both input and output as well. It also acts as a memory area for storing the

results of intermediary steps of the computation.

A finite number of symbols are given as an input to this computational model

on its tape. However, the tape is of unbounded length. The read/write head in the

computational model is programmable. Hence different tape heads can be employed

to perform tasks simultaneously.

To perform calculation with the device, we can program on it. We check the

contribution on the tape in parallel or decimal code. At first the tape head must be set

toward the starting square and on the furthest left image. At that point the machine

can be set to movement. After the calculation is finished, the machine will stop gaze

with the head situated over the square containing the furthest left image of the yield.

51

Figure 4.1: Turing Machine

4.2.1 States of Turing Machines

The Head contains another sub-component called the indicator. This is another

form of working memory. The indicator can be set to any of the quantities of

positions. This position marker is known as the State of the machine. This position is

set once around then. To give a basic case of the marker's capacity, it might be

utilized to monitor whether the image last experienced was '0' or '1'. On the off chance

that '0', the pointer is set to its first position, and if '1', to its second position.

4.2.2 Atomic operations

There are six fundamental operations that a Turing Machine can perform in its

course of computation. Those are listed below:

a. Read or recognize the symbol that is currently under the head.

b. Write a symbol on the square under which the head is pointing. This is done by

deleting the symbol that is already written.

c. Move the tape left by one square.

d. Move the tape right by one square.

e. Change the state.

f. Halt.

4.3 Construction of Turing Machine

Two Turing machines M1 and M2 are constructed which correspond to two

Long-term Composed sets. M1 and M2 are multi-tape Turing machines. The Tape T1

in the Turing machine represents the Business Rule Tape which exhausts all the rules

in the corresponding composed service such as R1, R2…...Rn, T2 represents the

Function Tape which exhausts all the functions in the corresponding composed

service such as F1, F2.…Fn, T3 corresponds to Parameter Tape which exhausts all the

52

parameters in the corresponding composed services such as P1, P2….Pn and T4

stands for Dependency Tape as shown in Figure 4.2. In response to a request for

service integration (Integrating LCS1 & LCS2) the compatibility among the services

for integration is verified. This is elucidated in Figure 4.2 by inspecting rule R1 in

tape T1 of LCS1 and rule R1 in tape T1 of LCS2 and verifying the legitimacy of the

business policies.

Figure 4.2: Multi Tape Turing Machine

On successful verification, this process is repeated for the remaining tapes

until the policy detection points in all the tapes are found to be in agreement. This

process is explained in detail in the subsequent sections.

4.3.1 Architecture for Policy Detection

Figure 4.3 depicts the working of policy detection in service integration. The

idea of service combination is envisioned as big business' undertaking to stretch out

its business procedures to its business accomplices to impart their business logics to

each other to perform out the essential activity. To remove the required logics

precisely and productively and coordinate the required business logics from the

quickly developing business services, engineers must consider the entire service and

should settle on legitimate way to deal with combine them. This is a complex and

tedious undertakings. The Changes which can be automatically done without any

code injection comes under service integration. Before and after integration the output

generative power should be alike which indicates that the integration is successful.

53

4.3.2 Major components for policy detection

➢ Service Registry

➢ LCS Set

➢ Service Profile

➢ Request Analyzer

➢ Domain Analyzer

➢ BL Analyzer

➢ Property Evaluator

➢ Constraint Analyzer

➢ Complexity and Problem Analyzer

➢ Audit Log

Each of the components listed plays an important role in the system. The

working of each component is elaborated in the following section. Since the proposed

system is an automatic one, whenever a need for a change occurs, the service

repository is first checked for an existing service to fulfill the user request. If it exists,

the request is responded and if not, the process starts with the components that are

discussed below.

Figure 4.3: Data Flow for Policy Violation Detection

A. Service Registry

Service Registry is an accumulation of services and its analogous details are

managed by an Enterprise. It is a local registry of services. The service registry

54

contains numerous services categorized under various domains. Each domain can

be further classified into sub-domains and each of the sub-domains includes

Business Process which can be for either a single service or a set of services.

Whenever changes are being reflected in the services, they get updated in UDDI

instantly.

B. LCS Set

The LCS set consists of various Long-term composed services which is a

composition of independent services extracted from the service registry in diverse

arrangements. For instance, this arrangement is represented in the diagram assets

LCS1 and LCS2. The LCS is composed to fulfil the business goal for a long run.

It is merely integration and orchestration of autonomous services readily available

in Web services pool.

C. Service Profile

The service profile comprises information about each service that is stored in

the service registry such as service Id, service name, and service location,

functional and non-functional description.

D. Request Analyzer

The new change request is completely analyzed in order to verify whether

there is any incidence existing in the incident service repository or is a completely

new request and then taking the appropriate decisions. Request analysis refers to

analysis of how instantaneously the change request has occurred and under which

circumstance the change request has been raised.

E. Domain Analyzer

Once the request is analyzed according to the context the domain analysis part

is being carried out. The Domain analyzer identifies to which particular domain

the change request belongs. The change request is being analyzed extensively and

categorized into domains according to the type of the change and its being

matched with the entire set of incidents previously.

F. BL Analyzer

The change request analysis phase involves processes such as determining the

type of change request, the priority of the change request, verifying the feasibility

55

of change, etc. In BL analysis, the required business logic will be extracted and

the Business Logic Set will be constructed with all dependent business logic

entities. The dependency analysis needs to be done at this stage in order to

identify the relationship existing among the entities. The FSM equivalent to the

BL Set is constructed with reference to predefined State Transition Table of target

service logic and then the Business Logic Schema will be generated from FSM.

G. Property Evaluator

Once the request analysis phase is completed, properties of the service chosen

for integration are evaluated in order to reveal the fact that the services are eligible

for service integration. Property Evaluator acts as a prerequisite for the change

management and is performed before and after the change. There are various

issues influencing the properties of service. The properties such as dependency,

computability, configurability, accessibility and traceability are evaluated and if

all the properties are found to be set true, i.e., if all the properties are encountered

to be fulfilled and manageable, then the subsequent process of constraint analysis

is carried out.

H. Constraint Analyzer

After the properties are evaluated, the constraint factors such as

Synchronization, Sequence, Branch, Parallel and Iteration are evaluated.

I. Complexity and Problem Analyzer

Complexity analyzer analyses whether the problem can be completed (i.e.

service integration process) within the expected time. Then the problem analysis is

done to find out whether the problem is solvable or unsolvable (i.e. the feasibility

of the problem is ensured).

J. Version

As per the difference in change requests requirements put forth by different set

of consumers, versioning will be carried out accordingly. Through Versioning, the

transparency is provided to the customers due to whom the customers will not be

able to notice the changes that have been made. In case of any failure due to the

changes, versioning can be used to roll back to the previous state.

56

K. Audit Log

Audit log is an archive catalog that stores change history and correct area

alongside the data about the space, sub-area, business process and the service

where the change happened. This is like a log document which comprises of the

time and date at which the change has happened. The insights about the proprietor

who has the rights on that specific square of the business logic and the insights in

regards to the changes are additionally put away. It likewise holds data about the

business procedure in which the change occurred. The whole changes that have

happened and special cases that have been tossed are recorded in audit log for

recurrence coordinating later on.

L. Integration Adapter

In Integration adapter the services desired for the integration is chosen from

the service repository and blended using any one of the integration methods as per

the requirement of the change request. Properties serves as a prerequisite for

service integration and these properties are evaluated before and after integration.

Every time after the integration is being carried out, a new WSDL file will be

generated.

M. Exception Handler

If any one of the analysis such as Property evaluation, Constraint analysis,

Complexity and Problem analysis fail, the corresponding exception along with the

reason for the root cause of the exception is exhibited.

4.3.3 Algorithm for Business Policy Extraction

The algorithm for policy detection shown in Algorithm 4.1 is for finding the

Policy detection points in each service that is to be integrated. In the LCS set the

transitions in the service are verified whether a transition like this  * (qn , S)  Pn exists,

if so the policy detected points are stored in PDPn[] array correspondingly for each

service. The transitions are stored in the state transition table as given in Table 4.1.

57

Table 4.1 State Transition Table

Start

State

Transition Next

State
PDP

0Q
*(,)n j jq S P  3q 1P

0q
   *

1 2 3, , ,n jq S S S P  3q
 1P

1q
    *

1 2 3, ,n jq S S S P  3q
 1P

2q
    *

1 2 3 1 2 3, , , , ,n jq r r r S S S P  3q
 1P

3q
     *

1 2 3 1 2 3, , , ,n jq r r r S S S P  6q
 1P

The policy points are found at rule level and function level so that the reason

for policy violation can be known in case violation occurs. Then these PDP arrays

serve as the input for policy violation detection algorithm in Algorithm 4.1. And then

all the PDP arrays of the services to be integrated are compared with each other. If all

the values in a array are same the values in the next PDP array is checked and the

status is incremented which is initially assigned zero. The algorithm generates a State

Transition table with the help of the LCSs as input and in each state it considers the

policy at rule level, functional level and parameter level. When a successful

transaction is generated, then it means that a policy has been detected from the LCSs

that are taken as input from the Turing Machine.

Algorithm 4.1: Algorithm for Business Policy Detection

 Algorithm Policy Detection (LCS[], State Transition Table)

//Input :LCS[] {LCS1[],LCS2[]LCS3[],……………LCSn[]}

//n  The number of services to be integrated.

//i {S,R,F,Pr,Dp}

// S ←{S1, S2, S3, ……… Sn} [S is the set of services for service integration]

 //R {R1, R2, R3, ……… Rn} [R is the set of rules in the services]

//F {F1, F2, F3, ……… Fn} [F is the set of functions in the rules]

//Pr { Pr 1, Pr 2, Pr 3, ……… Pr n} [Pr is the set of parameters]

//Dp {Dp1, Dp2, Dp3, ……… Dpn} [Dp is the set of dependency logic]

// Output: PDP[] –policy detection point (i.e.) policy detected points will be

stored in this array for the each service.

Let P  {P1, P2, P3, Pn} be the business policy set defined for each service

58

BEGIN

While LCSn[i] != empty && 𝛿∗(𝑞𝑛 , 𝑆) → 𝑃𝑛Pj

do

Extract STTn for LCSn[]

//All the transitions in the services are stored as transitions in the State

transition table. The values stored in STT are state, input, next state and policy

detection point (PDP).

For each j = 1 to n DO

IF (𝛿∗(𝑞𝑛 , 𝑆𝑗) → 𝑃𝑗) then //Detecting the policy at service level

For each k = 1 to n DO

IF (𝛿∗(𝑞𝑛 , 𝑅𝑘) → 𝑃𝑘) then//Detecting the policy at rule level

For each l = 1 to n DO

IF (𝛿∗(𝑞𝑛 , 𝐹𝑙) → 𝑃𝑙) then//Detecting the policy at function level

PDPn[]← Sj(Rk(Fl)) //Storing the policy detection points in PDPn[] for each

service

End If

End For

End If

End For

End If

End For

End While

END

If at any point any one of the policies of one service mismatches with that of

the policies of the other service, then policy violation is detected. Or else if status

value is equal to n (i.e.) for all n services, it has been verified that there is no policy

violation. This task is accomplished by the algorithm designed for Business Policy

Violation.

4.4 Business Policy Violation Detection

As discussed in the previous section, the services that are to be composed to

fulfill a change request have different levels of policies. The policies of each service

are first detected using the Turing machine that has been constructed. The Next phase

59

is to detect whether any violations exists in the composing service’s policies. This is

discussed in the following sections.

4.4.1 Business Policy Violation

A Business policy expects to represent and oblige the conduct of services and

business circumstances. For instance, a policy of supply chain stock may oblige

restricts on the scope of stock levels for the assembling procedure in light of the

benefits focus of the undertaking. These significant arrangements can be formulated

and connected to various parts of Service arrangements. To perform approval to

oversee target business arrangements and assets, the extent of monitor business

arrangements and assets, and service-level understandings can be considered as cases.

Policy is characterized as an official responsibility that wins between a service

supplier and a service customer. Scrupulous parts of the service quality, accessibility,

duties are settled on the service supplier and the service client. These business

approaches are contained in the Service Level Agreement (SLA). At the point when

such approaches of various services are not tuned in to each other i.e., when there is

an infringement in the services that are to be made, serious impacts may emerge.

Neglecting to meet SLAs could bring about genuine monetary results for a

supplier. Along these lines, service providers are indicating enthusiasm for picking up

a decent comprehension of the connection between what they can guarantee in a SLA

and what their IT framework is equipped for conveying. It is along these lines

important to distinguish the policy infringement preceding the services being

coordinated to defeat a portion of the genuine results. An algorithm has been designed

that could be simulated via the Turing Machine to detect such violations

automatically which is illustrated in Algorithm 4.2.

4.4.2 Algorithm for Business Policy Violation Detection using TM

The policy violation detection algorithm takes the PDP array which is

generated at the policy detection level as input which consists of the policy points in

the services of each of the integrating services. Each of the PDP is checked with other

PDPs to check if there is any state which does not match with the policy points.

Algorithm 4.2 illustrates this process.

60

Algorithm 4.2: Algorithm for Business Policy Violation Detection

Algorithm Policy Violation Detection(PDPn[])

//Input: PDPn[] – Policy detection point array where the policy points detected in

the services are stored for the each service that is to be integrated.

// PDPn[]← { PDP1[],PDP2[],PDP3[],………….PDPn[]}

BEGIN

status ←0

While PDP[] != empty

For each i= 2 to n do

If (PDPi-1 == PDPi) then

status ← status+1;

End If

End For

If (status ==n) then

// If status < n (i.e.) if policy is violated even at least once then there is policy

violation

policy_violation =0 //There is no policy violation

Else

policy_violation =1//There is policy violation.

END

As shown in Algorithm 4.2, PDP arrays serve as input for policy violation

detection algorithm. The PDP arrays of services that are to be integrated are compared

with each other. The corresponding rules, functions, parameters, dependency set and

policy set are retrieved. By this the change specification is checked whether it violates

any policy. If there is any violation, the analyst is informed as the change cannot be

made due to the violation of policy. Otherwise the change is successfully included in

the existing logic set L. If the values are same, the status pointer is incremented which

is initially assigned to zero. At any point the policy of one service mismatches with

the policy of other service and then it returns a policy violation is detected.

4.5 Evaluation Metrics

To evaluate the proposed Web service integration system Precision and Recall

is calculated with the help of the policy information.

61

Precision:

The number of appropriate policies that have been returned by the framework

to fulfil the request from a set of policies that are retrieved.

() / ()

() No of policy enforcing point handled

() No of PDF detected

P tp tp fp

tp

tp fp

 



 

Recall:

Recall is the fraction of related policies that are reclaimed. It is

expressed by the policies returned by the framework and total number of policies.

() / ()

 Total no. of mandatory detected

R tp tp fn

T

 



4.6 Experimental Results and Discussion

Consider two travel agencies LCS WS1 and WS2 which include services such

as airlines, hotel booking and cab service. The rules present in the airlines service S1

of LCS WS1 are R1 and R2 and similarly rules present in the airlines service S4 of WS2

are R3 and R4 respectively. Since the performance of R4 of service S4 is better than the

performance of R3 of service S1; a change request arrives for the integration of the first

rule R1 from service S1 and the second rule R4 of the second service S4. First, the

policies are detected from those services and stored in arrays PDP1[] and PDP2[].The

state transition table for the two services S1 and S4 are shown in Table 4.2 and table

4.3 respectively. Once the policies detection step is over policy violation check is

done. If it is identified that the policies detected are found to be different, it implies

that the above mentioned rules R1 of service S1 of first LCS and rule R4 of service S2

of second LCS are not compatible to be integrated because of business policy

violation. Suppose there had been no policy violation, then those two rules would

have been preceded for integration without any hindrance.

 Table 4.2: State Transition Table for LCS1

LCS Service Rule Transition Policy

WS1 S1 R1 132211

* }),}{]{[,(PSSrrq  1P

WS2 S2 R2 532128

* }),}{]{[,(PSSrrq 

5P

62

 Table 4.3: State Transition Table for LCS2

LCS Service Rule Transition Policy

WS1 S1 R3 132211

* }),}{]{[,(PSSrrq  1P

WS2 S4 R4 532128

* }),}{]{[,(PSSrrq 

5P

As illustrated in Table 4.2 and Table 4.3, when services of two Long Term

Composed Services LCS1 and LCS2 are to be integrated their policies are identified

to determine which policy matches with the other policy in two long term composed

services. The crucial objective is to detect the policies during the integration as well

as the violations of the business policy assessment of the services during the process

of service integration. This leads to increase in the degree of automation of this

framework which is facilitated by property pre-evaluation.

Table 4.4 illustrates the evaluation results of the policies of services that are

returned by the Turing machine with the help of the algorithm designed to do it.

Precision and Recall are also calculated to evaluate our proposed system. The table

additionally demonstrates the aftereffects of the service reconciliation. The service

section demonstrates the services (S1, S2) to be incorporated. The quantity of PDP

and PEP which are distinguished by the policy evaluator helps in ascertaining the

precision and recall.

 Table 4.4 Evaluation Results of Policy violation Detection

Service Name Total no. No. of No. of Precision Recall

 of Mandatory PDP PEP

 Policies detected handled

[S1]: Travel 5 5 4 0.8 0.8

[S2]: Hotel

[S1]:Retail 10 9 7 0.7 0.7

[S2]:Payment

[S1]:Hospital 6 3 2 0.6 0.3

[S2]:Payment

[S1]:Bank 5 5 5 1.0 1.0

[S2]:Customer

[S1]:Register 6 5 5 1.0 0.8

[S2]:Login

63

From Table 4.4, it is clear that the system is able to detect all the mandatory

policies at a given time automatically. It is also observed from the table that the

integration time reduces if the number of PDPs is equal to the number of PEPs.

4.7 Summary

The detection of business policies in the Long Term Composed services and

the detection of policy violation help us to avoid the occurrence of abortion of

transactions in services in advance. In case there is no detection of policy violation

prior to the process of integration, the services would be integrated without any

warning and then during the run-time of the service the transaction gets aborted in the

middle. And also the detection of business policy at service level, rule level, function

level gives us additional knowledge about why and where exactly the policies have

been violated. The consumers will not be able to observe much difference in user

interface characteristics in the corresponding versions before and after the integration.

The change request for service integration is done automatically by the Change

Management Framework without receiving any approval from the analyst thereby

leading to the increase of degree of automation of the Change Management

Framework.

64

CHAPTER 5

ALTERNATING TURING MACHINES FOR BUSINESS POLICY

VIOLATION DETECTION

5.1 Overview

 In order to detect the policy violation at first of the policies that are satisfied

by LCS have to be identified and this is evaluated by the policy detection points. Here

the system uses ATM to detect the policy points of the service which is requested by

the user. Initially the proposed system has detected these policy points through multi-

tape Turing Machine but it was noticed that by combining universal and existential

conditions it became possible to detect the policy points by their status as either the

existing case, universal, acceptable or subject to rejection.

5.2 ATM in detecting policy points

 Alternating Turing Machine (ATM) is a kind of Non-Deterministic Turing

Machine (NTM); generally Turing Machines are used for the purpose of computation.

The ATM can be defined mathematically with some parameters and conditions and

this is presented as follows:

Definition: An ATM A is the seven-tuple machine as given by

A= (t, Q, ∏, Ψ, Ƴ, q0, h)

Where, t = Number of Work tapes

Q = Finite set of states

Q = Existential  Universal = E  U

∏ = Finite input alphabet

Ψ = Finite work tape alphabet

Ƴ = Transition Function corresponds to position of Left, Right and Stationary

q0 ϵ Q is the initial state

h: Q → {  ,  , accept, reject}

As given in the definition of ATM, h specifies its output and if h(q) = V, then

q is said to be universal(q) = W; then q is said to be existential, h(q) = accept; then q

is said to be accepting state; h(q) = reject; and q is said to be rejecting state. The

working principle of policy detection with ATM is given in Figure 5.1. As given in

65

figure 5.1, the ATM will detect the policy detection points from N number of LCS

using N number of ATMs. If the request to integrate N number of LCS is received, it

means that the compatibility among those services is verified for all the tapes as

specified. In this case, there are four possible outcomes such as universal, existential,

accepting and rejecting, and based on this their compatibility is decided. The working

principle of ATM is similar to that of a Turing Machine and the difference is in

definition of transition function and this is given in the following equations.

Transition Function of Turing Machine,

  : ,Q L R 

The Transition function of ATM is given

  : ,P Q L R 

Thus the acceptance and rejection results for ATM is decided by the transition

function based on the universal and existential states and the corresponding conditions

are as follows:

Condition for Acceptance:

1. If the tape T is existential and some taccept then Taccept

2. If the tape T is universal and all taccept then Taccept

Condition for Rejection:

1. If the tape T is existential and all t  reject then T  reject

2. If the tape T is universal and some then t  reject then T  reject

In Figure 5.1, M1 and M2 mean the Turing Machine which compares to

various Web services WS1 and WS2. These are Multi-Tape Turing machines. The

Tape T1 in the Tuning machine signifies the Web service Tape which relates to asked

for service to be coordinated. Tape T2 shows the business logics tape. More often

than not for a Web service there might be at least one business logics which might be

removed from the Web services. Tape T3 means a Business govern tape which

utilizes every one of the rules in the predictable service, for example, R1, R2, R3, and

R4. T5 means the Function Tape which expends every one of the capacities in the

predictable service, for example, F1, F2, F3, and F4. Tape 4 and Tape 6 are the

critical tapes. They are called Policy tapes where T4 holds arrangements for rules and

T6 holds strategies for functions.

66

Figure 5.1: Policy Detection Points with ATM

There are two arrays shown here called PEP and PDP. At the point when the

machine peruses the tape one by one it will coordinate the approaches of one Web

service to other service. When it finds the proper match then it is said to be a Policy

Detection Point. In specific cases the specific policy might be obligatory, that is,

which has higher need and can't be overlooked. Now of time, Policy Enforcing Point

raises and tosses the expected data to the client. In some different cases the tape needs

semantic reference and it alludes to ontology for area particular information for fitting

location of policy.

5.2.1 Policy Detection Point

Policy Detection Point (PDP) is a special data structure is used in the proposed

system. This is a special type of array. When the machine reads the tape one by one, it

will match the policies of one Web service with that of other services. When it finds a

Policy match with other similar service, then it is said to be policy detection point,

these policies may or may not be mandatory.

5.2.2 Policy Enforcement Point

A Policy Enforcement Point (PEP) is a component that serves as the

gatekeeper and “front door” to a Business Policy. When a user tries to access a file or

other resource on a computer network or server, the PEP will depict the policy’s

attributes to the Policy Decision Point (PDP), request a security decision which will

then enforce that decision. PEPs are compatible with Web servers, portals, legacy

applications, LDAP Directories, SOAP Engines (e.g. Apache AXIS), and similar

67

resources. Services can be configured to communicate with any PEP through an

interface.

5.3 Algorithm for Business Policy Violation Detection using ATM

In order to perform the task of policy violation detection in an efficient

manner and to respond to multiple requests at a time, an algorithm has been designed

for Alternating Turing Machine. The algorithm takes the PDPs in the PDP array of

each Turing Machine present in the multiple tapes. The tape is at the respective level

(Business rule, Function, Parameter and Dependency logic) that contains number of

blocks and for the corresponding t
th

 block the transition is verified. Similarly the state

called Deadline will appear at the time when no transition rule is applied to the tape.

Hence, the deadline for universal is accepted state and the deadline for existential is

‘rejected state’ for the tape.

Based on the acceptance, the policy detected points (PDP) are obtained once

after the application of transition rules and the corresponding PDPs and the associated

transitions are stored in the state transition table and used in the process of policy

violation detection. The table is very much similar to that presented in our first work

Tiroumalmouroughane (Tiroumalmouroughane et al. 2015). The policy points are

detected at the function and rule level and thus lead to effective policy violation

detection. Since in the previous work ATM was employed to detect the policy points,

no separate algorithm is necessary for the detection of policy violation. The process of

ATM in detecting policy violation can be depicted as in the Algorithm 5.1.

Algorithm 5.1: Algorithm for Policy Violation Detection using ATM

Algorithm: Policy Violation Detection by ATM

Input: Transition function =Policy control

(Set of Defined Policies) = Tape ()

Output:

For

If, then service is accepted at Rule Level

Else if, then is accepted at Function Level

Else if, then is accepted at Parameter Level

Else if, then is accepted at Dependency Level Else

Return

68

Figure 5.2 describes the organization of Tapes and the PDP Arrays for policy

violation detection using ATM.

Figure 5.2: Policy Violation Detection with ATM

After detecting the policy violation using the Algorithm 5.1, if the violation is

occurred at more than one level means the Reputation Measurement of the

corresponding service will be carried out. This is done to find out its necessity

through Reputation Measurement and if the service yields better reputation, then it

will be integrated to the CMF. Otherwise it will be thrown to the exception handler.

The Reputation Measurement of the service which violates the policy is explained in

the following chapters.

5.4 Comparison on the performance of ATM with that of TM

The performance of the proposed methodology is proved by comparing the

results produced by it with the existing techniques and here the performance of the

proposed methodology is compared in terms of Business Policy Violation detection

by the number of services with ATM and TM. The comparison results are tabulated

and depicted in Table 5.1. The process of the business policy violation detection is

given in the form of the comparison graph which is discussed in the following

sections.

69

Table 5.1: Business Policy Violation Detection with ATM and TM

Number Number of policy violated

of Requests

 ATM TM

1 0 0

2 0 0

3 1 0

4 2 1

5 3 2

From Table 5.1, it is clear that the performance of the employed ATM for the

policy violation detection detects more services when compared with the TM and

hence the integration of valid services becomes improved. As the number requests

increases, the Alternating Turing Machine detects more number of business policies.

5.5 OWL Methodologies for Policy Violation Detection

WSDL (Web Service Description Language) is an available Web service

portrayal language that depicts the useful data of services, for example, input

parameters, yield parameters and service providers. The service areas are additionally

portrayed and have limits at the bottom of the disclosure, execution, organization and

interoperation of Web services. As WSDL can't portray semantic data of Web

services, an ontology-based Web service interface technology is required. This can

depict the language structure as well as the semantics of services. The services

incorporate not just the essential of static data through Web locales, yet in addition

activities, for example, offering items and driving physical hardware. To use Web

services, agents must be utilized. At that point the services must be semantically

depicted with the goal that product agents can translate and process them self-ruling.

Web service ontology comprises of an arrangement of service concepts. A

service idea characterizes the importance and sort of Web services inside an area. It

catches the normal highlights of Web services. A service idea can be seen as a

dynamic service, which can be instantiated by solid Web services. The Web services

70

can be characterized into a few classifications in view of their functionalities.

Utilizing the service concepts show in the ontology, Web service functionalities are

characterized in a reasonable and unambiguous approach to programming agents.

5.5.1 Ontology in Business Policy Violation Detection

The ontology provides support for both semantic and query. The semantic

support is used to provide machine-understandable description of Web services. This

enables the services be automatically located and orchestrated. An efficient way to

retrieve the semantics from the proposed ontology is the query support. The work

focuses on the semantic support. Once the policies are extracted from the SLA, it will

be given as input to policy evaluator. Policies are compared with one another and if

any semantic reference is needed the PE refers ontology.

5.5.2 Architecture of Violation Detection using Ontology

Ontology based Web Service Composition includes two main steps. The first

step is a filtering process. Filtering of the domain service ontology aims at reducing

the Web services research’s space is the first step. The second step is the generation

process of an abstract workflow. The ultimate goal of the proposed work is to develop

a semantic approach of composition based on ontology called Domain Services

Ontology. The system also suggests a set of novel rules in order to automatically

select candidate’s abstract Web services for the composition process. This process

will enable an automatic generation of an abstract workflow based on concepts and

semantic links transformation.

Figure 5.3 represents the architecture of Ontology in Policy violation

detection. As illustrated in the Figure 5.3, major components play important roles.

The Major components in the architecture and their description are discussed in detail.

a. Request Analyzer

b. LCS Repository

c. Policy Extractor

d. Policy Evaluator

e. Ontology Repository

Every user request goes through all the above said components to detect the

violations in the integrating services. The functions of each component are discussed

below.

71

a. Request Analyser

This component is used to analyze the request and coordinate all users’ requests

for all the nearby hosted Web services. Its main functions include dispatching all

incoming requests to be parsed. The other is to invoke the particular method on the

requested Web services accordingly and generate the Web service responses to the

clients. After which, if the requested Web service(s) require security, the “Request

Processor” coordinates with the “Security Agent” for verifying and validating the

required security parameters.

b. LCS Repository

On analyzing the incoming request if the Request analyzer finds the service that

could satisfy the user request, it retrieves the service from LCS repository. This

repository is a place where the already composed Long-Term Composed Services are

present.

Figure 5.3: Policy Violation Detection using Ontology

c. Policy Extractor

If the available LCS could not fulfill the user request, the services from the

already existing services have to be composed to form a value-added service to be

72

offered to the user. The Policy Extractor sends the policies of services to be integrated

to the ATMs to detect the business policies and to check for any violations that arise

on the policies of the composing services. If there are no violations found then the

extractor sends the services to policy evaluator to evaluate the domains of the services

being integrated.

d. Policy Evaluator

The extracted policies are fed into the policy evaluator to check the domains of the

composing services are similar or not. The repository for Ontology is used in this

phase to check the domains of the services. The context information is collected,

processed and sent to the composition engine to coordinate with appropriate LCSs for

appropriate services.

e. Ontology Repository

Ontology repositories are usually more specific than semantic Web search

engines. Their navigation and search interfaces can vary to a great extent. They offer

many tools that may be specific to the type of applications for which the repository

was designed. A Repository that consists of domain specific knowledge that is

required for the Web service and composition system to find the best service for

integration.

Apart from these major components there are two other components called service

integrator and exception handler. After a clear analysis of the policies and to confirm

that there are no policy violations, the proposed system tries to integrate the services

that chosen for composition. Policies are checked at all levels namely the rule,

function, and parameter and dependency level. At the time of policy violation

detection, if there arises any exception, the exception handler component will take

care to handle the exceptions. The integration part of the proposed system is further

extended to make it a dynamic and a most effective one in the following chapters.

During the process of policy violation detection, there are also possibilities for

services to make fake identities about them and increase their credits. There are

chances for the fake services to pass the policy violation detection and enter into the

integration phase. Hence care should be taken to see that no such fake services enter

into integration process. Though the policies of the fake services are desirable, they

73

may cause severe effect on offering service to the customers. Some kind of

mechanism has to be followed to identify such problems. The next module

concentrates on this issue. A new mechanism called reputation measurement is

followed in order to stop the process of integration if a service is found to have a fake

identity.

5.6 Experimental Results and Discussion

With the help of the algorithm designed for policy detection using ATM,

multiple Turing Machines were simulated. With the same set of LCSs, experiments

were conducted to monitor the performance of a single Turing Machine and ATMs.

The results proved that the performance of ATM is high when compared to single

TM. The number of requests handled and the number of policies detected with

violation using Alternating Turing Machine are more when compared to using single

a Turing Machine. This is very well plotted in Figure 5.4.

Figure 5.4: Comparison graph of policy violation detection using TM and

ATM

Experiments were also conducted to compare the performance of policy

violation detection with and without reference Ontology i.e., Domain Specific

knowledge of services to be integrated. The same LCS set were used to experiment

the result. The results are tabulated as shown in table 5.2.

0

1

2

3

4

5

1 2 3 4

N
u

m
b
er

 o
f

p
o

li
cy

 v
io

la
te

d
 s

er
v

ic
es

Total number of service requests

Comparison of Policy violation detection using ATM and TM

TM

ATM

74

Table 5.2: Business Policy Violation with reference Ontology and without

reference Ontology

Domain

No of

Integrating

Services

No of Policy Violation Detection

With reference

Ontology

Without reference

Ontology

Travel 10 4 6

Medicine 12 3 7

Hotel 8 3 6

Billing 10 5 6

Security 7 3 5

5.7 Summary

 In this chapter, a methodology has been proposed for business policy violation

detection in the Change Management Framework based on ontology and the domain

of the service requests. Initially the incoming requests are analyzed in terms of its

previous incidence, domain and the business logic. In business logic analysis of the

request, Alternating Turing Machine is used to detect the policy violation points of the

requested and integrates them to CMF if there is no policy violation; otherwise

termination of services of those policy violated services is carried out. The

experimental results confirmed more the efficiency of the proposed methodology than

the conventional techniques.

75

CHAPTER 6

REPUTATION MEASUREMENT

6.1 Overview

This chapter emphasizes the Reputation Measurement of the services to check

whether the service is reliable one to be integrated to the CMF and eventually to

progress the development of the framework. The Reputation Measurement of the

respective service is done based on the credits collected from the personalities who

may be business partners or some other individuals. The risk associated with

malicious motivations is that some personalities will provide higher credits for the

service which has no future scope that affects the development of the business and

this can be avoided by evaluating the credits. The malicious activities considered here

are the Ballot Stuff Attack and Fake Identities.

6.2 Reputation Based Business Policy violation detection

The detection of business policy violation in the Change Management

Framework (CMF) is the main stage to integrate the service which is requested by

another business party or the customer. Hence the service integration has to be done

in a manner that is adaptable for future trends in business era. In the previous chapters

the work focused on the policy detection by means of Turing Machine which is

capable of performing one action at a time such as either acceptance or rejection of

services for integration with the policies associated with them. A framework for

Business Policy Violation Detection based on the Reputation of Web service by

considering into account the malicious intentions is now proposed.

Reputation Measurement

The Reputation speaks to an agreeable impression of the clients in the

gathering of individuals about a Web benefit, that is, the notoriety of a given service

is an aggregate criticism rating of the clients who have associated with it or utilized

the service before. Input rating is the acumen of every client about consumed services.

Notoriety could be a solitary esteem speaking to a general assessment or a vector

representing a value for each QoS attributes for a Web service, for example, a

response time, unwavering quality, and accessibility.

76

At whatever point a client asks for a support of the proposed framework, a

Service Level Agreement (SLA) between a client and a specialist organization is

confirmed and afterward the client chooses a Web service that fulfills his/her QoS

prerequisites. The service is then consumed. Once the service is devoured by the

client, the client reports a feedback rating for the web service about the execution of

the Web servicet. At last, the proposed framework gathers the feedback rating and

other feedback appraisals from different clients with a Data Collector, ascertains the

notoriety (scores). The gatherer at that point refreshes these scores in a QoS

repository, and gives the scores while prescribing those services to the clients.

In the proposed methodology, after detecting the policy points the policy

violation detection is performed by analyzing the change request in terms of previous

incidence, domain as well as business logic of the request. After this analysis the third

stage called Reputation Measurement is carried out where the Reputation of the

service is calculated to integrate it to the business policy framework on trust basis by

considering the malicious intentions such as ballot stuffing attack and fake identities

which are intentionally performed to credit the service by giving inaccurate credit

labels. By levitating such attacks and based on the Reputation Measurement the

service can be integrated to the business policy before thrown to the exception handler

and results in a complete dynamic CMF. The functional block diagram of the

proposed methodology is depicted in Figure 6.1.

Figure 6.1: Architecture of Business Policy violations Detection with Reputation

Measurement

77

Reputation of Web services is also measured in some existing works like one

by Zaki Malik (Zaki Malik et al. 2009) where the Reputation is measured by the

service consumer to select the reliable service provider. In the present work,

Reputation Measurement is introduced to calculate the Reputation of the Web service

before its integration to the CMF. The Reputation of each Web service is measured

based on the quality parameters associated with it called Quality of Web Service

(QoWS) which includes security, privacy preservation, response time, availability,

reliability etc., and by the credits provided by the peer reviewers (personalities).

Normally before integrating the service to the business process, the policy of

the newest request will be verified against with the existing defined policies, and if

the policies are not matched at different levels it will be thrown to the exception

handler. But the incoming Web service request may be of an efficient one coping with

future facilities of the clients who are accessing the service from the particular

Website and may lead to the improvement of the business. Hence the cross checking

of the request is necessary to make the system completely dynamic for the changing

environment. Also while checking the quality of the service request the act of

malicious intentions also need to be taken into consideration as this may lead to the

integration of service that is completely not necessary for the business process.

6.3 Reputation Measurement against Malicious Intentions

 In this phase the Reputation of the services in LCS is measured to check

whether the service is reliable one to be integrated to the CMF and eventually results

in the development of the framework. This is done in a case when at times the defined

policies in the framework is the common one and the request for the new service

integration will have policies that is different at some level to the existing one but has

the future scope that leads to the satisfaction of the users and subsequently the

business development. The Reputation Measurement of the respective service is done

based on the credits collected from the personalities who may be business partners or

some other individuals. The risk associated with this sometimes with malicious

motivations some personalities will provide higher credits for the service which has

no future scope and results in no development of the business and this can be avoided

by evaluating the credits. The malicious activities considered here are the Ballot Stuff

Attack and Fake identities, and these attacks are defined in the following section.

78

6.3.1 Ballot Stuff Attack

This is the attack in which the personality with malicious intention will give

more number of credits to a particular service exceedingly over to his limit such that

the maximum number of credit level is exhausted. This averts other legit clients to

give acknowledgment for the individual service. For this situation the valuable service

will lose its opportunity to be incorporated to the CMF. To evaluate the possibility of

a Ballot Stuffing assault by methods for produced services, the way the copy Ballots

are recognized by the service Providers and the way they are taken care of amid

benefit combination ought to likewise be considered.

These processes have to be done when trying to integrate that service with

CMF. These attacks can boost the reputation of a malicious node by providing first-

class recommendations to the services so that it increases the chance of that bad

service to be selected as a part of LCS. This is a form of Collusion Attacks that

combines with other bad nodes to boost the Reputation of one another.

6.3.2 Fake ID (Sybil attack)

Sybil attacks have the property that could damage trust management system.

In these kinds of attacks end-users have purposely different identities. Therefore they

can provide contradictory ratings about the same Web services. The existing

approaches depend on random choices to sort out Sybil users and reduce their

attacking capabilities. With this attack the identities are created with fake profiles and

will provide higher credits for the useless services that are completely violated all the

policy levels. This results in the integration of useless service to the CMF. By

considering these attacks the valuable services which have to be integrated to the

CMF can be determined.

In the proposed work, Reputation Measurement is employed to calculate the

Reputation of the Web service before its integration to the CMF. The Reputation of

each Web service is measured based on the quality parameters associated with it,

called Quality of Web Service (QoS) which includes security, privacy preservation,

response time, availability, reliability etc and by the credits provided by the peer

reviews (personalities). Thus the Reputation Measurement for the service LCSpv from

the peer review is approximated using the equation given below:

   Reputation, , x
pv m

X i
R LCS J PE pv


 

79

Where, PE = Evaluation obtained from each peer review i J = the

entity measuring reputation

m = QoWS parameters

Avoiding the malicious activities in Reputation Measurement credibility of

raters is done by considering the attacks such as the Ballot Stuff Attack and the Sybil

attack and this is performed as given in the following section.

6.3.3 Raters creditability Evaluation

Generally in some frameworks the trust of the entity from where the service

accessed is measured through the feedback systems and in those systems the credits

are assumed to be reliable one and in a practical world some malicious activities may

be associated. Hence to obtain reliable credits, the evaluation of credits is mandatory

and by including this Reputation Measurement where the previous equation may be

rewritten as

 
 

 

1

1

(,)

Reputation, ,

,

i
X pv

m

X
pv i

x

PE C x j

R LCS J

C x j












Where, c(x, j) = Credibility of the peer reviewer for the service LCSpv.

In credibility evaluation, the credibility of the rater is evaluated with the

majority opinion and if the rating provided by the rater is agreed with that opinion

then credibility becomes increased, otherwise it will get decreased. However, the

rating provided by them will not get discarded. The majority opinion is obtained with

the clustering technique and in the existing Reputation Measurement technique k-

means clustering method is used. The drawback associated with this is the error value

is somewhat higher while clustering the data and hence the system employs K-

Median Clustering (KMC) technique. This is explained as follows:

6.3.4 Majority Opinion by K-Median Clustering

The advantage of using KMC is that the error associated with this clustering

becomes reduced and the technique will consider the median of the neighbors instead

of mean value. The input for the clustering technique is the ratings of the reviewers.

The process of the KMC algorithm is detailed as in Algorithm 6.1.

80

Algorithm 6.1 K-Median Clustering Algorithm

Algorithm: Pseudo code for K Median Clustering algorithm

Input: Ratings of reviewers, CR = {crn}in=1

Output: K number of Clusters, {Ck}kk=1

Step 1: Let C01, C02 . . . C0k be the initial cluster centers

Step 2: For the credit crn assign it to the nearest calculated by the following equation:

0

1 1

Manhattan Distance,
k i

M k n

k n

D C cr
 

 

Step 3: Center updated for every cluster C0k by the median of the points crn within it.

Step 4: Repeat steps 2 and 3 for maximum iterations

Step 5: Return final cluster centers as {C1, C2 . . . Ck}

The adjustment of the rater’s credibility is done by calculating the Euclidean

distance between and the reported rating, and the resulting credibility adjustment is

given in the following equation:

 nA cr 

   

  

1

1

1

Modified Reputation, (,)

 ,

 =

,

M pv

i
x pv

m

x

x

R LCS j

PE A c x j

A c x j









After adjusting the credibility of the raters, the modified reputation of the

service is calculated as given in the following equation:

   

  

1

1

1

Modified Reputation, (,)

 ,

 =

,

M pv

i
x pv

m

x

x

R LCS j

PE A c x j

A c x j









From the above equation the reliable reputation of the Web services which are

violating the policy levels are calculated, and based on that the decision for the

service integration is made. This is discussed in the following chapters.

6.4 Service Integration Decision to Change Management Framework

The modified Reputation Measurement is done for each of the service which

comes through the request to be integrated to the CMF and based on the list of

measured Reputations the threshold value is defined, called Reputation threshold, RTh.

81

Then the decision for Web service integration is produced as given in the following

equation:

 MR 

,

,

Th pv i

Th pv

R LCS S

R LCS EH

 

 

In the above equation, if the Reputation of the service is greater than or equal

to the threshold value means it will be considered to be integrated to the CMF as

denoted by Si, else it will be labeled as the service EH to be thrown to the exception

handler. The performance of the proposed methodology can be evaluated in terms of

different performance metrics that perfectly evaluate the system. In the proposed

work, the performance is evaluated through the parameters called reputation

Measurement of the service, Computational Time, and Accuracy. The definition of

these performance metrics is also given in the following section.

6.5 Experimental Results and Discussion

The Reputation Measurement is the reputation of the Web services measured

using the equation given in the section 6.3.4. Table 6.1 represents the description of

service request. This value of Reputation is calculated for the number of services and

the evaluated values are given in the Table 6.2 and the Reputation score is plotted in

Figure 6.2 for the violated service requests. It is noted that the Reputation threshold is

fixed to the value of 10(i.e., RTh = 10).

Table 6.1: Description of the service request

Table 6.2: Reputation Measurement for number of services

Request ID Reputation

1 8

5 11

8 20

12 22

17 23

Parameter Value

Number of services 20

Service ID 1-20

Service Domain Travel, Airlines, Hotel

Description of the service WSDL, XML, HTML, UDDI and UML

Number of True Peer reviewers 20

Number of Malicious Peer reviewers 5

82

Figure 6.2: Reputation measurement for the policy violated services

The amount of time required to do different processes involved in the

proposed methodology is also an important parameter and the result is given in the

succeeding section.

Computational Time

This is the time required for completing the process of Policy Violation

Detection, Reputation Measurement and Service Integration. These values are also

tabulated in Table 6.3 and the values are plotted in Figure 6.3 with a different variety

of services from various domains.

Table 6.3: Computational time for policy violation detection, reputation

measurement and service integration

Process Time (seconds)

Policy Violation

Detection
2.00

Reputation

Measurement
2.58

Service integration 0.507

Accuracy

The last performance parameter to measure the efficiency of the proposed

methodology is the accurate calculation of the Reputation for the policy violated

services and here the accuracy is calculated as the ratio of total number of services

whose Reputation is the correct one to that of the total number of services and this is

calculated using the following equation.

83

Figure 6.3: Computational Time

()R pv

pv

T LCS
Accuarcy

LCS



Where, the numerator TR (LCSpv) denotes the number of services whose

Reputation is high as predicted and the summation term in the denominator denotes

the total number of services whose Reputation is to be measured. The calculated

accuracy for different number of services is tabulated in the following Table 6.4 and

is plotted in Figure 6.4.

Table 6.4: Accuracy for number of Web services

Number of service

requests
Accuracy (%)

5 82

10 84

15 89

20 92

The accuracy of the proposed methodology is given in the form of a graph in

Figure 6.4 and from the graph it is evident that when the number of service requests

increases, the accuracy of the system also gets increased and it which shows that the

proposed system will be able to produce accurate Reputation score even for more than

one number of service requests arrived

0

1

2

3

4

5

6

Policy violation

detection

Reputation

measurement

Service integration Total time

N
u

m
b

e
r
 o

f
se

r
v
ic

e
s

Process

Computational Time(ms)

84

Figure 6.4: Accuracy of reputation measurement

Reputation Measurement is also done by several enterprises that make use of

feedbacks and Qos parameters of the services to be integrated. This enterprise level

Reputation Measurement uses some kind of filtering techniques to find the

trustworthiness of the services. The study shows that these systems contribute less

level of prediction of malicious services. The experiments conducted using

Reputation Measurement with Raters credibility and K-Median clustering proves that

the accuracy of service integration is improved by 92%.

6.6 Summary

This chapter has introduced a methodology for Business Policy Violation

Detection in the Change Management Framework based on the Reputation of the

service requests. Initially the incoming requests are analyzed in terms of its previous

incidence, domain and the business logic. In business logic analysis of the request,

Alternating Turing Machine is used to detect the policy violated points of the services

and integrate them to CMF if there is no policy violation. Otherwise Reputation

Measurement of the policy violated services is carried out. The Reputation of the

service requests is evaluated based on the credits provided by the peer reviewers but

there may be the possibility that the reviewers may believe in malicious intentions. So

the credibility of the provided ratings is verified against K-Median Clustering

technique. Based on the calculated Reputation level of the policy violated services,

Reputation threshold is fixed and if the threshold exceeds, it becomes integrated to the

CMF or it will be thrown to the exception handler. The experimental results proved

that the efficiency of the proposed methodology is greater than that of the

conventional techniques.

85

 CHAPTER 7

COLLABORATIVE AGENTS FOR DYNAMIC WEB SERVICE

INTEGRATION

7.1 Overview

The collaboration process is responsible for the registration of different

enterprise resources and also for checking the database present in the system,

information sharing and exchanging data by releasing certain information. Integration

at this level has numerous difficulties. Expected logic to determine the service

integration demand must be situated between the demanding services of different

accomplices. To address the above said issues, a Collaborative Multi-Agent based

Dynamic Service Integration system is proposed. This system facilitates the process

of integrating the service logics automatically.

7.2 Dynamic Service Integration Framework

Service Integration is a procedure that uses a complex interface to put the

required business logic in the service complete and to coordinate them formally. It

additionally requires confirmation and access control component to check and make

utilization of the partner’s logic at outline level. To handle and work out the above

said tasks, the proposed system employs various agents that could help in the process

of integration. The agents are Discovery Agent (DA), Evaluator Agent (EA),

Negotiation Agent (NA), Dependency Checker Agent (DCA) and Integration Agent

(IA). Figure 7.1 illustrates the overall system architecture for the proposed Dynamic

Service Integration.

Schemas that are produced from the business logics extracted from TM are

adaptable to supervise. They are typically utilized at property assessment levels.

These patterns are then incorporated and created to shape new services. Discovery

Agent is the essential component in the framework that looks into the required service

logics progressively through its intricate business space situated searching ability. The

Negotiation Agent is another noteworthy component in the framework. This operator

is utilized for guaranteeing that the requirements existing between business strategies

of the teaming up service is likewise affirmed by the approval level to neglect the

business logics.

86

Several constrains may be associated with every service. These constraints

may cause dependencies between several functionalities within the service. To

analyze these dependencies, Dependency Checker Agent is employed. After these

agents complete their tasks successfully, the Integration Agent dynamically integrates

the services that are checked for property, business policy evaluation and dependency.

To perform the task of Dependency Checking and Business Policy evaluation, the

TMs are utilized.

Figure 7.1: Dynamic Service Integration

7.2.1 Discovery Agent

When a user request arrives for service integration from the service request

block, it is sent to the request analyzer component in the system. The request analyzer

analyzes the domain of request. It checks the domain registry for this process. If the

service domain is a registered one, then the request is sent for processing. If the

domain of service is not registered, the request is denied and the process of integration

is stopped at this level itself. Once the registration confirmation process is over, the

directory service is triggered. Here the locations of the services are identified and then

its corresponding service logics and schema are extracted as a single set. The Business

Logic (BL) holds the rules, functions and parameters associated with the services. The

BL set will then be given to the Evaluator Agent to evaluate the properties. When the

schemas of all the services are extracted, then the level of collaboration is checked in

a B2B collaboration component.

87

In future when the request of the same type enters the system, the BL schemas

are not sent to the Evaluation Agent or the Dependency Checker Agent. It is directly

sent to the Integration Agent. This is because the knowledge base stores the details the

details that are collected from the DCA and the EA regarding the evaluation results.

When the request was denied previously due to any accessibility issues then, the

whole process of integration is stopped and therefore the execution time is reduced

drastically.

There may also be situations where service requested be found reliable but, the

service requester may be an unreliable one. Also there might be policy violations

among the requester and the providers. In such cases, they are verified at the primary

level be the DA itself. Only when the collaboration process is satisfied, the process of

integration begins.

7.2.2 Evaluator Agent

There may be defects in the parts of business policies extracted from several

sources of services. The Evaluator Agent investigates such defects and verifies the

functional and non-functional assessment of the services that may be needed to decide

whether the integration logic fulfills user request absolutely. Functional assessments

can be made with some important properties that include computability, completeness

and configurability. These properties guarantee the effectiveness and execution of the

logic. This operator has the synergistic nature to speak with other service providers

and occasionally informing the required properties. Other key properties like

Computability and Completeness are also verified at Rule and Function level. Turing

Machines are employed at this level. The logics are first converted into its equivalent

FOL before processing.

7.3 Property Evaluation using PE Agent

In the process of service integration, the proposed system determines the

important properties such as completeness, configurability and computability with the

help of several Agents in the framework. This is done to make sure that no run time

issues occur in the logics on the flow and after process of integration. These

properties are evaluated and the results are discussed in detail in the following

sections.

88

7.3.1 Computability

In spite of the fact that the framework coordinates the service logics

progressively, it is basic to confirm that created complex logic is calculable inside a

period restrict. In order to make the business logic and the business function to be a

computable one, they must be handled with clearly defined and a finite length

instructions. The complete description of the functions to be performed is therefore

present in the corresponding function’s finite program.

Consider if the business function is represented in a k-tuple which is denoted

by x in the domain of f, then the function should terminate after a finite number of

discrete steps and should produce the function f(x). The process of business function

proceeds with a sequence of steps following a accurate rule to denote what has to be

done at each step of the calculation. It is a defined rule that only finite steps should be

carried out and the value of the function should be returned. If the function that was

represented in k-tuple denoted by x is not in the domain of f, then the function

executes continuously without halting and caused sensitive exceptions. There are also

possibilities that it might get stuck at any point with because of some basic type of

exception. At any point of time the system must not act as if it has produced a value

for f at x. Therefore, at any point of time if a value for f(x) is found, it should be the

correct one. Only then the business function will be completely computable. To

perform these tasks, the system uses a finite amount of storage. Even if the storage

exceeds, the space can be extended. Additional storage space can be given to the

function whenever there is a need.

7.3.2 Completeness

The completeness property is utilized to demonstrate that the business rules

are finished as for its related functionalities and furthermore they are semantically

substantial. Just when the arrangement of guidelines that are related with that of the

business logics are finished and legitimated semantically, targeted business logic is

said to be complete. The business logic set is a four Tuple set that has rules, functions,

parameters and dependency connection which are identified with each other. Any

semantically valid contention can thus be caught by the formal evidence. The choice

of rules for conclusion is to be made in earlier the procedure of integration over the

logic set. This procedure is effectively performed when the framework is in a static

89

stage. Be that as it may, at runtime, a few issues identified with the info/yield

parameter mapping, calculations done iteratively and restrictive variable changes are

to be overseen with no naming clash. The run-time condition is intended to deal with

the exceptions when these factors are adjusted by guaranteeing the sort, degree and

scope of the factors which are subject to change. The procedure ends up convoluted in

light of these confinements need to ensure the soundness of the rules and due to the

status of the factors.

Theorem 1. The Business Logic ‘BL’ is complete if and only if the associated rules,

functions, parameters and the dependency relations are complete. Here, ‘BL’ is a 4-

Tuple Business Logic Set. B L = (R, F, P, D), Where R is the Rule Set, F is the

Function Set, P is the Parameter Set and D is the Dependency relation.

Proof:

Parameters are complete if the input and output variables are bound with

distinct values.

Info Parameters < I1, I2, I3, .. In> are bound with discrete values, at that point

return Boolean esteem (True). By experiencing the limit check work B (p), a

condition for Business Logic is encircled as underneath:

()B p 
0 If is false for all

1 If is true for all

i

i

I i n

I i n





Every one of the parameters including the temporary variables is acquired and

included it in the parameter list. Let‘t’ be the temporary variable. This variable is

substantial just if f(x) is in bound with f(x). This is the process used for finding the

relationship between the business variable 'x' and temporary variable ‘’t’. To process

the mapping between the brief variable't' and the business factors x, y and z, we

outline a condition:

f (t)  0n  f (x), f (y)   t  P (Z)

Subsequently the parameters are finished if the point of confinement check for

all parameters including the temporary variable is seen to be valid. For every brief

variable't' there exists a mapping limit f(x) related with the business parameter 'x', by

then t is useful else it is pointless A Finite State Machine is developed for the

parameter list by thinking about the successive connection from the source to ending

90

purpose of a Business Logic. This procedure is rehashed for finding new business

arrangement. At each state the reproduced FSM stores the parameters of the Business

Policy and the present value.

7.3.3 Configurability

Configurability is a property for establishing and maintaining consistency of

performance of a composed service throughout its life time. Before the process

extracting and developing service logic from the services to be composed, the

resources required to build them have to be verified. They can be executed only if the

service logic is available in the system. On the off chance that specific asset isn't

accessible, it can be then hunt down an elective way and do changes as needs be.

Framework receives this change just when it is reliable. Business Logic is an

arrangement of code fragment 'cs' that holds an arrangement of framework data

identified with design and support. The logics related to configurability are also

contained in the Business logic points. It is written with a set of methods that include

drivers, connectors, resource types, a set of credentials, access methods, etc.

Attempting to do any modification in the system logic, a proper verification should be

done such that it does not affect associated business logic. It should also be checked

whether updating the business logic is trustworthy or not. In order to do any

modification, system logic is initially expressed in the form of First Order Logic.

After modification, the modified logic is also expressed in FOL and compared

with the original one. Configurability is achieved only when original FOL and the

modified FOL are same. Consider CL and CL′ to be the configuration logic before

and after modification. Verification is done to see if FOL (CL) = FOL (CL′). The

business logic should also be checked before and after modification. Consider BL and

BL’ to be business logics before and after modification. Verification is done to see

BL∩BL′ = φ. After each modification, the code segment is verified to examine

whether the update is useful or not. Even the Database connection type should be of

the same type and not with network connection different type. If f(x) is the original

resource in the CL and g(x) is the modified one, then it is verified that f(x) ∩T(x) = c.

Value c is some constant. Table7.1 illustrates FOL conversion for configurability and

Algorithm 7.1 describes the working of configurability in the integration process.

91

Algorithm 7.1 Algorithm for computing Business Functions

Algorithm PrimitiveBusinessFun (BusinessLogicSet)

Input: BusinessLogicSet [L]

Output: Total or partial evaluation for computability

Method: PRF to confirm that logic is computable or not

//ßr [] : Business Rules (ßr [] = ßf [1..n])

//ß f[] : Business Function(ßf[] = Ißf[] Cßf[])

//Ißf[] : Initial Business Function

//Cßf[] : Composite Business Function

//Pßf[] : Primitive Business Function (Pßf[] = Pf[Ißf[],Cßf[]])

Begin

(i) Input the BusinessLogicSet (L)

//BusinessLogicSet is a 4-tuples consisting of Business Rules, Functions associated with the

BusinessRules, Business Parameters and Dependency Relations that exist between the first 3-

tuples.

L= R, F, P, D

L = ßr1, ßr2...ßfn, ßf1, ßf2...ßfn, P1, P2...Pn, D1, D2...Dn

(ii) Evaluation of InitialBusinessFunction (Ißf)

For each BLn[where n > = 1] in BL

:Ißf(n) = Calculate Initial_function(BLn)

If BLne[Zßf (y) , Prßf(y), Ußf (y), Pßf (y),Idßf(y) , Sßf (y),, Cßf

(y)] then Ißf(n) = BLn where in BLin is said to be computable

within the polynomial time.

//Initial Function contains Zßf (y) = 0 | Ußf (y) = 1 | Ißf(y) = y |

Psßfnn (y1, y2, y3, ... yn)

= yn | Sßf (y) = y + 1 | Pßf (y) = y – 1 | Cßf (y)

= y’ End if

End loop

(iii) Evaluation ofComposite Business Function Cßf

For each Ißf(j) [where j > = 1] in Ißf(j)

: Cßf(j) = Composition is applied over InitialBusinessfunction Ißf(i)

If Cßf (x,y) = Ißfh (Ißfg1 (x,y), Ißfg2 (x,y)) from defined functions Ißfg1,

Ißfg2, Ißfh. Where Ißfg1, Ißfg2, Ißfh are generated InitialBusinessFunction

from the first phase.

Cßf(i) = [Ißfg1, Ißfg2, Ißfh] where in Cßf(i) is computable within the

polynomial time.

 End if

End loop

92

Table 7.1: First Order Logic Conversion

RULE

CODE FIRST ORDER LOGIC

R1 get(String account)

Select * from withraw where account no

like {$Keyword}

∃a[account(a)]→[account (a)] Ʌ

[account_no(a)]

R2 get (user id,pin no)

if(user.equals(user id)

&&pass.equals(pinno)){

out.println("Login Successful");}

else

out.println("Login Failed,Please try

Again") } }

∃y[userid(y)] Ʌ z[password(z)]

7.4 Accessibility through Negotiation Agent

Approval and validation are basic issues as these are the procedures of sharing

business logics among the accomplices. So availability is a basic issue as it is utilized

to depict how much the requestor can get to the business logic. Before getting into the

incorporation procedure, contract made between the community undertakings ought to

be confirmed, appropriately framework must enable them to utilize. Verification and

access control between the service accomplices are controlled by NA.

(iv) Evaluation of PrimitiveBusinessFunction

(Pßf) For each Ißf(j) [where j > = 1] in Ißf(j)

: Pßf(j) =Recursion is applied over InitialBusinessfunction Ißf(j)

If Pßf (x, 0) = Ißfg1 (x) and Pßf (x, y + 1) = Ißfh (Ißfg2 (x, y),

Ißf(x,y))

From the initial business functions defined earlier Ißfg1,

Ißfg2, Ißfh

Where Ißfg1, Ißfg2, Ißfh will be generated by InitialBusinessFunction

Rßf(i) = [Ißfg1, Ißfg2, Ißfh] where in Pßf(i) is computable within the

polynomial time.

End if

End loop

(v) Calculate Computability factor

If (Input_BusinessLogic (BL)) is different in all the three phases then BL is totally computable

Otherwise BL is partially

computable

End if

End

93

It additionally decides the openness level of every last business tenets,

capacities and parameters in relationship with their business arrangements. Keeping in

mind the end goal to play out this, FOL and FSM must be built and the FOL (First

Order Logic) for the removed code portion (slice), through which the subject, asset

and condition bound with the business logic are effortlessly recognized and their

relating access control highlights are mapped.

Algorithm 7.2: Algorithm for Accessibility

Algorithm Accessibility (BusinessLogic, AccessPoint, AccessControl)

// Input Business Logic is divided into set of Rules(R), set of Functions(F), set of

Parameters(P) and set of Dependency Relation(R),

// Here the BL consist of 4-tuples (R,F,P,D)

Each Rule is associated with Access Point for the business rule code segment and this

confirms the accessibility of the modifiable business logic that is based on the Access

Control Type w.r.t. business policy

Begin

For each AccessPointDef

For j = 1 to k // where ‘k’ is the no. of access point Devide[i] =

DoCodeSegment(BusinessLogic, AccessPoint)

For each slice in Devide[n] do

//convert the slice into first order logic (FOL)

// FOL[i] =ConvertFOL (slice)

//AccessControlType is of different categories such as subject, resource and

environment ObjectU[] = Subject(FOL[j])

//Resources may include Database, File System, Commerce Server.

 ObjectR[] = Resource(FOL[j])

// Environment are Data center, Organization, Business Logic Server.

ObjectE[] = Environment(FOL[j])

Acc_Cont_Type = {ObjectU, Object R ,ObjectE}

// Finite State Machine is constructed for the complete business logic

Construct_FSM(FOL[i])

Begin

Let ‘M’ be the Finite State Machine that is a 5-tuple set

M = (Q, ∑, ä, q0, F)

Where

Q is the finite set of states which are stored in the form of converted FOL.

Σ is a finite set of symbols, the input alphabet that form the access control

specification.

ä: Q X ∑ Q is a transition function that makes the machine move from one state to another

q0ºis the initial state which is the entry point of FOL[i], where i = 1.

94

FOL examines the code portion altogether and restore the Boolean value 1 if all

related standards of the business logic meets the access control strategies.

Convert_to_FSM inserts this FOL as limit in every area of TM since each state in TM

is allocated for the business control as demonstrated by their execution arrange. The

advance between two states happens exactly when the FOL related with the state

returns 1.In the event that TM ends inside a response time, the requestor is approved

to get to the specific piece of logic which is distinguished for incorporation. Table 7.1

illustrates the FOL conversion of business rules. Algorithm 7.2 represents the

algorithm for Accessibility.

7.5 Dependency Checker Agent

Dependency checking is fundamentally used to investigate the dependency

relation between the business rules, functions and parameters in the business logic

that were extricated from the TM. DC Agent does this assignment successfully by

teaming up with different specialists in the framework. As an initial step, it classifies

business logics into rule set, function set and parameter set. Next, it creates Business

Logic Schema as its tag sort business rules, functions and parameters and it delineates

the spill out of one business lead to different business control, capacity, parameter and

the other way around. Turing machine determines the transition and the dependencies

between every business rules, function and parameter and the other way around. This

F  Q is a set of final states. Exit point of FOL[i], where i = n.

// The fact that ä is a function implies that every state has an outgoing transition for each

member of ∑. An extended transition function can also be defined as ä* as ä*: Q X ∑*

And transition function such as ∑ - r1 represents negation of the input access specification

for r1.

A State is created for each FOL[i] with the slice

A State Transition Table (STT) is constructed for the recognized states and transition between

the states are maped.

End

Do{

SignalDoTraversal(FSM, FOL[i]

 AccessControl, AccessControlType, STT)

} While (Not FinalState(FSM) && FOL[i]!=NULL)

If Signal returns 1 then Acc= TRUE for all set of Access Point

Else

Acc=FALSE for the Current Access Point ‘x’ with exception.

 End

95

section details the mapping between business logic and BL schema. An example of

Credit Card Validation logic is shown in Listing 7.1.

BL schema that is generated by DC Agent is shown in Listing 7.2 which is a

complete translation of logic in Listing 7.1 and describes the flow of above logic

absolutely. The tags of BL development arrange the logics into business rules,

functions and parameters. It furthermore depicts the degree of each business rule,

function and parameter and dependence with other. It is given as contribution to the

TM Simulator which repeats the TM to separate the advance starting with one

segment then onto the next and produces BL outline fittingly. The BL design

delineates the dependence between each grow skillfully with their record.TM

simulation for BL schema is represented in Listing 7.2 is imparted in Figure 7.2 and

BL pattern corresponding to the TM is generated in Table 7.1. The multi-tape Turing

machine appeared in Figure 7.2 is developed by different parts (rule, function and

parameter) at various levels so as to discover the blunders effectively and investigate

the logic proficiently. It likewise examines the reliance and watches the rightness of

the business rationale. The request of execution of business logic can be controlled

skillfully by the business logic design which is appeared in Table 7.2.

Listing 7.1: Business Logic for credit card validation

importjava.sql.*;

importjava.util.*;

public class creditcardvalidation implements creditcardvalidIF{

 public String validation(String cardno, Date expdate){

 String status="";

 //Validate card length

 if (cardno.length() < 13 || cardno.length() > 16)

 status+="Invalid Cardno: Out of range";

 // Verify Expiry date

 Calendar curdate = Calendar.getInstance();

 Date todate=curdate.getDate();

 if(todate>expdate)

 status+="Sorry! Credit card expired";

 //*** Validatecardno

 intval=0,val1=0;

 for(int i=1;i<=cardno.length;i++)

 if(i%2==0)

 val+=Integer.parseInt(cardno.charAt(i));

 else

 val1+=Integer.parseInt(cardno.charAt(i));

 if(((val+val1)%10)!=0)

 status+="Invalid creditcard";

 if(status="")

 status="valid credit card";

 returnstr;}

96

With the assistance of transition capacity of Turing machine, the DC agent

dissects the dependency that exists between the rules, functions and parameters and

furthermore inspects the accessibility property. Figure 7.3 demonstrates the portrayal

of capacity and BL pattern ordering in memory together with the BL mapping. The

data structure used here is stack joint with linked list. Business logic, rules, functions

and parameters are secured freely in each stack as showed up in Figure 7.3. Once the

required service is arranged in charge document, it sends the relating BL design in the

repository and takes after the isolated pieces. These parts toward the end joined to

outline the BL Schema for the perceived business rules.

Figure 7.2: ‘Credit card Validation ‘using TM

For example, if the demand is to 'build up an administration for supporting

charge card no', the Discovery Agent (DA) parts up the demand into single separate

request and finds related services for every last one of its requestors. With the

assistance of NA, it monitors the support level of each found services. From the

quick overview of the found services, DA uncovers a right one to process the

demand. In like way it recognizes the quick overview of business gauges to process

97

the demand. The requested service can be worked from the above integration plan of

exercises through the Business logics related with Business Rule BR13. DA looks

into reliance between the required Rule BR13 with different business rules, business

functions and parameters and finds through BL configuration set away in memory.

The DCA first recognizes the BL pattern associated with separated business

rules to process the request. Thus, it discovers the relevant bits of code and finds

coordinating schema each symbol in the pattern. It creates isolate BL schema with

the followed tags in the current schema.

Table 7.2: BL Pattern for the above Turing Machine

S BL1 |BL2

BL1BP11BR11|BP11BR12|

BP11BR13

BR11 BR12 BR13BF11

BF11BPf1

BR11BF111

BF111BP111

BR12BF121|BF122|BF123

BF121BP121

BF122BP122

BF123BP123

BR13BP131BP132BF131|

BP131BP132BF132| BP131BP132BF133

BF131BF1311BF131

BF1311BF13111

BF13111BP13111

BF1312BF13121

BF132BP132

BF133BP133

BF13121BP13121

BL schema generated for credit card validation is shown in listing 7.3. As the

schema and business logics are firmly coupled, it determines business logic

associated with the separated pattern and builds up logic. Presently with BL design it

plays out a switch procedure to develop Turing machine for this new logic as it is

important to follow the bugs and examine effectiveness of the logic. With the

uncovered BL designs in rule, function and parameter level, it reveals the portion

related with them and new TM is mimicked with the identified section. Locating

required portion for the spotted pattern and newly constructed Turing machine for

our request is shown in Figure 7.3.

Several new patterns are generated with the extracted business logic. These

patterns are fed into the Turing Machine. The TM examines these patterns. One of

the amazing features of the Turing Machine is the pattern matching ability. Given

any pattern in the business logic, it examines it by constructing a transition table.

When there are different states in the transition table and the system halts at any one

state, then the pattern is said to be recognized. An XML representation of the

Business Logic Schema is represented in the following sections.

98

Listing 7.2: Business Logic Schema

Listing 7.3 BL Schema for validating credit card no

<?xml version="1.0" encoding="UTF-8" ?>

-<Implementation>

 <packagename="sql.*" property-access="true" id="p1" />

 <packagename="util.*" property-access="true" id="p2" />

-<class name="creditcardvalidation" implements="creditcardvalidIF" id="c1">

-<validation includes="cardno,expdate"includetype="xs:String,xs:Date"excludestype="xs:String" id="M1">

 <BPtype="String" name="status"minoccurs="null" id="BP1" />

-<BR name="Validate Entered digits" id="BR13">

 <BPtype="int" name="val"minoccurs="0" id="BP31" />

 <BPtype="int" name="val1"minoccurs="0" id="BP32" />

-<BF type="for"minoccur="1" step="+1" test="i le cardno.length" name="BF31">

-<BF type="if" test="i mod 2" id="BF32">

-<BF type="func" name="In" accessmodule1="charAt()"accessmodule="parseInt()" use="cardno"

id="BF33">

 <BPop="add" par1="val" par2="In" name="val" id="BP33" />

 </BF> </BF>

-<BF type="else" id="BF34">

-<BF type="func" name="In" accessmodule1="charAt()"accessmodule="parseInt()" use="cardno"

id="BF35">

 <BPop="add" par1="val" par2="In" name="val1" id="BP34" />

 </BF> </BF> </BF>

-<BF type="if" test="va1+val1 mod 10" id="BF35">

 <BPname="status" value="Invalid cardno" id="BP35" />

 </BF> </BR>

</validation>

<?xml version="1.0" encoding="UTF-8" ?>

-<BL name=”validation” includes="cardno,expdate"includetype="xs:String,xs:Date"excludestype="xs:String"

id="M1">

 <BPtype="String" name="status"minoccurs="null" id="BP1" />

-<BR name="Validate length" id="BR11">

-<BF id="BF11" type="if" test="cardnogt 13 and cardnolt 16">

 <BPname="status" value="Invalid cardno: Out of range" id="BP11" />

 </BF></BR>-<BR name="Verify Expiry date" id="BR12">

-<BF type="func"accessmodeule="getInstance()" use="calendar" id="BF121">

 <BPname="curdate" type="Calendar" id="BP121" />

 </BF>-<BF type="func"accessmodule="getDate()" use="curdate" id="BF122">

 <BPname="todate" type="Date" id="BP122" />

</BF>-<BF type="if" test="todategtexpdate" id="BF123">

 <BPname="status" value="Sorry! Credit card expired" id="BP123" />

</BF> </BR>-<BR name="Validate Entered digits" id="BR13">

 <BPtype="int" name="val"minoccurs="0" id="BP31" />

 <BPtype="int" name="val1"minoccurs="0" id="BP32" />

-<BF type="for"minoccur="1" step="+1" test="i le cardno.length" name="BF131">

-<BF type="if" test="i mod 2" id="BF1311">

-<BF type="func" name="In" accessmodule1="charAt()"accessmodule="parseInt()" use="cardno"

id="BF13111">

 <BPop="add" par1="val" par2="In" name="val" id="BP13111" />

 </BF> </BF>-<BF type="else" id="BF1312">

-<BF type="func" name="In" accessmodule1="charAt()"accessmodule="parseInt()" use="cardno"

id="BF13121">

 <BPop="add" par1="val" par2="In" name="val1" id="BP13121" />

 </BF> </BF> </BF>

-<BF type="if" test="va1+val1 mod 10" id="BF132">

 <BPname="status" value="Invalid cardno" id="BP1321" />

 </BF> </BR>

-<BF type="if" test="status=null" id="BF11">

 <BPname="status" value="Card valid" id="BPf1" /></BF> </BL>

../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml
../../GOPALAKRISHNAN-PC/Desktop/runtime/credit.xml

99

Figure 7.3: New Turing Machine for the extracted logic

7.6 Pattern Recognition using Integration Agent

In the wake of discovering the required logics with its needy sections and

examples to incorporate, the services are coordinated. Here Integration Agent

achieves this assignment through the demand organized by DA and TM built by DC

Agent. The services and the providers are produced by means of different

programming platforms, for example, Java Web Service Developer Pack (JWSDP),

Tomcat Web server, BPEL Engine and with Jade module. At first, Integration Agent

shapes found out logics into a total service and convey the formed service into

Tomcat Server joined with JWSDP. At that point utilizing BPEL Engine, it makes the

created services in an example perceived by DC Agent. Four conceivable joining

designs are examined beneath in detail with delineations. In the wake of coordinating

the services, with the assistance of Evaluation Agent, it looks at whether the

incorporated service is productive one. Assuming this is the case, it sends the service

into the server through Runtime Engine and produces WSDL document. Yield

Generative Power (OGP) of the coordinated administration is likewise found and

showed. The OGP decides if there is any adjustment in the useful or non – useful

viability of the business logics when integrated. The OGP of the incorporated logics

in spite of the example utilized for joining ought to be continuing as before or should

change in a positive way after combination. The incorporated logic ought not to

confront any misfortune either practically or non-practically. This is resolved and

shown underneath for each example. Comparability measure is likewise given along

OGP. Similitude measure gives the quantity of service with careful attention on of

100

properly when integration is processes with no exemptions. The similarity measure

amid our test is around 95% to 96 % which is appeared in the diagram for each

example.7.7

7.7 Closure Properties of Integrated Services

7.7.1. Union

If BL1 and BL2 are two business logics and both BL1 and BL2 are accepted

by TM M, then BL1UBL2 should also be accepted by M. Hence we say the integrated

services are closed under Union.

Figure 7.4: OGP of Integrates Services

7.7.2 Composition

Let ô (BL) be the OGP of composed logic L under composition where BL=

BL1 ◦BL2 such that ô(BL) = ô(BL1 ◦ BL2). At the end we say when two logics are

closed under composition then the OGP of BL1 is mapped into BL2 in terms of their

rules, functions or parameters.

Figure 7.5: OGP of Composed Services

7.7.3 Substitution

Let BL = (R, F, P, D). For each Rule r1 in  , there is LRule1 that includes the

rule, functions, parameters and dependency relation associated with rule1 in L. The

101

new logic set BL'=(R', F', P', D') which includes the substituted logic in terms of rules,

functions and parameters, where ô(BL') be the output generative power of integrated

logic BL' under substitution.

Figure 7.6: OGP of Substituted Services

7.8 Experimental Results and Discussion

A service integration demand needs search service which seeks both by

content and record. Give Vista a chance to seek be a book look benefit that contains

'look by record compose', date of distribution and search a business rules. Thus, let

Flora seek is item search service that contains business principles to 'seek by content

kind', cost and brand name. Consequently for the request received, the logic from the

Vista service and Flora services must be considered. At first, business logic for the

required standards are extricated and created as isolated services. WSDLs of the

developed services are shown in Figure 7.7 and Figure 7.8. Subsequently, FSM is

constructed to interpret the flow of logic. Then the services are integrated using union

and the results are shown in Figure 7.8. Similarity measure between requests is shown

in Figure 7.9.

Figure 7.7: WSDL of logic extracted from Vista Search

102

Figure 7.8: WSDL of logic extracted from Flora search

Figure 7.9: WSDL of logic extracted after integration (Vista and Flora)

103

Figure 7.10: Similarity Measure between given Request & Service Built

Demand for service integration may require visit reservation service that could

save both for settlement and voyages consequently. Hotel Service incorporates logic

and rules for convenience service and travel area contains logic and rules for

movement service. Hence the required logic is removed from lodging space and travel

area and is composed together. WSDL of the composed service is shown in Figure

7.10. The similarity measure is given in Figure 7.11.

Figure 7.11: WSDL of tour service (developed by composing hotel and travel service)

104

Figure 7.12 Similarity Measure between given request and service built

Service Integration that needs validation services to be stretched out alongside

the encryption service. The security benefit contains the encryption part. This piece of

the logic is extricated and added to the verification code by association technique or it

can be substituted in any required place. Then the extended service is built and

deployed. WSDL of the deployed service is shown in Figure 7.12 and the similarity

measure is given in Figure 7.13.

Figure 7.13: WSDL of authentication service (after encryption service substituted

 into it)

105

Figure 7.14: Similarity Measure between Request and Service Built

7.9 Summary

This chapter has presented a collaborative agent-based framework along with

its theoretical foundations for dynamic Web service integration that could assist

organizations to contribute their business logics in a more modern and secured path

with their competitors. The introduced system plays out the confirmation of required

business logics without the engineer's inclusion at any middle level of service

integration. Agents proposed in this section isolate the general work among them and

in this way increment the level of automation. They successfully distinguish trust that

exist between the Business logics and encourage coordinating them conceivably. The

DA agent plays a main role by helping in composite service integration which reduces

the overall integration time for about 50 %.

106

CHAPTER 8

CASE STUDY

COMPOSITE SERVICE INTEGRATION

8.1 Introduction

A collection of native packaged public interfaces are called the composite

services. These are otherwise called as ‘Native Services’. These services belong to a

specific product or a particular family of products. These services are available in the

Integration Repository. These native services serve as building blocks for

constructing a sequence of business activities for Composite services without flaws.

When a need for change arises, this integration repository serves as a source for

integration.

8.2 Composite Service Integration Analogy

A composite Service integration is done in the way described here. At the

point when in excess of 2 organizations will work together in excess of one type of

example, at that point composite reconciliation methods can be embraced. More than

2 logics are integrated using multiple integration patterns. Thus more than 2

enterprises involve in collaboration of their services. There are two possibilities of

integration. First, three new logics may come in the service integration request or a

third new service may come in. In both the cases, request is to be integrated with an

already integrated Long Term Composed Service. Since one part of request is already

available as a service has already been scrutinized, additional integration is done in

short time. This is because the property evaluation is already done by the PE Agent. It

is the DA that retrieves the available patterns from the repository for new integration.

These available patterns and the new logic are then given to the integration agent. The

Dependency and the property set of the effectively incorporated services are

accessible with the DA. The evaluated results of composite integration are shown in

Table 8.1.

The system considers two enterprises A and B which offer search services. For

each of the services they offer there are several policy rules associated. The file type

of each service may differ and the input validation, encrypt and decrypt types may

also differ.

107

Table 8.2: Performance Evaluation results of Service Integration

Enterprise A

Property Evaluation (S1)

Com-Computability

Cmp- Completeness

Enterprise B
Property Evaluation (S2)

Con-Configurability

Acc - Accessibility

Applicable Service Integration Methods

across S1 and S2

Service (S1) Service(S2)

Quick Search

Com

Cmp

Con

Acc

Advance Search

Com Cmp Con Acc

Union

Compo

sition

Substit

ution

Reduct

ion

r1: Search by file

type

1 1 1 1 r1: Search by

content type 1 1 1 1

[r1,r1]

[r1,r1]

r2:Search by date

of pub

1 0 1 0 r2:Search by price

range

0 1 1 1

r3:Search by

language

1 1 1 1 r3: Search by

keyword 1 1 0 1

[r3,r1] [r3,r1] S1[r1]

Security Service1

 Security Service 2

r1: Input

validation

1 1 1 1 r1: AES Encrypt-

Decrypt

1 1 1 1

[r1,r2]

r2:RSA Encrypt-

Decrypt

0 1 1 1 r2:DES Encrypt-

Decrypt 1 1 1 1

[r1,r2] [r1,r2]

Online Shopping

 Mail Service

r1: Manage& add

items

1 1 1 1 r1: Mail compose

1 1 0 0

r2: Calculate

amount

1 1 1 1 r2: Send msg to

mobile

1 1 1 1 [r2,r2] [r2,r2]

Registration

Service

 Authentication

Service

r1: Get contact,

edu info

1 1 1 1 r1: Input

validation

1 0 1 1 S1[r1]

r2: Get personal

info

1 1 1 1 r2:RSA

encryption

1 1 1 1 [r2,r2]

Billing Service

 Banking Service

r1:Manage

customer info

1 1 1 1 r1: Credit &debit

on acct

1 1 1 1 [r1,r1] [r1,r1]

r2: Calculate bill 0 1 1 1 r2: Fund Transfer

1 1 0 1

r3: Dispatch bill

details

1 1 1 1 r3: Balance

enquiry

1 1 1 1 S1[r3]

r4: Pay amount

1 1 1 1 r4: Report

generation

1 0 0 1 [r4,r1] [r4,r1]

Travel Service

 Accommodation

Service

r1: Get customer

detail

1 1 1 1 r1: Get customer

detail

1 1 1 1

r2: Airline

Reservation

1 1 1 1 r2:Hotel

Reservation

1 1 1 1 [r2,r2] [r2,r2]

r3: Cancelation

1 1 1 0 r3:Cancelation 1 1 1 0

Login Service

 Access Control

Service

r1: Get user

credentials

1 1 1 1 r1: Get role and

rights

1 1 1 1 S1[r1]

r2:login

verification

1 1 1 1 r2: Role based

access

0 1 1 1 [r2,r1]

Medicine Service

 Find Doctor

Service

r1: Get disease

details

1 1 1 1 r1:Gets disease

details

1 0 1 1 [r1,r1]

r2: Return list of

medicine

1 1 1 1 r2: Return list of

doctor

1 1 1 1 [r12,r2]

108

From Table 8.1 plainly the distinctive services incorporations, property

assessment is done and in the same manner the integration design is actualized.

Obviously if the openness is 1, at exactly that point the service logics are taken care of

for incorporation. Two Enterprise level coordinated effort is assessed in Table 8.1,

where r1, r2.. rn are rules having a place with various business logics of Enterprise A

and Enterprise B. The method of coordination is chosen by the raised demand once

when the property assessment process gets over.

After the integrating service logics is analyzed and after developing a complex

logic, SI Agent evaluates the performance of the integration process, compares with

its past integrations. The performance of the integration system is measured by

service integration time, Logic discovery time, Negotiation time and Dependency

Checking time.

Service Integration Time

 Service Integration Time is characterized as the time slipped by to achieve the

entire coordination process. As such, it is the aggregate time required for each bit of

system to execute. Service Integration time is registered by adding up logic disclosure

time, service alignment time, and schema generation time, mapping time and service

deployment time.

Logic Discovery Time

Logic Discovery Time (Tldt) is the time spent by the Discovery agent to receive

and process the request, find out the exact business logic. Tld = Time taken to process

the request (Tr) + Time taken to locate the rule (Tl). Let n be number of located logics

and T be the time taken to identify the rule, then

 ldt ldT n T T  

Negotiation Time

 Negotiation Time (Tsla) is time taken by the Negotiation Agent to verify the

policy in the service level agreement for all the service logics found by DA. It is the

summation of collaboration time Tcol and time taken to do verification for each logic

Txp.

  () ()0

n

sla col i xp ii
T T T


 

109

Dependency Analysis Time

 Tda means add up to time slipped by for DA Agent to achieve reliance

examination process in the entire service advance. Tda is summation of time taken to

distinguish the required as to business standards to process the demand, time taken to

investigate reliance at business rule, function and parameter. If there exist a request to

accept Tαr is time taken to distinguish rundown of principles to process the demand

and Tgr is time taken to find setting free language structure in memory for relating

tenet, capacity or parameter. Td be add up to time taken to learn reliance at rule,

function and parameter level for each found service and n is number of logics found

by DA.

 () ()dv dr df dp dr df dpT T T T d t t t dt     

 Here drT , dfT and dpT refer time taken to observe dependency at rule, function

and parameter level respectively.

     

   

 

dr gr dr df df

df gr df dp

pf gr dp

T T r T f T f T

T T f T p T

T T p T

      

    

  

 drt , dft and dpt implies time taken to inspect dependency at rule, function and

parameter level to manage the changes at runtime respectively.

     

   

 

dr gr dr df df

df gr df dp

pf gr dp

t t r t f t f t

t t f t p t

t t p t

      

    

  

Total time taken for the whole process of RBA is

 () ()da ar dr df dp dr df dpT T T T T d t t t dt      

Service Integration Time

 Service Integration Time is time taken by the SI agent to integrate the service

logics extracted by DC Agent. It is the total of the time taken for the agent to

recognize the pattern to integrate the service logics (Tp), time taken to interact with

DC Agent to obtain the extracted service logic (Tcld) and time taken to deploy the

service Tsd. Tp is time taken to out the dependencies between the logics and ascertain

the proper pattern. Service Aggregation is time taken to aggregate the service with the

ascertained mode (Tagg)

 1p rba aggT T T T  

110

Table 8.2: Performance Evaluation results of Service Integration

Enterprise A Enterprise B Integrated

Service

Tld

(ms)

TSla

(ms)

Tda

(ms)

TPE

(ms)

TSI

(ms)

TTI

(ms) Service (S1) Service (S2)
Quick Search

r1: Search file

type

Advanced

Search

r1: Search by

content type

r2: Search by

price range

r3: Search by

keywords

Compound

Search

Union: S1(r1) U

S2(r1)

0.954 1.132 0.567 0.674 0.395 3.722

Security Service1

r1: Input validation

r2: RSA Encrypt-

Decrypt

Security Service

2

r1: AES

Encrypt-Decrypt

Security Service

Substitute:S1(r1)

in S2(r2)

[Perform input

validation on

Encryption and

Decryption]

0.876 1.354 0.678 0.8 0.563 4.271

Online Shopping

r1: Manage & add.

items

r2: Calculate

amount

Mail Service

r1: Mail

compose

r2: Sendmsg to

mobile

Alert Service

compose:

s1(r2)S2(r2)

[Calculate amt, if

not paid, sent alert

message]

0.979 0.996 0.623 0.710 0.482 3.79

Registration

Service

r1: Get contact,

edu info

r2: Get personal

info

Authentication

Service

r1: Input

validation

r2:RSA

encryption

OptRegistration

Service

S=Reduce(S1(r1))

[S1(r1) is reduced

to getedu info

only]

0.785 1.046 0.637 0.659 0.475 3.904

Billing Service

r1:Manage

customer info

r2: Calculate bill

r3: Dispatch bill

details

r4: Pay amount

Banking Service

r1: credit &

debit on acct

r2: Fund transfer

r3: Balance

enquiry

r4:Report

Generation

Online Billing

Compose: S1(r4) ᶱ

S2(r1)

[Payment debited

on

corresponding

customer acct]

0.851 1.267 0.598 0.692 0.495 3.903

Travel Service

r1: Get customer

detail

r2: Airline

reservation

r3: cancellation

Accommodation

Service

r1: Get

Customer detail

r2: Hotel

reservation

r3:cancellation

Travel Package

Compose:S1(r2) ᶱ

S2(r2)

[If customer

reserve air ticket

then also book

hotel]

0.912 1.160 0.620 0.786 0.477 3.955

Login Service

r1: Get user

credentials

r2:login

verification

Access Control

Service

r1: Get role &

rights

r2:Role based

access

Login Service

S=Reduce (S1(r1))

[S1(r1) is reduced

to get

username &

password only]

0.865 0.899 0.712 0.683 0.491 3.65

Medicine Service

r1: Get disease

details

r2: returns list of

medicines

Find Doctor

Service

r1; Get disease

details

r2: returns list of

specialized

doctor

E-Medical

Union:S1(r1 &r2)

U S2(r2)

[Get disease details

and suggest

medicine and

doctor]

0.785 0.963 0.617 0.672 0.483 3.52

111

Property Evaluation Time

Property Evaluation Time (TPE) is time spent by Evaluation Agent to achieve

the property evaluation in the service integration process.

Total Integration Time

TTI   Tldt  Tsla  Tda  T pa  Tsi

The efficiency of the work done by the Integration Agent is evaluated with

various service logics using various constructs that produced several outcomes. The

results are shown in Table 8.2 that shows the effectiveness of the integration process.

Table 8.3: Evaluation results of composite service integration

Enterprises Service Logic Composite Available Service Service Reduction

 (Set of Rules) Service Service Integrati Integrat In Time

 Integration Integration on time ion time (ms)

 Methods Patterns (ms) (ms)

 (without (with

 pattern pattern

 analysis) analysis)

A r1: search by r1 U r2 U r3 r1 U r2 4.215 2.201 2.014

 keywords

B r2: search by (r1 U r2) ◦ r3 r1 U r2 4.369 2.262 2.107

 file type

C r3: search by (r1 U r2) in r3 r1 U r2 4.122 2.099 2.023

 language

A r1: Airline r1 ◦ r2 ◦ r3 r1 ◦ r2 4.333 2.102 2.231

 reservation

B r2: Hotel r1 U r2 U r3 r1 ◦ r2 4.122 2.291 1.831

 reservation

r3: Cab

C

 reservation

A r1: 8-bit (r1◦ r2) U (r3◦ (r1◦ r2) , (r3◦ 4.886 2.902 1.984

 Encode r4) r4)

r2: 8-bit

) ◦

) ,

4.964 2.966 1.998

A (r1U r2 (r3 U (r1U r2 (r3

 Decode r4) U r4)

B r3: 16-bit

 Encode

r4: 16-bit

B

 Decode

The assessment of the proposed methodology is finished by the

ManageEngine Applications and WAPT instrument and the execution are spoken to

graphically. The ManageEngine is utilized to decide reaction time, execution time,

accessibility properties of the administrations when combination. The WAPT device

is utilized for deciding the service integration time, property assessment time i.e., the

general execution measure of the considerable number of operators are done by

means of this device. The execution assessment charts are appeared in the following

Figures.

112

Figure 8.1: Logic Discovery Time

Figure 8.2: Dependency Analysis Time

Figure 8.3 Service Integration Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Se
rv

ice
 in

te
gr

at
io

n
Ti

m
e(

m
s)

Services

Service Integration Time

113

Figure 8.4: Service Integration Time for Composite Service Integration

8.3 Summary

Thus from the case study, the degree of automation is improved by doing

theoretical and computational analysis that is important for service integration. FSM

is employed as mathematical model to increase the benefit of automation. By

accomplishing the complete process with the help of agents cost and the operational

risk is reduced to a greater extent. Substantial increase in direct and computational

processing is targeted that leads to succeeding reduction in operational risk. A set of

services of different enterprises are examined for integration and the performance is

measured that shows significant improvement. Especially on composite services that

has been taken for study has been scrutinized. The integration time for composite

services that involve pre-evaluated logics is comparatively less than those of service

integration which does not involve the process of evaluating the business logics.

Therefore, only the first request takes time to integrate. The subsequent requests are

responded by the agents in a faster manner because of the knowledge of similar

integration technique is known by the agent. Thus the overall time taken for service

integration drastically reduced to about 50-60 percentage for the requests which have

pre-evaluated integration patterns. This cost-effective and easy to adopt

methodologies enable the organization to have a high level operational integrity.

114

CHAPTER 9

CONCLUSION AND FUTURE WORK

A standard mechanism that the applications use to publish and subscribe to

other software services over an Internet or the Intranet is the Web services

technology. Business Policies provide the service providers with a specification of the

verifiable quality characteristics that the service will provide. These Business Policies

play a very important role in Change Management Framework. These technologies

have opened several opportunities for composing different autonomous services on

demand. As a result of this composition several research issues arise for managing the

changes during service composition throughout its lifetime.

In this research, an end-to-end framework is proposed that models,

implements, verifies, and optimizes the top-down changes in a Long Term Composed

Services. The major contributions towards the research are summarized below.

9.1 Research Findings and Level of Objectives Achieved

Turing Machine for Policy Violation Detection

Business policy plays a major role in the process of service integration. An

automated model is required to take care of the business policy of integrating services

when a need for change arises. The traditional approaches like Domain Specific

Service Integration and Semantic Service Integration fail to check the business

policies at rule, function and parameter levels. During Service Integration done by

these approaches, only 60% to 70% performance level was achieved. Therefore,

multi-tape Turing machines are developed to detect the business policies of different

services. Once the Business Policies are detected, the Turing Machines also check for

any Business Policy Violation that exists between the two integrating services. The

performance measure of the Business Policy Violation Detection using Turing

Machine was calculated by experiments and the results proved that the process of

service integration is improved by 80% when compared to the existing traditional

techniques that do not employ Turing Machines for Policy Violation Detection.

ATM for Multiple Change Request

The developed Business Policy Violation System using single Turing Machine

could handle a single change at a time. But, Service Integration is a process of making

115

two or more different services of different service providers to collaborate with each

other and share their data in order to provide the customer the best service they need.

Therefore many change requests may arise at a time. While collaborating with each

other, the policy decisions of the services being integrated should be considered. To

improve the performance of Policy Violation Detection, the Alternating Turing

Machines were constructed to handle multiple service policies at a time. Hence by

experimental results, it is proved that Business Policy Violation Detection through

ATMs is more accurate and the number of Policy Violation Detected is improved by

90%.

Domain Specific change request

Web benefit Ontology comprises of an arrangement of service concepts. A

service integration idea characterizes a kind of Web services inside a space. It catches

the normal highlights of Web services. A service integration idea can be seen as a

theoretical administration, which can be instantiated by solid Web services. Utilizing

the service concepts of the Ontology, Web service functionalities are characterized in

a way that is clear and unambiguous to programming agents. The Service Integration

system understands the service request better when the Domain Specific Service

concepts are described using OWL. Service Integration is improved by 95% when

compared to integrating Web services based on extensible integration-specific

language.

Reputation Measurement against Malicious Attack

The services provided by some service providers do not fulfill the user

requirement but still their credit scores are shown high. Due to their fake identity,

owners who want a change tend to make use of those services and end up with an

improper integration. In order to avoid these kinds of problems the research has come

up with a solution by making use of Reputation Measurement against malicious

attacks to find out the fake identities with the help of user credits. Rater’s

creditability is measured to check whether the integrating services are trustworthy. By

doing so, the overall accuracy of the process of Service Integration is improved by

92% when compared to Enterprise Service Integration.

116

Multi-Agent Architecture for collaborative service integration

Web service Integration is a complex process which involves various complex

interfaces to locate the required service. It requires a powerful authentication and

access control mechanism to view and utilize the partner’s logic at business logic

schema level. Also the service level agreement negotiation process should be carried

out in an effective manner. To handle such important tasks and to make the service

integration with Policy Violation Detection an automated one, several agents might be

applied. Hence multi-agent architecture is developed for collaborative service

integration. Several agents are developed to take care of the property evaluation. The

patterns of the policies to be matched are extracted and are done by the Multi-tape

Turing machine. When various agents are employed to different levels of Service

Integration, BL patterns are generated and services are integrated through union,

composition and substitution. Therefore the overall integration time is reduced to

about 50%.

9.2 Future Research Work

Since Web services get updated as the technology develops, there is always a

need to improvise its performance. The dynamicity of service integration has to be

maintained and policy detection has to be further unrehearsed. Change specification

should contain unambiguous and sufficient information about a change so as to

respond to the change in an efficient manner.

The research can be further enhanced with following features.

➢ Meta Heuristic Approach can be applied to the policy detection algorithm to optimize

the obtained solution.

➢ Security policy may be further considered after the detection of policy violation to

enhance the security constraints of the composing services.

➢ The constructed Turing Machine may also be used to verify the SLAs of services for

Web service Choreography and Orchestration.

Research might be done to do early forecast of response time i.e., regardless of

whether the requested integration can be set aside a few minutes in this way deciding

hardness and fulfillment of the service integration request.

117

REFERENCES

1. Adina Mosicat et al. (2011) “Automated Maintenance of Service Compositions

with SLA Violation Detection and Dynamic Binding”, International Journal on

Software Tools for Technology Transfer, 13(2), pp. 167–179.

2. Alex Talevski et al. (2015) “Reconfigurable Web Service Integration in the

Extended Logistics Enterprise”, IEEE Transactions on Industrial Informatics,

1(2).

3. Amiri et al. (2010) “QoS aware Web service composition based on genetic

algorithm”, In Telecommunications (IST), 5
th

 International Symposium, 502 –

507.

4. Andr´es, B.R (2011) “Change management practices: Impact on perceived

change results”, Journal of Business Research, 64(3):266–272.

5. Animesh Chaturvedi (2014) “Automated Web service change management

AWSCM-A Tool”, IEEE 6
th

 International Conference on Cloud Computing

Technology and Science.

6. Arif Ali Khan et al. (2012) “A Purpose Frame work for Requirement Change

Management in Global Software Development”, International Conference on

Computer & Information Science (ICCIS), 2.

7. Azlan Ismail et al. (2013) “Incremented service level agreement violation

handling with time impact analysis”, Journal of Systems and Software, 86(6).

8. Bao et al. (2012) “Massive sensor data management framework in cloud

manufacturing based on Hadoop”, in Proc. IEEE 10th Int. Conf. Ind. Inf., pp.

397–401.

9. Belqasmi et al. (2014) “A Case Study on IVR Applications, “Provisioning as

Cloud Computing Services”, IEEE Network, 28: 33–41.

10. C. Müller et al. (2012) “SALMonADA: A Platform for monitoring and

displaying violations of WS-Agreement Compliance Document”, Proceedings of

the 4
th

 International Workshop on Principles of Engineering Service-Oriented

Systems, pp. 4349.

11. Camlon et al. (2010) “Towards a flexible service integration through separation

of business rules”, 14
th

 IEEE International Enterprise Distributed Object

Computing Conference.

118

12. Chang Lee et al. (2003) “Business value of B2B electronic commerce: the critical

role of inter-firm collaboration”, Electronic Commerce Research and Applications

2, Elsevier B.V. pp.350–361.

13. Deng et al. (2010) “A Study and Design of SOA-based Service Integration for

Logistics Customs clearance”, International Symposium on Parallel and

Distributed Processing with Applications.

14. Dominique et al. (2010) “Interacting with the soa-based internet of things:

Discovery, query, selection, and on-demand provisioning of Web services’,

IEEE Transactions on Services Computing, 3(3).

15. Eleni Stroulia et al. (2013) “An Intelligent Agent Architecture for Flexible

Service Integration on the Web”, IEEE Transactions on Systems, Man and

Cybernetics, 33(4).

16. Freddy et al. (2010) “Seeking Quality of Web Service Composition in a Semantic

Distribution”, IEEE Transactions on Knowledge and Data Engineering, 23(6).

17. Hadad et al. (2010) “TQoS: Transactional and QoS-aware selection algorithm for

automatic Web service composition,” IEEE Trans. Service Comput., 31:73– 85.

18. Hassan et al. (2012) “Web Service Composition: Models and Approaches”,

Proceedings of IEEE International Conference on Multimedia Computing and

Systems.

19. Hayes J. et al. (2014) “The Theory and Practices of Change Management”,

Palgrave Macmillan.

20. Hendler J. (2001) “Agents and the Semantic Web”, Intelligent Systems, IEEE,

16(2):30–37.

21. Hennie (2006) “On-Line Turing Machine Computations”, IEEE Transactions on

Electronics Computers.

22. Hui Ma et al. (2012) “A formal model for the interoperability of service clouds”,

Service Oriented Computing and Applications, 6(3):189–205.

23. Hussain et al. (2013) “RESTful Web Service Integration using Android

Platform”, Proceeding of IEEE Fourth International Conference on Computing,

Communications and Networking Technologies (ICCCNT).

24. Ing-Ray Chen et al. (2015) “Trust Management for SOA-Based IoT and Its

Application to Service Composition”, IEEE Transactions on Services Computing,

9(3).

119

25. Inico (2014) Inico Technologies [Online]. Available: http://www.inicotech.

com/. [Accessed: 05-Mar-2014].

26. Jiachen Hou et al. (2016) “Integration of Web Services technology with business

models within the total product design process for supplier selection”,

International Journal of Computers in Industry, 57(8–9).

27. Jun Shen et al. (2010) “Analysis of business process integration in Web service

context”, International Journal of Future Generation Computer Systems, 23(3).

28. Karim Benouaret et al. (2014) “Web Service Composition with Fuzzy

Preferences: A Graded Domain Name Relationship Based Approach”, ACM

Transactions on Internet Technology (TOIT), 13(4).

29. Katharina Krombholz et al. (2015) “Fake identities in social media: A case

study on the sustainability of the face book business model”, Journal of Service

Science Research, Springer, 4(2).

30. Kehagias et al. (2010) “An ontology based framework for Web Service

Integration and Delay to Mobility Impaired users”, World Summit on Knowledge

Society Part of the Communications in Computer and Information Science book

series (CCIS, volume 111).

31. Khoshafian (2006) “Service oriented enterprises”, Auerbach Publications,

Boston, MA, USA.

32. Li et al. (2012) “Dynamic service integration for reliable and sustainable

capability provision”, International Journal of Systems Science,43(1).

33. Lin et al. (2010) “The design and implementation of service process

reconfiguration with end-to-end qos constraints in soa”, Service Oriented

Computing and Applications, 4(3):157–168.

34. Losup et al. (2011) “Performance analysis of cloud computing services for many-

tasks scientific computing,” IEEE Trans. Parallel Distrib. Syst., 22(6).

35. Lu et al. (2015) “Ontology-based knowledge modeling for automated

construction safety Checking”, Safety Science, volume 79.

36. Lu Liu et al. (2012) “Dynamic service integration for reliable and sustainable

capability provision”, International Journal of Systems Science, 43(1).

37. Marcos Palacios et al. (2015) “Coverage-Based Testing for Service Level

Agreements”, IEEE Transactions on Services Computing ,8(2).

120

38. Mario et al. (2015) “ONLI: An ontology-based system for querying DBpedia

using natural language paradigm”, Expert Systems with Applications, 42(12).

39. Matthias Weske (2012) “Business Process Management Architectures”, In:

Business Process Management. Springer, Berlin, Heidelberg.

40. Medjahed et al. (2003) “Composing Web services on the semantic Web,”

Journal on Very Large Databases, 4:333351.

41. Medjahed et al. (2003) “Composing Web Services on the Semantic Web”, The

VLDB Journal, Special Issue on the Semantic Web, 12(4).

42. Mier et al. (2012) “Automatic Web Service Composition with a Heuristic Based

Search Algorithm”, Proceedings of IEEE International Conference on Web

Services.

43. Ouransa et al. (2013) “The PORSCE-II Framework: Using AI Planning for

Automated Semantic Web Service Composition”, International Journal of

Knowledge Engineering for Planning and Scheduling, Volume 28.

44. Pablo et al. (2010) “Composition of Web services through genetic

programming”, Evolutionary Intelligence, 3:171–186.

45. Paulraj et al. (2012) “Process Model based Automatic Service Discovery and

Composition of Composite Semantic Web Services using Web Ontology

Language for Services (OWL-S)”, Journal of Enterprise Information Systems,

Volume 6.

46. Philipp Leitner et al. (2010) “Runtime predictions of Service Level Agreement

Violation for composite services”, Service-Oriented Computing, Springer-Verlag

Heidelberg.

47. Philipp Leitner et al. (2013) (2013) “Data-Driven and Automated prediction of

service level agreement violations in service composition”, International Journal

of Distributed and Parallel Databases, 31(3):447–470.

48. Pierluigi et al. (2009) “URBE: Web service retrieval based on similarity

evaluation”, IEEE Transactions on Knowledge and Data Engineering, 21(11).

49. Puttonen et al. (2013) “Maintaining a Dynamic View of Semantic Web

Services Representing Factory Automation Systems”, in 2013 IEEE 20
th

International Conference on Web Services (ICWS).

121

50. Q. Yu (2008) “A Foundational Framework for Service Query Optimization”, PhD

thesis, Virginia Tech.

51. Quanwang Wu et al. (2014) “Broker Based SLA-Aware Composite service

provisioning”, Journal of Systems and Software, 96.

52. Radu et al. (2011) “Dynamic QoS management and optimization in service-based

systems”, IEEE Transactions on Software Engineering, 37(3).

53. Reid et al. (1996) “An Integrated Management Model for Virtual Enterprises:

Vision, Strategy and Structure”, IEEE Engineering Management Conference, pp.

522–527.

54. Salman Akram et al. (2010) “A Change Management Framework for Service

Oriented Enterprises”, International Journal of Next-Generation Computing, 1(1):

91112, 22p.

55. Sebastian Speiser et al. (2011) “Integrating Linked Data and Services with

Linked Data Services”, Proceedings of European Semantic Web Conference,

volume 6643.

56. Shah et al. (2009) “A Qos perspective on exception diagnosis in service-oriented

computing”, J. UCS, 15(9):1871–1885.

57. Shanshan Qui et al. (2012) “A Trust Impact Analysis Model for Composite

Service Evolution”, 19
th

 Asia-Pacific Software Engineering Conference, Vol. 2.

58. Sheng-Yuan Yang (2013) “Developing an energy-saving and case-based

reasoning information agent with Web service and ontology techniques, Expert

Systems with Applications”, 40(9).

59. Somluck L-Ongsri et al. (2015) “Incorporating Ontology-based semantics into

conceptual modeling”, Journal of Information Systems, Volume 52.

60. Son et al. (2014) “Semantic context-aware service composition for building

automation system”, IEEE Transactions on Industrial Informatics, 10(1), Mar

2013.

61. Sun et al. (2011) “Master-slave parallel genetic algorithm based on Map Reduce

using cloud computing,” Appl. Mech. Mater., 121–126: 4023–4027.

62. Sunitha T. et al. (2011) “Survey of Potential Attacks on Web Services and Web

Services Composition”, Proceedings of IEEE International Conference on

Electronics Computer Technology, Volume 6.

122

63. Szu-Yin et al. (2014) “A Trustworthy QoS based Collaborative Filtering

Approach for Web Service Discovery, Journal of Systems and Software, Volume

93.

64. Tang et al. (2013) “Dynamic Web Service Composition Based on Service

Integration and HTN Planning”, Proceedings of IEEE 7
th

 International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.

65. Tao et al. (2012) “Modelling of combinable relationship-based composition

service network and the theoretical proof of its scale-free characteristics”,

Enterprise Inf. Syst., 6(4):373–404.

66. Thirumaran et al. (2011) “Security Model to Incorporate Add-On Security for

Business Services”, International Journal of Computer Applications 22(2):1–10.

67. Thirumaran et al. (2015) “Collaborative Web Service QoS Prediction with

Multi-Criteria Decision Making Using CBNIMF”, (IJCSIT) International Journal

of Computer Science and Information Technologies.

68. Thirumaran et al. (2016) “A formal approach for change impact analysis of long

term composed services using Probabilistic Cellular Automata”, Journal of King

Saud University - Computer and Information Sciences, 28(2).

69. Tristan Glatard et al. (2008) “A Service-Oriented Architecture enabling

dynamic service grouping for optimizing distributed workflow execution”, Journal

of Future Generation Computer Systems, 24(7).

70. Viriyasitavat et al. (2012) “SWSpec: The requirements specification language in

service workflow environments”, IEEE Trans. Ind. Inf., 8(3):631–638.

71. Wang (2012) “Editorial advances in information integration infrastructures

supporting multidisciplinary design optimization”, Enterprise Inf. Syst., 63:265.

72. Wang et al. (2011) “Evaluating Feedback Rating for Measuring Reputation of

Web Services”, International Conference on Services Computing.

73. Weiwei et al. (2013) “Reputation Aware QoS Value prediction of Web Services”,

IEEE International Conference on Services Computing.

74. Wu et al. (2012) “A novel CMII-based engineering change management

framework: an example in Taiwan’s motorcycle industry”, IEEE Transactions on

Engineering Management, 59(3).

123

75. Wu et al. (2013) “Predicting quality of service for selection by neighborhood-

based collaborative filtering”, IEEE Transaction on System Management, Cybern:

Syst., 43(2):428–439.

76. Xumin Liu et al. (2013) “SCML: A change Management Language for Adaptive

Long Term Composed Services”, Advanced Web Services pp. 225252,

Springer.

77. Xumin Liu et al. (2011) “Efficient change management in long-term composed

services”, Service Oriented Computing and Applications, 5(2), pp. 87–103.

78. Xumin Liu et al. (2011) “Ev-LCS: A System for the Evolution of Long-Term

Composed Services”, IEEE Transactions on Services Computing, 6(1).

79. Yan Hu et al. (2015) “Time Aware and Data Sparsity Tolerant Web Service

Recommendation Based on Improved Collaborative Filtering”, IEEE transactions

on services computing, 8(5).

80. Yanhua Du et al. (2014) “Timed Compatibility analysis of Web service

composition: A Modular Approach based on Petri Nets”, IEEE Transactions on

Automation Science and Engineering, 11(2).

81. Ying et al. (2003) “A Web services-based framework for business integration

solutions”, Electronic Commerce Research and Applications 2, Elsevier Science

B.V., pp. 15–26.

82. Ying Huang et al. (2015) “A Web services-based framework for business

integration solutions, Electronic Commerce Research and Application”,

International Journal of Electronic Commerce Research and Applications,

Springer 2(1).

83. Zakatia et al. (2008) “Toward Behavioral Web Services Using Policies”, IEEE

Transactions on Systems Man and Aybernetics - PART A: Systems and Humans.

84. Zakiria et al. (2012) “Towards a User Centric Social Approach to Web Service

Composition, Execution and Monitoring”, Proceedings of International

Conference on Web Information Systems Engineering, Springer, volume 7651.

85. Zeeb et al. (2010) “WS4D: Toolkits for Networked Embedded Systems Based

on the Devices Profile for Web Services”, 39
th

 International Conference on

Parallel Processing Workshops (ICPPW), 2010.

124

86. Zheng et al. (2012) “An Intent based approach for service Discovery and

Integration”, IEEE 17
th

 International Conference on Computer supported co-

operative work in design.

87. Zhiying Cao et al. (2015) “A Context-Aware Adaptive Web Service Composition

Framework”, IEEE International Conference on Computational Intelligence &

Communication Technology.

88. Zhou et al. (2012) “Guest editorial special section on enterprise systems”, IEEE

Trans. Ind. Inf., 8(3):630.

89. Zhu et al. (2012) “Group role assignment via a KuhnMunkres algorithm-based

solution”, IEEE Transaction on System Management, Cybern: Part A: Syst.

Humans, 42(3):739–750.

90. Zhuoren et al. (2010) “A research on multi-layer structure for dynamic service

integration: an innovative model based on SOA”, The 2
nd

 IEEE International

Conference on Information Management and Engineering.

125

LIST OF PUBLICATIONS

International Journals

1. Tiroumalmouroughane S, Thambidurai P, “Identification of Business Policy

Violation in Service Integration of Long Term Composed Services”, International

Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.75 (2015).

2. Tiroumalmouroughane S, Thambidurai P, “Agent Based Dynamic Service

Integration Framework using FSM” Helix International Journal, ISSN 2277 –

3495, Vol.7 No.5, 2017.

3. Tiroumalmouroughane S, Thambidurai P, “Reputation Based Business Policy

Violation Detection of Long Term Composed Services with Efficient Alleviation

of Malicious Rating of Violated Service”, International Journal of Ad-hoc and

Ubiquitous Computing-SCI (Accepted for Publication).

International Conferences

1. Tiroumalmouroughane S, Thambidurai P, “An Intent Based Web Service

Composition and Integration through Active –XML Framework”, South Asian

Journal of Research in Engineering Science and Technology (SAJREST), ISSN

(ONLINE): 2455-9261, VOLUME: 01 Special Issue: 01 (ICRDICT – 2016).

2. Tiroumalmouroughane S, Thambidurai P, “Automatic Policy Based Web Service

Integration Using Ontology”, ICIA-16, August 25-26, 2016, Pondicherry, India

©2016 ACM. ISBN 978-1-4503-4756-3/16/08.

3. Tiroumalmouroughane S, Thambidurai P, “A Collaborative Framework for

Dynamic Service Integration using Agents”, I2C2-17, June 23-24, 2017, Coimbatore.

ISBN 978-1-5386-0373-4.

	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page11
	page12
	page13
	page14
	page15
	page16
	page18
	page41
	page106
	page107
	page108
	page1
	page110
	page111
	page118
	page133

